# **Supplemental Information**

# **<u>An</u>** FeS<sub>x</sub> Doped Three-Dimensional Covalent Organic Framework

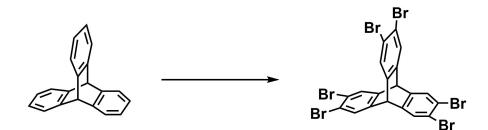
## for Degradation of Dyes

Jialong Song,<sup>*a,b*</sup>,<sup>*b*</sup> Chengyang Yu,<sup>*a*</sup>,<sup>*t*</sup> Yaozu Liu, <sup>*a*</sup> Junxia Ren,<sup>*a*</sup> Jianchuan Liu,<sup>*a*</sup> Zitao Wang,<sup>*a*</sup> Liangkui Zhu,<sup>*a*</sup> Jing Fu,<sup>*b*</sup> Bin Tang,<sup>*c*</sup> Shilun Qiu,<sup>*a*</sup> Yujie Wang<sup>\**a*</sup> and Qianrong Fang<sup>\**a*</sup>

## Table of contents

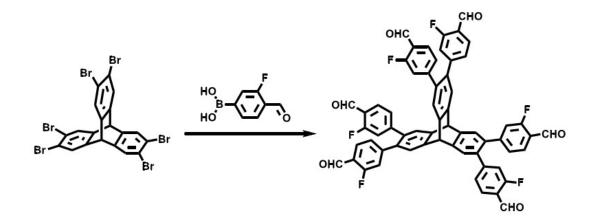
| Section S1 | Materials        | S3-S5  |
|------------|------------------|--------|
| Section S2 | Characterization | S6-S19 |
| Section S3 | References       | S19    |

#### Section S1. Materials


#### S1.1 Materials

All starting materials and solvents, unless otherwise noted, were obtained from J&K scientific LTD and used without further purification. All products were isolated and handled under nitrogen using either glovebox or Schlenk line techniques.

#### **S1.2 Instruments**

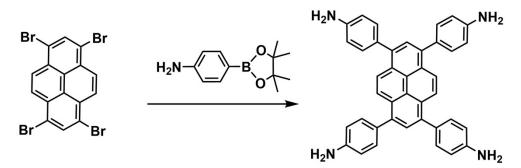

A Bruker AV-400 NMR spectrometer was applied to record the liquid <sup>1</sup>H NMR spectra. Solid-state <sup>13</sup>C NMR spectra were recorded on an AVIII 500 MHz solid-state NMR spectrometer. The FTIR spectra (KBr) were obtained using a SHIMADZU IRAffinity-1 Fourier transform infrared spectrophotometer. A SHIMADZU UV-2450 spectrophotometer was used for all absorbance measurements. Thermogravimetric analysis (TGA) was recorded on a SHIMADZU DTG-60 thermal analyzer under N<sub>2</sub>. The operational range of the instrument was from 30 °C to 800 °C at a heating rate of 10 °C min<sup>-1</sup> with N<sub>2</sub> flow rate of 30 mL min<sup>-1</sup>. PXRD data were collected on a PANalytical B.V. Empyrean powder diffractometer using a Cu K $\alpha$  source ( $\lambda = 1.5418$  Å) over the range of  $2\theta = 2.0-40.0^{\circ}$  with a step size of  $0.02^{\circ}$  and 2 s per step. The sorption isotherm for N<sub>2</sub> was measured by using a Quantachrome Autosorb-IQ analyzer with ultra-high-purity gas (99.999% purity). To estimate pore size distributions for JUC-598, nonlocal density functional theory (NLDFT) was applied to analyze the N2 isotherm based on the model of N2@77K on carbon with slit pores and the method of non-negative regularization. For scanning electron microscopy (SEM) image, JEOL JSM-6700 scanning electron microscope was applied. Transmission electron microscopy (TEM) image was obtained on JEM-2100 transmission electron microscopy. The metal loading was determined using inductively coupled plasma (ICP) analyses on a PerkinElmer Optima 3300 DV ICP instrument.

