Electronic Supplementary Information

Fluorescence quenching mechanism of tetrazine-functionalized fluorogenic labels with integrated π -conjugations: internal conversion to a dark state

Tianruo Shen,^a Wenda Zhang,^{a,b} Priya Yadav,^a Xiao Wei Sun^b and Xiaogang Liu*,^a

^a Science, Mathematics, and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.

^b Institute of Nanoscience and Applications and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

* Corresponding Author: Xiaogang Liu (xiaogang_liu@sutd.edu.sg)

Contents

Experimental Conditions for the Reported Tetrazine-Based Fluorogenic Labels	S2
Computational Methods	S3
Additional Computational Results	S4
Establishment of the Internal Conversion to a Dark State (ICDS) Model	S4
Comparison with the Energy Transfer to a Dark State (ETDS) Model	S11
Design Strategies for ICDS-Based Fluorogenic Labels	S13
Limitation of the ICDS Mechanism	S17
References	S18

Experimental Conditions for the Reported Tetrazine-Based Fluorogenic Labels

The testing conditions for the reported tetrazine-based fluorogenic probes are listed in Table S1. Two dienophiles, *trans*-cyclooctene (**TCO**), and bicyclononyne (**BCN**), were reacted with different probes in various media.

Set	React with	Medium	Reference
1	тсо	Acetonitrile (ACN):water = 1:1	Park <i>et al</i> . ¹
2	тсо	ACN:water = 1:1	Park <i>et al</i> . ¹
3	BCN	ACN:HEPES = 1:1	Kele <i>et al.</i> ²
4	BCN	Ethanol (EtOH)	Wu <i>et al</i> . ³
5	BCN	Acetonitrile	Vrabel <i>et al.</i> ⁴

Table S1. Experimental conditions for five sets of molecules.

Computational Methods

The density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were carried out in the *Gaussian 16* program.⁵⁻⁷ All the calculations were performed using ω B97XD functional and def-2SVP basis set.^{8, 9} We considered the solvation effects by deploying the SMD solvent model and linear-response (LR) solvent formalism in EtOH.¹⁰⁻¹² All the optimized molecular structures at the ground and excited states were confirmed at the local minimums of the potential energy surfaces of S₀, S₁, and S₂. The Avogadro software was applied to visualize the optimized geometries of all molecules.¹³ The hole-electron analyses were performed and visualized using Multiwfn and VMD software.¹⁴⁻¹⁷

Additional Computational Results

а Fragment 1 Fragment 2 iEDDA b 1a'-BCN 1a 0.00% 0.00 Electron 0.00% 0.00% Hole С 2a 2a'-BCN 13.47% 40.24% Electron Hole

Establishment of the Internal Conversion to a Dark State (ICDS) Model

Fig. S1 (a) Two representative fragments extracted from the precursors and products for analyzing the fragment contributions to the electron and hole distributions. (b) Atomic contributions to the hole-electron distributions of the bright states for 1a'/1a'-BCN and (c) 2a'/2a'-BCN. The inset values show the fragment contributions to the hole or electron distributions.

To quantify the fragment contributions to the hole ($\eta_{\rm H}$) and electron ($\eta_{\rm E}$) distributions of different states, we calculated the contributions of Fragment 1 to the labels and Fragment 2 to the products, respectively (Fig. S1). The results indicated that Fragment 1 has participated in the π - π * transitions of the bright state in **2a**', and Fragment 2 has joined the π - π * transitions of the bright states in **2a**'-BCN.

Fig. S2 Calculated UV-vis absorption spectra of 1a', 1a'-BCN, 2a', and 2a'-BCN.

To rationalize the ICDS mechanism of tetrazine-derived fluorophores with integrated π -conjugations, we carried out the ground state geometric optimizations and electronic structure analysis, *i.e.*, vertical excitation energy, hole-electron distribution, and charge transfer distance (d_{CT}), and fragment contribution, for various probes and their products upon reactions with **BCN** (Fig. S3-S14). The same quenching mechanism (ICDS) for these precursors was obtained.

We observed a low-lying dark state with ~0 oscillator strength (f) in all precursor dyes. This dark state was eliminated after iEDDA reactions, as reflected by large f values in all products.

Fig. S3 Molecular structures of 2b', 2c', 2d', 2b'-BCN, 2c'-BCN, and 2d'-BCN.

