Supplementary Information for:

Durable and Thermally Switchable Polysilsesquioxane Adhesive via Dynamic

Covalent Bond: Effect of Crosslinker on Reversible Chemistry

Seung Hyun Kang ^{a,b,1}, Jin Young Seo ^{a,1}, Hyeon Ji Oh ^a, Jung-Hyun Lee ^b, Albert S. Lee ^a, and Kyung-Youl Baek ^{a,c,d,*}

^a Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.

^b Department of Chemical and Biological Engineering, Korea University, Seoul 02481, Republic of Korea.

^c Division of Nano & Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.

^d KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.

¹ These authors contributed equally to this work.

Corresponding Author's e-mail: <u>baek@kist.re.kr (K.-Y. Baek)</u>

Figure S1. FT-IR spectrum of ladder-like poly(silsesquioxane) with octyl and pyrrole functional groups.

Figure S2. FT-IR spectra of (A) LPSQ-Hex, (B) LPSQ-Oct, (C) LPSQ-Dec before and after thermal annealing. (DA reaction and rDA reaction were performed at 90 °C and 135 °C respectively)

Figure S3. (A) Chemical structure of crosslinked LPSQ adhesives, XRD patterns of (B) LPSQ-Hex, (C) LPSQ-Oct, (D) LPSQ-Dec before and after thermal annealing (DA reaction and rDA reaction were performed at 90 °C and 135 °C respectively.)

	Group	V _w (cm ³ /mol)	Frequency		Total V _w (cm ³ /mol)			
	Si (Tetravalent)	16.6	2			33.2		
Octyl group	-O-	5.5	3			16.5		
	-CH ₂ -	10.23	14			143.22		
	-CH ₃	13.67	2			27.34		
Pyrrole group	Si (Tetravalent)	16.6	2			33.2		
	-0-	5.5	3			16.5		
	-CH ₂ -	10.23	8	10	12	81.84	102.3	122.76
	-N< (Trivalent)	4.3	2		8.6			
	Cyclohexene	53.36	2		106.72			

Table S1. Molar volume calculation of LPSQ adhesives by Bondi's group contribution method.

Entry	Sample	Solubi	lity parameter (M			
		$\delta_{_{ m d}}$	$\delta_{_{p}}$	$\delta_{ m h}$	_ Distance (MPa ^{0.5}) ^b	χ
1	LPSQ-Hex	17.706	1.425	5.084	3.14	0.322
2	LPSQ-Oct	17.712	1.399	5.038	3.092	0.319
3	LPSQ-Dec	17.725	1.375	4.993	3.043	0.313

Table S2. Polymer-solvent interaction parameter calculation of LPSQ adhesives using Hansen solubility parameter.

^a Hansen solubility parameter was calculated by Hoftyzer-Van Krevelen method (solubility parameter components could be predicted from group contributions); ^b Distance between points in Hansen space

Figure S4. Force and depth profiles of PDMS and LPSQ adhesives measured by nanoindentation.