S1.3 Synthesis of <u>2,3,6,7,14,15-hexa(3-fluoro-4-formylphenyl)triterpene</u> <u>2,3,6,7,14,15-hexa(4'-formylphenyl)triptycene</u> (HFPTP<u>-F</u>)<sup>1</sup>



#### (1) Synthesis of 2,3,6,7,14,15-hexabromotriptycene

A mixture of triptycene (1.00 g, 3.9 mmol) and iron powder (80.0 mg, 1.45 mmol) was dissolved in 1,2-dichloroethane (60.0 mL). Bromine (1.32 mL, 25.7 mmol) was added slowly to the flask. Then the mixture was refluxed for 6h. After the reaction was cooled to 25 °C, the solvent and excess bromine were removed under reduced pressure. The residue was loaded on a short column (silica, CHCl3) to give solid, which was recrystallized from CHCl3 to give the pure product as colorless, needle-like crystals: (2.24 g, 3.1 mmol, 79%), m.p. > 350 °C; <sup>1</sup>H NMR (400 MHz, CDCl3, 300 K):  $\delta$  (ppm) 7.62 (s, 6 H), 5.24 (s, 2 H).




#### (2) Synthesis of HFPTP-F

A mixture of 2,3,6,7,14,15-hexabromotriptycene (500.0 mg, 0.69 mmol),  $Cs_2CO_3$  (2.90 g, 8.9 mmol.),  $Pd(PPh_3)_4$  (0.24 g, 0.2 mmol ) and (3-F-4-formylphenyl) boronic acid (1.49 g, 8.9 mmol ) was dissolved in anhydrous THF (50.0 mL) and the mixture was heated and stirred at 65 °C under an argon atmosphere for 18 h. The solvent was removed under reduced pressure and the residue was dissolved in  $CH_2Cl_2$  (100.0 mL). The crude product was washed sequentially with saturated NaHCO<sub>3</sub> (100.0 mL), deionized H<sub>2</sub>O (100.0 mL), and brine (100.0 mL). The organic phase was dried with MgSO<sub>4</sub> and filtered. The solvent was removed in vacuo and the crude product was

purified by column chromatography with silica gel (CH<sub>2</sub>Cl<sub>2</sub>/methanol, 50:1, v/v) and gave the pure product as yellow-white crystals (364 mg, 0.37 mmol, 53 %), m.p. >300 °C. 1HNMR (400 MHz, <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) = 10.30 (s, 6 H), 7.71-7.74 (m, J = 7.88, 6 H), 7.60 (s, 6 H), 6.90-6.97 (m, J = 8.04, 12 H), 5.76 (s, 2 H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>-*d*6,  $\delta$ ):  $\delta$  (ppm) = 186.659, 165.533, 162.952, 148.977, 148.891, 144.883, 136.136, 128.772, 126.294, 122.823, 122.742, 117.773, 117.561, 52.913.

S1.4 Synthesis of 1,3,6,8-tetra(4-aminophenyl)pyrene (TAPPy)<sup>2</sup>



A mixture of 1,3,6,8-tetrabromopyrene (1.48 g, 2.86 mmol), 4-aminophenylboronic acid pinacol ester (3.01 g, 13.7 mmol),  $K_2CO_3$  (2.18 g, 15.7 mmol), and Pd(PPh\_3)<sub>4</sub> (0.33 g, 0.29 mmol, 10 mol%) was dissolved in 32.0 mL 1,4-dioxane and 8.0 mL degassed H<sub>2</sub>O and the mixture was heated and stirred at 115 °C under an argon atmosphere for 3 d. After cooling to room temperature, H<sub>2</sub>O (50.0 mL) was added. The resulting precipitate was collected via filtration and was washed with H<sub>2</sub>O (50.0 mL) and MeOH (100.0 mL). Recrystallization from 1,4-dioxane, followed by drying under high vacuum furnished the title compound, as a bright yellow powder (1.69 g, 2.56 mmol, 89 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 8.13 (s, 4 H), 7.79 (s, 2 H), 7.34 (d, *J* = 8.4 Hz, 8 H), 6.77 (d, *J* = 8.5 Hz, 8 H), 5.30 (s, 8 H), 3.56 (s, 12 H, dioxane).<sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 148.2, 137.1, 131.0, 129.0, 127.6, 126.7, 126.1, 124.4, 113.9, 66.3 ppm.