Fig. S4 Molecular structures of Set 3 molecules after reacting with BCN.

Fig. S5 Molecular structures of Set 4 molecules after reacting with BCN.

Fig. S6 Molecular structures of Set 5 molecules after reacting with BCN.

Fig. S7 Optimized geometries (top), energy levels of key states during the vertical excitation processes (middle), and corresponding hole-electron distributions (mauve: hole; green: electron) with d_{CT} , η_{H} , and η_{E} (bottom) of (a) **2b'/2b'-BCN**, (b) **2c'/2c'-BCN**, and (c) **2d'/2d'-BCN**.

Fig. S8 Optimized geometries (top), energy levels of key states during the vertical excitation processes (middle), and corresponding hole-electron distributions (mauve: hole; green: electron) with d_{CT} , η_{H} , and η_{E} (bottom) of (a) **3b/3b-BCN**, (b) **3c/3c-BCN**, and (c) **3d/3d-BCN**.

Fig. S9 Optimized geometries (top), energy levels of key states during the vertical excitation processes (middle), and corresponding hole-electron distributions (mauve: hole; green: electron) with d_{CT} , η_{H} , and η_{E} (bottom) of **3e/3e-BCN**.

Fig. S10 Optimized geometries (top), energy levels of key states during the vertical excitation processes (middle), and corresponding hole-electron distributions (mauve: hole; green: electron) with d_{CT} , η_{H} , and η_{E} (bottom) of **4a/4a-BCN** (left) and **4b/4b-BCN** (right).

Fig. S11 Optimized geometries (top), energy levels of key states during the vertical excitation processes (middle), and corresponding hole-electron distributions (mauve: hole; green: electron) with d_{CT} , η_{H} , and η_{E} (bottom) of **4d/4d-BCN** (left) and **4e/4e-BCN** (right).

Fig. S12 Optimized geometries (top), energy levels of key states during the vertical excitation processes (middle), and corresponding hole-electron distributions (mauve: hole; green: electron) with d_{CT} , η_{H} , and η_{E} (bottom) of **4f/4f-BCN** (left) and **4g/4g-BCN** (right).

Fig. S13 Optimized geometries (top), energy levels of key states during the vertical excitation processes (middle), and corresponding hole-electron distributions (mauve: hole; green: electron) with d_{CT} , η_{H} , and η_{E} (bottom) of **4h/4h-BCN** (left) and **4i/4i-BCN** (right).

Fig. S14 Optimized geometries (top), energy levels of key states during the vertical excitation processes (middle), and corresponding hole-electron distributions (mauve: hole; green: electron) with d_{CT} , η_{H} , and η_{E} (bottom) of **5b/5b-BCN** (left) and **5c/5c-BCN** (right).

Comparison with the Energy Transfer to a Dark State (ETDS) Model

Fig. S15 Molecular structures of different tetrazine-derived probes reported by Wombacher *et al.* before and after reacting with *trans*-cyclooctenol (**TCO-OH**).¹⁸

Before the iEDDA reactions		After the iEDDA reactions				
Molecule	$\Delta E ({ m eV})^{19}$	Molecule	Peak λ_{em} (nm) ¹⁸	FE ratio ¹⁸	Quantum yield (QY) ¹⁸	
6a	0.9875	6a-TCO-OH	521	72-fold	0.266	
6b	0.9854	6b-TCO-OH	517	109-fold	0.360	
6с	0.9881	6с-ТСО-ОН	522	103-fold	0.422	
6d	0.9901	6d-TCO-OH	524	60-fold	0.288	
6e	0.5870	бе-ТСО-ОН	577	12-fold	0.372	
6f	0.5620	6f-TCO-OH	580	22-fold	0.814	
6g	0.1661	6g-TCO-OH	664	3.7-fold	0.063	
6h	0.1675	6h-TCO-OH	665	1.8-fold	0.036	
<u>6i</u>	0.1607	6i-TCO-OH	666	2-fold	0.052	

Table S2. Properties of Labels 6a-i and their products (after iEDDA reactions with TCO-OH).

