Supporting Information for

Exceptionally Flexible Quinodimethanes with Multiple Conformations: Polymorph-Dependent Colour Tone and Emission of Crystals

Kazuma Sugawara,^[a] Toshikazu Ono,^{*[b]} Yoshio Yano,^[b] Takanori Suzuki,^[a] and Yusuke Ishigaki^{*[a]}

^[a]Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
 ^[b]Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu
 University, Fukuoka 819-0395, Japan

*Correspondence to: tono@mail.cstm.kyushu-u.ac.jp, yishigaki@sci.hokudai.ac.jp

Table of Contents

General	S3
Experimental Section	S4
Synthetic procedures	S4
NMR spectra of new compounds	S13
X-ray Analyses	S18
Crystal structures	S18
Crystal Data	S21
Molecular packing in the crystals	S25
Structural parameters	S33
Hammett's σ_p Values	S34
Spectroscopic Investigations	
UV/Vis spectra	
VT ¹ H NMR	S36
Excitation spectra	S38
Diffuse reflectance spectra	S39
Mechanofluorochromic Behaviour	S39
Theoretical Study	S40
DFT calculations	S40
TD-DFT calculations	
Optimised Coordinates	S63
References	S79

General

All reactions were carried out under an argon atmosphere. All commercially available compounds were used without further purification unless otherwise indicated. Dry toluene was obtained by distillation from CaH₂ prior to use. Column chromatography was performed on silica gel 60N (KANTO KAGAKU, spherical neutral) of particle size 40-50 µm or Wakogel® 60N (neutral) of particle size 38-100 µm. ¹H and ¹³C NMR spectra were recorded on a BRUKER AscendTM 400 (¹H/400 MHz and ¹³C/100 MHz) spectrometer. IR spectra were measured on a Shimadzu IRAffinity-1S spectrophotometer using the attenuated total reflection (ATR) mode. Mass spectra were recorded on a JMS-T100GCV spectrometer in FD mode by Dr. Eri Fukushi and Mr. Yusuke Takata (GC-MS & NMR Laboratory, Research Faculty of Agriculture, Hokkaido University). Melting points were measured on a Stanford Research Systems OptiMelt MPA100 and are uncorrected. UV-vis-NIR spectra were recorded on a Hitachi U-2910 spectrophotometer. UV/Vis diffuse reflectance measurements were recorded using a JASCO V-770 spectrometer (JASCO) with an integration sphere. A JASCO FP-8500 fluorescence spectrometer was used to collect excitation and emission spectra at room temperature. The absolute photoluminescence quantum yields (Φ_F) were calculated using the C9920-02 absolute photoluminescence quantum yields measurement system (Hamamatsu photonics). Time-resolved photoluminescence lifetimes were measured using a time-correlated single-photon counting lifetime spectroscopy system, Quantaurus-Tau C11367-02 (Hamamatsu photonics). PXRD data were collected at room temperature using a Rigaku SmartLab system (Rigaku) diffractometer with a copper K-alpha source. Redox potentials (E^{ox} and E^{red}) were measured on a BAS ALS-600A by cyclic voltammetry in dry DMF containing 0.1 M Bu₄NBF₄ as a supporting electrolyte. All of the values shown in the text are in E/V vs. SCE measured at the scan rate of 0.1 V s⁻¹. Pt electrodes were used as the working (disk) and counter electrodes. The working electrode was polished using a water suspension of aluminum oxide (0.05 µm) before use. DFT calculations were performed with the Gaussian 16W program package.^[1] The geometries of the compounds were optimised by using the B3LYP method in combination with the 6-31G* basis set unless otherwise indicated.

Experimental Section

Synthetic procedures

Scheme S1. Preparation of 1, I, III, and IV.

2,3,6,7-Tetraphenyl-1,4,5,8-tetraaza-9,10-anthraquinone (3)

A mixture of 2,3,5,6-tetraamino-1,4-benzoquinone $2^{[2]}$ (1.26 g, 7.50 mmol) and benzil (15.8 g, 75.0 mmol) in 95% CH₃COOH aq. (263 mL) was stirred at 25 °C for 44 h. Then, the precipitates were collected by filtration, washed with water and EtOH, and dried *in vacuo* to give a **3** (3.63 g) as a yellow powder in 94% yield.

¹H NMR data were identical to those in literature.^[3]

11,11,12,12-Tetrabromo-2,3,6,7-tetraphenyl-1,4,5,8-tetraaza-9,10-anthraquinodimethane (4)

A mixture of CBr₄ (82.65 g, 8.00 mmol) and PPh₃ (4.20 g, 16.0 mmol) in dry CH₂Cl₂ (20 mL) was stirred at 26 °C for 1 h, and then 2,3,6,7-tetraphenyl-1,4,5,8-tetraaza-9,10-anthraquinone **3** (1.03 g, 2.00 mmol) was added to the mixture at 0 °C. After warming to 26 °C, the mixture was stirred at 26 °C for 19 h. After diluting with water, the reaction mixture was extracted with CH₂Cl₂ three times. The combined organic layers were washed with water and brine, and dried over anhydrous MgSO₄. After filtration, the solvent was concentrated under reduced pressure. The crude product was washed with CH₂Cl₂ until the filtrate becomes colourless, and the residue was dried *in vacuo* to give **4** (1.48 g) as a white powder in 89 %. The resulting filtrate was concentrated under reduced pressure, and purified by column chromatography on silica gel (CH₂Cl₂) to give **4** (101 mg) as a white powder in 6% yield (total 1.58 g, 95%).

¹H NMR data were identical to those in literature.^[4]

2,3,6,7,11,11,12,12-Octaphenyl-1,4,5,8-tetraaza-9,10-anthraquinodimethane (1a)

anthraquinodimethane **4** (108 mg, 130 µmol), phenylboronic acid (95.7 mg, 785 µmol), K₂CO₃ (144 mg, 1.04 mmol) and Pd(PPh₃)₄ (15.6 mg, 13.5 µmol) in a mixture of toluene (6 mL), EtOH (0.6 mL) and water (0.6 mL) was stirred at 120 °C for 8 h. After cooling to 26 °C, the reaction mixture was extracted with EtOAc three times. The combined organic layers were washed with water and brine, and dried over anhydrous MgSO₄. After filtration, the solvent was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (hexane/EtOAc = 10) to give **1a** (99.0 mg) as a red solid in 93% yield.

¹H NMR data were identical to those in literature.^[4]

11,11,12,12-Tetrakis(4-methylphenyl)-2,3,6,7-tetraphenyl-1,4,5,8-tetraaza-9,10anthraquinodimethane (1b)

A mixture of 11,11,12,12-tetrabromo-2,3,6,7-tetraphenyl-1,4,5,8-tetraaza-9,10anthraquinodimethane **4** (828 mg, 1.00 mmol), tris(4-methylphenyl)boroxine (708 mg, 2.00 mmol), K₂CO₃ (1.11 g, 8.00 mmol) and Pd(PPh₃)₄ (57.8 mg, 50.0 µmol) in a mixture of toluene (10 mL), EtOH (1 mL) and water (1 mL) was stirred at 120 °C for 21 h. After cooling to 25 °C, the reaction mixture was extracted with CH₂Cl₂ three times. The combined organic layers were washed with water and brine, and dried over anhydrous Na₂SO₄. After filtration, the solvent was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (hexane/CH₂Cl₂ = 1) to give **4** (863 mg) as a wine red solid in 99% yield.

Mp: 254.3-260.1 °C (decomp); ¹H NMR (400 MHz, CDCl₃): δ /ppm 7.19-7.10 (20H, m), 7.04 (8H, t, *J* = 7.6 Hz), 6.71 (8H, d, *J* = 7.6 Hz), 2.45 (12H, s); ¹³C NMR (100 MHz, CDCl₃): δ /ppm 151.64, 146.06, 144.01, 141.39, 137.83, 137.68, 131.30, 129.82, 128.70, 128.30, 127.61, 127.56, 21.43; IR (ATR): *v*/cm⁻¹ 3056, 3021, 2917, 2862, 1603, 1572, 1517, 1503, 1478, 1450, 1400, 1372, 1310, 1266, 1205, 1180, 1115, 1090, 1075, 1032, 1005, 922, 881, 845, 818, 808, 791, 783, 773, 761, 735, 693, 952, 639, 617, 601, 581, 544, 502, 487, 479; LR-MS(FD) *m*/*z* (%): 873.34 (28), 873.33 (73), 872.33 (M⁺, bp); HR-MS (FD) Calcd. for C₆₄H₄₈N₄: 872.38790; Found: 872.38885.

11,11,12,12-Tetrakis(4-fluorophenyl)-2,3,6,7-tetraphenyl-1,4,5,8-tetraaza-9,10anthraquinodimethane (1c)

A mixture of 11,11,12,12-tetrabromo-2,3,6,7-tetraphenyl-1,4,5,8-tetraaza-9,10anthraquinodimethane **4** (828 mg, 1.00 mmol), tris(4-fluorophenyl)boroxine (732 mg, 2.00 mmol), K₂CO₃ (1.11 g, 8.00 mmol) and Pd(PPh₃)₄ (57.8 mg, 50.0 µmol) in a mixture of toluene (10 mL), EtOH (1 mL) and water (1 mL) was stirred at 120 °C for 24 h. After cooling to 24 °C, the reaction mixture was extracted with CH₂Cl₂ three times. The combined organic layers were washed with water and brine, and dried over anhydrous Na₂SO₄. After filtration, the solvent was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (hexane/CH₂Cl₂ = 1) to give **1c** (742 mg) as a yellow solid in 83% yield.

Mp: 274.4-280.0 °C (decomp); ¹H NMR (400 MHz, CDCl₃): δ /ppm 7.25-7.18 (12H, m), 7.12 (8H, t, *J* = 7.8 Hz), 7.04 (8H, t, *J* = 8.7 Hz), 6.82 (8H, d, *J* = 7.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ /ppm 162.68 (d, *J*_{C-F} = 247 Hz), 149.11, 147.24, 141.86, 141.26 (d, *J*_{C-F} = 4.0 Hz), 137.54, 132.81 (d, *J*_{C-F} = 8.0 Hz), 129.55, 128.75, 128.54, 127.86, 115.04 (d, *J*_{C-F} = 21 Hz); IR (ATR): *v*/cm⁻¹ 3052, 3041, 3000, 2982, 1731, 1596, 1500, 1452, 1398, 1368, 1314, 1296, 1221, 1174, 1153, 1116, 1101, 1074, 1049, 1030, 1015, 940, 920, 882, 830, 810, 797, 788, 772, 762, 756, 741, 695, 638, 633, 619, 611, 594, 587, 573, 543, 525, 508, 501, 471; LR-MS(FD) *m*/*z* (%): 890.24 (25), 889.24 (69), 888.24 (M⁺, bp); HR-MS (FD) Calcd. for C₆₀H₃₆F₄N₄: 888.28761; Found: 888.28895.

11,11,12,12-Tetrakis(4-chlorophenyl)-2,3,6,7-tetraphenyl-1,4,5,8-tetraaza-9,10anthraquinodimethane (1d)

A mixture of 11,11,12,12-tetrabromo-2,3,6,7-tetraphenyl-1,4,5,8-tetraaza-9,10anthraquinodimethane **4** (828 mg, 1.00 mmol), tris(4-chlorophenyl)boroxine (830 mg, 2.00 mmol), K₂CO₃ (1.11 g, 8.00 mmol) and Pd(PPh₃)₄ (57.8 mg, 50.0 µmol) in a mixture of toluene (10 mL), EtOH (1 mL) and water (1 mL) was stirred at 80 °C for 24 h. After cooling to 24 °C, the reaction mixture was extracted with CH₂Cl₂ three times. The combined organic layers were

washed with water and brine, and dried over anhydrous Na_2SO_4 . After filtration, the solvent was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (hexane/CH₂Cl₂ = 1) to give **1d** (740 mg) as an orange solid in 78% yield.

Mp: 300.1-303.2 °C (decomp); ¹H NMR (400 MHz, CDCl₃): δ /ppm 7.33 (8H, d, J = 8.4 Hz), 7.22 (4H, d, J = 7.4 Hz), 7.16 (8H, d, J = 8.4 Hz), 7.13 (8H, t, J = 7.4 Hz), 6.75 (8H, d, J = 7.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ /ppm 148.65, 147.47, 144.43, 141.20, 137.29, 133.92, 132.21, 129.54, 128.86, 128.64, 128.44, 127.92; IR (ATR): ν /cm⁻¹ 3058, 3046, 2986, 2955, 2926, 1583, 1520, 1484, 1451, 1396, 1374, 1269, 1205, 1179, 1118, 1085, 1030, 1012, 1004, 920, 880, 843, 827, 810, 804, 791, 785, 766, 734, 692, 665, 642, 631, 617, 598, 545, 530, 521, 507, 490, 454; LR-MS(FD) *m*/*z* (%): 959.12 (10), 958.12(23), 957.12 (37), 956.12 (66), 955.12 (67), 954.12 (bp), 953.13 (49), 952.12 (M⁺, 70); HR-MS (FD) Calcd. for C₆₀H₃₆Cl₄N₄: 952.16941; Found: 952.16801.

11,11,12,12-Tetrabromo-9,10-anthraquinodimethane (6)

To a solution of 9,10-anthraquinone **5** (4.18 g, 20.1 mmol) and CBr₄ (17.7 g, 53.4 mmol) in dry CH₂Cl₂ (300 mL) was added PPh₃ (27.4 g, 104 mmol) at 26 °C. After stirring at 26 °C for 14.5 h, the precipitates were filtered and washed with CH₂Cl₂. The resulting filtrate was extracted with CH₂Cl₂ three times. The combined organic layers were washed with water and brine, and dried over anhydrous MgSO₄. After filtration, the solvent was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (hexane) to give **6** (8.44 g) as a colourless crystal in 81% yield.

¹H NMR data were identical to those in literature.^[5]

11,11,12,12-Tetraphenyl-9,10-anthraquinodimethane (I)

A mixture of 11,11,12,12-tetrabromo-9,10-anthraquinodimethane **6** (130 mg, 250 μ mol), phenylboronic acid (183 mg, 1.50 mmol), K₂CO₃ (277 mg, 2.00 mmol) and Pd(PPh₃)₄ (14.5 mg, 12.5 μ mol) in a mixture of toluene (3 mL), EtOH (0.3 mL) and water (0.3 mL) was stirred at

120 °C for 24 h. After cooling to 25 °C, the reaction mixture was extracted with EtOAc three times. The combined organic layers were washed with water and brine, and dried over anhydrous MgSO₄. After filtration, the solvent was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (hexane/EtOAc = 30) to give I (118 mg) as an orange solid in 93% yield.

¹H NMR data were identical to those in literature.^[6]

1,4,5,8-Tetraaza-9,10-anthraquinone (7)

A mixture of 2,3,5,6-tetraamino-1,4-benzoquinone **2** (1.01 g, 6.00 mmol) and glyoxal (40% in water, 13.7 mL, 120 mmol) in 95% CH₃COOH aq. (210 mL) was stirred at 25 °C for 69 h. After stirring, the precipitates were collected by filtration and washed with water. The residue was redissolved in EtOH (50 mL) and stirred at 80 °C for 1 h, and the solution was filtered to give a 7 (882 mg) as a gray solid in 69% yield.

¹H NMR data were identical to those in literature.^[7]

11,11,12,12-Tetrabromo-1,4,5,8-tetraaza-9,10-anthraquinodimethane (8)

A mixture of CBr₄ (4.07 g, 12.3 mmol) and PPh₃ (6.44 g, 24.6 mmol) in dry CH₂Cl₂ (50 mL) was stirred at 25 °C for 1 h, and then 1,4,5,8-tetraaza-9,10-anthraquinone 7 (1.00 g, 4.72 mmol) was added to the mixture at 0 °C. After warming to 25 °C, the mixture was stirred at 25 °C for 16 h. After diluting with water, the precipitates were filtered and washed with CHCl₃. The resulting filtrate was extracted with CHCl₃ three times. The combined organic layers were washed with water and brine, and dried over anhydrous MgSO₄. After filtration, the solvent was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (hexane/EtOAc/CHCl₃ = 4/1/4) to give **8** (467 mg) as a white solid in 19% yield.

11,11,12,12-Tetraphenyl-1,4,5,8-tetraaza-9,10-anthraquinodimethane (III)

A mixture of 11,11,12,12-tetrabromo-1,4,5,8-tetraaza-9,10-anthraquinodimethane **8** (81.4 mg, 155 μ mol), phenylboronic acid (114 mg, 933 μ mol), K₂CO₃ (172 mg, 1.24 mmol) and Pd(PPh₃)₄ (9.1 mg, 7.9 μ mol) in a mixture of toluene (3 mL), EtOH (0.3 mL) and water (0.3 mL) was stirred at 120 °C for 7 h. After cooling to 24 °C, the reaction mixture was extracted with CH₂Cl₂ three times. The combined organic layers were washed with water and brine, and dried over anhydrous MgSO₄. After filtration, the solvent was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (hexane/EtOAc = 3) to give **III** (54.3 mg) as an orange solid in 68% yield.

¹H NMR data were identical to those in literature.^[8]

2,3,6,7-Tetraphenyl-9,10-anthraquinone (10)

A mixture of 1,4-benzoquinone 9 (216 mg, 2.00 mmol), 4-hydroxy-3,4-diphenylcyclopent-2-en-1-one (1.00 g, 4.00 mmol) and *p*-toluenesulfonic acid monohydrate (19.0 mg, 100 µmol) in CH₃COOH (55 mL) was stirred at reflux for 15 h. After cooling to 26 °C, the mixture was diluted with water and extracted with CH₂Cl₂ three times. The combined organic layers were washed with water, saturated NaHCO₃ aq. and brine, and dried over anhydrous MgSO₄. After filtration, the solvent was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (hexane/CH₂Cl₂ = 1) to give **10** (143 mg) as a yellow powder in 14% yield.

¹H NMR data were identical to those in literature.^[9]

11,11,12,12-Tetrabromo-2,3,6,7-tetraphenyl -9,10-anthraquinodimethane (11)

A mixture of CBr₄ (265 mg, 799 μ mol) and PPh₃ (412 mg, 1.60 mmol) in dry toluene (2 mL) was stirred at 24 °C for 1 h. To the suspension was added 2,3,6,7-tetraphenyl-9,10-anthraquinone **10** (102 mg, 200 μ mol), and the mixture was heated at reflux for 6 h. After cooling to 24 °C, the reaction mixture was diluted with water, and extracted with CH₂Cl₂ three times. The combined organic layers were washed with water and brine, and dried over anhydrous MgSO₄. After filtration, the solvent was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (hexane/CH₂Cl₂ = 1) to give **11** (164 mg) as a white powder in 99% yield.

