Supplementary Information

Selective Recovery of Copper from Lithium-Ion Battery E-Waste with a Sustainable Sulfur Polymer.

Suchithra Ashoka Sahadevan,^a Xiong Xiao,^b Yiqian Ma,^c Kerstin Forsberg,^c Richard T. Olsson,^b and James M. Gardner*^a

Correspondence: jgardner@kth.se

Figure S1: Solubility of Poly(S-50 %-OA) with increasing solvent polarity 10 mg in 2 mL solvent. From left to right the solvents are pentane, toluene, chloro-benzene, diethyl ether, chloroform, tetrahydrofuran, acetone, acetonitrile, butanol and methanol.

Table S1: Assignment of vibrational modes of monomers (oleylamine, sulfur) and Poly(S-50%-OA) in cm⁻¹

Vibrational modes (frequency range cm ⁻¹)	Frequency (cm ⁻¹)	
	Monomers	Poly(S-50%-OA)
N-H stretching (3400-3300) primary amine	3320	3172
alkene C-H stretching (3100-3000)	3006	No peak
C-H ₂ stretching (3000-2840)	2920, 2850	2920, 2850
C=C stretching (1662-1626)	1650	No peak
C-H bending (1465) (alkane; methylene group)	1466	1454
C-N stretching (1250-1020)	1062	1086
C=C bending (980-960)	965	weak signal
C-H bending (810±20) 1,4 disubstituted	820	844
N-H bending (out of plane)	720	720
S-S (465)	465	465

Figure S2: AT-FTIR spectra of sulfur-oleylamine copolymer with varied sulfur content (wt %) in comparison with sulfur. Green, blue, red and black line denotes Poly(S-30 %-OA), Poly(S-50 %-OA), Poly(S-70 %-OA), and elemental sulfur respectively.

Figure S3: Thermogravimetric analysis (TGA) of sulfur-oleylamine copolymer with varied sulfur content (wt %). Green, blue and red line denotes Poly(S-30 %-OA), Poly(S-50 %-OA) and Poly(S-70 %-OA) respectively.

Figure S4: Photograph of batch experiment on selectivity studies before and after adsorption are shown above and below respectively. 25 mg L⁻¹ 20 mL aqueous mixed metal solutions treated with 100 % sulfur, Poly(S-70 %-OA), Poly(S-50 %-OA), Poly(S-30 %-OA), 100 % oleylamine are shown from left to right.

Figure S5: Metal selectivity profile in terms of adsorption efficiency (%). 100 % sulfur and 100 % oleylamine are monomers, done as control experiments.

	Initial pH	Final pH
Control	4±0.5	4±0.5
100 % sulfur	4±0.5	4.33±0.5
Poly(S-70 %-OA)	4±0.5	5.70±0,5
Poly(S-50 %-OA)	4±0.5	4.94±0,5
Poly(S-30 %-OA)	4±0.5	4.99±0,5
100 % OA	4±0.5	8.96±0,5

Table S2: pH of the solution before and after adsorption by the sulfur-oleylamine copolymer

Figure S6: SEM-EDX mapping of the sulfur-oleylamine copolymer adsorbent after adsorption.

Figure S7: Intrinsic viscosity plot of the 50:50 sulfur:oleylamine polymer using THF as the solvent.

Figure S7 shows the intrinsic viscosity as a function of 50:50 sulfur:oleylamine polymer-THF solution concentration, and an intrinsic viscosity [η] of 0.165 dL g⁻¹ could then be obtained with R² value of 0.97735. The viscosity average molecular weight was estimated using the Mark–Houwink–Sakurada (MHS) equation (eqn (1)): ^{1,2,3}

$$[\eta] = K M \eta^a \qquad (1)$$

where $[\eta]$ is the intrinsic viscosity, M η the viscosity-average molecular weight, and K and a, are the constants for a given solute–solvent system. K (2.3 × 10⁻⁴) and a (0.67) are determined by the given Poly(3-Methylene-6-methyl-1,5-dithiacyclooctane)-THF system.⁴ By applying of eqn (1), the molecular weight of the sulfur polymer is estimated to be ca. 18329 Da.

References

1. Calculation of Mark–Houwink–Sakurada (MHS) equation viscometric constants for chitosan in any solvent– temperature system using experimental reported viscometric constants data, Mohammad R. Kasaai, Carbohydrate Polymers, 68(3), 2007, 477-488

2. Principles of polymer chemistry, P.J. Flory, Cornell University Press, Ithaca, NY (1953), pp. 266–316

3. Physical chemistry of macromolecules, C. Tanford, John Wiley Press, New York (1961), pp. 390–412

4. Chain Transfer in the Sulfur-Centered Free Radical Ring-Opening Polymerization of 3-Methylene-6-methyl-1,5dithiacyclooctane, Simon Harrisson, Thomas P. Davis, Richard A. Evans, Ezio Rizzardo, Macromolecules 2000, 33, 9553-9560