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Supplementary Computational methods

For the TSSI in solution and the amorphous aggregates, different models were set up and 

calculate their photophysical properties, respectively (Fig. S1).

PCM model. The implicit polarizable continuum model (PCM)1, 2 was chosen to simulate the 

dispersed monomer of both TI and TSSI by the Gaussian 16 software package3 (Fig. S1a). A sequence 

of density functionals, including B3LYP,4 B97XD,5, 6 BMK7 and M06-2X,8 with the 6-31G** basis 

set,9 were selected to calculate the excitation energies of the optimized structures in both the ground 

(S0) and the first excited (S1) states for TSSI in dilute solution and to find the most proper density 

functional, which could reproduce the experimental results (see Table S1). It is found that BMK 

combined with the 6-31G** basis set presents the best performance in reproducing the experimental 

results, the calculated maximum absorption and emission wavelengths (632 and 850 nm) are close to 

the experimental values (670 and 835 nm)10 and was chosen to calculate the photophysical properties 

of all systems in this work. The optimized structures at S0 and S1 were obtained by DFT and TDDFT. 

In addition, normal mode analysis for all optimized structures were evaluated to check the absence 

of imaginary frequencies.

MD simulations. The atomic type and related force field parameters of TI and TSSI were generated 

by the general Amber force field (GAFF).11 The restrained electrostatic potential approach was used 

to obtain the partial charge of each atom in TI and TSSI.10 Based on the force field parameters, the 

molecular dynamics (MD) simulations of single TI and TSSI were also performed by putting one TI 

or TSSI into a cubic box with side length 7.0 nm and solvating by 11200 and 11194 water molecules, 

respectively. Then the energy minimization by the steepest descent algorithm were performed, 

followed by 100 ns production of MD simulations under NPT (T = 300 K and P = 1 bar) ensemble 

with a Berendsen thermostat and barostat.12, 13 In addition, the aggregation process of TSSI in aqueous 

solution were also simulated by MD simulations. First, we randomly placed 60 TSSI molecules into 

a small cubic box with dimensions of 5 × 5 × 5 nm3 to pre-assemble the amorphous aggregates. 

Second, the obtained amorphous aggregates of TSSI were put in the center of the cubic boxes with 

larger side lengths of 9 nm, and solvated by 22199 water molecules to obtain the initial conformation 

of the amorphous aggregates. Third, the energy minimization by the steepest descent algorithm and 

100 ns production MD simulations under NPT ensemble were also performed with the Berendsen 

thermostat and Berendsen barostat. The time step for MD simulations of the TSSI aggregation process 
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was 2 fs. The configurations were stored at a time interval of 10 ps for data analysis. All MD 

simulations were performed using the GROMACS package (version 5.1.5).14

QM/MM calculations. Based on the obtained amorphous aggregates of TSSI, the QM/MM models 

were set up to study their photophysical properties. Due to loose and disorder molecular packing for 

TSSI, we randomly selected three amorphous aggregates at equilibrium from the MD simulations and 

set up QM/MM models, respectively. In the QM/MM model, one TSSI (completely enclosed in the 

aggregate) was chosen and set as the QM region, while the others were treated as the MM region 

(Fig. S1c). The QM region was calculated at the (TD)-BMK/6-31G** level and the MM region was 

treated by the universal force field.15 All atoms in the QM region could be fully relaxed during the 

geometric optimization, while the others in the MM region were frozen. The electrostatic embedding 

scheme with QM polarization was adopted.13 The normal mode frequency calculations for all the 

optimized structures at both S0 and S1 were performed to guarantee no imaginary frequencies for the 

optimized structures. All the QM/MM calculation were performed in Gaussian 16 package.3

Orbital delocalization index (ODI) and t index. The orbital delocalization index (ODI), which can 

quantitatively measure the degree of orbital delocalization, was calculated by using Multiwfn 

program.16 The ODI of the i-th molecular orbital can be expressed as: . 
𝑂𝐷𝐼𝑖 = 0.01 × ∑