Mp: >400 °C; ¹H NMR (400 MHz, CDCl₃): δ /ppm 7.96 (4H, s), 7.25-7.18 (12H, m), 7.17-7.09 (8H, m); ¹³C NMR (100 MHz, CDCl₃): δ /ppm 140.57, 139.43, 138.75, 134.90, 129.85, 129.81, 128.05, 126.94, 90.67; IR (ATR): *v*/cm⁻¹ 3077, 3050, 3021, 2959, 2926, 2862, 1726, 1600, 1576, 1539, 1494, 1467, 1381, 1279, 1262, 1182, 1122, 1074, 1026, 1000, 960, 909, 783, 769, 746, 697, 650, 622, 614, 585, 564, 536, 521, 503; LR-MS(FD) *m*/*z* (%): 827.76 (24), 826.77 (32), 824.77 (44), 823.76 (bp), 822.77 (30), 821.77 (66), 819.77 (M⁺, 17); HR-MS (FD) Calcd. for C₄₀H₂₄Br₄: 819.86115; Found: 819.86086.

2,3,6,7,11,11,12,12-Octaphenyl-9,10-anthraquinodimethane (IV)

A mixture of 11,11,12,12-tetrabromo-2,3,6,7-tetraphenyl-9,10-anthraquinodimethane **11** (124 mg, 150 μ mol), phenylboronic acid (110 mg, 901 μ mol), K₂CO₃ (166 mg, 1.20 mmol) and Pd(PPh₃)₄ (8.70 mg, 7.50 μ mol) in a mixture of toluene (3 mL), EtOH (0.3 mL) and water (0.3 mL) was stirred at 120 °C for 24 h. After cooling to 25 °C, the reaction mixture was extracted with EtOAc three times. The combined organic layers were washed with water and brine, and dried over anhydrous MgSO₄. After filtration, the solvent was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (hexane/EtOAc = 20) to give **IV** (98.0 mg) as a pale-yellow powder in 80% yield.

Mp: 297.6-298.9 °C; ¹H NMR (400 MHz, CDCl₃): δ/ppm 7.47 (8H, dd, *J* = 1.3, 7.4 Hz), 7.30

(8H, t, J = 7.4 Hz), 7.20 (4H, tt, J = 1.3, 7.4 Hz), 7.10-6.99 (12H, m), 7.07 (4H, s), 6.65 (8H, dd, J = 1.4, 7.3 Hz); ¹³C NMR (100 MHz, CDCl₃): δ /ppm 142.51, 141.17, 140.58, 137.56, 136.61, 134.63, 130.41, 129.77, 129.66, 128.33, 127.39, 126.72, 126.05; IR (ATR): ν /cm⁻¹ 3077, 3055, 3020, 1599, 1576, 1490, 1472, 1464, 1442, 1383, 1243, 1179, 1155, 1073, 1030, 1001, 980, 964, 925, 917, 905, 777, 769, 754, 747, 719, 697, 644, 624, 616, 596, 576, 537, 506, 475; LR-MS(FD) *m*/*z* (%): 814.32 (27), 813.31 (73), 812.31 (M⁺, bp), 406.66 (11), 406.16 (M²⁺, 16); HR-MS (FD) Calcd. for C₆₄H₄₄: 812.34430; Found: 812.34621.

NMR spectra of new compounds

(a)

Figure S1. (a) 1 H NMR and (b) 13 C NMR spectra of **1b** in CDCl₃.

Figure S2. (a) 1 H NMR and (b) 13 C NMR spectra of **1c** in CDCl₃.

(a)

Figure S3. (a) 1 H NMR and (b) 13 C NMR spectra of **1d** in CDCl₃.

(a)

Figure S4. (a) 1 H NMR and (b) 13 C NMR spectra of **11** in CDCl₃.

Figure S5. (a) 1 H NMR and (b) 13 C NMR spectra of **IV** in CDCl₃.

(a)

X-ray Analyses

Crystal structures

Figure S6. ORTEP drawings of **1a** [(a) **F**-form in CH_2Cl_2 solvate (recrystallised from CH_2Cl_2 /hexane), (b) **F**-form in $CHCl_3$ solvate (recrystallised from $CHCl_3/EtOH$), and (c) **T**-form without crystallisation solvent (recrystallised from $CH_2Cl_2/EtOH$)]. The solvent molecules are omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure S7. ORTEP drawings of **1b** [(a) **F**-form in 2EtOH solvate (recrystallised from EtOAc/EtOH), (b) **P**-form in H₂O solvate (recrystallised from EtOAc/EtOH), (c) **P**-form in CH₂Cl₂ solvate (recrystallised from CH₂Cl₂/hexane), (d) **P**-form in 0.5CHCl₃ solvate (recrystallised from CHCl₃/EtOH), (e) **TF**-form in 0.5CH₂Cl₂ solvate (recrystallised from CH₂Cl₂/hexane), (f) **TF**-form in 0.5hexane solvate (recrystallised from EtOAc/hexane), (g) **TF**-form in 0.5EtOAc solvate (recrystallised from EtOAc/EtOH), (h) **TF**-form in CH₂Cl₂ solvate (recrystallised from CH₂Cl₂/EtOH), and (i) **T**-form without crystallisation solvent (recrystallised from EtOAc/hexane)]. The solvent molecules are omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure S8. ORTEP drawings of **1c** [(a) **F**-form in EtOAc solvate (recrystallised from EtOAc), (b) **F**-form in 0.25CH₂Cl₂ solvate (recrystallised from CH₂Cl₂/hexane) (c) **F**-form in 1.25CH₂Cl₂ solvate (recrystallised from CH₂Cl₂/EtOH), (d) **F**-form in 2CHCl₃ solvate (recrystallised from CHCl₃/EtOH), (e) **F**-form (mol-1) and semi-**P**-form (mol-2) in H₂O solvate (recrystallised from CHCl₃/hexane), (f) **TP**-form in CHCl₃ solvate (recrystallised from CHCl₃/hexane), (g) **TP**-form (mol-1 and mol-2) in CH₂Cl₂ solvate (recrystallised from CH₂Cl₂/hexane), (h) **TP**-form (mol-1 and mol-2) in EtOH solvate (recrystallised from EtOAc/EtOH), and (i) **TF**-form in CHCl₃ solvate (recrystallised from CHCl₃/hexane)]. The solvent molecules are omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure S9. ORTEP drawings of **1d** [(a) **P**-form (mol-1 and mol-2) CHCl₃ in solvate (recrystallised from CHCl₃/EtOH), (b) **P**-form in CH₂Cl₂ solvate (recrystallised from CH₂Cl₂/hexane), (c) **TF**-form in CHCl₃ solvate (recrystallised from CHCl₃/hexane), and (d) **T**-form without crystallisation solvent (recrystallised from CHCl₃/hexane)]. The solvent molecules are omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure S10. ORTEP drawings of (a) **III** [**F**-form (mol-1 and mol-2) without crystallisation solvent (recrystallised from CHCl₃/hexane)], and (b) **IV** [**F**-form (mol-1, mol-2, and mol-3) without crystallisation solvent (recrystallised from CH₂Cl₂/hexane)]. The solvent molecules are omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Crystal Data

Method

A suitable crystal was selected and measured on a Rigaku XtaLAB Synergy (Cu-K α radiation, $\lambda = 1.54184$ Å) with HyPix diffractometer. The crystal was kept at 150 K during data collection. Using Olex2,^[10] the structure was solved with the SHELXT^[11] structure solution program using Intrinsic Phasing and refined with the SHELXL^[12] refinement package using Least Squares minimization.

Table S	 Crystal 	data of	°Ш, I	[V , :	and	1a.
---------	-----------------------------	---------	-------	----------------	-----	-----

	III	IV	(a) F-form	(b) F-form	(c) T-form
Recrystallisation solvent	CHCl ₃ /hexane	CH ₂ Cl ₂ /hexane	CH ₂ Cl ₂ /hexane	CHCl ₃ /EtOH	CH ₂ Cl ₂ /EtOH
Colour and shape	Yellow block	Colourless plate	Yellow plate	Yellow plate	Red block
Solvate	Non	Non	CH ₂ Cl ₂	CHCl ₃	None
Empirical formula	$C_{36}H_{24}N_4$	$C_{64}H_{44}$	$C_{61}H_{42}N_4Cl_2$	$C_{61}H_{41}N_4Cl_3$	$C_{60}H_{40}N_4$
Formula weight	512.59	812.99	901.88	936.33	816.96
Temperature/K	150	150	150	150	150
Crystal system	triclinic	triclinic	monoclinic	monoclinic	triclinic
Space group	P-1	P-1	$P2_1/n$	$P2_1/n$	P-1
a [Å]	9.93699(14)	10.81378(14)	16.5930(3)	16.58736(14)	9.75804(18)
b [Å]	13.4375(2)	19.7207(2)	16.7981(3)	17.18100(13)	10.24335(19)
c [Å]	20.7105(3)	32.0682(4)	17.4925(3)	17.25022(14)	12.5631(2)
α [°]	100.7714(13)	87.3043(10)	90	90	109.5893(17)
β [°]	95.4569(12)	80.5761(11)	100.4761(18)	101.0383(8)	92.4238(15)
γ [°]	102.2024(12)	88.2988(10)	90	90	114.6339(18)
Volume [Å ³]	2629.12(7)	6737.26(15)	4794.45(16)	4825.14(7)	1050.81(4)
Z	4	6	4	4	1
ρ _{calc} g [cm ³]	1.295	1.202	1.249	1.289	1.291
μ [mm ⁻¹]	0.6	0.515	1.559	2.066	0.582
Crystal size [mm ³]	$0.2 \times 0.15 \times$	$0.3 \times 0.1 \times$	$0.2\times0.1\times0.05$	$0.6 \times 0.5 \times 0.05$	0.4 imes 0.2 imes 0.2
	0.1	0.05			
Reflections collected	31474	85233	31137	31612	11871
Independent reflections	10588	27336	9524	9741	4276
R _{int}	0.0339	0.0332	0.0708	0.0311	0.0251
Data/restraints/parameters	10588/0/721	27336/0/1729	9524/0/604	9741/0/613	4276/0/289
GOF	1.035	1.032	1.158	1.54	1.034
R1 $[I \ge 2\sigma(I)]$	0.0613	0.0645	0.1134	0.0961	0.0436
wR2 [I>=2σ (I)]	0.1668	0.1753	0.2821	0.3134	0.1136
R1 [all data]	0.0664	0.0702	0.1534	0.1003	0.0458
wR2 [all data]	0.1720	0.1806	0.3074	0.3248	0.1155
CCDC	2176740	2176741	2176742	2176743	2176744

 Table S2. Crystal data of 1b.

	(a) F-	(b) P-	(c) P-	(d) P-	(e) TF-	(f) TF-	(g) TF-	(h) TF-	(i) T-
	form	form	form	form	form	form	form	form	form
Recrystallisation	EtOAc/	EtOAc/	CH ₂ Cl ₂ /	CHCl ₃ /	CH ₂ Cl ₂ /	EtOAc/	EtOAc/	CH ₂ Cl ₂ /	EtOAc/
solvent	EtOH	EtOH	hexane	EtOH	hexane	hexane	EtOH	EtOH	hexane
Colour and	Yellow	Orange	Orange	Orange	Reddish	Reddish	Reddish	Reddish	Red
shape	plate	plate	plate	plate	-orange	-orange	-orange	-orange	plate
_					0 5 CH	0 Showe	0 5 Et O A	plate	
Solvate	2EtOH	H_2O	CH_2Cl_2	0.5CHCI	$0.5CH_2$	0.5llexa	0.5ElOA	CH_2Cl_2	None
Fmnirical	CaHaN	CalHanN	CerHanN	3 CareHane	CrueHas	CarHarN	CarHanN	C. H. Cl	Callin
formula	402	0	(Cl)	N ₄ Cl ₁	CIN4	6/115511	0	N	4
Formula weight	965.2	⁴ 0 891.08	957.99	932.75	915.52	⁴ 91615	⁴ 0 917.11	957.99	[‡] 873.06
Temperature/K	150	150	150	150	150	150	150	150	150
	monocli	monocli	monocli	monocli					monocli
Crystal system	nic	nic	nic	nic	triclinic	triclinic	triclinic	triclinic	nic
Space group	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_1/n$	P-1	P-1	P-1	P-1	I2/a
م [أ أ	13.7381	13.0186(13.0605	13.1532	13.8714(13.8366(13.8378	13.8559(28.1936(
a [A]	0(16)	7)	5(8)	7(10)	3)	2)	4(18)	4)	3)
Ь[Å]	19.2903(15.5503(15.9366	15.8059	14.3596(14.3012(14.3149(14.3395(5.66772(
	2)	6)	4(9)	4(9)	3)	2)	3)	3)	5)
c [Å]	20.7162(25.0921(24.8247	25.1230	15.5180(15.4141(15.3314(15.2345(32.3675(
• []	3)	8)	0(16)	1(16)	4)	3)	2)	3)	3)
α [°]	90	90	90	90	87.623(2	73.7712(73.8179(73.943(2	90
	105 097	102 200/	102 652	102 274)	15)	14)) 71.145(2)	107.920
β [°]	1(12)	105.200(102.032	102.274)	16)	12))	2(11)
	1(12)	4)	1(0)	0(7)) 61 366(2	61 2700(12) 61 3275() 61.450(3	2(11)
γ [°]	90	90	90	90)	17)	16))	90
° 7-	5300.81(4943.7(4	5041.58(5103.68(2533.36(2504.14(2496.59(2488.83(4923.45(
Volume [A ³]	11))	5)	6)	11)	9)	8)	13)	9)
Z	4	4	4	4	2	2	2	2	4
ρ _{calc} g [cm ³]	1.209	1.197	1.262	1.214	1.2	1.215	1.22	1.278	1.178
μ [mm ⁻¹]	0.562	0.549	1.511	1.245	1.008	0.539	0.558	1.531	0.526
Crystal size	0.5×0.1	$0.2 \times$	0.5×0.2	0.4×0.2	0.8×0.4	0.4×0.2	0.3×0.2	0.6×0.2	0.6×0.1
[mm ³]	$\times 0.02$	$0.05 \times$	× 0.03	× 0.05	0.8 ∧ 0.4 × 0.1	0.4 × 0.2	× 0.03	0.0 × 0.2 × 0.03	× 0.05
	A 0.02	0.02	× 0.05	× 0.05	× 0.1	× 0.15	× 0.05	A 0.05	X 0.05
Reflections	35360	35436	34101	34613	30266	28717	29691	30911	17160
collected									
Independent	10752	10077	10179	10384	10267	10106	10091	10236	4926
R	0.0378	0 1381	0.0262	0.0189	0.0512	0.0330	0.0203	0.0416	0.0218
Data/restraints/	10752/0/	10077/0/	10179/0/	10384/0/	10267/0/	10106/0/	10091/0/	10236/0/	4926/0/3
parameters	675	625	653	653	662	645	657	645	09
GOF	1.016	1.023	1.045	1.065	1.038	1.044	1.034	1.034	1.069
R1 [I>= 2σ (I)]	0.0487,	0.0888,	0.0516,	0.0725	0.0880	0.0480	0.0479	0.0718	0.0446
wR2 $[I \ge 2\sigma(I)]$	0.1270	0.2273	0.1413	0.2231	0.2615	0.1283	0.1367	0.2030	0.1160
R1 [all data]	0.0596	0.1802	0.0549	0.0755	0.0931	0.0514	0.0507	0.0770	0.0463
wR2 [all data]	0.1343	0.2836	0.1443	0.2264	0.2679	0.1315	0.1397	0.2083	0.1175
CCDC	2176745	2176746	2176747	2176748	2176749	2176750	2176751	2176752	2176753

 Table S3. Crystal data of 1c.

	(a) F- form	(b) F- form	(c) F- form	(d) F- form	(e) F- form + semi-P- form	(f) TP- form	(g) TP- form	(h) TP- form	(i) TF- form
Recrystallisatio n solvent	EtOAc	CH ₂ Cl ₂ / hexane	CH2Cl2/ EtOH	CHCl ₃ / EtOH	CHCl ₃ / hexane	CHCl ₃ / hexane	CH ₂ Cl ₂ / hexane	EtOAc/ EtOH	CHCl ₃ / hexane
Colour and shape	Yellow block	Yellow plate	Yellow plate	Yellow plate	Orange plate	Red needle	Red needle	Red needle	Reddish- orange plate
Solvate	EtOAc	0.25CH ₂ Cl ₂	1.25CH ₂ Cl ₂	2CHCl ₃	H_2O	CHCl ₃	CH_2Cl_2	EtOH	CHCl ₃
Empirical formula	$\begin{array}{c} C_{64}H_{44}N \\ _4O_2F_4 \end{array}$	$C_{60.25}H_{36.}$ ${}_{5}Cl_{0.5}F_{4}N$	C _{61.25} H _{38.} ₅ Cl _{2.5} F ₄ N ₄	$\begin{array}{c} C_{62}H_{38}Cl \\ _{6}F_{4}N_{4} \end{array}$	$\begin{array}{c} C_{60}H_{38}F_{4} \\ N_{4}O \end{array}$	$\begin{array}{c} C_{61}H_{37}Cl \\ _{3}F_{4}N_{4} \end{array}$	$\begin{array}{c} C_{61}H_{38}Cl \\ _2F_4N_4 \end{array}$	$\begin{array}{c} C_{62}H_{42}F_{4} \\ N_{4}O \end{array}$	$\begin{array}{c} C_{61}H_{37}N \\ _{4}F_{4}Cl_{3} \end{array}$
Formula weight Temperature/K	977.03 150	910.16 150	995.08 150	1127.66 150	906.94 150	1008.29 150	973.85 150	934.99 150	1008.29 150
Crystal system	nic	nic	nic	nic	triclinic	nic	nic	nic	triclinic
Space group	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_1/n$	P-1	C2/c	$P2_1/n$	$P2_1/n$	P-1
a [Å]	3(13)	12.0022 2(15)	12.7522(3)	4(12)	13.3387(4)	25.6556(5)	25.5002(17)	25.5161(9(13)
b [Å]	22.3845(2)	21.9556(3)	22.7801(8)	24.1764(2)	16.6099(5)	9.8373(2)	9.7673(4)	9.80781(8)	13.5095(2)
c [Å]	17.8818 6(15)	17.6375(2)	17.1545(6)	17.2873 1(17)	18.4931(6)	40.0763(7)	40.489(4)	39.5463(4)	18.6161(3)
α [°]	90	90	90	90	108.333(3)	90	90	90	102.756 8(13)
β [°]	98.8812(9)	99.1661(11)	97.596(3)	99.5946(9)	94.699(2)	96.4440(18)	95.796(7)	94.5123(9)	97.5345(12)
γ [°]	90	90	90	90	105.688(3)	90	90	90	91.2272(12)
Volume [Å ³]	5042.66(8)	4840.72(11)	4939.6(3)	5302.07(9)	3681.3(2)	10050.6(3)	10032.9(12)	9866.08(15)	2457.54(6)
Σ ρ _{calc} g [cm ³] μ [mm ⁻¹]	4 1.287 0.72	4 1.249 0.929	4 1.338 1.929	4 1.413 3.449	3 1.227 0.685	8 1.333 2.142	8 1.289 1.648	8 1.259 0.696	2 1.363 2.19
Crystal size [mm ³]	$\begin{array}{c} 0.4\times0.4\\\times0.2\end{array}$	$\begin{array}{c} 1.0 \times 0.7 \\ \times \ 0.1 \end{array}$	$\begin{array}{c} 0.4\times0.2\\\times0.1 \end{array}$	$\begin{array}{c} 0.3\times0.2\\\times0.05\end{array}$	$\begin{array}{c} 0.3\times0.1\\\times0.02\end{array}$	$\begin{array}{ccc} 0.4 & \times \\ 0.04 & imes \\ 0.03 & \end{array}$	$\begin{array}{ccc} 0.7 & \times \\ 0.02 & imes \\ 0.02 \end{array}$	$\begin{array}{ccc} 0.8 & \times \\ 0.05 & imes \\ 0.03 \end{array}$	$\begin{array}{ccc} 0.5 & \times \\ 0.25 & \times \\ 0.1 \end{array}$
Reflections collected	32543	29221	30617	32287	41870	30470	62192	61118	29396
Independent reflections	10208	9726	9950	10723	14790	9912	20204	19771	9922
R _{int} Data/restraints/ parameters	0.0228 10208/0/ 657	0.0659 9726/0/6 23	0.0303 9950/0/6 66	0.0304 10723/0/ 685	0.0299 14790/0/ 932	0.0341 9912/0/6 92	0.1222 20204/0/ 1334	0.0282 19771/0/ 1279	0.0360 9922/0/6 49
GOF R1 [I>=2σ (I)] wR2 [I>=2σ (I)]	1.04 0.0670 0.1951	1.075 0.0756 0.2183	1.086 0.1064 0.2531	1.013 0.1052 0.3110	1.036 0.0527 0.1451	1.036 0.0914 0.2775	1.088 0.1267 0.3382	1.044 0.0796 0.2347	1.064 0.0854 0.2582
R1 [all data] wR2 [all data]	0.0700 0.1979	0.0817 0.2248	0.1123 0.2561	0.1109 0.3170	0.0609 0.1508	0.1044 0.2920	0.2382 0.4033	0.0998 0.2561	0.0898 0.2632
UDU	21/0/04	21/0/33	21/0/30	21/0/3/	21/0/38	21/0/39	21/0/00	21/0/01	21/0/02

Table S4. Crystal data of 1d.

