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Experimental Section

Reagents. Ultrapure water used throughout all experiments was purified through a Millipore

system. All chemicals were analytically pure and used without further purification.

Synthesis of comparison samples:

1. Variation of calcination temperature to optimize Fe and Bi atomic ratio:
Synthesis of Bi/BiClO/Fe;04-400, Bi/BiClO/Fe;04-500, and Bi/Fe;04-700

The synthesis of Bi/BiClO/Fe;04-400, Bi/BiClO/Fe;04-500, and Bi/Fe;04-700 was similar to
the above Bi/BiClO/Fe;04-600, expect that the calcination temperature was changed to 400, 500,

and 700 °C, respectively.

2. Synthesis of monometalic components to explore the source of activity:
Synthesis of Fe;0,

In a typical synthesis,! 15.2 g (56 mmol) FeCl;-6H,0 and 7.7 g (27 mmol) FeSO,-7H,0 were
first dissolved in 300 mL of water, and then 25 ml of NH;-H,O was added to the solution. The
mixture was then stirred for 30 min at 90 °C. After the mixture was cooled to room temperature
and filtered, the black precipitate of Fe;0, was collected and washed 3 times with ultrapure water
to remove excess ammonia and finally with acetone to remove excess water. The sample denoted

as Fe;O4 was dried overnight in vacuum oven.

Synthesis of Bi/BiClO

The iron-oxo Keggin was calcinated in Ar with a temperature ramp from room temperature to
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300°C at a heating rate of 5 °C min~!. The sample was held at 300 °C for 4 h, followed by naturally
cooling to room temperature. After washing with ultrapure water, the sample denoted as Bi/BiClO

was dried overnight in vacuum oven.

3. The precursors were changed from POMs to metal salts to verify the importance of
introducing POMs:
Synthesis of Fe,O; without adding Bi source
The synthesis of Fe-based precursor was similar to the above BigFe;s, expect that
Bi(NO;);-5H,0 was not introduced. After that, the Fe-based precursor was calcinated in Ar with
a temperature ramp from room temperature to 600 °C at a heating rate of 5 °C min~!. The sample
was held at 600 °C for 4 h, followed by naturally cooling to room temperature. After washing with

ultrapure water, the sample denoted as Fe,O3 was dried overnight in vacuum oven.

Synthesis of ternary bismuth composites without adding Fe source

The synthesis of Bi-based precursor was similar to the above BigFe;3, expect that Fe(NO3);-9H,0
was not introduced. After that, the Bi-based precursor was calcinated in Ar with a temperature
ramp from room temperature to 600 °C at a heating rate of 5 °C min~'. The sample was held at 600
°C for 4 h, followed by naturally cooling to room temperature. After washing with ultrapure water,

the sample denoted as Bi/Bi,03/Bi;,Cl;;0;, was dried overnight in vacuum oven.

Synthesis of iron-bismuth composites without adding NaHCO;

The synthesis of Fe/Bi-based precursor was similar to the above BigFe 3, expect that NaHCO;

was not introduced. After that, the Fe/Bi-based precursor was calcinated in Ar with a temperature
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ramp from room temperature to 600 °C at a heating rate of 5 °C min™!. The sample was held at 600
°C for 4 h, followed by naturally cooling to room temperature. After washing with ultrapure water,

the sample denoted as Fe,03/Bi/Bi,05/Bi,,Cl;70;, was dried overnight in vacuum oven.

Characterizations

The powder X-ray diffraction (XRD) of samples were performed in Rigaku SmartLab, using Cu
Ka radiation (A = 1.5406 A). The scanning electron microscopy (SEM) images were recorded by
JSM-7800F of JEOL Ltd. The transmission electron microscopy (TEM) images were taken by
JEM-2100F. The 2100F coupled with energy dispersive X-ray (EDX) spectroscopy was used. The
Brunauer-Emmett-Teller (BET) specific surface area and porosity of the synthesized materials
were analyzed using a physical adsorption analyzer model ASAP 2460 from Micromeritics. The
X-ray photoelectron spectroscopy (XPS) was tested by Thermo Fisher Scientific D 250Xi. The
absorbance data were measured with an ultraviolet-visible (UV-vis) spectrophotometer (Shimadzu
UV-1750). The inductively coupled plasma optical emission spectrometry (ICP-OES) was tested

by PerkinElmer Avio™ 200.