𝐴

(𝜃𝐴,𝑖)
2

Herein,  is the composition of atom A in the i-th molecular orbital. The small ODI leads to (𝜃𝐴,𝑖)
2

large orbital delocalization. The t index quantitatively measure the degree of separation between the 

hole and the electron, was calculated by using Multiwfn program.16 

Spin-orbital coupling constant (ξ). The spin-orbital coupling constant (ξ) affects the intersystem 

crossing process (ISC) and determine the ROS generation efficiency as well as photodynamic therapy 

efficiency. Since BMK not available in ORCA,17 we adopted BHandHLYP with similar HF ratio 

combined with the 6-31G** basis set to calculate ξ.

Radiative decay rate ( ). The radiative decay rate ( ) was calculated according to the simple 𝑘𝑟 𝑘𝑟

spontaneous emission relationship, , where f is the oscillator strength, and ∆Evert 
𝑘𝑟 =

1
1.499

𝑓∆𝐸 2
𝑣𝑒𝑟𝑡

is the vertical excitation energy at the optimized S1 geometry in units of cm−1. 

Reorganization energy (λ). The reorganization energy (λ) was calculated by TVCF protocol through 

MOMAP program.18-20 And it reflects the geometrical changes between two electronic states and 
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affects nonradiative decay rate constant ( ). The reorganization energy can be expressed as a 𝑘𝑖𝑐

summation of the contributions from normal mode (NM) relaxation in the harmonic oscillator 

approximation:

                                   (1)𝜆 = 𝜆𝑔𝑠 + 𝜆𝑒𝑠

                         (2)
𝜆𝑔𝑠 = ∑

𝑘 ∈ 𝑔𝑠

𝜆𝑘 = ∑
𝑘 ∈ 𝑔𝑠

ℏ𝑘𝐻𝑅𝑘

                            (3)
𝜆𝑒𝑠 = ∑

𝑘 ∈ 𝑒𝑠

𝜆𝑘 = ∑
𝑘 ∈ 𝑒𝑠

ℏ𝑘𝐻𝑅𝑘

                                  (4)
𝐻𝑅𝑘 =

𝑘𝐷2
𝑘

2ℏ

where HRk represents the Huang−Rhys factor for the kth mode and Dk is the displacement for the 

mode k between the equilibrium geometries of S0 and S1.
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Supplementary Figures

Scheme S1. Chemical structure of (a) TI and (b) TSSI. The acceptor, -bridge, and donor are labeled in blue, orange 
and green, and the corresponding bond length (L1), bond angles (n=1-4) and dihedral angles (An=1-5, Bn=1-2, and Dn=1-

3), respectively. 
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Figure S1. (a) The PCM model of TSSI in dilute chloroform solution. (b) The extracted configuration of TSSI in 
amorphous aggregate from the MD simulation and (c) the corresponding QM/MM model. Here one central TSSI 
was selected as the QM region, while the others as the MM region, respectively.
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Figure S2. (a-b) The extracted representative conformation of single molecule in dilute solution of TI and TSSI.
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Figure S3. The electron density contours of LUMO, HOMO, and HOMO-1 for TI and TSSI in dilute chloroform 
solution at S1 geometry.
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Scheme S2. Chemical structure of TSSSSI. The acceptor, -bridge, and donor are labeled in blue, orange and green. 
The corresponding dihedral angles of TSSSSI are labeled in An=1-5, Bn=1-4 and Dn=1-3, respectively.
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Figure S4. The optimized geometries of o-TSSI, m-TSSI, TSSSI and TSSSSI at both S0 and S1 in dilute chloroform 
solution at the BMK/6-31G** level.
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Figure S5. The electron density contours of LUMO, HOMO and HOMO-1 of o-TSSI, m-TSSI, TSSSI and TSSSSI 
in dilute chloroform solution at S1 geometry.
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Figure S6. The t index of TSSI, o-TSSI, m-TSSI, TSSSI and TSSSSI at S0 geometry.
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Figure S7. Optimized geometries at S0 and S1 of (a) TI in dilute chloroform solution and (b) TSSI in dilute 
chloroform solution and aggregated state. Agg-1, Agg-2 and Agg-3 are three representative aggregates extracted 
from MD trajectories.
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Figure S8. The electron density contours of LUMO and HOMO in S1 geometry in aggregates for TSSI.
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Figure S9. The orbital delocalization index of HOMO and LUMO for TSSI in dilute solution and aggregated state 
at S1-geometry. Agg-1, Agg-2 and Agg-3 are three representative aggregates extracted from MD trajectories.