	(a) P-form	(b) P-form	(c) TF-form	(d) T-form
Recrystallisation solvent	CHCl ₃ /EtOH	CH ₂ Cl ₂ /hexane	CHCl ₃ /hexane	CHCl ₃ /hexane
Colour and shane	Orange plate	Orange plate	Reddish-orange	Red needle
Colour and shape			plate	
Solvate	CHCl ₃	CH_2Cl_2	CHCl ₃	None
Empirical formula	C ₆₁ H ₃₇ N ₄ Cl ₇	C ₆₁ H ₃₈ N ₄ Cl ₆	C ₆₁ H ₃₇ Cl ₇ N ₄	C60H36N4Cl4
Formula weight	1074.09	1039.65	1074.09	954.73
Temperature/K	150	150	150	150
Crystal system	triclinic	monoclinic	triclinic	orthorhombic
Space group	P-1	$P2_1/n$	P-1	P21212
a [Å]	13.2185(5)	13.13701(8)	13.8192(2)	17.5899(5)
b [Å]	15.7122(5)	15.53185(9)	14.2692(2)	24.5607(6)
c [Å]	25.1598(8)	25.04601(14)	15.4824(2)	5.46102(14)
a [°]	91.884(3)	90	74.8558(14)	90
β̰Ì	101.524(3)	102.7632(6)	70.7523(14)	90
γl°l	93.318(3)	90	61.4238(16)	90
Volume [Å ³]	5106.3(3)	4984.17(5)	2511.37(8)	2359.26(11)
Z	4	4	2	2
$\rho_{calc}g[cm^3]$	1.397	1.385	1.42	1.344
μ [mm ⁻¹]	3.907	3.502	3.972	2.634
Crystal size [mm ³]	0.15 imes 0.15 imes 0.01	0.4 imes 0.2 imes 0.1	0.15 imes 0.15 imes 0.05	$0.5 \times 0.05 \times 0.05$
Reflections collected	56442	30493	30619	8107
Independent reflections	20217	10068	10148	4279
R _{int}	0.0875	0.0210	0.0420	0.0299
Data/restraints/parameters	20217/0/1297	10068/0/640	10148/0/649	4279/0/307
GOF	1.019	1.024	1.056	1.074
R1 $[I \ge 2\sigma(I)]$	0.1065	0.0396	0.0952	0.0440
wR2 $[I \ge 2\sigma(I)]$	0.2955	0.0994	0.2723	0.1195
R1 [all data]	0.1454	0.0415	0.1061	0.0482
wR2 [all data]	0.3320	0.1008	0.2849	0.1219
CCDC	2176763	2176764	2176765	2176766

Molecular packing in the crystals

Figure S11. Molecular packing in the crystals of **1a** along the *a*-, *b*-, and *c*-axis (left, middle, and right, respectively) [(a) **F**-form in CH_2Cl_2 solvate (recrystallised from CH_2Cl_2 /hexane), (b) **F**-form in $CHCl_3$ solvate (recrystallised from $CHCl_3/EtOH$), and (c) **T**-form without crystallisation solvent (recrystallised from $CH_2Cl_2/EtOH$)].

(c) 1b : P-form

Figure S12. Molecular packing in the crystals of **1b** along the *a*-, *b*-, and *c*-axis (left, middle, and right, respectively) [(a) **F**-form in 2EtOH solvate (recrystallised from EtOAc/EtOH), (b) **P**-form in H₂O solvate (recrystallised from EtOAc/EtOH), and (c) **P**-form in CH₂Cl₂ solvate (recrystallised from CH₂Cl₂/hexane)].

(d) 1b : P-form

(e) 1b : TF-form

Figure S12. Molecular packing in the crystals of **1b** along the *a*-, *b*-, and *c*-axis (left, middle, and right, respectively) [(d) **P**-form in 0.5CHCl₃ solvate (recrystallised from CHCl₃/EtOH), (e) **TF**-form in 0.5CH₂Cl₂ solvate (recrystallised from CH₂Cl₂/hexane), and (f) **TF**-form in 0.5hexane solvate (recrystallised from EtOAc/hexane)].

(g) 1b : TF-form

Figure S12. Molecular packing in the crystals of **1b** along the *a*-, *b*-, and *c*-axis (left, middle, and right, respectively) [(g) **TF**-form in 0.5EtOAc solvate (recrystallised from EtOAc/EtOH), (h) **TF**-form in CH₂Cl₂ solvate (recrystallised from CH₂Cl₂/EtOH), and (i) **T**-form without crystallisation solvent (recrystallised from EtOAc/hexane)].

(c) 1c : F-form

Figure S13. Molecular packing in the crystals of **1c** along the *a*-, *b*-, and *c*-axis (left, middle, and right, respectively) [(a) **F**-form in EtOAc solvate (recrystallised from EtOAc), (b) **F**-form in 0.25CH₂Cl₂ solvate (recrystallised from CH₂Cl₂/hexane), and (c) **F**-form in 1.25CH₂Cl₂ solvate (recrystallised from CH₂Cl₂/EtOH)].

(e) 1c : F-form + semi-P-form

(f) 1c : TP-form

Figure S13. Molecular packing in the crystals of **1c** along the *a*-, *b*-, and *c*-axis (left, middle, and right, respectively) [(d) **F**-form in 2CHCl₃ solvate (recrystallised from CHCl₃/EtOH), (e) **F**-form (mol-1) and semi-**P**-form (mol-2) in H₂O solvate (recrystallised from CHCl₃/hexane), and (f) **TP**-form in CHCl₃ solvate (recrystallised from CHCl₃/hexane)].

(g) 1c : TP-form

(h) 1c : TP-form

(i) 1c : TF-form

Figure S13. Molecular packing in the crystals of **1c** along the *a*-, *b*-, and *c*-axis (left, middle, and right, respectively) [(g) **TP**-form (mol-1 and mol-2) in CH_2Cl_2 solvate (recrystallised from CH_2Cl_2 /hexane), (h) **TP**-form (mol-1 and mol-2) in EtOH solvate (recrystallised from EtOAc/EtOH), and (i) **TF**-form in CHCl₃ solvate (recrystallised from CHCl₃/hexane)].

Figure S14. Molecular packing in the crystals of **1d** along the *a*-, *b*-, and *c*-axis (left, middle, and right, respectively) [(a) **P**-form (mol-1 and mol-2), CHCl₃ in solvate (recrystallised from CHCl₃/EtOH), (b) **P**-form in CH₂Cl₂ solvate (recrystallised from CH₂Cl₂/hexane), and (c) **TF**-form in CHCl₃ solvate (recrystallised from CHCl₃/hexane),].

Figure S14. Molecular packing in the crystals of **1d** along the *a*-, *b*-, and *c*-axis (left, middle, and right, respectively) [(e) **T**-form without crystallisation solvent (recrystallised from CHCl₃/hexane)].

Structural parameters

Table S5. Structural parameters of **1b** obtained from X-ray structures (**F**-, **P**-, **TF**-, and **T**-forms) and from optimised structures (**F**-, and **T**-forms) calculated by the DFT method (B3LYP/6-31G*).

	C1-C2 [Å]	C5-C6 [Å]	C6-C7 [Å]	C10-C1 [Å]	C2-C5 [Å]	C7-C10 [Å]	C1-C11 [Å]	C6-C26 [Å]	θ [°]	¢ [°]	x [°]
F-form (Expt.)	1.4813(1 9)	1.483(2)	1.4870(1 9)	1.481(2)	1.410(2)	1.409(2)	1.357(2)	1.358(2)	29.91(8) 28.78(9)	8.89(7) 12.15(7)	35.86(11)
F-form (Calcd.)	1.4869	1.4875	-	-	1.4202	-	1.3665	-	34.66	13.55 13.55	40.79
T-form (Expt.)	1.4650(1 2)	1.4636(1 7)	-	-	1.4158(1 5)	-	1.3898(1 5)	-	2.13(4)	32.77(5)	1.77(10)
T -form (Calcd.)	1.4686	1.4686	1.4687	1.4686	1.4280	-	1.3900	-	3.92 3.92	27.90	2.48
P-form (Expt.)	1.475(6)	1.481(7)	1.479(6)	1.471(7)	1.408(6)	1.413(6)	1.370(6)	1.364(6)	13.0(3) 17.0(3)	15.0(2) 12.1(2)	17.5(4)
TF-form (Expt.)	1.481(4)	1.478(3)	1.467(4)	1.467(4)	1.411(4)	1.411(4)	1.370(4)	1.383(4)	21.34(15) 9.49(13)	17.64(13) 31.05(10)	17.66(18)

Hammett's σ_p Values

Table S6. Hammett's σ_p values^[13] about CH₃, H, F, and Cl groups, which are the substituents at 4-position on the aryl groups of N₄AQDs **1**.

	gas phase $\sigma_{ m p}$	benzene solution	aqueous solution	$\sigma_{p}{}^{+}$
CH ₃	-0.07	-0.11	-0.17	-0.31
Н	0.00	0.00	0.00	0.00
F	0.19	0.17	0.06	-0.07
Cl	0.29	0.27	0.23	0.11

Spectroscopic Investigations

UV/Vis spectra

Figure S15. UV/Vis spectra of 1a, 1b, 1c, and 1d in CH₂Cl₂.

Table S7. Experimental and theoretical absorption properties of **1a**, **1b**, **1c**, and **1d**. Shoulder peaks are marked with "sh". The λ_{end} is the absorption end of each spectrum. The energy gap $\Delta E^{DFT}_{LUMO-HOMO}$ was estimated by DFT calculations (B3LYP/6-31G*).

	λ_{\max} [nm] (log ε)	$\lambda_{ ext{end}}$ [nm]	$\Delta E^{\mathrm{DFT}}_{\mathrm{LUMO-HOMO}}$ [eV] / [nm]
1a	sh 470 (4.09) 366 (4.56) 259 (4.65)	657	3.50 / 354 (F -form) 2.38 / 520 (T -form)
1b	477 (4.25) 374 (4.49) 281 (4.67)	711	3.44 / 361 (F -form) 2.33 / 532 (T -form)
1c	sh 465 (4.14) 367 (4.57) 259 (4.66)	683	3.39 / 365 (F -form) 2.35 / 529 (T -form)
1d	sh 475 (4.21) 373 (4.55) 268 (4.66)	668	3.34 / 371 (F -form) 2.31 / 536 (T -form)

$VT^{1}HNMR$

Figure S16. (a) VT ¹H NMR spectra of **1b** in DMSO- d_6 from 303 K to 393 K (every 10 K), and (b) enlarged view of aromatic region.

Figure S17. VT 1 H NMR spectra of 1b in CD₂Cl₂ from 293 K to 203 K (every 10 K).

Excitation spectra

Figure S18. Excitation spectra of (a) F-form, (b) TP-form, (c) TF-form, and (d) F-form + semi-P-form of 1c. All measurements were detected at the longer emission maximum.

Diffuse reflectance spectra

Figure S19. Diffuse reflectance spectra of 1c.

Mechanofluorochromic Behaviour

Table S8. Luminescence properties of each state of 1c were recorded in the solid state. All samples are excited at 380 nm. Emission lifetimes are detected at the longer emission maximum.

	$\lambda_{\rm em}$ [nm]	$ au_1$ [ns]	$ au_2$ [ns]	$ au_{\mathrm{av}}$ [ns]	${\it P}_{ m em}$ [%]
Pristine	544	0.901	2.491	1.810	5.9
Ground	636	0.311	1.303	0.674	1.0
Treated with EtOAc and drying	559	0.498	1.233	1.067	2.8

Theoretical Study

DFT calculations

Table S9. Relative energies of **1a**, **1b**, **1c**, and **1d** based on the optimised structures obtained by DFT calculations [(U)B3LYP/6-31G*].

AE [leas]/mol]	F form	T form	T-form (I	Diradical)
	F-IOIIII	1-101111	Singlet	Triplet
1a (R = H)	3.15	0	10.9	13.9
1b ($R = CH_3$)	3.45	0	10.7	14.0
1c (R = F)	2.86	0	10.8	14.0
1d (R = Cl)	2.74	0	10.3	12.9

Table S10. Estimated LUMO and HOMO levels of **1a**, **1b**, **1c**, **1d**, **I**, **III**, and **IV** based on the optimised structures obtained by DFT calculations [(U)B3LYP/6-31G*].

		$\Delta E^{\rm DFT}_{\rm LUMO}$ [eV]	$\Delta E^{ m DFT}_{ m HOMO}$ [eV]	ΔE ^{DFT} LUMO-HOMO [eV]
$1_{\mathbf{D}}$ (D – U)	F -form	-1.85	-5.34	3.50
$\mathbf{Ia} (\mathbf{K} = \mathbf{H})$	T -form	-2.36	-4.74	2.38
$1\mathbf{h}$ (D – CUL) –	F -form	-1.76	-5.20	3.44
$10 (K = CH_3)$	T -form	-2.26	-4.59	2.33
$1_{0}(\mathbf{P}-\mathbf{F})$	F -form	-2.06	-5.45	3.39
$\mathbf{IC} (\mathbf{K} = \mathbf{F}) = \mathbf{F}$	T -form	-2.53	-4.87	2.35
1d(D - C1)	F -form	-2.25	-5.59	3.34
$\mathbf{Iu} (\mathbf{K} = \mathbf{CI})$	T -form	-2.74	-5.05	2.31
$\mathbf{I} (\mathbf{R} = \mathbf{H})$	F -form	-1.32	-5.43	4.11
III	F -form	-1.84	-5.51	3.67
IV	F -form	-1.48	-5.36	3.88

Figure S20. HOMO and LUMO levels calculated by the DFT method (B3LYP/6-31G*) based on the crystallographic coordinates of **1b**.

TD-DFT calculations

Figure S21. Simulated UV/Vis spectra of (a) **F**-form, (b) **T**-form, (c) **P**-form, and (d) **TF**-form of **1b** obtained by TD-DFT calculations (B3LYP/6-31G*) based on the crystallographic coordinates.

1b : **F**-form HOMO : 230, LUMO : 231 Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 2.9768 eV 416.51 nm f=0.0669 <S**2>=0.000 $230 \rightarrow 231$ 0.17115 230 -> 232 0.67988 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -2685.66035965Copying the excited state density for this state as the 1-particle RhoCI density. 3.1218 eV 397.16 nm f=0.5265 <S**2>=0.000 Excited State 2: Singlet-A 230 -> 231 0.67321 230 -> 232 -0.170053.4410 eV 360.31 nm f=0.0520 <S**2>=0.000 Excited State 3: Singlet-A 226 -> 231 0.11022 227 -> 231 0.14430 0.10540 227 -> 232 227 -> 234 0.11583 228 -> 231 0.30120 228 -> 232 0.25587 229 -> 231 0.39406 229 -> 232 0.29006 Excited State 4: Singlet-A 3.4656 eV 357.76 nm f=0.0098 <S**2>=0.000 227 -> 231 0.32831 227 -> 232 0.53258 228 -> 232 -0.12970 229 -> 232 -0.143233.4750 eV 356.78 nm f=0.0276 <S**2>=0.000 Excited State 5: Singlet-A 224 -> 232 -0.11164227 -> 231 -0.19952227 -> 232 0.26263 228 -> 231 -0.20364228 -> 232 0.23724 229 -> 231 -0.30418 229 -> 232 0.36230 Excited State 6: 3.5262 eV 351.61 nm f=0.0160 <S**2>=0.000 Singlet-A 227 -> 231 0.51985 227 -> 232 -0.24643 $228 \rightarrow 231$ -0.11226 228 -> 232 0.21851 229 -> 231 -0.22223 3.5914 eV 345.22 nm f=0.1897 <S**2>=0.000 Excited State 7: Singlet-A 228 -> 231 0.45062 228 -> 232 0.26184

229 -> 231 229 -> 232	-0.33141 -0.28155	
Excited State 228 -> 231 228 -> 232 229 -> 231 229 -> 232	8: Singlet-A -0.32673 0.41013 0.24526 -0.35702	3.6071 eV 343.72 nm f=0.1632 <s**2>=0.000</s**2>
Excited State 230 -> 233 230 -> 234	9: Singlet-A 0.31426 0.60509	3.6638 eV 338.41 nm f=0.0881 <s**2>=0.000</s**2>
Excited State 230 -> 233 230 -> 234	10: Singlet-A 0.61765 -0.31033	3.7139 eV 333.84 nm f=0.0066 <s**2>=0.000</s**2>
Excited State 220 -> 232 222 -> 232 224 -> 232 225 -> 232 226 -> 232 227 -> 234 228 -> 232 229 -> 232	11: Singlet-A 0.15457 -0.11998 -0.23503 0.32211 0.38917 0.16086 -0.20886 -0.15694	3.8145 eV 325.03 nm f=0.0181 <s**2>=0.000</s**2>
Excited State 220 -> 231 222 -> 231 224 -> 231 225 -> 231 226 -> 231 227 -> 233 228 -> 231 229 -> 231	12: Singlet-A 0.13830 -0.13246 -0.23237 0.34201 0.42509 -0.12348 -0.16246 -0.13602	3.8572 eV 321.44 nm f=0.0584 <s**2>=0.000</s**2>
Excited State 220 -> 231 222 -> 231 224 -> 231 224 -> 232 225 -> 231 226 -> 231 226 -> 232	13: Singlet-A -0.10391 0.10390 0.25589 0.13685 -0.21686 0.47807 0.27098	3.9556 eV 313.44 nm f=0.0245 <s**2>=0.000</s**2>
Excited State 224 -> 231 224 -> 232 225 -> 232	14: Singlet-A -0.21783 0.20103 -0.27501	4.0107 eV 309.13 nm f=0.0178 <s**2>=0.000</s**2>