## Section S2. Characterization

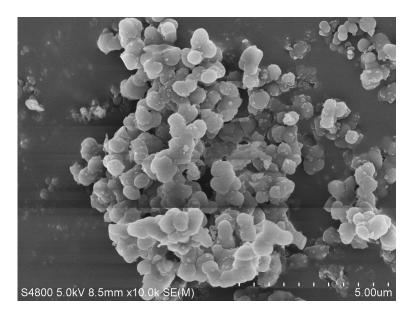



Figure S1. SEM image of as-synthesized JUC-598.

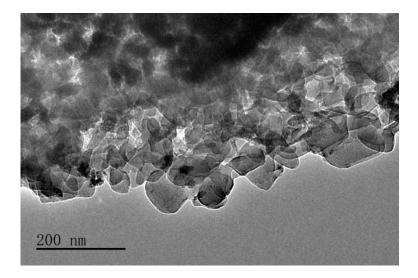



Figure S2. TEM image of as-synthesized JUC-598.

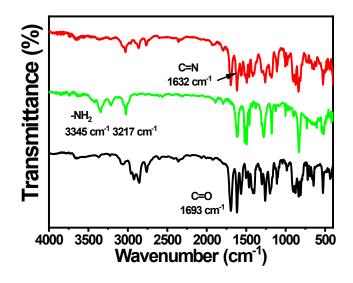
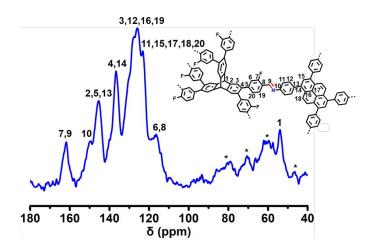




Figure S3. FT-IR spectra of HFPTP-F (black) and TAPPy (green), JUC-598 (red).



**Figure S4.** Solid state <sup>13</sup>C NMR of JUC-598. Asterisks (\*) indicate peaks arising from spinning side bands.

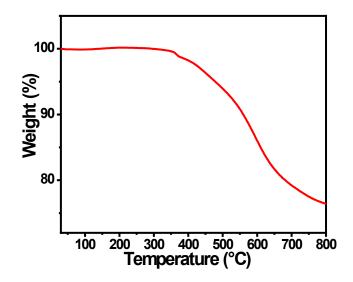
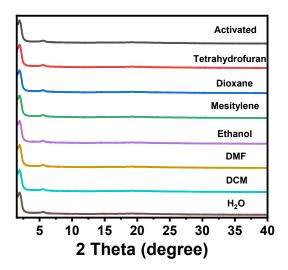




Figure S5. TGA curve of JUC-598.



**Figure S6.** A comparison of PXRD patterns of JUC-598 before and after the activation and treatment in various organic solvents and water for 24 h.




Figure S7. BET plot of JUC-598 calculated from N<sub>2</sub> adsorption isotherm at 77 K.

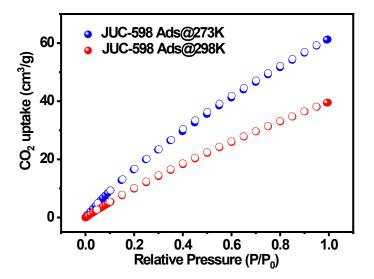



Figure S8. CO<sub>2</sub> adsorption of JUC-598 at 77 K and 87 K.

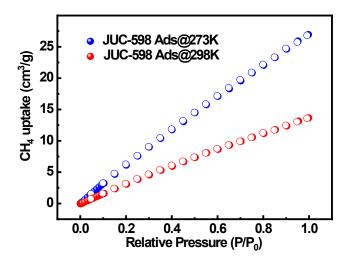



Figure S9. CH<sub>4</sub> adsorption of JUC-598 at 77 K and 87 K.