S17

Figure S10. The energy levels and energy gaps (∆Eg) of TSSI aggregates at S1-geometry.
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Figure S11. The absorption and emission spectrum of TSSI in aggregated states.
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Supplementary Tables

Table S1. The calculated absorption and emission wavelength of TSSI in dilute chloroform solution by PCM model 
at several different density functionals with 6-31G** basis set, respectively.

B3LYP B97XD BMK M06-2X Exper. 10

Absorption 818 nm (1.52 eV) 498 nm (2.49 eV) 632 nm (1.96 eV) 552 nm (2.25 eV) 670 nm (1.85 eV)

Emission 969 nm (1.28 eV) 1636 nm (0.76 eV) 850 nm (1.46 eV) 1885 nm (0.66 eV) 835 nm (1.49 eV)
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Table S2. The key bond length (Å), bond angles (degree) and dihedral angles (degree) for TI and TSSI in monomer 
at the S0 and S1 minimum.

TI TSSI

S0 S1 |∆(S0-S1)| S0 S1 |∆(S0-S1)|

L1 1.48 1.46 0.02 1.47 1.44 0.03

1 120.7 121.4 0.7

2 121.4 121.8 0.4

3 119.2 120.0 0.8 120.7 121.1 0.4

4 119.4 120.5 1.1 120.6 121.1 0.5

A
1 13.6 10.6 3.0 12.2 1.2 13.4

A2 28.6 25.3 3.3 30.0 1.7 28.3

A3 38.2 26.9 11.3 41.6 15.5 26.1

A4 22.6 10.5 12.1 23.2 13.2 10.0

A5 12.1 5.0 7.1 14.0 46.2 32.2

B1 13.6 7.1 6.5

B2 2.8 0.2 2.6

D1 21.1 40.4 19.3 23.5 9.7 13.8

D2 24.7 32.1 7.4 31.7 26.6 5.1

D3 25.1 35.1 10.0 31.6 26.6 5.0
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Table S3. Calculated vertical excitation energy (∆Evert) (eV), f and transition orbitals assignments of TI and TSSI 
in monomer.

∆Evert f assignments

TI 1.71 0.1839
HOMO→LUMO (87.17%)
HOMO-1→LUMO (8.10%)

TSSI 1.46 1.6279
HOMO→LUMO (84.78%)

HOMO-1→LUMO (12.59%)
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Table S4. Selected dihedral angles (degree) of designed molecules at the S0 and S1 minimum.
o-TSSI m-TSSI TSSSI TSSSSI