Before the iEDDA reactions		After the iEDDA reactions			
Molecule	$\Delta E (\mathrm{eV})$	Molecule	Peak $\lambda_{em} (nm)^3$	FE ratio ³	QY ³
4a	0.983	4a-BCN	556	186-fold	0.14
4b	0.912	4b-BCN	587	265-fold	0.29
4c	0.700	4c-BCN	622	277-fold	0.18
4d	0.670	4d-BCN	642	961-fold	0.30
4 e	0.597	4e-BCN	652	304-fold	0.14
4f	0.636	4f-BCN	650	692-fold	0.17
4g	0.542	4g-BCN	685	910-fold	0.18
4h	0.614	4h-BCN	688	666-fold	0.14
4 i	0.477	4i-BCN	728	400-fold	0.07

Table S3. Properties of probes 4a-i and their products (after iEDDA reactions with BCN).

Design Strategies for ICDS-Based Fluorogenic Labels

Molecule	The vertical excitation energy of the dark state (eV)	Average (eV)
2a'	2.269	
2b'	2.268	
2c'	2.267	
2d'	2.264	
3 a	2.274	
3b	2.275	
3c	2.277	
3d	2.274	
3 e	2.275	
4a	2.279	
4b	2.279	2 270
4c	2.279	2.279
4d	2.280	
4e	2.316	
4f	2.275	
4g	2.286	
4h	2.274	
4i	2.285	
5a	2.293	
5b	2.293	
5c	2.263	
5d	2.282	

Table S4. Calculated energies of the dark states in different ICDS labels.

Fig. S16 (a) Molecular structures, optimized geometries, (b) energy levels of key states during the excitation and de-excitation processes, and (c) corresponding hole-electron distributions (mauve: hole; green: electron) with d_{CT} , η_{H} , and η_{E} of **3e** and **3e-BCN**.

Fig. S17 Optimized geometries (top), energy levels of key states during the vertical excitation processes (middle), and corresponding hole-electron distributions (mauve: hole; green: electron) with d_{CT} (bottom) of 4b-Q/4b-Q-BCN.

Fig. S18 Bond-length alternation values for **4b**, **4b-BCN**, **4b-Q**, and **4b-Q-BCN** (calculated along the highlighted paths in the π -conjugation bridges in Fig. 8a) at the ground state.

Fig. S19 Representative resonance structures of 4b and 4b-Q.

We calculated the bond-length alternation (BLA) values based on the ground state geometries for these four molecules along the highlighted paths in the π -conjugation bridges (Fig. 7a). The BLA values of **4b**-**Q** and **4b**-**Q**-**BCN** are larger than those of **4b** and **4b**-**BCN** (Fig. S18), indicating that the products after swapping the thiophene and methine units have stronger quinoidal characteristics. The resonance structure of **4b** can be illustrated by a delocalized structure with a partially spread charge distribution, whereas **4b**-**Q** can be described by a polarized structure with large charge separation (Fig. S19). Hence, **4b**-**Q** is more polarized in comparison to **4b** at S₀.

We next constructed the electrostatic potential (ESP) surfaces of **4b** and **4b-Q** with a focus on the partial charge separations on the diethylamino group (donor; Q_D) and the tetrazine unit (acceptor; Q_A ; Fig. S20). In good agreement with the BLA analysis, more positive charges are distributed on the donor of **4b-Q** ($Q_D = 0.131$ e) than that on **4b** ($Q_D = 0.113$ e). Moreover, **4b** has less substantial negative potential on the tetrazine group (Q_A = -0.431 e) than **4b-Q** does ($Q_A = -0.452$ e). Owing to the stronger electron-donating/withdrawing strength, **4b-BCN** demonstrates a stabilized S₂ during the vertical excitation (Fig. S17).

Fig. S20 Electrostatic potential surfaces of 4b (top) and 4b-Q (bottom) with partial charge value at donor and acceptor.

We also compared the d_{CT} of **4b** and **4b-BCN** in the Frank-Condon states (Fig. S21). Due to the enhanced charge separation of **4b-BCN** at S₀, this molecule shows a weaker $d_{CT} = 1.682$ Å during the photoexcitation from S₀ to S₂ compared to **4b** ($d_{CT} = 2.148$ Å). Therefore, our results show that exchanging the connection orders in the π conjugation bridges can give the molecule strong quinoidal characteristics for strengthening the charge separation at S₀. This method thus effectively induces the spectral redshift in the resulting dyes.

Fig. S21 Centroid hole-electron distributions with charge transfer directions and distances of **4b** (left) and **4b**-**Q** (right; mauve: hole; green: electron).

Limitation of the ICDS Mechanism

Fig. S22 Hole-electron distributions (mauve: hole; green: electron) with d_{CT} , η_{H} , and η_{E} of **7a** (left) and **7b** (right).

