Supporting Information for

Three-Dimensional Porphyrin-Based Covalent Organic Frameworks with stp Topology for Efficient Electrocatalytic Oxygen Evolution Reaction

Chengtao Gong^{a‡}, Xinying Yang^{a‡}, Xiaofei Wei^b, Fangna Dai^b, Tao Zhang^a, Danfeng Wang^a, Mingyan Li^a, Jianhong Jia^{*a}, Yuanbin She^a, Guodong Xu^c and Yongwu Peng^{*a}

^a College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China E-mail: <u>ywpeng@zjut.edu.cn</u>; jiajh@zjut.edu.cn

^b School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China

^c Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng 224007, China

‡These authors contributed equally to this work

Table of Contents

- 1. Materials and methods
- 2. Synthesis and characterization of ZJUT-1
- 2.1. Synthesis of ZJUT-1
- 2.2. Characterization of ZJUT-1

Figure S1. FT-TR spectra

Figure S2. ¹³C CP/MAS NMR spectrum

- Figure S3. TGA curve
- Figure S4. PXRD patterns for different topologies and folds interpenetrated COF structures

Figures S5-7. Structural models for different topologies and folds interpenetrated COF structures

Figures S8-9. SEM and TEM images

Figure S10. HR-TEM images

- 3. Synthesis and characterization of ZJUT-1@Co
- 3.1. Synthesis of ZJUT-1@Co
- 3.2. Characterization of ZJUT-1@Co

Figures S11-12. SEM and TEM images

Figure S13. PXRD patterns

Figure S14. ¹³C CP/MAS NMR spectrum

Figure S15. TGA curve

Figure S16. N2 adsorption-desorption isotherms measured at 77 K and pore-size distribution

Figure S17. FT-TR spectra

Figure S18. XPS spectra for COFs

4. Unit cell parameters and fractional atomic coordinates for ZJUT-1

Table S1. Unit cell parameters and fractional atomic coordinates

- 5. Fabrication of working electrodes and electrochemical characterization
- 5.1 Fabrication of working electrodes
- 5.2 Electrochemical characterization

Figure S19. Cyclic voltammetry scans for as-prepared catalysts

Figure S20. Capacitive currents versus scan rates on the basis of CV curves

Table S2. OER performances with reported porphylin-based catalysts

Table S3. Normalised current densities of RuO2 and ZJUT-1@Co

6. Density functional theory calculations of OER performance

Figure S21. The optimized structures

Table S4. The initial adsorption of H₂O molecules

7. References

1. Materials and methods

All the chemicals are commercially available, and used without further purification. All solvents were dried and distilled according to conventional methods. All products were isolated and handled under nitrogen using either glovebox or Schlenk line techniques.

Power X-ray diffraction (PXRD): PXRD patterns were collected on an X-ray diffraction (XRD) system (DX-27mini, China) using Cu Kα radiation.

Fourier transform infrared (FT-IR): IR spectra were measured on an IR spectrometer (Nicolet 6700) between the ranges of 4000 to 400 cm⁻¹.

Solid-state nuclear magnetic resonance (ssNMR): Solid-state nuclear magnetic resonance (NMR) data were performed on a Bruker AVANCE III 600 spectrometer with cross-polarization magic-angle-spinning (CP/MAS) at a resonance frequency of 150.9 MHz. ¹³C CP/MAS NMR spectra were recorded using a 4 mm MAS probe and a spinning rate of 12kHz. A contact time of 4 ms and a recycle delay of 2 s were used for the ¹³C CP/MAS NMR measurement. The chemical shifts of ¹³C were externally referenced to tetramethylsilane (TMS).

Elemental analyses: Elemental analyses were performed on an Elementar vario MICRO UNICUBE series CHN elemental analyzer.

Scanning electron microscope (SEM): SEM images were collected using a GeminiSEM 500 system.

High-resolution transmission electron microscope (HR-TEM): HR-TEM images were collected using a Tecnai G2 F30 S-Twin (FEI Company, point resolution of 0.20 nm, line resolution of 0.102 nm, and information resolution of 0.14 nm) with an accelerating voltage of 300 kV.

Thermogravimetric analysis (TGA): TGA measurements were performed using a TA Q800 under flowing N₂ with 10 K min⁻¹ ramp rate. Samples were heated in a Platinum pan (800 °C, 10 °C min⁻¹) under a N₂ flux (60 mL min⁻¹).

Sorption isotherm for N_2 : Micrometrics ASAP2040 system were used to measure the specific surface area and pore structure using nitrogen as the adsorbate at 77 K, after outgassing the samples overnight at 120 °C.

X-ray photoelectron spectroscopy(XPS) : X-ray photoelectron spectroscopy data were collected using a Kratos AXIS Ultra DLD.

Crystal structure modeling: Structural modeling of COFs was generated using the Materials Studio¹ program employing the building (Crystal) module, the lattice model was geometrically optimized using force-filed based method (Forcite molecular dynamics module) and SCC-DFTB (DFTB + module). The Pawley fitting (Reflex module) was performed to optimize the lattice parameters iteratively until the Rwp value converges and the overlay of the observed with refined profiles shows good agreement. Powder indexing and Rietveld refinement were performed using EXPO2014² various topology structures were illustrated by VESTA software³.

2. Synthesis and characterization of ZJUT-1

2.1 Synthesis of ZJUT-1

Monomers of 2,3,6,7,14,15-hexa(4-formylphenyl)triptycene (HFPTP) and 5,10,15,20-Tetra(4-aminophenyl)porphyrin (TAPP) were synthesized according the Published methods^{4,5}.

Scheme S1. Synthesis of ZJUT-1.

