Supporting Information for

Designing Stimuli-Responsive and Color-Tunable Indicators via the

Coexistence of Dual Emitting Centers

Tengyue Wang^a, Jiaren Du^a*, Xiaomeng Wang^a, Kai Jiang^a, Panqin Wang^a, Shaoxing Lyu^a, Hengwei Lin^a*

^a International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China;

*Corresponding authors: Dr. Jiaren Du (jiaren.du@jiangnan.edu.cn) Prof. Dr. Hengwei Lin (linhengwei@jiangnan.edu.cn)

Figure S1. SEM micrograph and their corresponding EDS elemental mappings of $LuNbO_4:Bi^{3+}/Dy^{3+}$ sample.

Figure S2. SEM micrograph and their corresponding EDS elemental mappings of $LuNbO_4:Bi^{3+}/Eu^{3+}$ sample.

Figure S3. SEM micrograph and their corresponding EDS elemental mappings of $LuNbO_4:Bi^{3+}/Pr^{3+}$ sample.

Figure S4. SEM micrograph and their corresponding EDS elemental mappings of $LuNbO_4:Bi^{3+}/Tb^{3+}$ sample.

Figure S5. The quantum yield of the optimal LuNbO₄:Bi³⁺ sample.

Figure S6. The quantum yield of the optimal LuNbO₄:Bi³⁺, Dy³⁺ sample.

Figure S7. The quantum yield of the optimal LuNbO₄:Bi³⁺,Eu³⁺ sample.

Figure S8. The quantum yield of the optimal LuNbO₄:Bi³⁺,Pr³⁺ sample.

Figure S9. The quantum yield of the optimal LuNbO₄:Bi³⁺,Sm³⁺ sample.

Figure S10. The quantum yield of the optimal LuNbO₄:Bi³⁺,Tb³⁺ sample.

Figure S11. Temperature-dependent PL spectra of $LuNbO_4$:Bi³⁺/Dy³⁺ sample from 173 K to 473 K.

Figure S12. Temperature-dependent PL spectra of LuNbO₄:Bi³⁺/Eu³⁺ sample from 173 K to 473 K.

Figure S13. Temperature-dependent PL spectra of $LuNbO_4$:Bi³⁺/Pr³⁺ sample from 173 K to 473 K.

Figure S14. Temperature-dependent PL spectra of $LuNbO_4$:Bi³⁺/Tb³⁺ sample from 173 K to 473 K.

Figure S15. Temperature-dependent PL spectra of LuNbO₄:Bi³⁺/Sm³⁺ sample from 173 K to 473 K.

Figure S16. Relative intensity of Bi^{3+} and Dy^{3+} emissions as a function of temperature from the LuNbO₄: Bi^{3+}/Dy^{3+} sample.

Figure S17. Relative intensity of Bi^{3+} and Eu^{3+} emissions as a function of temperature from the LuNbO₄: Bi^{3+}/Eu^{3+} sample.

Figure S18. Relative intensity of Bi^{3+} and Pr^{3+} emissions as a function of temperature from the LuNbO₄: Bi^{3+}/Pr^{3+} sample.

Figure S19. Relative intensity of Bi^{3+} and Tb^{3+} emissions as a function of temperature from the LuNbO₄: Bi^{3+}/Tb^{3+} sample.

Figure S20. Relative intensity of Bi^{3+} and Sm^{3+} emissions as a function of temperature from the LuNbO₄: Bi^{3+}/Sm^{3+} sample.

Figure S21. The thermoluminescence curves of $LuNbO_4$:Bi³⁺/Ln³⁺ phosphors.

Figure S22. The paper with 2D code was bending (a)-(d), and then attached on the outside surface of a metal cylinder (e).

Figure S23. The bending pattern of the 2D code under thermal stimulation from an electric heating gun. (a)-(c) Different heating directions from electric gun (upper end, centrum and lower end) were demonstrated, respectively.

Sample	λ_{ex} = 310 nm (QY)
2%Bi ³⁺	65.2%
2%Bi ³⁺ , 1%Dy ³⁺	68.8%
2%Bi ³⁺ , 1%Eu ³⁺	66.6%
2%Bi ³⁺ , 1%Pr ³⁺	37.0%
2%Bi ³⁺ , 1%Sm ³⁺	67.2%
2%Bi ³⁺ , 1%Tb ³⁺	55.4%

 Table S1. The quantum yields of the optimal LuNbO₄: Bi^{3+}/Ln^{3+} samples.