226 -> 231 226 -> 232	-0.16916 0.47942				
Excited State 224 -> 231 225 -> 231 225 -> 232	15: Singlet-A 0.39065 0.50404 -0.10488	4.0509 eV	306.07 nm	f=0.0142	<s**2>=0.000</s**2>
Excited State 223 -> 232 224 -> 232 225 -> 231 225 -> 232	16: Singlet-A -0.14034 0.40327 0.12113 0.48181	4.0836 eV	303.61 nm	f=0.0717	<s**2>=0.000</s**2>
Excited State 222 -> 231 223 -> 231 223 -> 232 224 -> 231 224 -> 232	17: Singlet-A -0.10706 0.55790 0.25004 0.23035 0.14649	4.1426 eV	299.29 nm	f=0.0046	<s**2>=0.000</s**2>
Excited State 220 -> 231 220 -> 232 222 -> 231 222 -> 232 223 -> 231 224 -> 231 224 -> 232 225 -> 232 227 -> 233	18: Singlet-A 0.11795 -0.16178 -0.37264 0.40865 -0.11506 0.13320 -0.17925 0.10313 -0.10160	4.1805 eV	296.58 nm	f=0.0132	<s**2>=0.000</s**2>
Excited State 216 -> 232 217 -> 232 218 -> 232 219 -> 232 222 -> 231 222 -> 232 227 -> 232 229 -> 233 229 -> 234	19: Singlet-A 0.17745 -0.17410 0.10007 0.25194 0.19726 -0.10524 -0.17156 0.23701 0.32765	4.2263 eV	293.37 nm	f=0.0201	<s**2>=0.000</s**2>
Excited State 218 -> 231 218 -> 232 219 -> 231 219 -> 232 220 -> 231 220 -> 232	20: Singlet-A 0.32789 0.14979 -0.21012 -0.13201 -0.18500 -0.11310	4.2427 eV	292.23 nm	f=0.0073	<s**2>=0.000</s**2>

221 -> 231 221 -> 232	0.39643 0.21201	
Excited State 216 -> 231 217 -> 231 221 -> 231 221 -> 232 223 -> 231 223 -> 232 224 -> 232 229 -> 233 229 -> 234	21: Singlet-A 0.12864 -0.13931 0.27173 0.11327 -0.11794 -0.21735 0.30395 0.19700 -0.19736 0.25187	4.2661 eV 290.63 nm f=0.0377 <s**2>=0.000</s**2>
Excited State 217 -> 232 219 -> 231 219 -> 232 220 -> 231 220 -> 232 221 -> 231 221 -> 232 222 -> 231 223 -> 231 223 -> 232 224 -> 232	22: Singlet-A 0.10050 -0.23195 0.15729 -0.15965 0.20706 -0.21379 0.27995 -0.11161 -0.16043 0.31708 0.14690	4.2731 eV 290.15 nm f=0.0085 <s**2>=0.000</s**2>
Excited State 216 -> 231 217 -> 231 219 -> 232 220 -> 231 221 -> 232 222 -> 232 223 -> 231 223 -> 232 224 -> 232 227 -> 233 227 -> 234 228 -> 233 229 -> 233	23: Singlet-A -0.13998 0.18481 -0.19568 0.22923 -0.16124 -0.11516 -0.15179 0.17638 0.16627 0.11771 0.10488 0.17177 0.31392	4.2824 eV 289.52 nm f=0.0440 <s**2>=0.000</s**2>
Excited State 219 -> 232 222 -> 231 222 -> 232 223 -> 231 223 -> 232 224 -> 231	24: Singlet-A -0.10789 0.33589 0.40077 0.14419 0.17168 -0.20459	4.2935 eV 288.77 nm f=0.0141 <s**2>=0.000</s**2>

227 -> 233	0.12860	
228 -> 234	0.15694	
229 -> 233	0.11872	
Excited State	25: Singlet-A	4.3013 eV 288.25 nm f=0.0028 <s**2>=0.000</s**2>
219 -> 231	-0.14162	
219 -> 232	0.10074	
220 -> 232	-0.19631	
221 -> 232	-0.16566	
222 -> 231	0.17098	
223 -> 232	0.32537	
227 -> 233	-0.15896	
227 -> 234	-0.13812	
$228 \rightarrow 233$	-0.17588	
$228 \rightarrow 233$	-0.30152	
$220 \rightarrow 234$	-0.14217	
22) -> 254	-0.14217	
Excited State	26: Singlet-A	4 3379 eV 285 81 nm f=0 0353 <s**2>=0 000</s**2>
218 -> 231	-0.20776	
$220 \rightarrow 231$	0 29121	
220 - 231 221 -> 231	0.20227	
221 - 231 221 -> 232	0.20227	
$221 \neq 232$ $222 \Rightarrow 231$	0.15436	
$222 \neq 231$ $227 \Rightarrow 234$	-0.11006	
$227 \Rightarrow 237$ $228 \Rightarrow 233$	-0.18335	
$220 \Rightarrow 233$ $228 \Rightarrow 234$	0 29084	
220 -> 234	-0 15468	
22) - 233	0.15 100	
Excited State	27. Singlet-A	4 3430 eV 285 48 nm f=0 0144 <s**2>=0 000</s**2>
218 -> 231	0 11843	
210 - 231 219 - > 231	-0.25530	
$21) \Rightarrow 231$ $220 \Rightarrow 231$	0.10652	
$220 \Rightarrow 231$ 220 > 232	0.10032	
220 -> 232	0.10877	
221 -> 231 221 -> 232	0.10077	
221 -> 232 222 -> 231	-0.27270	
222 -> 231 222 -> 232	0.11703	
222 -> 232 227 -> 232	0.19031	
227 -> 233	-0.19034	
227 - 234 228 > 222	0.11314	
220 - 233	-0.11911	
229 -> 234	0.13047	
Excited State	28. Singlet A	4.3580 eV 284.50 nm f=0.0150 < S**2>=0.000
217 > 232	0 13670	4.5560 CV 264.50 mil 1-0.0157 <5 22-0.000
217 - 232 210 > 221	-0 15576	
217 - 231 220 - 221	0.12650	
220 - 231 220 - 232	-0.12039	
220 - 232 221 - 221	-0.13330	
221 - 231	-0.1/004	
221 -> 232	-0.32289	
222 -> 231	-0.1004/	

222 -> 232	-0.16789	
227 -> 234	-0.22037	
228 -> 234	0.36569	
Excited State	29: Singlet-A	4.3763 eV 283.31 nm f=0.0042 <s**2>=0.000</s**2>
218 -> 231	0.30029	
219 -> 232	-0.21063	
220 -> 231	0.16922	
221 -> 231	-0.28431	
221 -> 232	0.16713	
227 -> 233	-0.19345	
227 -> 234	-0.17555	
228 -> 233	-0.16516	
229 -> 233	0 12609	
227 - 233	0.12009	
230 -> 235	0.22709	
230 -> 235	0.22709	
$230 \rightarrow 235$ Excited State	0.22709 30: Singlet-A	4.3793 eV 283.11 nm f=0.0510 <s**2>=0.000</s**2>
230 -> 235 230 -> 235 Excited State 217 -> 231	0.22709 30: Singlet-A -0.18311	4.3793 eV 283.11 nm f=0.0510 <s**2>=0.000</s**2>
230 -> 235 230 -> 235 Excited State 217 -> 231 218 -> 231	0.22709 30: Singlet-A -0.18311 0.11451	4.3793 eV 283.11 nm f=0.0510 <s**2>=0.000</s**2>
230 -> 235 230 -> 235 Excited State 217 -> 231 218 -> 231 218 -> 232	0.22709 30: Singlet-A -0.18311 0.11451 0.18246	4.3793 eV 283.11 nm f=0.0510 <s**2>=0.000</s**2>
230 -> 235 230 -> 235 Excited State 217 -> 231 218 -> 231 218 -> 232 219 -> 232	0.22709 30: Singlet-A -0.18311 0.11451 0.18246 0.10068	4.3793 eV 283.11 nm f=0.0510 <s**2>=0.000</s**2>
230 -> 235 230 -> 235 Excited State 217 -> 231 218 -> 231 218 -> 232 219 -> 232 220 -> 231	0.22709 30: Singlet-A -0.18311 0.11451 0.18246 0.10068 0.17146	4.3793 eV 283.11 nm f=0.0510 <s**2>=0.000</s**2>
230 -> 235 230 -> 235 Excited State 217 -> 231 218 -> 231 218 -> 232 219 -> 232 220 -> 231 222 -> 231	0.22709 30: Singlet-A -0.18311 0.11451 0.18246 0.10068 0.17146 0.15307	4.3793 eV 283.11 nm f=0.0510 <s**2>=0.000</s**2>
230 -> 235 230 -> 235 Excited State 217 -> 231 218 -> 231 218 -> 232 219 -> 232 220 -> 231 222 -> 231 227 -> 233	0.22709 30: Singlet-A -0.18311 0.11451 0.18246 0.10068 0.17146 0.15307 -0.21971	4.3793 eV 283.11 nm f=0.0510 <s**2>=0.000</s**2>
Excited State217 -> 231218 -> 232219 -> 232219 -> 232220 -> 231222 -> 231227 -> 233227 -> 234	0.22709 30: Singlet-A -0.18311 0.11451 0.18246 0.10068 0.17146 0.15307 -0.21971 0.14408	4.3793 eV 283.11 nm f=0.0510 <s**2>=0.000</s**2>
Excited State217 -> 231218 -> 232219 -> 232219 -> 232220 -> 231222 -> 231227 -> 233227 -> 234228 -> 233	0.22709 30: Singlet-A -0.18311 0.11451 0.18246 0.10068 0.17146 0.15307 -0.21971 0.14408 0.36612	4.3793 eV 283.11 nm f=0.0510 <s**2>=0.000</s**2>

229 -> 233 -0.11963 229 -> 234 -0.26835 **1b** : **T**-form HOMO : 230, LUMO : 231 Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 2.1075 eV 588.30 nm f=0.0000 <S**2>=0.000 230 -> 2320.70415 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -2685.70155817 Copying the excited state density for this state as the 1-particle RhoCI density. Singlet-A Excited State 2: 2.1517 eV 576.21 nm f=0.7683 <S**2>=0.000 230 -> 2310.70903 230 <- 231 -0.10925 Excited State 3: Singlet-A 2.8474 eV 435.43 nm f=0.0034 <S**2>=0.000 229 -> 231 -0.12596 230 -> 233 0.69076 2.9363 eV 422.25 nm f=0.0002 <S**2>=0.000 Excited State 4: Singlet-A 227 -> 231 0.59954 230 -> 234 -0.35256 2.9628 eV 418.47 nm f=0.0007 <S**2>=0.000 Excited State 5: Singlet-A 228 -> 231 -0.22357 229 -> 231 0.65406 230 -> 233 0.10851 Excited State 6: Singlet-A 3.0045 eV 412.66 nm f=0.0006 <S**2>=0.000 224 -> 231 -0.10152228 -> 231 0.65083 229 -> 231 0.22575 Excited State 7: 3.0147 eV 411.27 nm f=0.1852 <S**2>=0.000 Singlet-A 227 -> 231 0.34578 230 -> 2340.60486 3.1644 eV 391.81 nm f=0.0049 <S**2>=0.000 Excited State 8: Singlet-A $224 \rightarrow 234$ -0.10660225 -> 231 -0.11797 227 -> 232 0.67290 3.3041 eV 375.24 nm f=0.1914 <S**2>=0.000 Excited State 9: Singlet-A 224 -> 232 0.11117 228 -> 232 -0.30958229 -> 232 0.60200 Excited State 10: Singlet-A 3.3278 eV 372.57 nm f=0.1327 <S**2>=0.000 224 -> 232 -0.14196 228 -> 232 0.58838 229 -> 232 0.32939

Excited State 224 -> 231 228 -> 231	11: Singlet-A 0.66890 0.11786	3.3768 eV	367.16 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 226 -> 231 230 -> 235	12: Singlet-A 0.67359 -0.19221	3.4926 eV	354.99 nm	f=0.0019	<s**2>=0.000</s**2>
Excited State 225 -> 231 227 -> 232	13: Singlet-A 0.67324 0.11468	3.5348 eV	350.75 nm	f=0.0527	<s**2>=0.000</s**2>
Excited State 221 -> 232 224 -> 232 227 -> 234 228 -> 232	14: Singlet-A -0.11515 0.61416 -0.17871 0.20796	3.5489 eV	349.36 nm	f=0.0549	<s**2>=0.000</s**2>
Excited State 226 -> 231 230 -> 235	15: Singlet-A 0.19201 0.67642	3.6102 eV	343.43 nm	f=0.0026	<s**2>=0.000</s**2>
Excited State 219 -> 231 221 -> 232 223 -> 231	16: Singlet-A -0.22299 0.13894 0.63944	3.7143 eV	333.80 nm	f=0.0018	<s**2>=0.000</s**2>
Excited State 219 -> 232 221 -> 231 223 -> 232	17: Singlet-A -0.12045 0.65004 0.12989	3.7569 eV	330.02 nm	f=0.0002	<s**2>=0.000</s**2>
Excited State 216 -> 231 222 -> 231 230 -> 236	18: Singlet-A -0.12809 0.66044 -0.16497	3.7802 eV	327.98 nm	f=0.0012	<s**2>=0.000</s**2>
Excited State 215 -> 231 217 -> 231 225 -> 232 230 -> 237 230 -> 241	19: Singlet-A 0.11677 -0.16614 0.61824 -0.15450 0.11551	3.7942 eV	326.77 nm	f=0.0678	<s**2>=0.000</s**2>
Excited State 218 -> 231 226 -> 232 230 -> 240	20: Singlet-A 0.10869 0.65410 -0.13374	3.8275 eV	323.93 nm	f=0.0000	<s**2>=0.000</s**2>

Excited State 217 -> 231 220 -> 231 225 -> 232 230 -> 236 230 -> 237	21: Singlet-A 0.29195 0.37922 0.14456 -0.12039 0.43506	3.8389 eV	322.97 nm	f=0.0197	<s**2>=0.000</s**2>
Excited State 216 -> 231 222 -> 231 230 -> 236 230 -> 237	22: Singlet-A 0.28460 0.22329 0.55881 0.15353	3.8720 eV	320.21 nm	f=0.0006	<s**2>=0.000</s**2>
Excited State 219 -> 231 221 -> 232 223 -> 231	23: Singlet-A 0.61385 -0.12759 0.25609	3.8793 eV	319.60 nm	f=0.0128	<s**2>=0.000</s**2>
Excited State 217 -> 231 219 -> 231 220 -> 231 225 -> 232 230 -> 237	24: Singlet-A -0.23314 0.11293 0.55730 -0.18972 -0.22589	3.8971 eV	318.15 nm	f=0.0632	<s**2>=0.000</s**2>
Excited State 218 -> 231 221 -> 231 223 -> 232 230 -> 240 230 -> 242	25: Singlet-A 0.59786 -0.11173 -0.10272 0.25232 -0.13523	3.9636 eV	312.80 nm	f=0.0005	<s**2>=0.000</s**2>
Excited State 212 -> 231 214 -> 231 215 -> 231 217 -> 231 220 -> 231 230 -> 236 230 -> 237 230 -> 241	26: Singlet-A -0.10944 0.11965 -0.15824 0.47502 0.10382 0.11158 -0.40347 -0.10761	3.9849 eV	311.13 nm	f=0.0065	<s**2>=0.000</s**2>
Excited State 212 -> 231 215 -> 231 217 -> 231 222 -> 232 225 -> 232 228 -> 233 230 -> 237	27: Singlet-A 0.16110 0.40848 0.22637 -0.13028 -0.13206 -0.10305 -0.10412	4.0112 eV	309.10 nm	f=0.0074	<s**2>=0.000</s**2>

230 -> 239	0.14478	
230 -> 241	0.38283	
Excited State	28: Singlet-A	4.0371 eV 307.11 nm f=0.0098 <s**2>=0.000</s**2>
216 -> 231	0.43783	
217 -> 232	0.11909	
223 -> 232	-0.26987	
227 -> 233	0.10402	
230 -> 236	-0.29352	
230 -> 238	-0.24575	
230 -> 242	0.15023	
Excited State	29: Singlet-A	4.0428 eV 306.68 nm f=0.0064 <s**2>=0.000</s**2>
216 -> 231	0.19744	
221 -> 231	-0.12706	
223 -> 232	0.54019	
226 -> 232	0.11431	
227 -> 233	-0.11615	
230 -> 236	-0.12776	
230 -> 238	-0.19399	
230 -> 240	0.20188	
Excited State	30: Singlet-A	4.0700 eV 304.63 nm f=0.0079 <s**2>=0.000</s**2>
216 -> 231	0.33868	
223 -> 232	0.11355	
230 -> 238	0.53674	
230 -> 242	-0.13654	

1b : **P**-form HOMO : 230, LUMO : 231 Excitation energies and oscillator strengths:

230 -> 234

0.41291

Excited State 1: Singlet-A 2.5598 eV 484.35 nm f=0.0902 <S**2>=0.000 $230 \rightarrow 231$ 0.37970 230 -> 232 0.59104 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -2685.67064611Copying the excited state density for this state as the 1-particle RhoCI density. 2.6849 eV 461.79 nm f=0.6327 <S**2>=0.000 Excited State 2: Singlet-A 0.58842 230 -> 231 230 -> 232 -0.37852 3.0814 eV 402.37 nm f=0.0068 <S**2>=0.000 Excited State 3: Singlet-A 229 -> 231 -0.30027230 -> 2330.63434 3.1497 eV 393.63 nm f=0.0690 <S**2>=0.000 Excited State 4: Singlet-A

229 -> 231 0.63540 230 -> 233 0.29930 Excited State 5: Singlet-A 3.2710 eV 379.04 nm f=0.0141 <S**2>=0.000 227 -> 231 0.32907 228 -> 231 0.57538 230 -> 234 -0.18347

Excited State 6: Singlet-A 3.2947 eV 376.31 nm f=0.0399 <S**2>=0.000 227 -> 231 -0.39346 228 -> 231 0.35995 229 -> 232 -0.11419

Excited State 7: Singlet-A 3.3337 eV 371.91 nm f=0.1039 <S**2>=0.000 227 -> 231 0.41760 230 -> 234 0.52608

