Electronic supplementary information (ESI) for

LiRE(SO₄)₂ (RE = Y, Gd, Eu): noncentrosymmetric chiral rare-

earth sulfates with very large band gaps

Sunghwan Cho and Kang Min Ok*

Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea

*E-mail: kmok@sogang.ac.kr

Table of contents

Sections	Titles	page
Table S1.	Selected bond distances (Å) of LiY(SO ₄) ₂ .	S2
Table S2.	Selected bond distances (Å) of LiGd(SO ₄) ₂ .	S2
Table S3.	Selected bond distances (Å) of LiEu(SO ₄) ₂ .	S2
Table S4.	Selected bond angles (°) of LiY(SO ₄) ₂ .	S3
Table S5.	Selected bond angles (°) of LiGd(SO ₄) ₂ .	S3
Table S6.	Selected bond angles (°) of LiEu(SO ₄) ₂ .	S3
Table S7.	Bond valence sum calculations for LiRE(SO ₄) ₂ (RE = Y, Gd, Eu).	S3
Table S8.	Atomic coordinates (Å) and isotropic displacement parameters (Å ²) for LiY(SO ₄) ₂ .	S4
Table S9.	Atomic coordinates (Å) and isotropic displacement parameters (Å ²) for LiGd(SO ₄) ₂ .	S4
Table S10.	Atomic coordinates (Å) and isotropic displacement parameters (Å ²) for LiEu(SO ₄) ₂ .	S4
Figure S1.	Calculated and experimental powder X-ray diffraction patterns of $LiRE(SO_4)_2$, (RE = Y, Ga, and Eu)	S5
Figure S2.	IR spectra of LiRE(SO ₄) ₂ (RE = Y Gd Eu)	\$5
Figure S3.	TGA diagrams of LiY(SO ₄) ₂ , LiGd(SO ₄) ₂ , and LiEu(SO ₄) ₂ .	S6
Figure S4.	PXRD patterns of LiRE(SO ₄) ₂ after heating at 600–820 $^{\circ}$ C.	S7
Figure S5.	PXRD patterns of LiRE(SO ₄) ₂ after heating at 1000 $^{\circ}$ C.	S8
Figure S6.	Band structures of (a) $LiY(SO_4)_2$, (b) $LiGd(SO_4)_2$, and (c) $LiEu(SO_4)_2$.	S9
Figure S7.	Total and partial density of states for (a) $LiY(SO_4)_2$, (b) $LiGd(SO_4)_2$, and (c) $LiEu(SO_4)_2$.	S10

Table S1. Selected bond distances (Å) of $LiY(SO_4)_2$.

Li(1)-O(2)	1.9172(15)
Y(1)-O(1)	2.2921(16)
Y(1)-O(2)	2.4449(14)
S(1)-O(1)	1.4622(16)
S(1)-O(2)	1.4839(15)

Table S2. Selected bond distances (Å) of $LiGd(SO_4)_2$.

Li(1)-O(2)	1.9332(16)
Gd(1)-O(1)	2.3312(18)
Gd(1)-O(2)	2.4774(16)
S(1)-O(1)	1.4634(18)
S(1)-O(2)	1.4862(16)

Table S3. Selected bond distances (Å) of $LiEu(SO_4)_2$.

Li(1)-O(2)	1.9378(18)
Eu(1)-O(1)	2.342(2)
Eu(1)-O(2)	2.4881(18)
S(1)-O(1)	1.462(2)
S(1)-O(2)	1.4857(18)

O(2)-Li(1)-O(2)	100.24(4)	O(1)-Y(1)-O(1)	151.73(8)
O(2)-Li(1)-O(2)	130.12(10)	O(1)-Y(1)-O(2)	83.12(6)
O(1)-S(1)-O(1)	109.88(14)	O(1)-Y(1)-O(2)	130.40(5)
O(1)-S(1)-O(2)	111.47(9)	O(1)-Y(1)-O(2)	77.35(6)
O(1)-S(1)-O(2)	110.12(10)	O(1)-Y(1)-O(2)	71.96(6)
O(2)-S(1)-O(2)	103.66(11)	O(2)-Y(1)-O(2)	130.60(7)
O(1)-Y(1)-O(1)	101.52(9)	O(2)-Y(1)-O(2)	153.38(8)
O(1)-Y(1)-O(1)	85.38(9)	O(2)-Y(1)-O(2)	57.00(7)

Table S4. Selected bond angles (°) of LiY(SO₄)₂.

Table S5. Selected bond angles (°) of $LiGd(SO_4)_2$.

O(2)-Li(1)-O(2)0	100.21(4)	O(1)-Gd(1)-O(1)	102.13(9)
O(2)-Li(1)-O(2)	130.21(11)	O(1)-Gd(1)-O(2)	130.27(6)
O(1)-S(1)-O(1)	110.08(15)	O(1)-Gd(1)-O(2)	77.60(6)
O(1)-S(1)-O(2)	111.18(10)	O(1)-Gd(1)-O(2)	72.28(6)
O(1)-S(1)-O(2)	110.00(11)	O(1)-Gd(1)-O(2)	82.69(6)
O(2)-S(1)-O(2)	104.27(13)	O(2)-Gd(1)-O(2)	56.53(7)
O(1)-Gd(1)-O(1)	151.63(9)	O(2)-Gd(1)-O(2)	131.21(7)
O(1)-Gd(1)-O(1)	84.83(9)	O(2)-Gd(1)-O(2)	153.21(9)

Table S6. Selected bond angles (°) of LiEu(SO₄)₂.