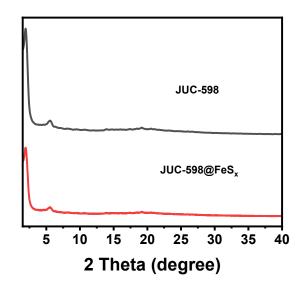



Figure S10. PXRD patterns of JUC-598 and JUC-598@FeS<sub>x</sub>.

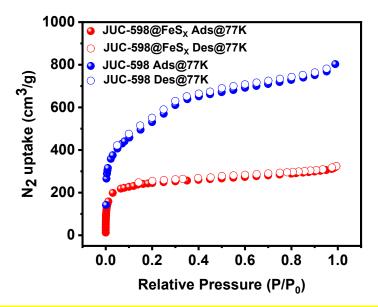



Figure S11. N<sub>2</sub> adsorption-desorption isotherm of JUC-598 and JUC-598@FeS<sub>x</sub> at 77 K.

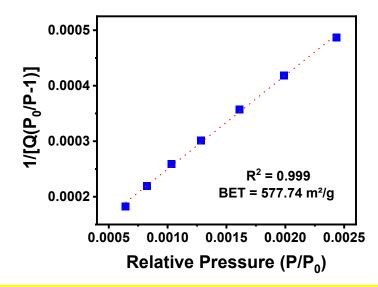



Figure S12. BET plot of JUC-598@FeSx calculated from N2 adsorption isotherm at 77 K.

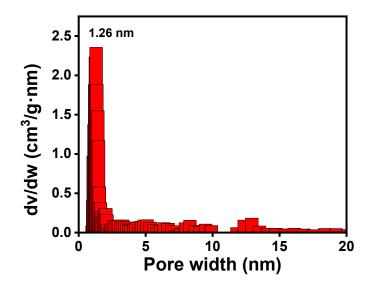



Figure S13. The pore-size distribution of JUC-598@FeS<sub>x</sub> indicating a microporous width of  $\sim 1.2$ 

nm

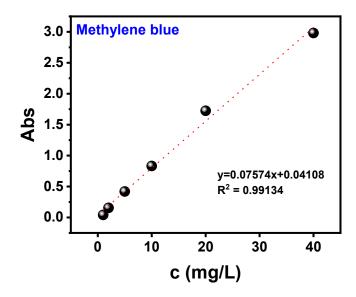



Figure S14. The standard UV-vis curve of MB.

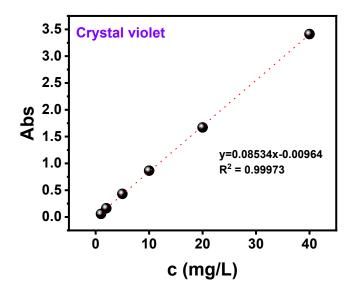
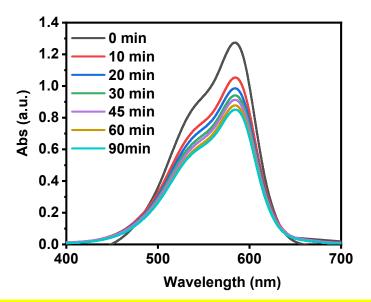
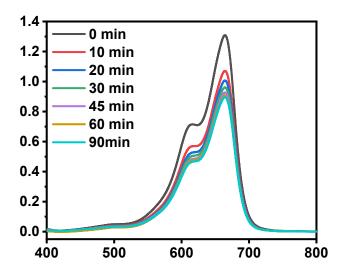





Figure S15. The standard UV-vis curve of CV.