Excited State 8: Singlet-A 3.3451 eV 370.64 nm f=0.3237 <S**2>=0.000 227 -> 231 -0.13688 229 -> 232 0.67247

Excited State 9: Singlet-A 3.4238 eV 362.13 nm f=0.0077 <S**2>=0.000 227 -> 232 0.58959 228 -> 232 0.29114

Excited State 10: Singlet-A 3.4720 eV 357.10 nm f=0.0128 <S**2>=0.000 227 -> 232 -0.28860 228 -> 232 0.59909

Litericu State	II: Singlet-A	3.6824 eV $336.69 nm$ f=0.0049 <s**2>=0.000</s**2>
224 -> 231	-0.11263	
225 -> 231	0.28666	
226 -> 231	0.58722	
230 -> 235	-0.13514	
Excited State	12: Singlet-A	3.7076 eV 334.40 nm f=0.0153 <s**2>=0.000</s**2>
224 -> 231	-0.18821	
225 -> 231	0.49964	
225 -> 232	0.11341	
226 -> 231	-0.33567	
227 -> 233	-0.10934	
Excited State	13: Singlet-A	3.7887 eV 327.25 nm f=0.0195 <s**2>=0.000</s**2>
220 -> 232	0.12699	
221 -> 232	0.10484	
224 -> 232	0.18520	
225 -> 231	0.15752	
225 -> 232	-0.27905	
226 -> 232	-0.12806	
227 -> 234	-0.12198	
228 -> 232	0.12925	
229 -> 233	-0.11443	
230 -> 235	0.48989	
Excited State	14: Singlet-A	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000</s**2>
Excited State 220 -> 232	14: Singlet-A -0.14110	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000</s**2>
Excited State 220 -> 232 224 -> 232	14: Singlet-A -0.14110 -0.22919	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000</s**2>
Excited State 220 -> 232 224 -> 232 225 -> 232	14: Singlet-A -0.14110 -0.22919 0.28687	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000</s**2>
Excited State 220 -> 232 224 -> 232 225 -> 232 226 -> 231	14: Singlet-A -0.14110 -0.22919 0.28687 0.11747	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000</s**2>
Excited State 220 -> 232 224 -> 232 225 -> 232 226 -> 231 226 -> 232	14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000</s**2>
Excited State 220 -> 232 224 -> 232 225 -> 232 226 -> 231 226 -> 232 227 -> 234	14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720 0.12844	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000</s**2>
Excited State 220 -> 232 224 -> 232 225 -> 232 226 -> 231 226 -> 232 227 -> 234 230 -> 235	14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720 0.12844 0.45295	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000</s**2>
Excited State 220 -> 232 224 -> 232 225 -> 232 226 -> 231 226 -> 232 227 -> 234 230 -> 235 Excited State	 14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720 0.12844 0.45295 15: Singlet-A 	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000 3.8355 eV 323.26 nm f=0.0043 <s**2>=0.000</s**2></s**2>
Excited State 220 -> 232 224 -> 232 225 -> 232 226 -> 231 226 -> 232 227 -> 234 230 -> 235 Excited State 220 -> 231	 14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720 0.12844 0.45295 15: Singlet-A 0.11368 	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000 3.8355 eV 323.26 nm f=0.0043 <s**2>=0.000</s**2></s**2>
Excited State 220 -> 232 224 -> 232 225 -> 232 226 -> 231 226 -> 232 227 -> 234 230 -> 235 Excited State 220 -> 231 221 -> 231	 14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720 0.12844 0.45295 15: Singlet-A 0.11368 0.13023 	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000 3.8355 eV 323.26 nm f=0.0043 <s**2>=0.000</s**2></s**2>
Excited State 220 -> 232 224 -> 232 225 -> 232 226 -> 231 226 -> 232 227 -> 234 230 -> 235 Excited State 220 -> 231 221 -> 231 223 -> 231	 14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720 0.12844 0.45295 15: Singlet-A 0.11368 0.13023 -0.12582 	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000 3.8355 eV 323.26 nm f=0.0043 <s**2>=0.000</s**2></s**2>
Excited State $220 \rightarrow 232$ $224 \rightarrow 232$ $225 \rightarrow 232$ $226 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 234$ $230 \rightarrow 235$ Excited State $220 \rightarrow 231$ $221 \rightarrow 231$ $223 \rightarrow 231$ $224 \rightarrow 231$	 14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720 0.12844 0.45295 15: Singlet-A 0.11368 0.13023 -0.12582 0.51094 	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000 3.8355 eV 323.26 nm f=0.0043 <s**2>=0.000</s**2></s**2>
Excited State $220 \rightarrow 232$ $224 \rightarrow 232$ $225 \rightarrow 232$ $226 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 234$ $230 \rightarrow 235$ Excited State $220 \rightarrow 231$ $221 \rightarrow 231$ $223 \rightarrow 231$ $224 \rightarrow 231$ $225 \rightarrow 231$	 14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720 0.12844 0.45295 15: Singlet-A 0.11368 0.13023 -0.12582 0.51094 0.30054 	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000 3.8355 eV 323.26 nm f=0.0043 <s**2>=0.000</s**2></s**2>
Excited State $220 \rightarrow 232$ $224 \rightarrow 232$ $225 \rightarrow 232$ $226 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 234$ $230 \rightarrow 235$ Excited State $220 \rightarrow 231$ $221 \rightarrow 231$ $223 \rightarrow 231$ $224 \rightarrow 231$ $225 \rightarrow 231$ $225 \rightarrow 231$ $226 \rightarrow 232$	 14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720 0.12844 0.45295 15: Singlet-A 0.11368 0.13023 -0.12582 0.51094 0.30054 0.13499 	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000 3.8355 eV 323.26 nm f=0.0043 <s**2>=0.000</s**2></s**2>
Excited State $220 \rightarrow 232$ $224 \rightarrow 232$ $225 \rightarrow 232$ $226 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 234$ $230 \rightarrow 235$ Excited State $220 \rightarrow 231$ $221 \rightarrow 231$ $223 \rightarrow 231$ $224 \rightarrow 231$ $224 \rightarrow 231$ $225 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 233$	 14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720 0.12844 0.45295 15: Singlet-A 0.11368 0.13023 -0.12582 0.51094 0.30054 0.13499 0.14412 	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000 3.8355 eV 323.26 nm f=0.0043 <s**2>=0.000</s**2></s**2>
Excited State $220 \rightarrow 232$ $224 \rightarrow 232$ $225 \rightarrow 232$ $226 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 234$ $230 \rightarrow 235$ Excited State $220 \rightarrow 231$ $221 \rightarrow 231$ $223 \rightarrow 231$ $224 \rightarrow 231$ $225 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 233$ $230 \rightarrow 235$	 14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720 0.12844 0.45295 15: Singlet-A 0.13023 -0.12582 0.51094 0.30054 0.13499 0.14412 -0.13274 	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000 3.8355 eV 323.26 nm f=0.0043 <s**2>=0.000</s**2></s**2>
Excited State $220 \rightarrow 232$ $224 \rightarrow 232$ $225 \rightarrow 232$ $226 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 234$ $230 \rightarrow 235$ Excited State $220 \rightarrow 231$ $221 \rightarrow 231$ $223 \rightarrow 231$ $224 \rightarrow 231$ $225 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 233$ $230 \rightarrow 235$ Excited State	 14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720 0.12844 0.45295 15: Singlet-A 0.11368 0.13023 -0.12582 0.51094 0.30054 0.13499 0.14412 -0.13274 16: Singlet-A 	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000 3.8355 eV 323.26 nm f=0.0043 <s**2>=0.000 3.9238 eV 315.98 nm f=0.0035 <s**2>=0.000</s**2></s**2></s**2>
Excited State $220 \rightarrow 232$ $224 \rightarrow 232$ $225 \rightarrow 232$ $226 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 234$ $230 \rightarrow 235$ Excited State $220 \rightarrow 231$ $221 \rightarrow 231$ $223 \rightarrow 231$ $224 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 233$ $230 \rightarrow 235$ Excited State $224 \rightarrow 231$	 14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720 0.12844 0.45295 15: Singlet-A 0.1368 0.13023 -0.12582 0.51094 0.30054 0.13499 0.14412 -0.13274 16: Singlet-A -0.19638 	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000 3.8355 eV 323.26 nm f=0.0043 <s**2>=0.000 3.9238 eV 315.98 nm f=0.0035 <s**2>=0.000</s**2></s**2></s**2>
Excited State $220 \rightarrow 232$ $224 \rightarrow 232$ $225 \rightarrow 232$ $226 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 234$ $230 \rightarrow 235$ Excited State $220 \rightarrow 231$ $221 \rightarrow 231$ $223 \rightarrow 231$ $224 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 233$ $230 \rightarrow 235$ Excited State $224 \rightarrow 231$ $224 \rightarrow 232$	 14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720 0.12844 0.45295 15: Singlet-A 0.13023 -0.12582 0.51094 0.30054 0.13499 0.14412 -0.13274 16: Singlet-A -0.19638 0.11683 	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000 3.8355 eV 323.26 nm f=0.0043 <s**2>=0.000 3.9238 eV 315.98 nm f=0.0035 <s**2>=0.000</s**2></s**2></s**2>
Excited State $220 \rightarrow 232$ $224 \rightarrow 232$ $225 \rightarrow 232$ $226 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 234$ $230 \rightarrow 235$ Excited State $220 \rightarrow 231$ $221 \rightarrow 231$ $223 \rightarrow 231$ $224 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 233$ $230 \rightarrow 235$ Excited State $224 \rightarrow 231$ $226 \rightarrow 232$ $227 \rightarrow 233$ $230 \rightarrow 235$ Excited State $224 \rightarrow 231$ $226 \rightarrow 232$ $237 \rightarrow 233$ $230 \rightarrow 235$	 14: Singlet-A -0.14110 -0.22919 0.28687 0.11747 0.20720 0.12844 0.45295 15: Singlet-A 0.13023 -0.12582 0.51094 0.30054 0.13499 0.14412 -0.13274 16: Singlet-A -0.19638 0.11683 -0.15891 	3.8226 eV 324.35 nm f=0.0734 <s**2>=0.000 3.8355 eV 323.26 nm f=0.0043 <s**2>=0.000 3.9238 eV 315.98 nm f=0.0035 <s**2>=0.000</s**2></s**2></s**2>

Excited State 220 -> 231 222 -> 231 223 -> 231 224 -> 232 225 -> 232 229 -> 233	17: Singlet-A -0.18908 0.38830 -0.33560 0.24844 0.25398 -0.13992	3.9541 eV 313.56 nm f=0.0125 <s**2>=0.0</s**2>	00
Excited State 220 -> 231 222 -> 231 225 -> 232 229 -> 233	18: Singlet-A -0.10805 0.17000 -0.10299 0.63141	3.9771 eV 311.75 nm f=0.1297 <s**2>=0.0</s**2>	00
Excited State 220 -> 231 220 -> 232 221 -> 231 222 -> 231 222 -> 232 224 -> 231 224 -> 232 225 -> 232 229 -> 233	19: Singlet-A 0.25907 0.11383 0.17428 -0.29749 -0.15056 -0.12844 0.24504 0.33451 0.16906	3.9942 eV 310.41 nm f=0.0129 <s**2>=0.0</s**2>	00
Excited State 220 -> 231 220 -> 232 221 -> 231 221 -> 232 223 -> 231 223 -> 232 224 -> 231 224 -> 232 225 -> 232 227 -> 233	20: Singlet-A -0.11263 0.16921 -0.17334 0.16015 0.44405 -0.15890 0.22008 0.10221 0.23667 -0.10762	4.0130 eV 308.95 nm f=0.0447 <s**2>=0.0</s**2>	000
Excited State 217 -> 231 220 -> 231 221 -> 231 222 -> 231 223 -> 231 224 -> 231 227 -> 233 228 -> 233 229 -> 234	21: Singlet-A -0.10278 0.14257 0.22391 0.31700 0.29200 -0.10921 0.25631 0.24233 0.16166	4.0760 eV 304.18 nm f=0.0987 <s**2>=0.0</s**2>	00
Excited State 217 -> 231	22: Singlet-A -0.13333	4.0891 eV 303.20 nm f=0.1392 <s**2>=0.0</s**2>	000

219 -> 231	0.23498	
221 -> 231	-0.31289	
223 -> 231	-0.12816	
228 -> 233	0.47458	
230 -> 237	0.11254	
Excited State	23: Singlet-A	4.1012 eV 302.32 nm f=0.2866 <s**2>=0.000</s**2>
217 -> 231	0.30958	
219 -> 231	-0.27060	
220 -> 231	-0.16753	
221 -> 231	0.21118	
222 -> 231	-0.12782	
228 -> 233	0.38788	
Excited State	24: Singlet-A	4.1169 eV 301.16 nm f=0.0489 <s**2>=0.000</s**2>
216 -> 231	0.10130	
217 -> 231	0.15513	
220 -> 231	-0.31638	
222 -> 231	-0.11473	
227 -> 233	0.40441	
228 -> 233	-0.14691	
229 -> 234	0.29545	
Excited State	25: Singlet-A	4.1554 eV 298.37 nm f=0.0037 <s**2>=0.000</s**2>
217 -> 231	0.19397	
218 -> 231	-0.13903	
219 -> 231	0.43118	
219 -> 232	-0.14478	
220 -> 231	-0.15577	
221 -> 231	0.15177	
223 -> 231	0.14770	
223 -> 232	0.29443	
224 -> 232	0.10543	
Excited State	26: Singlet-A	4.1729 eV 297.12 nm f=0.0095 <s**2>=0.000</s**2>
217 -> 231	-0.23322	
218 -> 231	0.12595	
220 -> 231	-0.12905	
221 -> 231	0.12163	
221 -> 232	-0.10176	
222 -> 231	-0.13831	
227 -> 233	-0.33667	
229 -> 234	0.42702	
Excited State	27: Singlet-A	4.1991 eV 295.26 nm f=0.0099 <s**2>=0.000</s**2>
216 -> 231	0.15886	
217 -> 231	0.29720	
220 -> 231	0.32275	
221 -> 231	-0.23035	
222 -> 231	0.18578	

227 -> 233	-0.15052	
229 -> 234	0.27271	
230 -> 236	0.11805	
Excited State	28: Singlet-A	4.2044 eV 294.89 nm f=0.0025 <s**2>=0.000</s**2>
215 -> 231	-0.10593	
219 -> 231	-0.25927	
220 -> 232	-0.11767	
221 -> 231	-0.25662	
221 -> 232	-0.16993	
222 -> 232	-0.10212	
223 -> 232	0.42884	
224 -> 231	0.14684	
224 -> 232	0.22315	
Excited State	29: Singlet-A	4.2432 eV 292.20 nm f=0.0743 <s**2>=0.000</s**2>
215 -> 231	-0.26393	
217 -> 231	0.16089	
218 -> 231	0.50510	
230 -> 236	-0.24168	
230 -> 237	0.10899	
Excited State	30: Singlet-A	4.2586 eV 291.14 nm f=0.0179 <s**2>=0.000</s**2>
212 -> 231	-0.10083	
215 -> 231	-0.29223	
216 -> 231	-0.16345	
220 -> 232	-0.11272	
222 -> 232	0.24107	
223 -> 232	-0.24121	
224 -> 232	0.21649	
229 -> 234	0.10332	
230 -> 236	0.34847	

1b : **TF**-form HOMO : 230, LUMO : 231 Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 2.3481 eV 528.02 nm f=0.2742 <S**2>=0.000 $230 \rightarrow 231$ 0.62839 230 -> 232 0.31989 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -2685.68892804 Copying the excited state density for this state as the 1-particle RhoCI density. 2.6013 eV 476.62 nm f=0.4511 <S**2>=0.000 Excited State 2: Singlet-A 230 -> 231 -0.31864 230 -> 232 0.62343 3.0632 eV 404.75 nm f=0.0022 <S**2>=0.000 Excited State 3: Singlet-A 227 -> 231 0.52112 229 -> 231 0.40769 230 -> 233 -0.16619 3.0917 eV 401.02 nm f=0.0021 <S**2>=0.000 Excited State 4: Singlet-A 227 -> 2310.37137 229 -> 231 -0.32524230 -> 2330.48587 Excited State 5: Singlet-A 3.1214 eV 397.21 nm f=0.0140 <S**2>=0.000 224 -> 231 0.12407 227 -> 231 -0.12048228 -> 231 0.64008 229 -> 231 0.14364 230 -> 233 0.12474 Excited State 6: 3.1426 eV 394.53 nm f=0.1281 <S**2>=0.000 Singlet-A 227 -> 231 -0.17564228 -> 231 -0.21217 229 -> 231 0.44721 230 -> 233 0.45921 Excited State 7: Singlet-A 3.2421 eV 382.42 nm f=0.1157 <S**2>=0.000 230 -> 234 0.68799 3.3425 eV 370.94 nm f=0.0274 <S**2>=0.000 Excited State 8: Singlet-A 227 -> 232 0.65991 3.4058 eV 364.04 nm f=0.0192 <S**2>=0.000 Excited State 9: Singlet-A 224 -> 232 0.12037 225 -> 231 -0.11142 227 -> 234 -0.11615 228 -> 232 0.57957 229 -> 232 0.26658

Excited State 224 -> 231 225 -> 231 226 -> 231 228 -> 232 229 -> 232	10: Singlet-A -0.18856 0.12891 -0.22799 -0.13316 0.57347	3.4674 eV	357.57 nm	f=0.1837	<s**2>=0.000</s**2>
Excited State 224 -> 231 225 -> 231 226 -> 231 228 -> 231 228 -> 232 229 -> 232	11: Singlet-A 0.28606 -0.26812 0.36559 -0.12537 -0.28382 0.27195	3.4782 eV	356.46 nm	f=0.0624	<s**2>=0.000</s**2>
Excited State 224 -> 231 225 -> 231 226 -> 231	12: Singlet-A -0.20186 0.38542 0.52064	3.6069 eV	343.74 nm	f=0.0023	<s**2>=0.000</s**2>
Excited State 224 -> 231 225 -> 231 226 -> 231	13: Singlet-A 0.46064 0.45654 -0.12733	3.6475 eV	339.92 nm	f=0.0586	<s**2>=0.000</s**2>
Excited State 220 -> 232 222 -> 232 224 -> 232 225 -> 232 226 -> 232 227 -> 234 228 -> 232	14: Singlet-A 0.10882 -0.13747 0.41596 -0.24866 0.31522 -0.19096 -0.20621	3.7492 eV	330.70 nm	f=0.0477	<s**2>=0.000</s**2>
Excited State 218 -> 231 220 -> 231 221 -> 231 222 -> 231 230 -> 235	15: Singlet-A -0.13542 -0.23088 0.12165 0.21940 0.57944	3.8319 eV	323.56 nm	f=0.0052	<s**2>=0.000</s**2>
Excited State 218 -> 231 219 -> 231 220 -> 231 221 -> 231 222 -> 231 223 -> 231 230 -> 235	16: Singlet-A 0.25207 -0.14352 0.34980 -0.15747 -0.25502 0.22152 0.34039	3.8410 eV	322.80 nm	f=0.0011	<s**2>=0.000</s**2>