Electrochemical NRR measurements

The electrochemical experiments were conducted on a Bio-Logic VMP3 potentiostat system
by using a three-electrode configuration (carbon paper loaded with catalyst as working electrode,
carbon electrode as counter electrode, and Ag/AgCl/saturated KCl as reference electrode). The
electrolytic cell is H-type cell, in which the two-compartment electrochemical cell is separated by
the proton exchange membrane Nafion 117. The Nafion 117 membrane was preconditioned by

boiling in 5% H,0, solution and ultrapure water at 80 °C for 1 h respectively, and then sonicated
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in 0.05 M H,SO, and ultrapure water for 1 h, respectively. All potentials were converted to
reversible hydrogen electrode (RHE). For electrochemical NRR, potentiostatic tests were carried
out in 0.1 M potassium hydroxide solution as the electrolyte, which was purged with ultra-high
purity N, (99.999%) for 30 min before the NRR measurement. Pure N, with a constant flow rate
of 20 mL min~! was continuously fed into the cathodic compartment with a properly positioned
sparger during the experiments. Linear sweep voltammogram (LSV) measurements were
performed from 0.5 V to —0.8 V vs. RHE at a scan rate of 5 mV s !. For NRR experiments,
potentiostatic tests were conducted at different potentials ranged from —0.3 V to 0 V vs. RHE for
2 h. After the entire reduction reaction was terminated, the electrolyte was collected to detect the

ammonia product.

Cathode preparation

Typically, 2 mg catalyst and 30 puL of Nafion solution (5 wt%) were dispersed in 970 pL of
absolute ethanol by sonicating for 0.5 h to form a homogeneous ink. And then, the dispersion of
homogeneous ink was loaded onto a carbon paper electrode with area of 1*1 ¢m? and dried under

ambient condition.

Determination of ammonia

The absorbance of the tested electrolyte was detected by Nessler’s reagent color development
method to determine the ammonia concentration generated after electrolysis.? In order to
accurately quantify the ammonia produced, a standard curve of ammonia was tested first. A certain
amount of ammonium chloride was weighed and dissolved in 0.1 M potassium hydroxide, and

ammonia standard solutions with different concentrations (0.0, 0.2, 0.4, 0.6, 0.8 ug mL™") were
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prepared in a volumetric flask. 5 mL of the above standard solution was taken, followed by adding
5SmL of 0.1 M KOH. In order to prevent the possible influence of metal ions in the solution on the
color development, 1 mL of 0.2 M potassium sodium tartrate solution was added first, and then 1
mL of Nessler’s reagent was added. The mixed solution was shaken and left in a dark place for 30
min to develop color. The configuration of the control blank solution was the same as above, except
that 5 mL of the standard solution was replaced with 5 mL of 0.1 M potassium hydroxide. Finally,
the test solution and the control blank solution were put into the cuvette to test the UV absorbance.
As shown in Figure S5, according to the absorbance of standard solutions with different
concentrations at 420 nm, the standard curve of ammonia concentration and absorbance was
obtained by fitting. The absorbance of the tested electrolyte was measured after the above-
mentioned color development steps, and the corresponding ammonia concentration can be

calculated by substituting it into the standard curve.