ZJUT-1: HFPTP (17.6 mg, 0.02 mmol) and **TAPP** (20.2 mg, 0.03 mmol) were added into a 10-mL glass ampoule with mesitylene (0.9 mL) and N, N-dimethylacetamide (0.3 mL). The solution was ultrasound for 5 minutes to obtain dark purple turbid solution. 6 M acetic acid (0.2 mL) was added into the glass ampoule as catalyst. The glass ampoule was flash frozen at 77 K using the liquid nitrogen bath, degassed by freeze-pump-thaw three times and vacuumed to *ca*. 100 Pa, then sealed. The glass ampoule was placed in an oven at 120 °C for 5 days. The fuchsia solid was isolated by centrifugation and washed with N, N-dimethylacetamide (2×10 mL) and acetone (2×10 mL). The resulting precipitate was filtered then exhaustively washed with tetrahydrofuran and acetone by Soxhlet extraction for 48 hours. The sample was then transferred to vacuum chamber and evacuated to 20 mTorr at 80 °C for 24 h, yielding fuchsia powder **ZJUT-1** (Yield: 29.2 mg, 81.9%). Elemental analysis of **ZJUT-1** with a molecular formula of ($C_{128}H_{77}N_{12}$)n (% Calc/Found: C 86.22/86.79, H 4.35/4.13, N 9.43/9.08).

2.2 Characterization of ZJUT-1

Figure S1. FT-IR spectra of TAPP, HFPTP, and ZJUT-1.

Figure S2. ¹³C CP/MAS NMR spectrum of ZJUT-1. Asterisks (*) indicate peaks may arising from solvent molecules or spinning side bands.

Figure S3. TGA curve of ZJUT-1.

Figure S4. Simulated PXRD patterns for possible topologies (**stp** or **acs**) and different folds interpenetrated COF structures built from HFPTP and TAPP.

Figure S5. Structural model for unfold interpenetrated COF structure with **stp** topology built from HFPTP and TAPP.

Figure S6. Structural model for 2-fold interpenetrated COF structure with **stp** topology built from HFPTP and TAPP.

Figure S7. Structural model for acs topology built from HFPTP and TAPP.

Figure S8. SEM images of ZJUT-1.

Figure S9. TEM images of ZJUT-1.

Figure S10. (a) A typical TEM image of ZJUT-1; (b, c) The HR-TEM images of the selected areas (white frames) in a with the simulated models of ZJUT-1.

3. Synthesis and characterization of ZJUT-1@Co

3.1 Synthesis of ZJUT-1@Co

Scheme S2. Synthesis of ZJUT-1@Co.

ZJUT-1@**Co**: **ZJUT-1** (60.0 mg) and Cobalt(II) acetate tetrahydrate (119.6 mg, 0.48 mmol) were added into a 10-mL glass ampoule with N,N-dimethylacetamide (2.0 mL). The glass ampoule was flash frozen at 77 K using the liquid nitrogen bath, degassed by freeze-pump-thaw three times and vacuumed to *ca*. 100 Pa, then sealed. The glass ampoule was placed in an oven at 120 °C for 24 h. The dark red solid was isolated by centrifugation and washed with H₂O (3×10 mL), then immersed in 80 °C N,N-dimethylacetamide and exchanged solvent several times. The resulting precipitate was filtered then exhaustively washed with tetrahydrofuran and acetone by Soxhlet extraction for 48 hours. The sample was then transferred to vacuum chamber and evacuated to 20 mTorr at 80 °C for 24 h, yielding dark red powder **ZJUT-1@Co** (Yield: 53.4 mg, 84.8%).

3.2 Characterization of ZJUT-1@Co

Figure S11. SEM images of ZJUT-1@Co.

Figure S12. TEM images of ZJUT-1@Co.

Figure S13. PXRD patterns of ZJUT-1 and ZJUT-1@Co. The crystallinity characters of the synthesized ZJUT-1@Co are well preserved compared to the ZJUT-1.

Figure S14. ¹³C CP/MAS NMR spectrum of ZJUT-1@Co. Asterisks (*) indicate peaks may arising from solvent molecules or spinning side bands.

Figure S15. TGA curve of ZJUT-1@Co.

Figure S16. N_2 adsorption-desorption isotherms measured at 77 K and pore-size distribution of ZJUT-1@Co.

Figure S17. FT-IR spectra of ZJUT-1 and ZJUT-1@Co in the ranges of 700 to 1700 cm⁻¹.

Figure S18. XPS spectra of (a) ZJUT-1 and (b) ZJUT-1@Co.

4. Unit cell parameters and fractional atomic coordinates for ZJUT-1

Table S1. Unit cell parameters and fractional atomic coordinates for ZJUT-1 calculated based on the 2-fold interpenetrated stp topology.