Excited State 222 -> 231 223 -> 231 223 -> 232 224 -> 231 230 -> 235	17: Singlet-A 0.15014 0.60341 -0.12086 0.19340 -0.15937	3.8661 eV	320.70 nm	f=0.0072	<s**2>=0.000</s**2>
Excited State 215 -> 231 219 -> 231 220 -> 231 221 -> 231 222 -> 231 223 -> 231 224 -> 231	18: Singlet-A 0.12057 -0.16084 0.13712 -0.38931 0.46075 -0.12419 0.12507	3.9096 eV	317.13 nm	f=0.0051	<s**2>=0.000</s**2>
Excited State 219 -> 231 220 -> 231 221 -> 231 222 -> 232 224 -> 232 225 -> 232 226 -> 232	19: Singlet-A 0.18242 0.18296 0.19478 -0.10561 0.32739 0.31618 -0.32198	3.9363 eV	314.97 nm	f=0.0232	<s**2>=0.000</s**2>
Excited State 215 -> 231 216 -> 231 217 -> 231 218 -> 231 220 -> 231 221 -> 231 222 -> 231 224 -> 232 225 -> 232 226 -> 232	20: Singlet-A -0.14916 -0.19360 -0.13246 0.30560 0.20640 0.36118 0.23413 -0.14916 -0.14781 0.10285	3.9530 eV	313.64 nm	f=0.0332	<s**2>=0.000</s**2>
Excited State 225 -> 232 226 -> 232 227 -> 233 229 -> 234 230 -> 237	21: Singlet-A 0.47133 0.43897 -0.10089 -0.10168 0.11002	3.9726 eV	312.10 nm	f=0.0090	<s**2>=0.000</s**2>
Excited State 215 -> 231 216 -> 231 217 -> 231 218 -> 231	22: Singlet-A 0.24676 0.17830 0.29612 -0.21682	3.9838 eV	311.22 nm	f=0.0127	<s**2>=0.000</s**2>

219 -> 231 0.118	66
220 -> 231 0.296	37
221 -> 231 0.214	18
$222 \rightarrow 231$ 0.110	45
$224 \rightarrow 232 -0.125$	07
$226 \rightarrow 232$ 0.147	82
$230 \Rightarrow 232 = 0.117$	67
230 - 230 0.117	
Excited State 23: Si	nglet-A 4 0202 eV 308 40 nm f=0 0211 <s**2>=0 000</s**2>
$215 \rightarrow 231 \rightarrow 0.219$	197
$216 \rightarrow 231 = 0.219$	84
$217 \rightarrow 231 = 0.132$	98
$217 \neq 231$ 0.132 $218 \Rightarrow 231$ _0.217	25
$210 \Rightarrow 231 = 0.217$ $210 \Rightarrow 231 = 0.409$	01
217 = 251 0.40 220 = 231 0.225	15
220 = 231 0.225 221 > 231 0.258	15 181
221 - 231 - 0.230 226 > 232 - 0.108	01))
220 - 232 = 0.100 230 - 236 = 0.178	
230 -> 230 -0.178	08
Excited State 24. Si	and $A = 4.0265 \text{ eV} = 207.16 \text{ nm} = f = 0.0514 \text{ < S**2} = 0.000$
215 > 221 = 0.242	$\frac{1910}{51} - \frac{1}{500} - \frac{1}{500} = \frac{1}{500} - $
213 - 231 0.242 218 > 221 0.267	96
210 - 231 = 0.307 210 - 231 = 0.425	80 86
219 -> 231 0.423	80 26
220 > 231 - 0.1/3	30
230 -> 236 0.165	03
Excited State 25. Si	and $A = 4.0527 \text{ eV} = 205.85 \text{ nm} = f = 0.0258 < \text{S**2} = 0.000$
$\frac{1}{212} > 221 \qquad 0.152$	Iglet-A 4.0557 ev 505.85 IIII 1-0.0258 \S*22-0.000
212 - 231 - 0.132	.57
213 - 231 - 0.286	00 75
210 - 231 0.311 217 > 221 0.295	15
21/-231 0.283	03
218 -> 231 0.183	45
227 -> 233 -0.104	10
229 -> 233 -0.140	27
$230 \rightarrow 236 -0.203$	27
230 -> 237 -0.118	.19
	1 (A 40005 M 202 10 C 0.0202 (C**2) 0.000
Excited State 26: Sin	1glet-A 4.0905 eV 303.10 nm $f=0.0203 < S^{**}2 \ge 0.000$
$210 \rightarrow 231$ 0.121	20
219 -> 231 0.101	63
$222 \rightarrow 231 \qquad 0.112$	06
227 -> 233 0.593	27
	1.4 A 41220 W 200 (5 mm f 0.0012 (0**2) 0.000
Excited State $2/$: Sin	$1 \text{glet-A} 4.1239 \text{ ev} 500.65 \text{ nm} 1=0.0013 < 8^{++}2^{>=}0.000$
210 -> 231 = 0.199	06
$222 \rightarrow 232$ 0.160	אט סק
$223 \rightarrow 231$ 0.106	۶/ ۵۱
223 -> 232 0.566	21
$224 \rightarrow 232 \qquad 0.190$	84

Excited State	28: Singlet-A	4.1326 eV 300.02 nm f=0.0127 <s**2>=0.000</s**2>
215 -> 231	-0.14066	
216 -> 231	-0.32426	
217 -> 231	0.42444	
220 -> 232	-0.11797	
223 -> 232	0.14315	
227 -> 233	0.14513	
229 -> 233	0.16752	
230 -> 237	-0.17032	
230 -> 239	0.12854	
Excited State	29: Singlet-A	4.1548 eV 298.41 nm f=0.3065 <s**2>=0.000</s**2>
212 -> 231	-0.11134	
227 -> 233	0.11015	
228 -> 233	0.51483	
228 -> 234	-0.13950	
229 -> 233	0.30672	
Excited State	30: Singlet-A	4.1852 eV 296.25 nm f=0.0310 <s**2>=0.000</s**2>
215 -> 231	-0.27876	
217 -> 231	-0.11284	
222 -> 232	-0.10754	
229 -> 233	-0.20065	
230 -> 236	0.49343	
230 -> 237	-0.23983	

Optimised Coordinates

$\mathbf{1a} (\mathrm{Ar} = \mathrm{C}_{6}\mathrm{H}_{5}) : \mathbf{F} \text{-form}$										
SCF Done: $E(RB3LYP) = -2529.47502619$ A.U. after 6 cycles										
Atom	Х	Y	Z		Atom	Х	Y	Z		
С	-0.0024496	-1.4254025	0.2982725		С	-2.8196033	4.6746069	2.5423744		
С	1.2232597	-0.688941	-0.1121038		С	-3.5033569	3.7514287	3.3361495		
Ν	2.3074478	-1.3828897	-0.4569927		С	-3.0606723	2.428592	3.3903181		
С	3.387739	-0.7371043	-0.9192072		С	-1.9526198	2.0293821	2.6452144		
С	3.3292173	0.6654524	-1.1380531		С	1.1454482	3.4115371	1.3712895		
N	2.2621941	1.3706679	-0.7248586		С	1.7730796	4.1456012	0.3539042		
С	1.2224946	0.728282	-0.1881631		С	2.7936157	5.0489018	0.6579137		
С	0.0024376	1.4254005	0.2982778		С	3.221661	5.2123273	1.9761672		
С	-1.2232728	0.6889399	-0.1120976		С	2.6095631	4.4800711	2.9966361		
N	-2.3074641	1.3828887	-0.4569755		С	1.5677967	3.6046914	2.6983692		
С	-3.3877611	0.7371065	-0.9191818		С	4.5848586	-1.591448	-1.1512668		
С	-3.3292373	-0.6654508	-1.1380403		С	4.3601125	1.4397979	-1.8842427		
N	-2.2622112	-1.3706658	-0.7248519		С	-4.5848842	1.5914613	-1.1511914		
С	-1.2225089	-0.7282822	-0.1881595		С	-4.3601073	-1.4398018	-1.8842608		
С	0.0325433	-2.5379577	1.0888418		Н	1.1658566	-5.0045874	1.2055909		
С	1.2638446	-2.9451085	1.8327965		Н	3.1540983	-5.7077593	2.497133		
С	1.7020058	-4.2790157	1.8103535		Н	3.5761983	-1.7055595	4.0170596		
С	2.8196014	-4.6746232	2.5423343		Н	1.6084549	-1.0002465	2.6962122		
С	3.5033635	-3.7514494	3.3361072		Н	-1.4548324	-4.0077815	-0.6726835		
С	3.0606827	-2.4286117	3.3902835		Н	-3.2558822	-5.622352	-0.1414636		
С	1.9526251	-2.0293966	2.6451903		Н	-2.9334932	-4.6024706	4.0268266		
С	-1.1454573	-3.4115398	1.3712832		Н	-1.0711078	-3.0619255	3.4979264		
С	-1.7731018	-4.1455915	0.3538968		Н	-1.1658695	5.0045798	1.2056193		
С	-2.7936393	-5.0488902	0.6579075		Н	-3.154103	5.7077423	2.4971797		
С	-3.2216727	-5.2123261	1.9761635		Н	-3.5761805	1.7055365	4.0170965		
С	-2.609562	-4.480082	2.9966334		Н	-1.6084459	1.000233	2.696231		
С	-1.5677948	-3.6047039	2.698365		Н	1.4548013	4.0077994	-0.6726743		
С	-0.032552	2.5379532	1.0888517		Н	3.2558487	5.6223728	-0.1414565		
С	-1.2638485	2.9450983	1.8328176		Н	2.9335034	4.6024517	4.0268274		
С	-1.7020125	4.2790047	1.8103833		Н	1.0711196	3.0619033	3.4979303		

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-4.4114234	2.904183	-1.6189807	С	6.2309145	2.9661583	-3.3228948
С	-5.8828872	1.1505683	-0.8470822	Н	4.3815333	3.0561179	-0.4658154
С	-6.9775884	1.9952936	-1.0226467	Н	6.0542688	4.3949649	-1.7166331
С	-5.5082429	3.7427295	-1.8057837	Н	4.540232	0.0207114	-3.5005764
С	-6.7961404	3.2911876	-1.5097104	Н	6.1783675	1.3656061	-4.7690193
Н	-6.0357383	0.1482461	-0.4608722	Н	6.9560564	3.5551662	-3.8783088
Н	-7.9742089	1.6402438	-0.7740894	Н	4.3695102	-4.0624443	3.9140324
Н	-3.4062251	3.2562211	-1.8255883	Н	-4.0209735	-5.9110475	2.2091346
Н	-5.3567008	4.7522524	-2.1789933	Н	-4.3694995	4.0624196	3.9140829
Н	-7.6517079	3.946284	-1.6516772	Н	4.0209606	5.9110504	2.2091372
С	-4.8734278	-0.9755702	-3.1057848				
С	-4.7881219	-2.6851719	-1.4004575				
С	-5.7233402	-3.4372757	-2.1104674				
С	-5.7978163	-1.7352859	-3.8205938				
С	-6.2308394	-2.966195	-3.3229711				
Н	-4.3816233	-3.0560752	-0.4657824				
Н	-6.0543029	-4.3949467	-1.7166488				
Н	-4.5401041	-0.0207802	-3.5006661				
Н	-6.1781812	-1.3656997	-4.7691546				
Н	-6.9559548	-3.555215	-3.878407				
С	4.4113943	-2.9041893	-1.6189995				
С	5.8828738	-1.1505052	-0.8472852				
С	6.9775834	-1.9952085	-1.0229035				
С	5.508221	-3.7427147	-1.8058544				
С	6.79613	-3.2911279	-1.509898				
Н	6.0357281	-0.1481588	-0.4611377				
Н	7.9742149	-1.640121	-0.7744442				
Н	3.4061892	-3.2562603	-1.8255183				
Н	5.3566763	-4.7522554	-2.1790146				
Н	7.6517035	-3.9462071	-1.6519072				
С	4.8735161	0.9755239	-3.1057149				
С	4.7880892	2.685187	-1.4004545				
С	5.7233393	3.4372766	-2.1104373				
С	5.7979385	1.7352243	-3.8204966				

$\mathbf{1a} (\mathrm{Ar} = \mathrm{C}_{6}\mathrm{H}_{5}) : \mathbf{T}\text{-form}$										
SCF Done: $E(RB3LYP) = -2529.48005336$ A.U. after 9 cycles										
Atom	Х	Y	Z		Atom	Х	Y	Z		
N	-2.3934712	1.2973596	-0.4062428		Н	-1.391281	2.5120541	2.287945		
Ν	-2.3933743	-1.2975036	0.4062956		Н	-3.1952588	3.9199457	3.2259431		
С	-0.0000505	1.5053067	-0.0000256		Н	-2.9409084	6.514283	-0.198091		
С	-1.2320105	0.7085687	-0.0829926		Н	-1.1328702	5.1080935	-1.1259819		
С	-3.5458746	0.6413493	-0.3209939		Н	1.391056	2.5121157	-2.2880472		
С	-3.5458191	-0.6415547	0.3211209		Н	3.1948479	3.9201757	-3.2261488		
С	-1.2319646	-0.7086522	0.0829695		Н	2.9402861	6.5146242	0.1977853		
С	-0.0001079	2.893464	-0.0000425		Н	1.1324358	5.1082631	1.1257811		
С	-1.145757	3.6918047	0.5006644		Н	-5.6556898	-0.5875911	-1.5504956		
С	-1.7439791	3.3786651	1.7365801		Н	-7.563577	0.4869207	-2.6878028		
С	-2.7558981	4.1754205	2.2652108		Н	-7.7428258	2.9682739	-2.7584505		
С	-3.1959619	5.3064173	1.5718547		Н	-5.9741789	4.3600014	-1.6942653		
С	-2.6077706	5.635564	0.3482187		Н	-4.0494716	3.2747141	-0.5696732		
С	-1.5872079	4.8439782	-0.176105		Н	-4.0492676	-3.2749427	0.5698681		
С	1.1454484	3.6919045	-0.5008034		Н	-5.9738401	-4.3603123	1.6946108		
С	1.7436719	3.3787868	-1.7367244		Н	-7.74248	-2.9686602	2.7589062		
С	2.7554845	4.1756377	-2.2654141		Н	-7.5633592	-0.4872985	2.6882157		
С	3.1954356	5.306714	-1.5721159		Н	-5.6556075	0.5872938	1.5507589		
С	2.6072378	5.6358427	-0.3484786		Ν	2.3934653	-1.2973559	-0.4062691		
С	1.5867816	4.8441589	0.175905		Ν	2.3933718	1.2975016	0.4062916		
С	-4.7275948	1.2717534	-0.9605569		С	0.0000475	-1.5053104	-0.0000367		
С	-5.7275545	0.4951774	-1.5706688		С	1.2320075	-0.708571	-0.0829976		
С	-6.8032676	1.1029229	-2.2148904		С	3.545867	-0.641342	-0.3210298		
С	-6.9011899	2.4954033	-2.2590272		С	3.5458161	0.6415548	0.3211003		
С	-5.9081806	3.2754777	-1.6623674		С	1.2319612	0.7086488	0.0829725		
С	-4.8266926	2.6715529	-1.0243527		С	0.0001069	-2.8934683	-0.0000682		
С	-4.7274625	-1.2720114	0.9607754		С	1.1457481	-3.6918127	0.5006516		
С	-4.8264861	-2.6718149	1.0245954		С	1.743933	-3.3786998	1.7365922		
С	-5.9078983	-3.2757858	1.6626951		С	2.7558404	-4.1754628	2.2652333		
С	-6.9009037	-2.4957538	2.2594166		С	3.1959305	-5.3064406	1.5718626		
С	-6.8030535	-1.1032691	2.2152562		С	2.6077769	-5.6355605	0.3482015		
С	-5.7274169	-0.495478	1.5709499		С	1.5872249	-4.8439677	-0.1761326		

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-1.145435	-3.6919078	-0.5008648	Н	7.5633861	0.4872958	2.6881447
С	-1.7436196	-3.3787907	-1.7368047	Н	5.6556231	-0.5872954	1.5507058
С	-2.755412	-4.1756444	-2.2655286	Н	-3.9831188	-5.9302922	-1.9865579
С	-3.1953817	-5.3067234	-1.5722465	Н	3.9837586	-5.929938	1.9861084
С	-2.6072223	-5.6358518	-0.3485906	Н	-3.9837986	5.929909	1.9860928
С	-1.5867858	-4.8441654	0.1758272	Н	3.9831885	5.9302805	-1.986401
С	4.7275816	-1.2717374	-0.9606121				
С	5.7275337	-0.4951534	-1.5707262				
С	6.8032404	-1.1028905	-2.2149663				
С	6.9011641	-2.4953702	-2.2591197				
С	5.9081622	-3.2754525	-1.662458				
С	4.8266804	-2.6715361	-1.0244247				
С	4.7274658	1.2720105	0.9607438				
С	4.8264866	2.671814	1.0245698				
С	5.9079052	3.2757843	1.6626593				
С	6.90092	2.4957517	2.2593644				
С	6.8030729	1.103267	2.2151978				
С	5.7274299	0.4954764	1.5709016				
Н	1.3912134	-2.5121046	2.2879681				
Н	3.1951718	-3.9200091	3.2259847				
Н	2.9409353	-6.5142645	-0.1981199				
Н	1.1329161	-5.108063	-1.1260289				
Н	-1.3909877	-2.5121186	-2.2881158				
Н	-3.1947447	-3.9201829	-3.2262775				
Н	-2.9402848	-6.5146355	0.1976609				
Н	-1.1324689	-5.1082701	1.125717				
Н	5.6556678	0.5876147	-1.5505404				
Н	7.5635438	-0.4868818	-2.6878802				
Н	7.7427949	-2.9682343	-2.7585576				
Н	5.9741613	-4.3599758	-1.6943688				
Н	4.0494647	-3.2747033	-0.569744				
Н	4.0492609	3.2749422	0.5698551				
Н	5.9738446	4.3603109	1.6945799				
Н	7.7425013	2.9686576	2.7588461				