Determination of hydrazine

The hydrazine presented in the electrolyte was estimated by the method of Watt and Chrisp. A
mixture of para-(dimethylamino) benzaldehyde (5.99 g), hydrochloride (concentrated, 30 mL) and
ethanol (300 mL) was used as a color reagent. 3 mL of the above prepared color reagent was added
into 3 mL electrolyte and then was stirred for 10 min at room temperature in darkness. The
absorbance of hydrazine in the resulting electrolyte was estimated at 460 nm. Absolute calibration

of this method was achieved using hydrazine monohydrate solutions of known concentration as
standards, and the fitting curve showed good linear relation of absorbance with N,Hy; H,0

concentration (y = 0.945x — 0.00236, R?2=0.9999) by three times independent calibrations (Figure

36).
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Calculation of NH; yield and Faradaic efficiency:
The NH; yield was determined using the following equation:
t(NH;) = (¢ x V) / (t x 4)
where ¢ is the measured NH;3 concentration, V' is the volume of the electrolyte, ¢ is the
reduction reaction time, and 4 is the effective area of the electrode, which is the geometric area of
the electrode covering with catalyst.
The Faradaic efficiency was calculated as follows:
FE=3FxcxV/(17x Q)
where F is the Faraday constant (96500 C mol™), ¢ is the measured NH; concentration, V is
the volume of the electrolyte or acid trap, ¢ is the reduction reaction time, M is the relative
molecular mass of NH; and Q is the total charge used for the electrodes. The total ammonia
production is calculated as the summary of the ammonia products in cathode chamber, anode

chamber, and also in-line acid traps.

Measurement of electrochemically active surface area:

The electrochemically active surface area was measured by double layer capacitance method.
CV measurement was conducted at the potential window 0.91-1.01 V vs. RHE under different
scan rates of 10, 20, 30, 40, 50 mV s™!. By plotting the (Ja-Jc)/2 at 0.96 V vs. RHE against the

scan rate, the slope value was calculated to be the double layer capacitance (Cdl).
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Supplementary Figures

Fig. S1. Polyhedral representation of polyanion Big[FeO4Fe;,012(OH)15(0,C(CCl3)i,]'7

(BiGFelg).
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Fig. S2. IR spectrum of iron-oxo Keggin.

The broad peak at 3400 cm™! is attributed to the stretching vibration absorption peak of
associated O—H bond. The peak at 1665 cm™! corresponds to stretching vibration of C=0 bond.
The peak at 1385 cm™! is associated with stretching vibration of C—C bond. The peak at the 742
cm! position is a stretching vibration of C—Cl bond. The peaks at 845 cm™!' and 688 cm™!

correspond to the Bi—O bond. The absorption peak at 625 cm™! corresponds to the Fe—O bond.
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Fig. S3. XRD pattern of BigFes.

Fig. S4. Packing of BigFe,; along ¢ direction.
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Fig. S5. UV-vis curves (a) and calibration curve (b) for the colorimetric NH; assay within low

concentration ranges from 0.0 pg mL™! to 0.8 pg mL™! using the Nessler’s reagent.
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Fig. S6. (a) UV-vis curves of various N,H,-H,O concentrations after incubation for 10 min at room

temperature and the (b) calibration curve used for the estimation of the N,H4-H,O concentration.
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Fig. S7. UV-vis absorption spectra of Bi/BiCIO/Fe;04-600 electrolysis after 2 h of electrolysis at

different applied potentials.
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Fig. S8. (a) UV-vis absorption spectra and (b) chromogenic reaction of the electrolyte stained with

the indicator for N,H,4-H,O.

S12



h

B .
RS

| ] .J‘

Intensity (a.u.)

