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Experimental section

 Synthesis of FeF3@C nanotube arrays on CFC

  Firstly, carbon fiber cloth (CFC) was ultrasonically cleaned in ethanol and ultrapure 

water for 15 min, separately. The Ni-Co basic carbonate ((Co,Ni)(CO3)0.5OH) nanowire 

arrays were synthesized by a typical hydrothermal deposition. Typically, 50 mmol urea, 

10 mmol g NiCl2·6H2O, and 20 mmol CoCl2·6H2O were dissolved in 160 mL deionized 

water with string to form a red-brown solution. After that, pre-treated CFC was 

vertically put into a 200 mL polytetrafluoroethylene-lined reactor and kept at 120 C 

for 6 h in an oven. The attained Ni-Co basic carbonate precursor arrays were washed 

with ultrapure water and ethanol and dried at 80 C for 10 h. To attain FeOOH-CFC, 

the dried precursor arrays were fully immersed in 300 mL 0.4 M FeCl3·6H2O aqueous 

solution and kept at 50 C for 12 h. Finally, FeOOH-CFC film was immersed in 0.5 M 

glucose aqueous solution for 24 h and naturally dried. To obtain the FeF3@C nanotube 

arrays, the modified FeOOH-CFC film was annealed at 500 C for 3 h with 5 vol% 

H2/Ar flowing, and then the temperature decreased to 300 C converting the gas to 2 

vol% NF3/He and maintained at this temperature for 2h. 

Materials characterization

X-ray diffraction (XRD) patterns of these films were collected by a PANalytical 

Empyrean XRD operating at 40 kV/45 mA equipped with a Cu Kα source. The 

morphology and microstructure information was revealed by scanning electron 

microscopy (SEM, Carl Zeiss Supra 40) with an operating voltage of 5 kV. 

Transmission electron microscopy (TEM) analyses were all conducted by a JEOL JEM-

http://dict.youdao.com/w/hydrothermal%20reactor/#keyfrom=E2Ctranslation


2100F instrument. X-ray photoelectron spectroscopy (XPS) data was elucidated by an 

Axis Ultra DLD (Kratos Inc.) instrument using an Al Κα X-ray source. Raman 

spectrum was performed on a Thermo Fisher Micro DXR microscope motivated by He-

Ne laser (532 nm) with a resolution of 2 cm-1.

Electrochemical tests

Li+ insertion/extraction properties of FeF3@C-CFC cathode were measured by the 

assembled coin-cells (CR2025). FeF3@C-CFC was cut into 8 mm circular disks as the 

cathode. The FeF3@C mass loading of FeF3@C-CFC was around 1.78 mg cm-2 and the 

CFC was about 11.53 mg cm-2. Li//FeF3@C-CFC cells were assembled in an Ar-filled 

glove box (both H2O and O2 below 0.1 ppm). 1 M LiPF6 in a mixture of diethyl 

carbonate/ethylene carbonate (DEC/EC, 1: 2 by vol.) containing 10 wt%  

fluoroethylene carbonate (FEC) was applied as the electrolyte. Circular Li-foils and 

Celgard 2400 were used as counter electrodes and separators, respectively. A battery 

test system (Land 2001A) was taken to measure the cycling and rate performance of 

FeF3@C-CFC in 1.0 V ~4.0 V or 2.0 V ~ 4.5 V, respectively. Cyclic voltammetry (CV) 

curves were conducted on an electrochemical workstation (Gamry Interface 1000). 

Electrochemical impedance spectroscopy (EIS) results were collected on the Gamry 

workstation in the frequency range of 0.01~1×105 Hz.



Figure S1 Raman spectra of CFC and FeF3@C-CFC.
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Figure S2 Cycling performance of FeF3@C nanoarray at 0.4 A g-1.



Figure S3 SEM images of FeF3@C nanoarray after 50 cycles at 1.0 A g-1.

Detailed calculation processes of Li+ transfer coefficient

The Li+ diffusion is measured based on the analysis of impedance and according to 

Equations (1) and (2):

EIS was employed to calculate the Li+ diffusion coefficient to study the effect of 

crystallinity on potassium storage performance. In Equations (1) and (2), R, T, n, F, A, 

C, and σw are the gas constant (8.314 J mol-1 K-1), the absolute temperature (303.15 K), 

the number of electrons per molecule during oxidation (2), the Faraday’s constant 

(96485 C mol-1), the surface area of the electrode (1.13 cm2 ), the Li+ concentration in 

the electrode material (1.0 mol L-1), and the Warburg coefficient, respectively.

Figure S4 (a) EIS of FeF3@C nanoarrays after cycles. (b) The plot of Zre with w-1/2 

within the low-frequency range of FeF3@C nanotube arrays.
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Table S1. A comparison of cycling performance between the current FeF3@C nanotube 

arrays with recently reported fluoride cathode materials for LIBs. 

Anode
Current 
density
(mA g-1)

Discharge 
capacity

(mAh g-1)

Cycle 
number
(cycles)

Voltage
region

(V)

Reference

FeF3·0.33 H2O 237 95 45 1.7-4.5 Ref. S1

FeF3-CNT 23.7 140 50 1.3-4.5 Ref. S2

Yolk-like FeF3  712 125 40 1.5-4.2  Ref. S3 

FeF3/C/RGO 100 220 200 1.0-4.0 Ref. S4

 O-FeF3·0.33H2O 474 90 1000 1.5-4.5 Ref. S5

FeF3·0.33H2O 

nanosheets array
400 96 1000  1.7-4.5 Ref. S6

FeF3/rGO 356 378-8 100 1.5-4.5 Ref. S7

FeF3-C -NF 100 500 400 1.0-4.0 Ref. S8
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