**Figure S16.** Evolution of UV-vis absorption spectra of CV solution (15 mg/L) in the presence of JUC-598 (adsorption capacity of 32.71%)



**Figure S17.** Evolution of UV-vis absorption spectra of MB solution (15 mg/L) in the presence of JUC-598 (adsorption capacity of 32.47%)

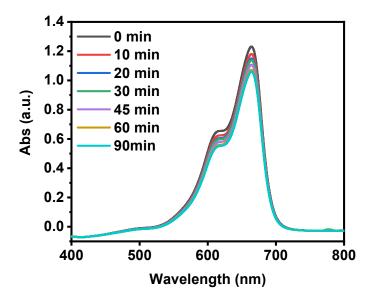
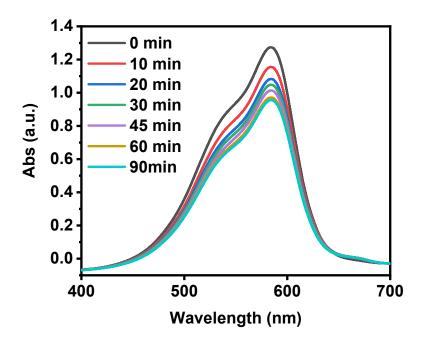
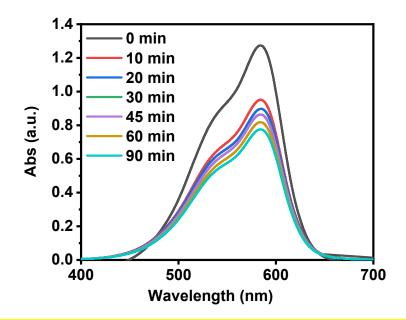
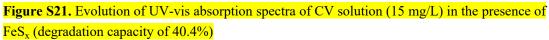
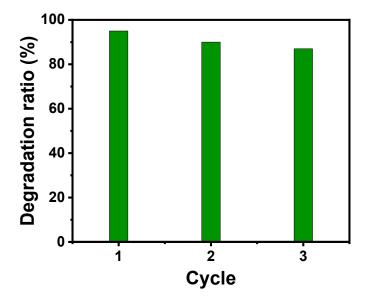



Figure S18. Evolution of UV-vis absorption spectra of MB solution (15 mg/L) in the presence of JUC-598@FeS<sub>x</sub>.



Figure S19. Evolution of UV-vis absorption spectra of CV solution (15 mg/L) in the presence of JUC-598@FeS<sub>x</sub>



**Figure S20.** Evolution of UV-vis absorption spectra of MB solution (15 mg/L) in the presence of FeS<sub>x</sub> (degradation capacity of 38.9%)







**Figure S22.** Recyclability study of JUC-598@FeS<sub>x</sub> for CV.

.

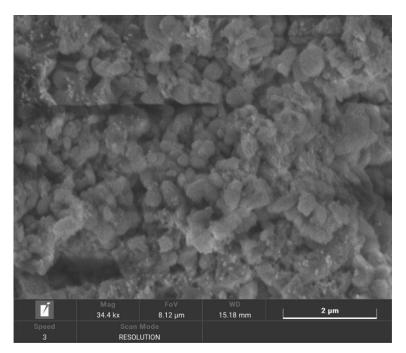



Figure S23. The SEM of JUC-598@FeS<sub>x</sub> after Fenton reaction.

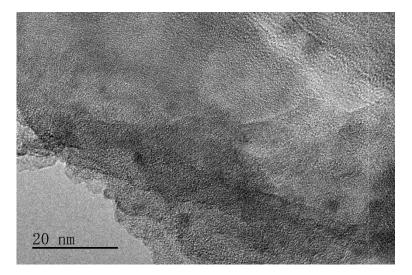



Figure S24. The TEM of JUC-598@FeS<sub>x</sub> after Fenton reaction.