$\mathbf{1b} (\mathrm{Ar} = \mathrm{CH}_{3}\mathrm{C}_{6}\mathrm{H}_{4}) : \mathbf{F}\text{-form}$										
SCF Done: $E(RB3LYP) = -2686.74801835$ A.U. after 16 cycles										
Atom	Х	Y	Z		Atom	Х	Y	Z		
С	0.071705	1.4221985	0.0673987		С	2.9429998	-2.5242057	3.1686989		
С	-1.187896	0.7475001	-0.3458013		С	1.8548004	-2.0849042	2.4189989		
Ν	-2.2375951	1.4927016	-0.6893014		С	-1.3066016	-3.3442	1.1554988		
С	-3.345396	0.9003031	-1.1585014		С	-1.9887025	-4.0338991	0.1436987		
С	-3.3493979	-0.500797	-1.3908014		С	-3.0475038	-4.8888978	0.4547987		
Ν	-2.3189988	-1.2579985	-0.9753014		С	-3.481004	-5.0631972	1.7739988		
С	-1.2545979	-0.6687999	-0.4267013		С	-2.7999031	-4.3678981	2.7842989		
С	-0.0716989	-1.4222015	0.0673987		С	-1.7220019	-3.5416995	2.4846989		
С	1.1879021	-0.7475032	-0.3458013		С	-4.5031948	1.8098047	-1.3809014		
Ν	2.2376012	-1.4927046	-0.6893014		С	-4.4065989	-1.2196957	-2.1553015		
С	3.3454021	-0.9003061	-1.1585014		С	4.5032009	-1.8098077	-1.3809014		
С	3.349404	0.500794	-1.3908014		С	4.406605	1.2196926	-2.1553015		
Ν	2.3190049	1.2579954	-0.9753014		Н	-0.9262902	5.0450001	1.0476988		
С	1.254604	0.6687968	-0.4267013		Н	-2.8750893	5.8107028	2.3457989		
С	0.0910065	2.5274985	0.8706988		Н	-3.4890948	1.8118033	3.783399		
С	-1.118493	2.9770002	1.6234988		Н	-1.5617957	1.0394007	2.4583989		
С	-1.4963912	4.3289008	1.6324988		Н	1.6809084	3.9061965	-0.8872014		
С	-2.5951907	4.7596023	2.3703989		Н	3.5444106	5.4303941	-0.3474013		
С	-3.342592	3.8665033	3.1498989		Н	3.1084093	4.4898946	3.820499		
С	-2.9429938	2.5242026	3.1686989		Н	1.1884072	3.0410971	3.2880989		
С	-1.8547943	2.0849011	2.4189989		Н	0.9262963	-5.0450031	1.0476988		
С	1.3065076	3.344197	1.1554988		Н	2.8750954	-5.8107058	2.3457989		
С	1.9887086	4.0338961	0.1437987		Н	3.4890008	-1.8118064	3.783399		
С	3.0475099	4.8889947	0.4548987		Н	1.5618018	-1.0394037	2.4583989		
С	3.4810101	5.0631941	1.7739988		Н	-1.6809023	-3.9061995	-0.8872014		
С	2.7999091	4.367895	2.7842989		Н	-3.5444045	-5.4303971	-0.3475013		
С	1.7220079	3.5416964	2.4846989		Н	-3.1084032	-4.4898977	3.820499		
С	-0.0910004	-2.5275016	0.8706988		Н	-1.1884011	-3.0411001	3.2880989		
С	1.1184991	-2.9770032	1.6234988		С	4.2716991	-3.1204075	-1.8291014		
С	1.4963973	-4.3289039	1.6324988		С	5.8201015	-1.4220095	-1.0853014		
С	2.5951968	-4.7596054	2.3703989		С	6.8766004	-2.316011	-1.2507014		
С	3.3424981	-3.8666063	3.1498989		С	5.330498	-4.008809	-2.0053014		

Atom	Х	Y	Z	Atom	Х	Y	Z
С	6.6376986	-3.6098107	-1.7184014	Н	-6.2074988	-1.0205932	-5.0454017
Н	6.0173029	-0.4218097	-0.7140014	Н	-7.0730018	-3.1953922	-4.2003016
Н	7.8884009	-2.0011123	-1.0096014	С	-4.5488914	4.3333049	3.929599
Н	3.2515986	-3.4310062	-2.0285015	С	4.6504114	5.9610926	2.1035988
Н	5.1339966	-5.0161088	-2.3634015	С	4.5487975	-4.333308	3.929599
Н	7.4634978	-4.3036119	-1.8527014	С	-4.6504053	-5.9610957	2.1034988
С	4.8962044	0.7131919	-3.3699015	Н	-5.5649046	-5.3775944	2.2753989
С	4.8844067	2.4569921	-1.6978014	Н	-4.8585063	-6.6630954	1.2894988
С	5.8445077	3.1588908	-2.4257015	Н	-4.4659061	-6.5432959	3.0134989
С	5.8462054	1.4226907	-4.1025016	Н	4.4337961	-5.3694079	4.266599
С	6.3285071	2.6453901	-3.6306016	Н	5.4579976	-4.2913092	3.3147989
Н	4.4955072	2.8611926	-0.7694014	Н	4.7242984	-3.7075082	4.811299
Н	6.213209	4.1108904	-2.0522015	Н	5.5649107	5.3775913	2.2754989
Н	4.5241031	-0.2349076	-3.7455016	Н	4.8585124	6.6630924	1.2894988
Н	6.2075049	1.0205902	-5.0453017	Н	4.4658122	6.5433929	3.0134989
Н	7.0731079	3.1953892	-4.2002016	Н	-4.43389	5.3694049	4.266599
С	-4.2716931	3.1204045	-1.8292014	Н	-5.4580916	4.2913062	3.3146989
С	-5.8200954	1.4220064	-1.0853014	Н	-4.7243923	3.7075051	4.811199
С	-6.8765943	2.3161079	-1.2507014				
С	-5.3304919	4.008806	-2.0053014				
С	-6.6376925	3.6098077	-1.7184014				
Н	-6.0172968	0.4218066	-0.7140014				
Н	-7.8883948	2.0011093	-1.0095014				
Н	-3.2514926	3.4310031	-2.0285015				
Н	-5.1339906	5.0161058	-2.3634015				
Н	-7.4634917	4.3036089	-1.8527014				
С	-4.8961983	-0.713195	-3.3699015				
С	-4.8844006	-2.4569951	-1.6978014				
С	-5.8445016	-3.1588939	-2.4258015				
С	-5.8460993	-1.4226937	-4.1026016				
С	-6.328501	-2.6453932	-3.6307016				
Н	-4.4955011	-2.8611957	-0.7695014				
Н	-6.213203	-4.1108934	-2.0522015				
Н	-4.523997	0.2349046	-3.7455016				

$\mathbf{1b} (\mathrm{Ar} = \mathrm{CH}_{3}\mathrm{C}_{6}\mathrm{H}_{4}) : \mathbf{T}\text{-form}$									
SCF Done: E(RB3LYP) = -2686.75352282 A.U. after 7 cycles									
Atom	Х	Y	Z		Atom	Х	Y	Z	
N	-2.3925554	1.295833	-0.4098178		Н	-1.4014985	2.4941796	2.2840075	
Ν	-2.3925524	-1.2956354	0.4104654		Н	-3.2037362	3.883251	3.2253987	
С	0.0000757	1.50537	0.0000438		Н	-2.9367678	6.5190099	-0.1554992	
С	-1.231043	0.7090561	-0.084027		Н	-1.1276036	5.1356566	-1.0917505	
С	-3.5454444	0.6405357	-0.3223058		Н	1.4019713	2.4925525	-2.284342	
С	-3.5454216	-0.6402805	0.3231722		Н	3.2049009	3.8804307	-3.2262411	
С	-1.2310729	-0.7089174	0.0844434		Н	2.9386174	6.5180086	0.1532822	
С	0.0002596	2.8954201	-0.0002973		Н	1.1288175	5.1358716	1.0900407	
С	-1.1425379	3.6893532	0.5079837		Н	-5.6682129	-0.5855297	-1.5358343	
С	-1.7507177	3.3646919	1.7364582		Н	-7.5727057	0.4919926	-2.6758547	
С	-2.7644594	4.1534539	2.2673679		Н	-7.7345216	2.9738159	-2.7694399	
С	-3.2210856	5.2996449	1.5981707		Н	-5.9509212	4.3624763	-1.7263614	
С	-2.6094123	5.631767	0.382388		Н	-4.0300718	3.2732066	-0.597137	
С	-1.5845594	4.8512302	-0.1489725		Н	-4.0300411	-3.2729051	0.5982065	
С	1.1433716	3.6886886	-0.5089331		Н	-5.9507221	-4.3621016	1.7278285	
С	1.7515155	3.3631741	-1.7371656		Н	-7.7341267	-2.9733689	2.7711341	
С	2.7656572	4.1512728	-2.2683786		Н	-7.5722832	-0.4915492	2.6773971	
С	3.2227132	5.2975563	-1.5997138		Н	-5.6679763	0.5858845	1.5370105	
С	2.6109973	5.630594	-0.3841609		Ν	2.3925678	-1.2958488	-0.4097971	
С	1.5857983	4.8507595	0.1474785		Ν	2.3925543	1.2956271	0.4104433	
С	-4.7255056	1.2719606	-0.9644307		С	-0.0000687	-1.5053877	0.0000604	
С	-5.7328594	0.4974634	-1.5648639		С	1.2310467	-0.7090729	-0.0840029	
С	-6.8066122	1.1069619	-2.2108936		С	3.5454494	-0.6405528	-0.322308	
С	-6.8948635	2.4995701	-2.2679485		С	3.545422	0.6402779	0.3231642	
С	-5.8937599	3.2777888	-1.6823357		С	1.2310735	0.7088988	0.0844351	
С	-4.8148811	2.6719824	-1.0416093		С	-0.0002425	-2.8954388	-0.0002695	
С	-4.7253871	-1.2716388	0.9655363		С	1.1425525	-3.689355	0.5080427	
С	-4.8147768	-2.6716587	1.0427881		С	1.750713	-3.3646717	1.7365145	
С	-5.8935521	-3.2774229	1.6837264		С	2.7644535	-4.153416	2.2674543	
С	-6.8945497	-2.4991557	2.2694811		С	3.221104	-5.2996051	1.5982865	
С	-6.8062811	-1.1065551	2.2123465		С	2.6094435	-5.6317568	0.3824991	
С	-5.7326243	-0.4971011	1.5661055		С	1.5845951	-4.8512438	-0.1488881	

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-1.1433253	-3.6887265	-0.5089407	Н	7.5720926	0.4916698	2.6777609
С	-1.7514101	-3.3632496	-1.737205	Н	5.667874	-0.5858313	1.5373084
С	-2.7655068	-4.1513831	-2.2684583	С	-4.3448797	-6.1326521	-2.1684993
С	-3.2225639	-5.297663	-1.5998027	С	4.3427838	-6.1354302	2.1670108
С	-2.610899	-5.6306717	-0.384213	С	-4.3427286	6.1355077	2.166911
С	-1.5857529	-4.8508017	0.1474702	С	4.3450669	6.1325073	-2.1683876
С	4.7254706	-1.2719418	-0.9645416	Н	5.3227713	5.675673	-1.9636431
С	5.7327131	-0.4974305	-1.5651475	Н	4.2594521	6.2331075	-3.2563113
С	6.8064086	-1.106913	-2.2112888	Н	4.3567614	7.1380369	-1.7352517
С	6.8947138	-2.4995204	-2.2682897	Н	-5.3202502	5.6747276	1.9704429
С	5.8937129	-3.2777603	-1.6825179	Н	-4.2517764	6.2437741	3.2537011
С	4.8148872	-2.6719649	-1.0416822	Н	-4.3592263	7.1380332	1.7270703
С	4.7253653	1.2716534	0.965563	Н	5.320348	-5.6751112	1.9696607
С	4.8147665	2.6716805	1.0427231	Н	4.2524044	-6.2428889	3.2539215
С	5.8934925	3.2774819	1.6837029	Н	4.3587158	-7.1382788	1.7278639
С	6.8944276	2.4992507	2.2696035	Н	-5.3226182	-5.676043	-1.9634606
С	6.806148	1.1066485	2.212585	Н	-4.2594473	-6.2329615	-3.2564593
С	5.7325377	0.4971546	1.5662992	Н	-4.3563369	-7.1383004	-1.7356191
Н	1.4014798	-2.494149	2.2840501				
Н	3.2037183	-3.8831854	3.2254858				
Н	2.9368155	-6.5190116	-0.1553633				
Н	1.1276462	-5.1356946	-1.0916625				
Н	-1.4018607	-2.492633	-2.2843858				
Н	-3.2047036	-3.8805655	-3.2263496				
Н	-2.9385313	-6.5180911	0.1532271				
Н	-1.128804	-5.135886	1.0900568				
Н	5.6680262	0.5855536	-1.5361667				
Н	7.5724145	-0.4919353	-2.6763702				
Н	7.7343273	-2.9737542	-2.7698724				
Н	5.9509072	-4.3624409	-1.7265131				
Н	4.0301556	-3.2731992	-0.5970943				
Н	4.0300732	3.2729024	0.5980264				
Н	5.9506738	4.3621641	1.727725				
Н	7.7339694	2.9734999	2.7712992				

$\mathbf{1c} (\mathrm{Ar} = \mathrm{FC}_{6}\mathrm{H}_{4}) : \mathbf{F}\text{-form}$									
SCF Done: E(RB3LYP) = -2926.40978362 A.U. after 6 cycles									
Atom	Х	Y	Z		Atom	Х	Y	Z	
С	-0.0736787	-1.4279583	0.0792547		С	-2.9270361	2.5565724	3.1776499	
С	1.186587	-0.7471007	-0.3216723		С	-1.8371114	2.125472	2.4253906	
Ν	2.2350864	-1.4961195	-0.665083		С	1.2867587	3.4102656	1.0856731	
С	3.3538335	-0.9078971	-1.1108466		С	1.944564	4.060692	0.0295227	
С	3.3793221	0.4993547	-1.3057715		С	2.989164	4.9521183	0.2747201	
Ν	2.345043	1.2569598	-0.9040896		С	3.3909496	5.1693651	1.5869431	
С	1.2604877	0.6684994	-0.3924773		С	2.7697885	4.5396732	2.6606833	
С	0.0736536	1.4279585	0.0792739		С	1.706375	3.6794985	2.4014034	
С	-1.1866151	0.7471056	-0.321657		С	4.4998038	-1.8272501	-1.3524872	
N	-2.2351102	1.4961282	-0.6650731		С	4.4720859	1.225195	-2.0118344	
С	-3.3538562	0.9079109	-1.1108467		С	-4.499822	1.8272675	-1.3524937	
С	-3.3793485	-0.4993397	-1.3057768		С	-4.4721136	-1.2251722	-2.011846	
Ν	-2.3450715	-1.256949	-0.9040978		Н	0.967227	-5.0651254	0.9614962	
С	-1.260517	-0.6684938	-0.3924769		Н	2.9379467	-5.840073	2.278934	
С	-0.0855444	-2.5588448	0.8485482		Н	3.4784342	-1.8790295	3.8212029	
С	1.1226251	-3.0117305	1.6014339		Н	1.5287322	-1.085917	2.4830261	
С	1.5188153	-4.3595844	1.5751647		Н	-1.6310458	-3.8701323	-0.9893552	
С	2.6154278	-4.8044999	2.3086769		Н	-3.4920484	-5.4705262	-0.5350558	
С	3.3042439	-3.8922329	3.0999496		Н	-3.109648	-4.7388986	3.6716638	
С	2.9271423	-2.5565983	3.1774617		Н	-1.191589	-3.2053703	3.2319027	
С	1.8371871	-2.1254906	2.4252503		Н	-0.9672808	5.0650968	0.9615408	
С	-1.2867642	-3.4102776	1.08566		Н	-2.9379485	5.8400305	2.279064	
С	-1.9446002	-4.0606843	0.0295165		Н	-3.4782805	1.8790053	3.8214337	
С	-2.9891919	-4.9521165	0.2747276		Н	-1.5286313	1.0859065	2.4831737	
С	-3.3909391	-5.1693882	1.5869582		Н	1.6309798	3.8701598	-0.9893434	
С	-2.7697477	-4.5397155	2.6606922		Н	3.4919974	5.4705426	-0.5350683	
С	-1.7063423	-3.6795353	2.4013975		Н	3.1097183	4.7388371	3.6716488	
С	0.0855327	2.5588364	0.8485813		Н	1.1916459	3.205318	3.2319147	
С	-1.122611	3.0117092	1.6015173		С	-4.2519838	3.1148375	-1.8555028	
С	-1.5188253	4.3595558	1.5752485		С	-5.8184572	1.4743352	-1.023459	
С	-2.6154094	4.8044637	2.3088081		С	-6.8612203	2.3807598	-1.2073896	
С	-3.3041685	3.892198	3.1001314		С	-5.2974896	4.01464	-2.0510893	