Space group		P1			
		<i>a</i> = 54.4694 Å, <i>b</i> = 55.2247 Å <i>c</i> =			
		21.3866 Å			
Calculated unit cell		$\alpha = 90.2243^{\circ} \beta = 89.9411^{\circ} \gamma =$			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Atoms	x	V	7		
Cl	0.71895	0.91279	0.80007		
C2	0.69062	0.91275	0.30007		
C2	0.69201	0.8975	0.78195		
C4	0.6533	0.87731	0.71077		
C4	0.0555	0.87701	0.03340		
C5	0.04309	0.07291	0.03727		
C0	0.7071	0.92409	0.02032		
C?	0.72870	0.93381	0.38337		
<u> </u>	0.74812	0.92032	0.57903		
<u> </u>	0.74541	0.90535	0.62091		
<u>C10</u>	0.72377	0.89421	0.66563		
	0.70456	0.9039	0.66992		
<u>N12</u>	0.77076	0.93869	0.5347		
<u>C13</u>	0.79046	0.93217	0.53204		
C14	0.81578	0.96428	0.44194		
C15	0.83919	0.97689	0.4014		
C16	0.86088	0.97038	0.40592		
C17	0.85898	0.95134	0.45147		
C18	0.8356	0.93871	0.49166		
C19	0.81399	0.94514	0.48724		
C20	0.91293	0.99906	0.39852		
C21	0.93811	1.01345	0.36495		
C22	0.88671	0.98484	0.36692		
C23	0.54194	0.81679	0.79937		
C24	0.57026	0.83245	0.7814		
C25	0.57886	0.83748	0.71829		
C26	0.60759	0.85276	0.69924		
C27	0.61584	0.85734	0.63713		
C28	0.55414	0.80552	0.62691		
C29	0.53255	0.79438	0.58168		
C30	0.5129	0.80352	0.57833		
C31	0.51522	0.82415	0.62056		
C32	0.5368	0.83532	0.66559		
C33	0.55632	0.82599	0.66924		
N34	0.49033	0.79103	0.53312		
C35	0.47032	0.79712	0.53058		
C36	0.44563	0.76485	0.43988		
C37	0.42217	0.75156	0.39945		
C38	0.39982	0.75712	0.40436		
C39	0.4012	0.77602	0.45007		
C40	0 42464	0 78935	0 49018		
C41	0 44685	0.78376	0 48549		
C42	0 34777	0 72703	0 39716		
C43	0 32259	0 71173	0 36363		
C44	0.37393	0.74178	0.3655		
C/15	0.5/107	0.81622	0.5055		
C45	0.57021	0.01022	0.00333		
C40	0.57051	0.0314	0.00100		
	0.3769	0.033/1	0.94493		
	0.00/38	0.8519	0.9044		
L C49	0.6158	0.83641	0.02654		

C50	0 5386	0 79329	-0.00395
C51	0.5360	0.79329	0.00375
C51	0.51007	0.78090	0.03770
<u>C32</u>	0.51007	0.79775	0.07753
053	0.52792	0.82/18	0.07541
<u>C54</u>	0.55082	0.83955	0.03353
C55	0.55619	0.82266	0.99337
N56	0.48531	0.78442	0.11654
C57	0.47853	0.79788	0.15615
C58	0.43216	0.75461	0.18162
C59	0.4069	0.74093	0.21617
C60	0.40141	0.75544	0.26282
C61	0.42138	0.78398	0.27376
C62	0.44662	0.79771	0.23894
C63	0.45218	0.78306	0 19298
C64	0.34874	0.72542	0.26538
C65	0.32201	0.72342	0.20550
C65	0.32291	0.71132	0.29747
C00	0.37433	0.7407	0.29889
	0./1894	0.9152	0.80407
	0.09039	0.8981	0.04542
C69	0.682	0.89368	0.94543
C/0	0.65331	0.87749	0.96462
C71	0.64504	0.87288	0.02669
C72	0.72251	0.93593	-0.00271
C73	0.74543	0.94809	0.03911
C74	0.75086	0.93114	0.07826
C75	0.7328	0.90174	0.07577
C76	0.70989	0.88955	0.03379
C77	0.70471	0.90658	0.99405
N78	0.77564	0.94425	0.11756
C79	0.78201	0.93057	0.15713
C80	0.82894	0.97323	0.18315
C81	0.85421	0.98638	0.21789
C82	0.8591	0.97152	0.2644
C83	0.83853	0.94319	0 27512
C84	0.81329	0.92999	0.24013
C85	0.80834	0.92999	0.19424
C86	0.000004	0.00087	0.17424
C87	0.91185	1.01336	0.20009
	0.93774	0.09559	0.29873
	0.88004	0.96336	0.30032
N89	0.13122	0.80389	0.7368
N90	0.13182	0.8636	0.92516
N91	0.67303	0.88822	0.83205
N92	0.58785	0.84149	0.8316
C93	0.08778	0.90712	0.80137
C94	0.10189	0.89348	0.78242
C95	0.10602	0.8895	0.71906
C96	0.11973	0.87507	0.69902
C97	0.12341	0.87095	0.63664
C98	0.0734	0.88273	0.62956
C99	0.06264	0.89344	0.5852
C100	0.07329	0.92242	0.58171
C101	0.09504	0.94069	0.62298
C102	0.10585	0.93	0.66717
C103	0.09503	0.90094	0.67087
N104	0.06138	0.93271	0.53674
C105	0.06877	0.959	0 5334
C106	0.03661	0.95094	0 44223
C100	0.02372	0.95094	0.40118
C107	0.02372	0.90032	0.40110
C100	0.03004	1.00444	0.4000
C109	0.04934	1.00000	0.43092