| Space group          | P6/m                                                                                         |        |        |  |
|----------------------|----------------------------------------------------------------------------------------------|--------|--------|--|
| Calculated unit cell | $a = b = 53.5268$ Å, $c = 19.9307$ Å, $\alpha = \beta = 90^{\circ}$ , $\gamma = 120^{\circ}$ |        |        |  |
| Measured unit cell   | $a = b = 53.5126$ Å, $c = 19.9218$ Å, $\alpha = \beta = 90^{\circ}$ , $\gamma = 120^{\circ}$ |        |        |  |
| Pawley refinement    | $R_{\rm p} = 2.52\%,  R_{\rm wp} = 3.26\%$                                                   |        |        |  |
| atoms                | Х                                                                                            | у      | Z      |  |
| C1                   | 0.4011                                                                                       | 0.6261 | 0.5738 |  |
| C2                   | 0.4307                                                                                       | 0.6441 | 0.5844 |  |
| C3                   | 0.4464                                                                                       | 0.6339 | 0.6198 |  |
| C4                   | 0.4326                                                                                       | 0.6056 | 0.6454 |  |
| C5                   | 0.4027                                                                                       | 0.5878 | 0.6347 |  |
| C6                   | 0.3871                                                                                       | 0.5980 | 0.5992 |  |
| C7                   | 0.4493                                                                                       | 0.5951 | 0.6829 |  |
| N8                   | 0.4367                                                                                       | 0.5694 | 0.7088 |  |
| С9                   | 0.4329                                                                                       | 0.5317 | 0.7837 |  |
| C10                  | 0.4504                                                                                       | 0.5565 | 0.7461 |  |
| C11                  | 0.4804                                                                                       | 0.5675 | 0.7451 |  |
| C12                  | 0.4925                                                                                       | 0.5540 | 0.7823 |  |
| C13                  | 0.4749                                                                                       | 0.5296 | 0.8211 |  |
| C14                  | 0.4450                                                                                       | 0.5183 | 0.8210 |  |
| C15                  | 0.4881                                                                                       | 0.5157 | 0.9282 |  |
| C16                  | 0.4878                                                                                       | 0.5153 | 0.8603 |  |
| C17                  | 0.3846                                                                                       | 0.6367 | 0.5356 |  |
| C18                  | 0.3682                                                                                       | 0.6462 | 0.5710 |  |
| C19                  | 0.4775                                                                                       | 0.5323 | 0.9667 |  |

**Table S1.** Unit cell parameters and fractional atomic coordinates for JUC-598 calculated based on

 the stp net.

| C20 | 0.3521 | 0.6557 | 0.5356 |
|-----|--------|--------|--------|
| F21 | 0.4752 | 0.6518 | 0.6290 |
| H22 | 0.4421 | 0.6671 | 0.5642 |
| H23 | 0.3912 | 0.5648 | 0.6551 |
| H24 | 0.3630 | 0.5833 | 0.5910 |
| H25 | 0.4736 | 0.6097 | 0.6894 |
| H26 | 0.4085 | 0.5222 | 0.7841 |
| H27 | 0.4950 | 0.5873 | 0.7137 |
| H28 | 0.5168 | 0.5630 | 0.7813 |
| H29 | 0.4305 | 0.4981 | 0.8516 |
| H30 | 0.3681 | 0.6461 | 0.6282 |
| H31 | 0.4691 | 0.5452 | 0.9390 |
| C32 | 0.5000 | 0.5000 | 0.8202 |
| C33 | 0.5000 | 0.5000 | 0.0341 |
| H34 | 0.5000 | 0.5000 | 0.7630 |
| C35 | 0.3333 | 0.6667 | 0.4330 |
| Н36 | 0.3333 | 0.6667 | 0.3758 |

### Section S3. References

- C. Moylan, L. Rogers, Y. M. Shaker, M. Davis, H.-G. Eckhardt, R. Eckert, A. A. Ryan and M. O. Senge, Preparation of Tri- and Hexasubstituted Triptycene Synthons by Transition Metal Catalyzed Cross-Coupling Reactions for Post-Modifications, *Eur. J. Or. Chem.*, 2016, 2016, 185-195.
- D. Bessinger, L. Ascherl, F. Auras and T. Bein, Spectrally Switchable Photodetection with Near-Infrared-Absorbing Covalent Organic Frameworks, *J. Am. Chem. Soc.*, 2017, 139, 12035-12042.