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Fig. S1. SEM of the PVA/PAA-PEDOT: PSS-TA hydrogel.

Fig. S2. XRD test of the PEDOT: PSS and PVA/PAA- PEDOT: PSS-TA hydrogel.
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Fig. S3. ATR-FTIR of the PEDOT: PSS and PVA/PAA- PEDOT: PSS-TA hydrogel.

Fig. S4. The initial state of the PVA/PAA-PEDOT: PSS-TA hydrogel and the state after 

pressing.
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Fig. S5. (a)Weight change of PVA/PAA-PEDOT: PSS-TA hydrogel after being placed 

at room temperature for 100 h. (b) The stretching ability of the hydrogel after 100 h and 

(c) the relative resistance change when the strain was 100%.

Fig. S6. PVA/PAA-PEDOT: PSS-TA hydrogel was placed on non-sweaty (a) and 

sweaty (b) fingers for sensing testing.
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Fig. S7. The signal change of the PVA/PAA-PEDOT: PSS-TA hydrogel sensor 

attached on the different finger when performing 0-9 hand gestures.
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Fig. S8. Voltage signals generated by TENGs with different deformations.

Fig. S9. Durability test of TENG under a repeated force of 30 N.
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Fig. S10. The open circuit voltage (Voc) generated by TENG against the skin before 

and after being placed in the environment of ~26℃ and 75% humidity for 120h.

Fig. S11. The voltage output signal of the TENG placed on the flexed finger containing 

sweat.
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Table S1 Comparison between this work and previously-reported gels-based sensors.

Materials

Maximal

tensile 

strain (%)

Adhesion 

strength (kPa)
Ref.

PVA-FSWCNT-PDA / 9.2 1

PAM/Fe3+-TA@CNFs ~136 9.3 2

PVA/PSBMA 400 7.66 3

CNC@P(SBMA-co-AM) 1127 10.5 4

PVA-TA-EGaIn 233 2.2 5

This work 640 14.97
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