O(2)-Li(1)-O(2)	100.40(5)	O(1)-Eu(1)-O(1)	102.51(10)
O(2)-Li(1)-O(2)	129.72(13)	O(1)-Eu(1)-O(2)	77.65(7)
O(1)-S(1)-O(1)	109.93(17)	O(1)-Eu(1)-O(2)	129.98(7)
O(1)-S(1)-O(2)	111.07(12)	O(1)-Eu(1)-O(2)	82.75(7)
O(1)-S(1)-O(2)	110.11(12)	O(1)-Eu(1)-O(2)	72.41(7)
O(2)-S(1)-O(2)	104.45(14)	O(2)-Eu(1)-O(2)	56.33(8)
O(1)-Eu(1)-O(1)	151.87(10)	O(2)-Eu(1)-O(2)	131.29(8)
O(1)-Eu(1)-O(1)	84.35(10)	O(2)-Eu(1)-O(2)	153.46(10)

Table S7. Bond valence sum calculations for $LiRE(SO_4)_2$ (RE = Y, Gd, Eu).

LiY(SO ₄) ₂		LiGd(SO ₄) ₂		LiEu(SO ₄) ₂	
Li1	1.18	Li1	1.13	Li1	1.12
Y1	3.13	Gd1	3.26	Eu1	3.24
S1	6.02	S1	5.99	S1	6.01
01	2.02	01	2.03	01	2.06
02	2.07	02	2.06	02	2.04

	. ,			· · ·	
	Wyck.	x	У	Z	U(eq)
Li(1)	2b	0.5	0.5	1	0.0143(17)
Y(1)	2d	0.5	0	0.25	0.00650(14)
S(1)	4f	0.28622(5)	0.21378(5)	0.75	0.00718(16)
O(1)	8i	0.4169(2)	0.1876(2)	0.5571(3)	0.0149(3)
O(2)	8i	0.29599(19)	0.3948(2)	0.8526(3)	0.0109(3)

Table S8. Atomic coordinates (Å) and equivalent isotropic displacement parameters $(Å^2)$ for LiY(SO₄)₂.

U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S9. Atomic coordinates (Å) and equivalent isotropic displacement parameters $(Å^2)$ for LiGd $(SO_4)_2$.

	Wyck.	x	У	Z	U(eq)
Li(1)	2b	0.5	0.5	1	0.016(2)
Gd(1)	2d	0.5	0	0.25	0.00723(9)
S(1)	4f	0.28662(6)	0.21338(6)	0.75	0.00817(13)
O(1)	8i	0.4172(2)	0.1886(2)	0.5600(3)	0.0170(4)
O(2)	8i	0.2969(2)	0.3927(2)	0.8534(3)	0.0118(3)

U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S10. Atomic coordinates (Å) and equivalent isotropic displacement parameters (Å²) for LiEu(SO₄)₂.

	Wyck.	x	Ŷ	Z	U(eq)
Li(1)	2b	0.5	0.5	1	0.016(2)
Eu(1)	2d	0.5	0	0.25	0.00732(11)
S(1)	4f	0.28692(6)	0.21308(6)	0.75	0.00821(15)
O(1)	8i	0.4171(3)	0.1881(3)	0.5612(4)	0.0174(4)
O(2)	8i	0.2976(2)	0.3921(2)	0.8524(4)	0.0118(3)

U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Figure S1. Calculated and experimental powder X-ray diffraction patterns of LiRE(SO₄)₂, (RE = Y, Ga, and Eu).

Figure S2. IR spectra of LiRE(SO₄)₂ (RE = Y, Gd, Eu).

Figure S3. TGA diagrams of (a) $LiY(SO_4)_2$, (b) $LiGd(SO_4)_2$, and (c) $LiEu(SO_4)_2$.

Figure S4. Powder X-ray diffraction patterns of (a) $LiY(SO_4)_2$, (b) $LiGd(SO_4)_2$, and (c) $LiEu(SO_4)_2$ after heating at 600 °C, 650 °C, and 820 °C, respectively, for 24 h.

Figure S5. Powder X-ray diffraction patterns of (a), (b) $LiY(SO_4)_2$, (c), (d) $LiGd(SO_4)_2$, and (e), (f) $LiEu(SO_4)_2$ after heating at 1000 °C for 2h [(a), (c), (e)] and for 14h [(b), (d), (f)], respectively.

Peaks that are not assigned in (a) and (b) are supposed to be $Y_2O_2SO_4$, but its precise structural data were not reported.

Figure S6. Band structures of (a) $LiY(SO_4)_2$, (b) $LiGd(SO_4)_2$, and (c) $LiEu(SO_4)_2$.

5.87 eV

Z|X

R|M

А

Г

Z R A

Figure S7. Total and partial density of states for (a) $LiY(SO_4)_2$, (b) $LiGd(SO_4)_2$, and (c) $LiEu(SO_4)_2$. The Fermi level is represented at 0 eV.