C110	0.0623	0.99683	0.49163
C111	0.05589	0.96895	0.48776
C112	0.00008	1.00998	0.39794
C113	-0.01528	1.01929	0.36437
C114	0.0148	0.9989	0.36635
C115	0.17583	0.82116	0 79626
C116	0.16117	0.83446	0.77898
C117	0.1563	0.83835	0.77696
C117	0.1303	0.85355	0.71000
C110	0.14219	0.85643	0.63570
C119 C120	0.13704	0.83043	0.03373
C120	0.10/95	0.04303	0.02432
C121	0.1985	0.83428	0.57887
C122	0.18//5	0.8053	0.57505
C123	0.16644	0.78712	0.61/
C124	0.15602	0.79786	0.66227
<u>C125</u>	0.1668	0.82691	0.66645
N126	0.19965	0.79492	0.52991
C127	0.19243	0.76865	0.52712
C128	0.22508	0.77606	0.43722
C129	0.23806	0.76577	0.39725
C130	0.23142	0.73773	0.40202
C131	0.21174	0.72019	0.44713
C132	0.19871	0.73042	0.48677
C133	0.20538	0.75836	0.48224
C134	0.26092	0.71596	0.39596
C135	0.27602	0.70609	0.36299
C136	0.24646	0.72708	0.36373
C137	0.17653	0.82157	0.86026
C138	0.16245	0.83528	0.87929
C139	0.15861	0.83957	0.94279
C140	0.14363	0.85275	0.96294
C141	0.13951	0.8565	0.02527
C142	0.20058	0.84066	-0.0067
C143	0.20030	0.87971	0.03473
C144	0.1945	0.80738	0.03475
C145	0.1545	0.30738	0.07414
C145	0.15315	0.79023	0.07220
C140	0.13313	0.80717	0.03004
N149	0.17097	0.82930	0.3307
C140	0.20713	0.79507	0.11329
C149	0.19287	0.77332	0.13287
C150	0.23303	0.7/204	0.17883
C151	0.24872	0.76043	0.21378
C152	0.23349	0.74059	0.26046
C153	0.20479	0.73219	0.27103
C154	0.19164	0.74374	0.23584
C155	0.20704	0.76382	0.18986
C156	0.2627	0.71798	0.26419
C157	0.27647	0.7065	0.29683
C158	0.24768	0.72853	0.29711
C159	0.08744	0.90648	0.8653
C160	0.10124	0.89234	0.88258
C161	0.10518	0.8876	0.94549
C162	0.12009	0.87422	0.96414
C163	0.12434	0.87014	0.02604
C164	0.06315	0.88483	-0.0007
C165	0.0513	0.89564	0.04076
C166	0.0689	0.91917	0.07767
C167	0.0987	0.93165	0.07336
C168	0.1106	0.92086	0.03172
C169	0.09284	0.89746	0.9943

N170	0.05593	0.93058	0.11691
C171	0.07002	0.95132	0.15556
C172	0.02662	0.9536	0.18197
C173	0.01309	0.96481	0.21701
C174	0.02807	0.98497	0.26363
C175	0.05696	0.99408	0.27403
C176	0.07055	0.98295	0.23868
C177	0.05541	0.96258	0.19274
C178	-0.00177	1 00687	0.26623
C179	-0.01577	1 01832	0.29824
C180	0.01353	0.99688	0 29977
N181	0.12642	0.36221	0.73441
N182	0.12642	0.3618	0.92265
N183	0.12042	0.88431	0.92205
N184	0.1529	0.84323	0.82965
C185	0.1529	0.04323	0.82905
C185	0.08303	0.2/4/8	0.79439
C180	0.09792	0.30274	0.77/09
C187	0.10109	0.31137	0.71410
C180	0.11349	0.339/4	0.09353
C189	0.11951	0.34/9/	0.03333
C190	0.10962	0.2872	0.0257
C191	0.0993	0.20001	0.57818
C192	0.07001	0.24668	0.57325
C193	0.05104	0.24886	0.6142
<u>C194</u>	0.06133	0.27006	0.65958
<u>C195</u>	0.0907	0.28928	0.66476
N196	0.06017	0.22446	0.52797
<u>C197</u>	0.03361	0.20475	0.52319
C198	0.04341	0.18086	0.4354
C199	0.03433	0.15766	0.39566
C200	0.00608	0.13514	0.39837
C201	-0.01299	0.13612	0.44084
C202	-0.00395	0.15935	0.4803
C203	0.02428	0.18169	0.47807
C204	-0.01268	0.08432	0.39387
C205	-0.02101	0.05951	0.3614
C206	-0.00304	0.10952	0.36096
C207	0.16829	0.44938	0.79797
C208	0.15513	0.42148	0.77934
C209	0.15125	0.41312	0.71604
C210	0.1373	0.38482	0.69636
C211	0.13339	0.37681	0.63406
C212	0.14367	0.43749	0.62583
C213	0.15418	0.45876	0.58083
C214	0.18347	0.47821	0.57696
C215	0.20224	0.47605	0.61849
C216	0.19177	0.45477	0.6633
C217	0.1624	0.43543	0.66743
N218	0.19358	0.50042	0.53194
C219	0.22013	0.5203	0.52887
C220	0.21185	0.54415	0.43882
C221	0.22184	0.56722	0.39859
C222	0.25015	0.58958	0.40316
C223	0.26827	0.58862	0.44826
C224	0.25833	0.56556	0.48815
C225	0.23011	0.54334	0.48386
C226	0.27146	0.64078	0.3966
C227	0.28115	0.66554	0.36333
C228	0.26048	0.61505	0.36464
C229	0.16776	0.44921	0.86198