S0 S1 |∆(S0-S1)| S0 S1 |∆(S0-S1)| S0 S1 |∆(S0-S1)| S0 S1 |∆(S0-S1)|

A1
30.5 28.4 2.1 11.7 1.3 13.0 12.3 0.2 12.5 12.5 0.7 11.7

A2
40.2 29.9 10.3 27.8 1.3 26.5 29.7 3.5 26.2 29.9 5.9 24.0

A3
40.8 30.1 10.7 40.0 16.1 24.0 41.4 18.7 22.7 41.6 21.1 20.4

A4
24.4 21.6 2.8 23.5 14.3 9.2 23.3 15.3 8.0 23.5 16.2 7.3

A5
15.5 29.3 13.8 16.6 45.1 28.4 13.6 41.6 28.0 13.8 39.0 25.3

B1
13.5 9.6 3.9 11.8 8.6 3.2 14.1 8.6 5.5 14.6 7.8 6.9

B2
3.5 0.9 2.6 -0.7 0.7 1.4 8.4 0.4 8.0 6.1 1.6 4.5

B3
\ \ \ \ \ \ 11.2 2.1 9.2 3.0 0.7 2.3

B4
\ \ \ \ \ \ \ \ \ 13.2 0.7 12.5

D1
23.9 9.1 14.8 22.6 3.7 18.9 23.3 6.4 29.7 25.5 15.5 10.0

D2
32.5 24.9

24.9

7.6 31.6 28.0 3.5 33.9 27.0 6.9 35.5 26.8 8.7

D3
32.1 24.5 7.6 30.6 28 2.6 33.9 27.1 6.8 35.6 26.0 9.6
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Table S5. Calculated vertical excitation energy (∆Evert) (eV), f, transition orbitals assignments, λtotal (eV) and  (s-𝑘𝑟

1) of designed molecules.

∆Evert f assignments λtotal  (×108)𝑘𝑟

o-TSSI 1.83 1.5228
HOMO→LUMO (87.72%)
HOMO-1→LUMO (9.37%)

0.4 1.5

m-TSSI 1.72 1.4400
HOMO→LUMO (84.46%)

HOMO-1→LUMO (12.90%)
1.0 0.8

TSSSI 1.39 2.0423
HOMO→LUMO (80.71%)

HOMO-1→LUMO (16.05%)
1.0 0.9

TSSSI 1.35 2.3405
HOMO→LUMO (74.39%)

HOMO-1→LUMO (21.11%)
0.8 1.2
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Table S6. The key dihedral angles (degree) for TSSI in aggregates at the S0 and S1 minimum.

Agg-1 Agg-2 Agg-3

S0 S1 |∆(S0-S1)| S0 S1 |∆(S0-S1)| S0 S1 |∆(S0-S1)|

A
1 9.9 10.2 0.3 14.0 14.2 0.2 14.0 14.5 0.5

A2 19.1 14.7 4.4 25.0 21.4 3.6 28.4 24.9 3.5

A3 30.4 26.2 4.2 32.7 27.9 4.8 33.8 29.3 4.5

A4 19.2 19.8 0.6 20.2 19.1 1.1 14.3 13.8 0.5

A5 20.6 18.8 4.9 25.1 31.5 6.4 17.6 24.9 7.3

B1 20.6 18.8 1.8 14.3 9.3 5.0 -4.1 0.4 4.5

B2 32.5 37.8 5.3 20.8 24.7 3.9 17.4 23.5 6.1

D1 17.0 18.8 1.8 29.6 35.5 5.9 18.2 20.5 2.3

D2 52.8 54.7 1.9 43.0 51.7 8.7 44.2 55.5 11.3

D3 42.7 49.6 6.9 43.0 53.1 10.1 54.5 60.4 5.9
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Table S7. Calculated vertical excitation energy (∆Evert) (eV), f, transition orbitals assignments, λtotal (eV),  (s-1) 𝑘𝑟

 (s-1) and  of TSSI in monomer and aggregates.𝑘𝑖𝑐 𝐹

∆Evert f assignments λtotal  (×107)𝑘𝑟  (×106)𝑘𝑖𝑐  (%)𝐹

Agg-1 1.51 0.3367 HOMO→LUMO (97.76%) 0.4 2.9 6.6 81.5
Agg-2 1.47 0.2550 HOMO→LUMO (98.41%) 0.5 2.3 8.4 73.2
Agg-3 1.53 0.3493 HOMO→LUMO (97.94%) 0.3 3.0 20.7 59.2
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