Regulating Li Nucleation/Deposition by Bamboo-shoot Like

Lithiophilic Particles Anchored on Carbon Cloth for Dendrite-free

Lithium Metal Anode

Yuchi Liu,^{a,b} Zhicui Song,^{a,b} Zihao Wang,^{a,b} Jianxiong Xing,^{a,b} Wei Zou,^c and Jingze Li *^{a,b}

Fig. S1 (a and b) Surface morphology of CC (carbon cloth). (c and d) Side-view morphology of CC.

Fig. S2 (a and b) Surface morphology of Li@CC. (c and d) Side-view morphology of Li@CC.

Fig. S3 Li-Sn diagram¹.

Fig. S4 Wettability of molten Li and SnLi90 alloy on CC substrates.

Fig. S5 Capacity-voltage curve of SnLi@CC delithiated to 0.5 V.

a use of Theorem and equality and practical area capacity of Shiringee								
Materials	Mass	Minus the mass	Theoretical	Theoretical	Practical areal			
	(g)	of CC	capacity (mA	areal	capacity (mA			
		(g)		capacity (mA	-2			
			h g-1)	-2	h cm)			
				h cm)				
00	0.0008	/		/	/			
CC	0.0098	, ,		,	,			

 Table S1 Theoretical areal capacity and practical areal capacity of SnLi@CC

SnLi@CC	0.0214	0.0116	/	45.62	45.52
				(3087 mAh g ⁻	
				¹ *0.0116	
				g/0.785	
				cm ² =45.62 mAh	
				cm ⁻²)	

Fig. S6 Morphology of SnLi@CC after completely delithiation by reacting with H_2O , (a, b, c and d) Top-view morphology. (e, f, g and h) Side-view morphology.

Fig. S7 XRD profiles of SnLi@CC after chemical delithiation by reaction with water.

Fig. S8 EDS test of SnLi@CC after chemical delithiation by reaction with water, (a) morphology of SnLi@CC after chemical delithiation by reaction with water. (b) Sn element. (c) C element. (d) O element.

Fig. S9 Coulombic efficiency of the skeleton obtained by chemical delithiation, (a)1 mA cm⁻², 1 mAh cm⁻²; (a)1 mA cm⁻², 5 mAh cm⁻².

Fig. S10 Time-voltage curves for Li, Li@CC and SnLi@CC symmetric batteries at different current densities and capacities, respectively. (a) 1 mA cm⁻², 3 mAh cm⁻². (b) 1 mA cm⁻², 5 mAh cm⁻². (c) 3 mA cm⁻², 1 mAh cm⁻². (d) 5 mA cm⁻², 5 mAh cm⁻².

References

1 R. A. Huggins, Lithium alloy negative electrodes, *Journal of Power Sources*, 1999, **81**, 13-19.