C230	0.15412	0.4212	0.87962
C231	0.14963	0.41258	0.94268
C232	0.13671	0.38426	0.96149
C233	0.13278	0.37599	0.02344
C234	0.14706	0.45176	-0.00484
C235	0.15771	0 47431	0.03716
C236	0.18074	0.48029	0.0761
C237	0.10074	0.46312	0.07327
C238	0.19200	0.40512	0.07327
C230	0.16222	0.43485	0.00158
N240	0.1000	0.43483	0.11548
C241	0.19222	0.504/1	0.11346
C241	0.21502	0.51100	0.13401
C242	0.21550	0.53711	0.1605
C243	0.22074	0.58201	0.21321
C244	0.24/19	0.58/90	0.2017
C245	0.25643	0.56881	0.27235
C246	0.24512	0.54391	0.23/36
C247	0.22443	0.53789	0.19155
C248	0.26943	0.6398	0.26478
C249	0.28076	0.66523	0.29717
C250	0.259	0.61441	0.29802
C251	0.08557	0.27467	0.85859
C252	0.09892	0.30259	0.87733
C253	0.10324	0.31094	0.94069
C254	0.11597	0.33917	0.9606
C255	0.11962	0.34714	0.02287
C256	0.10647	0.27208	-0.008
C257	0.09604	0.24941	0.03323
C258	0.07266	0.24281	0.0716
C259	0.05997	0.25945	0.06897
C260	0.0704	0.28216	0.02759
C261	0.09363	0.28849	0.98868
N262	0.06161	0.21843	0.11056
C263	0.04051	0.21066	0.14908
C264	0.04009	0.16652	0.17567
C265	0.02971	0.14199	0.21091
C266	0.00911	0.13557	0.25728
C267	-0.0014	0.15378	0.2671
C268	0.00891	0.17831	0.23156
C269	0.02983	0.18487	0.18602
C270	-0.01051	0.08418	0.16002
C271	-0.02061	0.05924	0.20200
C277	-0.00144	0.10963	0 29443
N273	0.630/13	0.10705	0.2778
N273	0.03043	0.00+90	0.7570
N275	0.03043	0.00472	0.92011
N276	0.10033	0.31990	0.02/3/
	0.14033	0.40402	0.02913
C277	0.20040	0.03/84	0.303/3
C270	0.21482	0.07916	0.3618/
C2/9	0.52542	0.0/810	0.44303
C280	0.35214	0.09332	0.40434
C281	0.36035	0.09772	0.52653
C282	0.29834	0.04593	0.53528
C283	0.27667	0.03482	0.58023
C284	0.25732	0.04431	0.58417
C285	0.26002	0.06528	0.54289
C286	0.28167	0.07642	0.49817
C287	0.30088	0.06672	0.49388
N288	0.23468	0.03194	0.6291
C289	0.21498	0.03845	0.63176

C290	0.18966	0.00635	0.72186
C291	0.16625	-0.00626	0.7624
C292	0.14456	0.00025	0.75788
C293	0 14646	0.01928	0.71233
C294	0.16983	0.03192	0.67214
C295	0.10303	0.02549	0.67655
C296	0.0925	-0.02843	0.076528
C290	0.0923	-0.02043	0.70528
C297	0.00732	-0.04262	0.79883
C298	0.118/2	-0.01421	0.79688
C299	0.4055	0.13384	0.36443
C300	0.43518	0.13818	0.3824
C301	0.42658	0.13315	0.44551
<u>C302</u>	0.39785	0.11/8/	0.46456
<u>C303</u>	0.38959	0.11329	0.52667
C304	0.4513	0.16511	0.53689
C305	0.47288	0.17625	0.58211
C306	0.49253	0.16711	0.58547
C307	0.49022	0.14648	0.54323
C308	0.46864	0.13531	0.49821
C309	0.44911	0.14463	0.49455
N310	0.5151	0.1796	0.63068
C311	0.53512	0.17351	0.63322
C312	0.55981	0.20577	0.72392
C313	0.58327	0.21907	0.76435
C314	0.60561	0.21351	0.75944
C315	0.60424	0.19461	0.71372
C316	0.5808	0.18128	0.67362
C317	0.55859	0.18687	0.67831
C318	0.65767	0.2436	0.76664
C319	0.63707	0.2589	0.80017
C320	0.63151	0.22884	0.7983
C320	0.05151	0.15441	0.7705
C321	0.40547	0.13441	0.30043
C322	0.43512	0.13923	0.26213
C323	0.42034	0.13492	0.21887
C324	0.39780	0.11675	1 12725
C323	0.38904	0.11422	1.15725
C326	0.46684	0.1//34	1.16//5
C327	0.48974	0.1896/	1.12604
C328	0.49537	0.1/288	1.08644
<u>C329</u>	0.47752	0.14345	1.08839
C330	0.45461	0.13108	1.13027
<u>C331</u>	0.44925	0.14797	0.17043
N332	0.52013	0.18621	1.04726
C333	0.52691	0.17275	1.00765
C334	0.57328	0.21602	0.98218
C335	0.59854	0.2297	0.94762
C336	0.60403	0.21519	0.90098
C337	0.58405	0.18665	0.89004
C338	0.55882	0.17292	0.92486
C339	0.55326	0.18757	0.97082
C340	0.65669	0.2452	0.89842
C341	0.68253	0.25931	0.86633
C342	0.63088	0.22993	0.86491
C343	0.2865	0.05743	0.29973
C344	0.31485	0.07252	0.28158
C345	0.32343	0.07694	0.21837
C346	0.35213	0.09314	0.19918
C347	0 36039	0.09775	1 13711
C348	0.28203	0.0347	1 16651
C240	0.20293	0.0347	1 12/60
	0.20001	0.02234	1.12407