Atom	Х	Y	Z	Atom	Х	Y	Z			
С	-6.6066386	3.6507411	-1.7286	Н	6.3213448	1.1245271	-4.8754837			
Н	-6.0280832	0.4931165	-0.610715	Н	7.2410627	3.218154	-3.8948175			
Н	-7.8743462	2.0943695	-0.9382769	F	4.3595921	-4.3182761	3.8246745			
Н	-3.2300023	3.3989038	-2.0837127	F	-4.4080814	-6.0229595	1.8286405			
Н	-5.0893652	5.0032775	-2.4518121	F	-4.3594867	4.3182346	3.8249039			
Н	-7.4219894	4.3538843	-1.8765812	F	4.4080997	6.0229309	1.8286118			
С	-4.9682768	-0.7690065	-3.2432416							
С	-4.9821948	-2.4172276	-1.4766004							
С	-5.9790142	-3.1256996	-2.1466567							
С	-5.9545522	-1.4859252	-3.9185607							
С	-6.4675381	-2.6634986	-3.3703518							
Н	-4.5918946	-2.7813153	-0.532477							
Н	-6.3733719	-4.0408325	-1.7124577							
Н	-4.573867	0.145162	-3.6762861							
Н	-6.3213747	-1.1244738	-4.8754927							
Н	-7.2410966	-3.2181077	-3.8948449							
С	4.2519728	-3.1148174	-1.855507							
С	5.8184347	-1.4743191	-1.0234339							
С	6.8612008	-2.3807417	-1.2073579							
С	5.2974816	-4.0146176	-2.0510872							
С	6.6066266	-3.6507195	-1.72858							
Н	6.028055	-0.4931035	-0.6106797							
Н	7.874323	-2.0943522	-0.9382307							
Н	3.2299942	-3.3988831	-2.0837305							
Н	5.0893629	-5.0032527	-2.4518188							
Н	7.4219797	-4.3538611	-1.8765562							
С	4.9682491	0.7690418	-3.2432347							
С	4.9821639	2.4172473	-1.4765791							
С	5.9789814	3.1257276	-2.1466296							
С	5.9545222	1.4859688	-3.918548							
С	6.4675059	2.6635385	-3.3703288							
Н	4.591863	2.7813262	-0.5324525							
Н	6.3733369	4.0408577	-1.7124227							
Н	4.5738406	-0.1451233	-3.6762874							
$\mathbf{1c} (\mathrm{Ar} = \mathrm{FC}_{6}\mathrm{H}_{4}) : \mathbf{T}\text{-form}$										
--	------------	------------	------------	--	------	------------	------------	------------	--	--
SCF Done: E(RB3LYP) = -2926.41434740 A.U. after 7 cycles										
Atom	Х	Y	Z		Atom	Х	Y	Z		
Ν	2.3939267	-1.2976774	-0.4052615		Н	1.3912886	-2.4922061	2.2876346		
Ν	2.3938229	1.2977211	0.4056316		Н	3.2106432	-3.9074072	3.2412625		
С	-0.0000163	-1.5049081	0.0000114		Н	2.95425	-6.5305945	-0.1394677		
С	1.2319364	-0.708695	-0.0825092		Н	1.1313137	-5.1269767	-1.0985681		
С	3.546303	-0.6415185	-0.321235		Н	-1.3914437	-2.4914818	-2.2877881		
С	3.5462307	0.6415928	0.3217988		Н	-3.2108413	-3.9063649	-3.2417879		
С	1.2319025	0.7087105	0.0826777		Н	-2.9542888	-6.5306613	0.1380684		
С	-0.0000376	-2.8943423	-0.0001554		Н	-1.1313228	-5.1273495	1.0975519		
С	1.1405678	-3.689769	0.5115035		Н	5.6561091	0.5921584	-1.5463505		
С	1.7414309	-3.3639933	1.7437805		Н	7.5635796	-0.4778637	-2.6872495		
С	2.7543647	-4.1478621	2.2865456		Н	7.7441702	-2.9588306	-2.7657442		
С	3.173271	-5.2764387	1.5882603		Н	5.9766085	-4.3550906	-1.7067756		
С	2.6024911	-5.6414237	0.3736798		Н	4.0498993	-3.2735139	-0.5806734		
С	1.5827928	-4.8505522	-0.1512917		Н	4.0497464	3.2735985	0.5813111		
С	-1.1406533	-3.6896051	-0.5120421		Н	5.9762272	4.3552044	1.7077792		
С	-1.74157	-3.3634354	-1.7441907		Н	7.7435955	2.9589722	2.7671045		
С	-2.7545268	-4.1471269	-2.2871657		Н	7.5630474	0.4780032	2.6885962		
С	-3.1734009	-5.2759333	-1.5892318		Н	5.6558084	-0.5920492	1.547331		
С	-2.6025612	-5.6413166	-0.3747994		Ν	-2.3939946	1.2976567	-0.4053273		
С	-1.5828454	-4.8506119	0.1503882		Ν	-2.3938878	-1.2977166	0.4056465		
С	4.7277905	-1.2695317	-0.9631545		С	-0.0000487	1.5049248	-0.0000119		
С	5.7276248	-0.4905159	-1.570449		С	-1.2320073	0.7087062	-0.0825052		
С	6.8034186	-1.0957705	-2.2167819		С	-3.5463649	0.6414832	-0.3213221		
С	6.9019868	-2.4880175	-2.2655248		С	-3.5462992	-0.6416026	0.3217621		
С	5.9092825	-3.2708346	-1.671951		С	-1.231967	-0.7086978	0.0827099		
С	4.8275803	-2.6689523	-1.0326656		С	0.0000008	2.8943615	-0.000189		
С	4.7275862	1.2696261	0.9639413		С	-1.1404971	3.6898402	0.5116319		
С	4.8273469	2.6690486	1.0334584		С	-1.7411389	3.3641548	1.7440414		
С	5.9089187	3.2709475	1.6729496		С	-2.7539264	4.1481011	2.2869662		
С	6.9015153	2.4881459	2.2667239		С	-3.1729064	5.2766701	1.588712		
С	6.8029715	1.0958974	2.2179746		С	-2.6023386	5.6415716	0.3740074		
С	5.7273095	0.4906265	1.5714372		С	-1.5827829	4.8506219	-0.1511245		

Atom	Х	Y	Z	Atom	Х	Y	Z
С	1.1405932	3.6895912	-0.5121802	Н	-7.5632043	-0.478013	2.6884112
С	1.7413273	3.3634664	-1.7444298	Н	-5.6559373	0.5920395	1.5471941
С	2.7542488	4.1471405	-2.2874953	F	4.1502959	6.0445782	-2.1125461
С	3.1732735	5.2758843	-1.5895503	F	-4.1497941	6.0456296	2.1115709
С	2.6026145	5.641224	-0.3750202	F	4.1503019	-6.0453215	2.110964
С	1.5829297	4.8505386	0.1502571	F	-4.1504594	-6.0446415	-2.112139
С	-4.7278327	1.2694346	-0.9633385				
С	-5.7276156	0.4903603	-1.5706425				
С	-6.80339	1.0955516	-2.217067				
С	-6.9019896	2.4877934	-2.265894				
С	-5.909335	3.2706682	-1.6723134				
С	-4.8276521	2.6688484	-1.0329364				
С	-4.7276712	-1.269636	0.9638744				
С	-4.8274171	-2.6690583	1.033417				
С	-5.9090046	-3.2709575	1.6728813				
С	-6.9016323	-2.4881561	2.2666039				
С	-6.8031039	-1.0959075	2.2178296				
С	-5.7274258	-0.4906364	1.5713191				
Н	-1.3909306	2.4923808	2.2878736				
Н	-3.2100313	3.9077153	3.2417834				
Н	-2.9541443	6.5307416	-0.1391095				
Н	-1.1314635	5.1269875	-1.0984941				
Н	1.3910829	2.4915645	-2.288034				
Н	3.210421	3.9064138	-3.2421944				
Н	2.9544537	6.530522	0.1378522				
Н	1.1315465	5.127244	1.0974966				
Н	-5.6560749	-0.592311	-1.546478				
Н	-7.5635111	0.4775995	-2.6875397				
Н	-7.7441578	2.9585575	-2.7661851				
Н	-5.9766846	4.3549206	-1.7072042				
Н	-4.0500093	3.2734546	-0.5809403				
Н	-4.0497932	-3.2736077	0.5813092				
Н	-5.9763014	-4.3552146	1.7077303				
Н	-7.743725	-2.9589827	2.7669633				

$\mathbf{1d} \; (\mathrm{Ar} = \mathrm{ClC}_6\mathrm{H}_4) : \mathbf{F}\text{-form}$									
SCF Done: E(RB3LYP) = -4367.86049443 A.U. after 6 cycles									
Atom	Х	Y	Z		Atom	Х	Y	Z	
С	0.1839289	1.4230656	-0.1258576		С	2.7005362	-2.867709	2.9594621	
С	-1.1261334	0.8362603	-0.514126		С	1.6557594	-2.3326518	2.2101635	
Ν	-2.1159796	1.6642454	-0.853299		С	-1.5428842	-3.3390859	0.8242363	
С	-3.2848544	1.1654009	-1.2769527		С	-2.2293518	-3.9272682	-0.2486131	
С	-3.4306611	-0.2386844	-1.4465747		С	-3.3356975	-4.7479099	-0.0308754	
Ν	-2.4518848	-1.0717943	-1.0589208		С	-3.7787167	-4.9627183	1.2728799	
С	-1.3116214	-0.5685079	-0.5771151		С	-3.1219879	-4.3865537	2.3604766	
С	-0.1839212	-1.4230691	-0.1258409		С	-1.9984086	-3.5973945	2.1286206	
С	1.1261424	-0.8362678	-0.5141151		С	-4.3518558	2.1735701	-1.5249707	
N	2.1159861	-1.6642545	-0.8532916		С	-4.6001478	-0.8841594	-2.1062537	
С	3.2848583	-1.1654118	-1.2769554		С	4.3518597	-2.173576	-1.5249895	
С	3.4306655	0.2386707	-1.4465841		С	4.600162	0.8841353	-2.1062548	
Ν	2.4518906	1.0717838	-1.0589344		Н	-0.5847197	5.1531893	0.652174	
С	1.3116301	0.5685002	-0.5771193		Н	-2.4607479	6.1132597	1.9519706	
С	0.2818037	2.5707744	0.6116925		Н	-3.2844588	2.2392473	3.6233878	
С	-0.8852816	3.1360607	1.353698		Н	-1.4280361	1.2744629	2.2978421	
С	-1.179531	4.5075138	1.2910273		Н	1.8921804	3.7439087	-1.2615745	
С	-2.2305966	5.0554781	2.0215711		Н	3.8524909	5.2078862	-0.8663126	
С	-2.984845	4.228428	2.8529309		Н	3.4762775	4.5656743	3.3699468	
С	-2.7006273	2.8677578	2.9593012		Н	1.4658762	3.1726548	2.9746866	
С	-1.6558285	2.3326854	2.2100435		Н	0.5847784	-5.1531634	0.6522209	
С	1.5428902	3.3390837	0.8242168		Н	2.4607704	-6.1132062	1.9520901	
С	2.2293962	3.9272224	-0.2486317		Н	3.2843232	-2.2391927	3.6235825	
С	3.3357479	4.7478543	-0.0308887		Н	1.427938	-1.274436	2.2979662	
С	3.7787337	4.9626971	1.2728725		Н	-1.8921093	-3.7439831	-1.2615519	
С	3.1219664	4.3865755	2.3604687		Н	-3.8524094	-5.2079761	-0.8662996	
С	1.9983824	3.5974248	2.1286056		Н	-3.4763246	-4.565627	3.3699503	
С	-0.2818003	-2.570769	0.6117253		Н	-1.4659315	-3.1725913	2.9747034	
С	0.8852694	-3.136034	1.3537727		С	4.0027808	-3.4215024	-2.0663068	
С	1.1795488	-4.507481	1.2911052		С	5.6898499	-1.9439349	-1.1665254	
С	2.2305943	-5.0554299	2.0216898		С	6.6536195	-2.9323977	-1.3583455	
С	2.9847889	-4.2283718	2.8530903		С	4.970282	-4.4029282	-2.2702197	

Atom	Х	Y	Z	Atom	Х	Y	Z
С	6.2998282	-4.161775	-1.9175063	Н	-6.5061609	-0.7031053	-4.9278572
Н	5.9759277	-0.9954528	-0.72432	Н	-7.5805627	-2.6772676	-3.8610908
Н	7.6825405	-2.7419865	-1.0654842	Cl	-4.3015194	4.9142799	3.7948438
Н	2.9645019	-3.6103105	-2.318602	Cl	5.183866	5.9837038	1.5531491
Н	4.6852164	-5.359259	-2.7007768	Cl	4.3014351	-4.914205	3.7950561
Н	7.0540598	-4.9288842	-2.0713553	Cl	-5.1838417	-5.983737	1.5531492
С	5.0855346	0.4210608	-3.3391971				
С	5.1992194	2.0098149	-1.5217802				
С	6.2714768	2.6464834	-2.1458946				
С	6.1478844	1.0674635	-3.9688481				
С	6.748	2.1784715	-3.3721551				
Н	4.8194888	2.3789096	-0.5753241				
Н	6.7332085	3.5095762	-1.6735634				
Н	4.6241035	-0.4421963	-3.8090059				
Н	6.5062616	0.7029812	-4.927793				
Н	7.5806135	2.6771967	-3.8610758				
С	-4.0027823	3.4214772	-2.0663354				
С	-5.6898324	1.9439633	-1.1664319				
С	-6.6535949	2.9324366	-1.3582342				
С	-4.9702771	4.402913	-2.2702312				
С	-6.2998106	4.1617913	-1.9174491				
Н	-5.9759041	0.9955015	-0.72418				
Н	-7.6825044	2.7420516	-1.0653156				
Н	-2.964512	3.610262	-2.3186832				
Н	-4.6852161	5.3592272	-2.700828				
Н	-7.0540368	4.9289088	-2.0712836				
С	-5.0854793	-0.4211323	-3.3392301				
С	-5.1992293	-2.0098135	-1.5217543				
С	-6.2714747	-2.6464972	-2.1458736				
С	-6.147816	-1.0675514	-3.9688864				
С	-6.7479593	-2.1785297	-3.3721659				
Н	-4.8195283	-2.3788743	-0.5752731				
Н	-6.7332269	-3.5095679	-1.6735218				
Н	-4.6240257	0.4420997	-3.8090623				

$\mathbf{1d} (Ar = ClC_6H_4) : \mathbf{T}\text{-form}$									
	SCF I	Done: E(RB	3LYP) = -43	867.86	485871	A.U. after	7 cycles		
Atom	Х	Y	Z		Atom	Х	Y	Z	
Ν	2.3943284	1.2991948	0.4018258		Н	1.3950652	2.5026996	-2.290012	
Ν	2.3941885	-1.2993627	-0.4020685		Н	3.1953103	3.9135447	-3.2397734	
С	0.0000411	1.5039173	-0.0000169		Н	2.9380871	6.5280329	0.1651214	
С	1.2323392	0.7082715	0.0814276		Н	1.1348132	5.121139	1.1090374	
С	3.5462685	0.6425789	0.3203115		Н	-1.3949483	2.5024707	2.2900712	
С	3.5461855	-0.642829	-0.3206864		Н	-3.1951022	3.9133038	3.2400199	
С	1.2322774	-0.7083612	-0.0815267		Н	-2.9376454	6.5282827	-0.16448	
С	0.0000804	2.8925282	0.0000599		Н	-1.1344721	5.1213941	-1.1085887	
С	1.1420924	3.6897573	-0.5068397		Н	5.6512793	-0.5931295	1.5500757	
С	1.7420268	3.372461	-1.7406344		Н	7.5596551	0.475123	2.6904983	
С	2.750623	4.1628512	-2.2821475		Н	7.7473316	2.9557464	2.7607744	
С	3.1758763	5.2955738	-1.5861634		Н	5.9857726	4.3539817	1.6947483	
С	2.5991603	5.6440567	-0.3648064		Н	4.0564874	3.2749506	0.5717389	
С	1.5833276	4.8479242	0.15925		Н	4.0561933	-3.2752335	-0.5722213	
С	-1.1418747	3.6897676	0.5070712		Н	5.9852619	-4.354378	-1.6954947	
С	-1.741843	3.3723365	1.7408169		Н	7.7467828	-2.9562445	-2.7617175	
С	-2.7503874	4.1627185	2.2824352		Н	7.5592859	-0.4756097	-2.6913728	
С	-3.1755506	5.2955769	1.5866155		Н	5.6511282	0.5927541	-1.5506873	
С	-2.5987931	5.6442012	0.3653196		Ν	-2.3943605	-1.299175	0.4018805	
С	-1.5830153	4.8480693	-0.1588468		Ν	-2.3942231	1.2993701	-0.4020533	
С	4.7282508	1.2698841	0.9611978		С	-0.0000739	-1.503926	-0.0000009	
С	5.7252656	0.4894245	1.5714386		С	-1.2323751	-0.7082759	0.081421	
С	6.8017337	1.0936559	2.2173877		С	-3.546297	-0.6425469	0.3203982	
С	6.9041107	2.4858108	2.2615717		С	-3.5462242	0.6428501	-0.3206211	
С	5.9145835	3.2699568	1.6645107		С	-1.232309	0.7083559	-0.0815497	
С	4.8315611	2.6692103	1.0264999		С	-0.0001024	-2.892541	0.0000869	
С	4.7280436	-1.2702063	-0.9617326		С	-1.1420268	-3.689794	-0.5069712	
С	4.8312515	-2.6695388	-1.0270695		С	-1.7417312	-3.3725767	-1.7408998	
С	5.9141513	-3.2703485	-1.6652287		С	-2.7502115	-4.1630113	-2.2825617	
С	6.9036569	-2.48626	-2.2624004		С	-3.1755812	-5.2957028	-1.5865964	
С	6.8013811	-1.0940984	-2.2181785		С	-2.5990915	-5.6441103	-0.3651119	
С	5.7250361	-0.4898045	-1.5720827		С	-1.583369	-4.847934	0.1590935	

Atom	Х	Y	Z	Atom	Х	Y	Z
С	1.141801	-3.6897648	0.5072388	Н	-7.5594148	0.4756696	-2.6911597
С	1.741552	-3.3723886	1.7411042	Н	-5.651227	-0.5927127	-1.5505431
С	2.7500264	-4.1627733	2.282849	Cl	4.4434066	-6.3047479	2.2665293
С	3.1753412	-5.2955789	1.5870364	Cl	-4.4436563	-6.3049329	-2.2659806
С	2.5987987	-5.6441502	0.3656234	Cl	4.4440952	6.3047494	-2.2653615
С	1.5830847	-4.8480194	-0.1586671	Cl	-4.4437026	6.3047423	2.2659521
С	-4.7282583	-1.2698142	0.9613631				
С	-5.7252306	-0.489318	1.5716255				
С	-6.8016767	-1.0935102	2.2176479				
С	-6.9040749	-2.4856623	2.2618825				
С	-5.9145899	-3.2698444	1.6647997				
С	-4.831588	-2.6691367	1.0267173				
С	-4.7280997	1.2702381	-0.9616236				
С	-4.8312926	2.6695712	-1.0269618				
С	-5.9142107	3.2703917	-1.6650807				
С	-6.9037477	2.4863135	-2.2622141				
С	-6.8014856	1.0941511	-2.2179942				
С	-5.7251241	0.4898465	-1.5719361				
Н	-1.3946707	-2.5028465	-2.2902639				
Н	-3.1947183	-3.9137653	-3.2402871				
Н	-2.9381029	-6.528063	0.1647997				
Н	-1.1350282	-5.1210946	1.1089781				
Н	1.3945359	-2.5025691	2.2903545				
Н	3.1945694	-3.9134002	3.2405244				
Н	2.9377648	-6.528193	-0.1641681				
Н	1.1347074	-5.1213046	-1.1084984				
Н	-5.6512277	0.5932342	1.5502213				
Н	-7.5595651	-0.4749492	2.6907744				
Н	-7.7472795	-2.9555674	2.7611412				
Н	-5.9857947	-4.353867	1.6950762				
Н	-4.0565458	-3.274904	0.5719401				
Н	-4.0562111	3.275258	-0.5721428				
Н	-5.98531	4.3544213	-1.6953461				
Н	-7.7468868	2.9563062	-2.761501				

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, X. Nakatsuji, H.; Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian 16, Revision B.01*, Gaussian, Inc., Wallingford CT, **2016**.
- [2] R. Manivannan, S. Ciattini, L. Chelazzi, K. P. Elango, *RSC Adv.* **2015**, *5*, 87341–87351.
- [3] Y. Yamashita, T. Suzuki, G. Saito, T. Mukai, *Chem. Lett.* **1986**, *15*, 715–718.
- T. Suzuki, Y. Ishigaki, K. Sugawara, Y. Umezawa, R. Katoono, A. Shimoyama, Y. Manabe, K. Fukase, T. Fukushima, *Tetrahedron* 2018, 74, 2239–2244.
- [5] R. Neidlein, M. Winter, *Synthesis* (*Stuttg*). **1998**, 1998, 1362–1366.
- [6] S. Pola, C.-H. Kuo, W.-T. Peng, M. M. Islam, I. Chao, Y.-T. Tao, *Chem. Mater.* 2012, 24, 2566–2571.
- [7] H. Yoo, M. Suh, S. W. Park, J. Med. Chem. 1998, 41, 4716–4722.
- [8] K. Sun, K. Sugawara, A. Lyalin, Y. Ishigaki, K. Uosaki, T. Taketsugu, T. Suzuki, S. Kawai, Angew. Chem. Int. Ed. 2021, 60, 9427–9432.
- [9] D. Bailey, J. N. Murphy, V. E. Williams, Can. J. Chem. 2006, 84, 659–666.
- [10] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341.
- [11] G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8.
- [12] G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8.
- [13] C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165–195.