Bi/BiCIO/Fe,0,-400
Bi/BiCIO/Fe,0,-500

Bi/BiCIO/Fe,0,-600

Bi/Fe,0,-700

Bi PDF#85-1329
BiCIO PDF#85-0861

Fe,0, PDF#99-0073

T I| |‘I||I||II I.
10 20 30 40

.| ”I ‘Illl I'.‘J L s Ll

50 60 70 80
20 (degree)

Fig. S9. X-ray diffraction patterns of samples calcined at 400 °C, 500 °C, 600 °C and 700 °C,

which are donated as Bi/BiClO/Fe;04-400, Bi/BiClO/Fe;04-500, Bi/BiClO/Fe;04-600, and

Bi/Fe;04-700, respectively.
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Fig. S10. (a) Nitrogen adsorption—desorption isotherms of Bi/Fe;04-700. (b) Pore size

distributions for Bi/BiClO/Fe;04-400, Bi/BiClO/Fe;04-500, Bi/BiClO/Fe;04-600 and Bi/Fe;O,-
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Fig. S11. X-ray diffraction pattern of Fe;O,.
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Fig. S12. X-ray diffraction pattern of Bi/BiClO.
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Fig. S13. UV-vis absorption spectra of Bi/BiClO/Fe;04-600, Bi/BiClO, and Fe;0,4 samples.
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Fig. S14. X-ray diffraction pattern of Fe,Os.
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Fig. S15. X-ray diffraction pattern of Bi/Bi,03/Bi1,,Cl;7015,.
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Fig. S16. X-ray diffraction pattern of Fe,05/Bi/Bi,03/Bi;,Cl1;7015,,
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Fig. S18. Electrochemical impendence spectra of Bi/BiClO/Fe;04-400, Bi/BiCIO/Fe;04-500,

BI/BICIO/FC304-600, Bi/F€304-700, FC304, BI/BICIO, and F€203/Bi/Bi203/Bi12C117012.
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Fig. S19. Cyclic voltammograms with different scanning rates of 10, 20, 30, 40 and 50 mV s! for
(a) Bi/BiClO/Fe;04-400, (b) Bi/BiClO/Fe;04-500, (¢) Bi/BiClO/Fe;04-600, (d) Bi/Fe;04-700, (e)
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density at —0.96 V versus the scan rate.
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Table S1. The mass and molar ratios of Bi/BiClO/Fe;04-400, Bi/BiCIO/Fe;04-500,

Bi/BiCl0/Fe;04-600, and Bi/Fe;04-700 measured from ICP-OES results.

Fe/Bi atomic
Catalysts Fe (Wt%) Bi (Wwt%)
ratio
Bi/BiClO/Fe;04-400 16.04 63.88 0.937
Bi/BiClO/Fe;04-500 34.6 43.86 2.944
Bi/BiClO/Fe;04-600 41.75 41 3.800
Bi/Fe;04-700 75 10 27.991

Table S2. Comparison of the Bi/BiClO/Fe;04-600 with various other electrocatalysts for the

electrochemical production of NH; from N, under ambient conditions.

Potential NH. vield rate NH;
Electrocatalyst ~ Electrolyte  (V vs. ( Zil}; me',) Faradaic Reference
RHE) He & cat efficiency
Bi/BiClO/Fe;04- 0.1 M o .
00 KO -0.1 12.82 15.22% This work
Mater. Today Energy
- 0 ’
Fe/Cu 0.1 M KOH 0.1 22.6 16% 2023, 31, 101215.
Nano Res,
0.1 M 2022, DOI:
Fe/Mo NC NSO, -0.6 26.8 1.8 10.1007/s12274-022-
5246-x.
Adv. Funct. Mater.,
D-FeN/C 0.1 M KOH -0.4 24.8 15.8 2022, 32, 2205409
0.1 M
Appl. Catal., B,
FeTPPCI Na,SO,- -0.3 18.28 16.76 2021, 285, 119794,
PBS
. 0.1M 0 ACS Catal.,,
Bi nanosheet Na,SO, -0.8 13.23 10.46% 2019, 9, 2902
ACS Catal.
S - 9 s
Fe-N/CNT 0.1 M KOH 0.2 34.83 9.2% 2019, 9, 336
Chem. Eur. J.
- = 9 ’
0-Fe,O3/CNT 0.1 M KOH 0.11 043 8.3% 2018, 24, 1
. 0.1 M N Nanoscale,
Fe;04/Ti NSO, -0.4 4.63 2.6% 2018, 10, 14386
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