C350	0.25457	0.03948	1.08554
C351	0.27264	0.06889	1.08803
C352	0.29555	0.08108	1,13001
C353	0.30073	0.06405	0 16974
N354	0.2298	0.02638	1.04624
C355	0.22343	0.02030	1.04624
C355	0.22345	0.04000	0.08065
C350	0.1703	-0.0020	0.96003
C357	0.15125	-0.01576	0.94391
C358	0.14634	-0.00089	0.8994
<u>C359</u>	0.16691	0.02/44	0.88868
<u>C360</u>	0.19214	0.04064	0.92367
C361	0.1971	0.02566	0.96956
C362	0.09359	-0.02924	0.89711
C363	0.0677	-0.04273	0.86505
C364	0.1194	-0.01496	0.86348
N365	0.87422	0.10673	0.427
N366	0.87362	0.10702	0.23864
N367	0.3324	0.08241	0.33175
N368	0.41759	0.12914	0.33219
C369	0.91766	0.06351	0.36242
C370	0.90355	0.07715	0.38138
C371	0.89942	0.08113	0.44474
C372	0.88571	0.09556	0 46478
C373	0.88203	0.09968	0.52716
C373	0.03203	0.09908	0.52/10
C374	0.93204	0.0879	0.53424
C375	0.94279	0.07/19	0.5780
C3/0	0.93214	0.04821	0.38209
<u>C3//</u>	0.9104	0.02994	0.54082
<u>C378</u>	0.89959	0.04063	0.49662
C379	0.91041	0.06969	0.49293
N380	0.94406	0.03791	0.62706
C381	0.93667	0.01162	0.6304
C382	0.96883	0.01969	0.72157
C383	0.98172	0.00981	0.76262
C384	0.9754	-0.01815	0.75846
C385	0.9561	-0.03603	0.71288
C386	0.94314	-0.0262	0.67217
C387	0.94955	0.00168	0.67604
C388	1.00536	-0.03935	0.76586
C389	1 02072	-0.04866	0 79943
C390	0.99064	-0.02827	0 79745
C391	0.82961	0.14947	0.36753
C302	0.02701	0.13617	0.30733
C202	0.8/012	0.1301/	0.30402
C393	0.04713	0.13220	0.447/4
C394	0.00323	0.1140	0.4001
C393	0.80//9	0.1142	0.52047
C396	0.81/51	0.12558	0.53947
<u>C397</u>	0.80714	0.13635	0.58493
C398	0.81769	0.16533	0.58875
C399	0.839	0.1835	0.54679
C400	0.84941	0.17277	0.50153
C401	0.83864	0.14372	0.49735
N402	0.80579	0.1757	0.63388
C403	0.813	0.20198	0.63668
C404	0.78036	0.19457	0.72657
C405	0.76738	0.20486	0.76655
C406	0.77402	0.23289	0.76178
C407	0.7937	0.25044	0.71667
C408	0.80673	0.24021	0.67703
C409	0.80006	0 21227	0.68156
	0.00000		0.00120

C410	0.74451	0.25466	0.76783
C411	0.72942	0.26453	0.80081
C412	0.75897	0.24355	0.80007
C413	0.8289	0.14906	0.30353
C414	0.84298	0.13535	0.2845
C415	0.84683	0.13106	0.22101
C416	0.86181	0.11788	0.20086
C417	0.86593	0.11413	1.13853
C418	0.80486	0.12997	1,1705
C419	0.79322	0.14092	1.12907
C420	0.81094	0.16325	1.08966
C421	0.8406	0.17438	1.09154
C422	0.85228	0.16346	1,13316
C423	0.83446	0.14127	0.1731
N424	0 79831	0.17496	1.0505
C425	0.81257	0.19511	1 01093
C426	0.76981	0.19859	0.98495
C420	0.75672	0.19039	0.95002
C428	0 77195	0.23004	0.90333
C420	0.80065	0.23844	0.90333
C430	0.81370	0.23644	0.07706
C431	0.70820	0.22000	0.0730/
C432	0.74273	0.25265	0.80061
C432	0.74273	0.25205	0.85501
C433	0.72037	0.20413	0.80097
C434	0.73770	0.24209	0.80008
C435	0.91/99	0.00413	0.2965
C430	0.9042	0.07829	0.20121
C437	0.90020	0.06505	0.21651
C438	0.88333	0.09041	0.19903
C439	0.04229	0.10049	1.13//3
C440	0.94228	0.0838	1.10449
C441	0.93414	0.07499	1.12304
C442	0.93633	0.03143	1.08013
C443	0.90675	0.03897	1.09044
C444	0.89484	0.049//	0.16040
N445	0.91239	0.07317	0.10949
N440	0.94951	0.04005	1.04689
C44/	0.93542	0.01931	1.00824
C448	0.97882	0.01/03	0.98183
C449	0.99235	0.00581	0.94679
C450	0.97736	-0.01434	0.9001/
C451	0.94848	-0.02340	0.02511
C452	0.93489	-0.01232	0.92311
C453	0.95003	0.00805	0.9/106
C454	1.0072	-0.03624	0.89/5/
C455	1.02121	-0.04/69	0.80336
L430	0.9919	-0.02625	0.80403
IN45/	0.87902	0.00842	0.42939
IN438	0.8/901	0.00633	0.24113
IN439	0.89519	0.08032	0.33182
IN40U	0.85254	0.12/4	0.33413
C401	0.9204	0.09383	0.30921
C402	0.90/31	0.00/88	0.380/1
	0.903/3	0.03920	0.44904
C404	0.88994	0.03089	0.40826
0465	0.88612	0.62266	0.53027
C466	0.89581	0.68343	0.5401
C467	0.90613	0.70462	0.58562
C468	0.93542	0.72395	0.59055
C469	0.95439	0.72176	0.5496

C470	0.9441	0.70057	0.50422
C471	0.91474	0.68135	0.49903
N472	0.94527	0.74617	0.63583
C473	0.97183	0.76587	0.64061
C474	0.96202	0.78977	0.7284
C475	0.9711	0.81297	0.76814
C476	0.99935	0.83548	0.76543
C477	1.01843	0.83451	0.72296
C478	1 00939	0.81128	0.6835
C479	0.98115	0.78894	0.68573
C480	1 01812	0.88631	0.76993
C481	1.02645	0.00031	0.8024
C482	1.02043	0.91112	0.8024
C483	0.83714	0.52125	0.36583
C484	0.85031	0.52125	0.30305
C404	0.85031	0.54915	0.38440
C465	0.03419	0.53751	0.44770
C480	0.80814	0.50301	0.40743
C487	0.87203	0.59582	0.52975
C488	0.801/0	0.55515	0.53796
C489	0.85125	0.5118/	0.58297
C490	0.82196	0.49241	0.58084
C491	0.8032	0.49458	0.54531
C492	0.81367	0.51585	0.5005
C493	0.84303	0.5352	0.49637
N494	0.81186	0.47021	0.63186
C495	0.78531	0.45033	0.63493
C496	0.79359	0.42648	0.72498
C497	0.78359	0.40341	0.76521
C498	0.75529	0.38104	0.76064
C499	0.73717	0.38201	0.71554
C500	0.74711	0.40507	0.67565
C501	0.77532	0.42729	0.67994
C502	0.73398	0.32985	0.7672
C503	0.72429	0.30509	0.80047
C504	0.74496	0.35558	0.79916
C505	0.83768	0.52142	0.30182
C506	0.85131	0.54943	0.28418
C507	0.8558	0.55804	0.22112
C508	0.86872	0.58637	0.20231
C509	0.87266	0.59463	1.14036
C510	0.85838	0.51887	1.16863
C511	0.84773	0.49632	1.12664
C512	0.8247	0.49034	1.0877
C513	0.81258	0.50751	1.09053
C514	0.82321	0.53008	1.1327
C515	0.84608	0.53578	0.17222
N516	0.81321	0.46592	1.04832
C517	0.79242	0.45875	1.00919
C518	0.79007	0.41352	0.9833
C519	0.7787	0.38861	0.94859
C520	0.75825	0.38267	0.9021
C521	0.74901	0.40182	0.89145
C522	0.76032	0.42672	0.92644
C523	0.781	0.43274	0.97225
C524	0.73601	0.33083	0.89902
C525	0.72468	0.3054	0.86663
C526	0.74644	0.35622	0.86577
C527	0.91987	0.69595	0.30521
C528	0.90652	0.66804	0.28647
C529	0.90219	0.65969	0.22311

C530	0.88947	0.63146	0.2032
C531	0.88582	0.62348	1.14093
C532	0.89896	0.69854	1.1718
C533	0.9094	0.72121	1.13057
C534	0.93277	0.72782	1.0922
C535	0.94547	0.71117	1.09483
C536	0.93504	0.68847	1.1362
C537	0.91181	0.68214	0.17511
N538	0.94382	0.7522	1.05323
C539	0.96492	0.75997	1.01472
C540	0.96535	0.80411	0.98813
C541	0.97572	0.82864	0.95289
C542	0.99632	0.83506	0.90652
C543	1.00684	0.81685	0.8967
C544	0.99653	0.79232	0.93224
C545	0.9756	0.78576	0.97777
C546	1.01594	0.88644	0.90174
C547	1.02605	0.91139	0.86859
C548	1.00688	0.861	0.86937
N549	0.37501	0.10565	0.426
N550	0.37498	0.1059	0.23769
N551	0.8989	0.65065	0.33623
N552	0.8591	0.56661	0.33465
C553	-0.03265	0.03087	0.39195
C554	-0.03295	0.03001	0.26587
C555	0.03796	-0.06046	0.76932
C556	0.03826	-0.05961	0.8954
C557	0.29318	0.69449	0.39314
C558	0.29342	0.69429	0.2671
C559	0.71226	0.27614	0.77066
C560	0.71202	0.27633	0.8967

5. Fabrication of working electrodes and electrochemical characterization

5.1 Fabrication of working electrodes

The as-obtained ZJUT-1@Co@CF, ZJUT-1@CF, RuO₂@CF were directly used as the working electrode without further treatments.

Pre-treatment of CF: The carbon fiber (CF) was cut into slices $(1 \text{ cm} \times 1 \text{ cm})$ and successively ultrasonicated in HNO₃ (40 wt%), acetone, ethanol, and deionized water for 30 min. Then, the CF was dried under vacuum at 60 °C overnight.

Electrodes preparation: The ZJUT-1@CF \times ZJUT-1@Co@CF and RuO₂@CF electrodes were prepared as follows: ZJUT-1 \times ZJUT-1@Co and RuO₂ (4 mg) catalyst were dispersed in a 1.0 mL mixed solution containing 900 µL of ethanol and 100 µL of 5 wt% Nafion solution, followed by sonication for 1 h to mixing. Then, the solution was loaded onto the surfaces of CF, and the overall loading amount of ZJUT-1 \times ZJUT-1@Co and RuO₂ catalysts was approximately 4 mg/cm².

5.2 Electrochemical characterization

All electrochemical measurements were carried out with a *CHI761E* (CH Instruments, Inc.,Shanghai) electrochemical workstation 1 M KOH solution (pH = 14). The electrochemical characterizations were conducted in a standard three-electrode electrochemical cell employing a Platinum plates counter electrode and a Ag/AgCl electrode reference electrode, and the working electrodes were 1 cm ×1 cm ZJUT-1@Co@CF electrode, ZJUT-1@CF electrode and RuO₂@CF electrode, respectively. All potentials measured were calibrated to RHE according to the following equation $E_{RHE} = E_{Ag/AgCl} + 0.059 \text{ pH} + 0.243 \text{ V}$, and the current density was normalized to the effective geometrical surface area of CF. All the LSV measurements for HER were carried out at a scan rate of 5 mV/s with 85% *iR*-corrections. Tafel plots derived from HER polarization curves obtained were fitted to the equation $\eta = b \log j + a$ (overpotential η , current density j, Tafel slope b, and Tafel constant a).

Figure S19. Cyclic voltammetry scans for as-prepared catalysts recorded at different rates ranging from 20 to 120 mV s⁻¹ to calculate the electrochemical double-layer capacitances.

Figure S20. Capacitive currents versus scan rates on the basis of CV curves recorded at different scan rates.

Catalysts	Electrode	Electrolyte (KOH)	Loading (mg. cm ⁻²)	$\eta_{10}(mV)$	Tafel (mV. dec ⁻¹)	Ref.
ZJUT-1@Co	CF	1.0 M	4	295	63	This work
Co-PDY/CF	CF	1.0 M	-	270	99	(6)
CoCOP	CFP	1.0 M	290	350	151	(7)
M-N ₄ /C	GC	1.0 M	0.25	407	60.3	(8)
(CoP) _n -MWCNTs	GC	1.0 M	0.14	410	60.8	(9)
CoTAPP-NA	GC	1.0 M	0.42	416	68	(10)
PCOF-1-Co	GC	1.0 M	0.643	473	89	(11)
PCOF-2-Co	GC	1.0 M	0.643	487	95	(11)

Table S2. Comparative table for the OER performances with reported porphyrin-based catalysts.

Table S3. Normalised current densities of RuO₂ and ZJUT-1@Co.

Catalysts ^a	Tafel slope (mV/dec)	η_{10} (mA cm ⁻²)	$J_0,$ geometrica $(\mu A \text{ cm}^{-2})^b$	C _{dl} (mF cm ⁻²)	Relative surface area	$ \begin{array}{c c} J_0, \\ \text{normalized} \\ (\mu \text{A cm}^{-2}) \end{array} $
RuO ₂	81	1.582	1.408	39.4	1	1.40
ZJUT-1@Co	63	1.525	1.513	39.3	0.997	1.52

a) All the parameters were measured under the same conditions; b) Exchange current densities (J_0) were obtained from Tafel curves by using extrapolation methods.

6. Density functional theory calculations of OER performance

All the DFT calculations were performed by Vienna Ab initio Simulation Package (VASP)¹². The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) was used to express the electron exchange-correlation and the projector augmented wave (PAW) was applied to describe the ionic cores^{13,14}. The lattice parameters of ZJUT-1 and ZJUT-1@Co were 25.67 Å × 25.04 Å × 15 Å. Combining with the calculation accuracy and cost, the K-points were set to be $1 \times 1 \times 1$ for geometry optimization and electronic structural calculations. The 400-eV plane wave energy cutoff was used in the calculations and the electronic energy and forces were converged to within 10⁻⁵ eV and 0.02 eV/Å, respectively. Furthermore, the VASP implicit solvent model was set to consider the effect of water¹⁵.

The change in Gibbs free energy (ΔG) was calculated by computational hydrogen electrode (CHE) model¹⁶. In the CHE model, H⁺ + e⁻ $\rightarrow 1/2$ H₂ (g) was equilibrated at 0 V vs the reversible hydrogen electrode (RHE). Free energies (G) of each state can be obtained by the following equation,

$$G = E + ZPE + \int C_{p} dT - TS$$
⁽¹⁾

where E, ZPE are electronic energy and the zero-point energy, respectively. And $\int C_p dT$ and TS represent enthalpy change from 0 to T K contributed by molecular vibration, and entropy correction, which are obtained based on vibration analysis at 298.15 K. And related calculation results were treated by vaspkit¹⁷.

Figure S21. The optimized structures of (a) ZJUT-1 and (b) ZJUT-1@Co.

Adsorption sites	Adsorption before	Adsorption after	Distance (Å)	E _{ads} (eV)
N sites			3.57	-0.92
Co sites			2.25	-1.13

Table S4. The initial adsorption of H₂O molecules on N and Co sites of ZJUT-1@Co.

Theoretical calculations demonstrated that H_2O molecules are prone to be adsorbed on Co sites with a more stable adsorption energy (-1.13 eV) than that on N sites (-0.92 eV) in ZJUT-1@Co catalysts. Therefore, Co sites of ZJUT-1@Co catalysts were chosen as the active sites for calculation and selected to further explore their catalytic activity towards OER.

7. References

- 1. Materials Studio, Accelrys: San Diego.
- 2. http://www.ba.ic.cnr.it/softwareic/expo/
- 3. <u>http://www.jp-minerals.org/vesta/en/</u>
- C. Moylan, L. Rogers, Y. M. Shaker, M. Davis, H.-G. Eckhardt, R. Eckert, A. A. Ryan and M. O. Senge, *Eur. J. Org. Chem.*, 2016, **2016**, 185-195.
- 5. E. Tavakoli, A. Kakekhani, S. Kaviani, P. Tan, M. M. Ghaleni, M. A. Zaeem, A. M. Rappe and S. Nejati, *J. Am. Chem. Soc.*, 2019, **141**, 19560-19564.
- 6. H. Huang, F. Li, Y. Zhang and Y. Chen, J. Mater. Chem. A, 2019, 7, 5575-5582.
- A. Wang, L. Cheng, W. Zhao, X. Shen and W. Zhu, J. Colloid Interface Sci., 2020, 579, 598-606.
- H. Qin, Y. Wang, B. Wang, X. Duan, H. Lei, X. Zhang, H. Zheng, W. Zhang and R. Cao, *J. Energy Chem.*, 2021, **53**, 77-81.
- 9. H. Jia, Z. Sun, D. Jiang and P. Du, Chem. Mater., 2015, 27, 4586-4593.
- G. Cai, L. Zeng, L. He, S. Sun, Y. Tong and J. Zhang, *Chem. Asian J.*, 2020, 15, 1963-1969.
- Y. Liu, X. Yan, T. Li, W.-D. Zhang, Q.-T. Fu, H.-S. Lu, X. Wang and Z.-G. Gu, New J. Chem., 2019, 43, 16907-16914.
- 12. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186.
- 13. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- 14. G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
- 15. K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias and R. G. Hennig, J. Chem. Phys., 2014, 140, 084106.
- J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, J. Phys. Chem. B, 2004, 108, 17886-17892.
- 17. V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, arXiv preprint arXiv:1908.08269 2019.