Fig. S23 Molecular structures, optimized geometries (a and c), energy levels of key states during the excitation and de-excitation processes (b and d) of **7a-BCN** (left) and **7b-BCN** (right; * means that the geometric relaxation process was not optimized).

References

- Y. Lee, W. Cho, J. Sung, E. Kim and S. B. Park, Monochromophoric Design Strategy for Tetrazine-Based Colorful Bioorthogonal Probes with a Single Fluorescent Core Skeleton, *J. Am. Chem. Soc.*, 2018, 140, 974-983.
- 2 M. Bojtar, K. Nemeth, F. Domahidy, G. Knorr, A. Verkman, M. Kallay and P. Kele, Conditionally Activatable Visible-Light Photocages, *J. Am. Chem. Soc.*, 2020, **142**, 15164-15171.
- W. Mao, J. Tang, L. Dai, X. He, J. Li, L. Cai, P. Liao, R. Jiang, J. Zhou and H. Wu, A General Strategy to Design Highly Fluorogenic Far-Red and Near-Infrared Tetrazine Bioorthogonal Probes, *Angew. Chem.*, *Int. Ed.*, 2021, **60**, 2393-2397.
- 4 S. J. Siegl, J. Galeta, R. Dzijak, M. Dracinsky and M. Vrabel, Bioorthogonal Fluorescence Turn-On Labeling Based on Bicyclononyne-Tetrazine Cycloaddition Reactions that Form Pyridazine Products, *ChemPlusChem*, 2019, 84, 493-497.
- 5 A. D. Becke, Density-Functional Thermochemistry. III. The Role of Exact Exchange, *J. Chem. Phys.*, 1993, **98**, 5648-5652.
- G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi and V. Barone, Geometries and Properties of Excited States in the Gas Phase and in Solution: Theory and Application of a Time-Dependent Density Functional Theory Polarizable Continuum Model. J. Chem. Phys., 2006, **124**, 94107.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Gaussian, *Inc., Wallingford CT*, 2016.
- J. D. Chai and M. Head-Gordon, Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615-6620.
- F. Weigend and R. Ahlrichs, Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297-3305.

- 10 A. V. Marenich, C. J. Cramer and D. G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, *J. Phys. Chem. B*, 2009, **113**, 6378-6396.
- 11 K. V. Mikkelsen, P. Jo/rgensen and H. J. r. A. Jensen, A Multiconfiguration Self-Consistent Reaction Field Response Method, J. Chem. Phys., 1994, 100, 6597-6607.
- 12 M. Caricato, B. Mennucci, J. Tomasi, F. Ingrosso, R. Cammi, S. Corni and G. Scalmani, Formation and Relaxation of Excited States in Solution: A New Time Dependent Polarizable Continuum Model Based on Time Dependent Density Functional Theory, J. Chem. Phys., 2006, **124**, 124520.
- M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform, *J. Cheminform.*, 2012, 4, 1-17.
- 14 T. Le Bahers, C. Adamo and I. Ciofini, A Qualitative Index of Spatial Extent in Charge-Transfer Excitations, *J. Chem. Theory Comput.*, 2011, **7**, 2498-2506.
- 15 Z. Liu and T. Lu, Optical Properties of Novel Conjugated Nanohoops: Revealing the Effects of Topology and Size, *J. Phys. Chem. C*, 2020, **124**, 7353-7360.
- 16 T. Lu and F. Chen, Multiwfn: A Multifunctional Wavefunction Analyzer., J. Comput. Chem., 2012, 33, 580-592.
- 17 W. Humphrey, A. Dalke and K. Schulten, VMD: Visual Molecular Dynamics, *J. Mol. Graph.*, 1996, **14**, 33-38.
- A. Wieczorek, P. Werther, J. Euchner and R. Wombacher, Green- to Far-Red-Emitting Fluorogenic Tetrazine Probes - Synthetic Access and No-Wash Protein Imaging inside Living Cells, *Chem. Sci.*, 2017, 8, 1506-1510.
- 19 W. Chi, L. Huang, C. Wang, D. Tan, Z. Xu and X. Liu, A Unified Fluorescence Quenching Mechanism of Tetrazine-Based Fluorogenic Dyes: Energy Transfer to a Dark State, *Mater. Chem. Front.*, 2021, 5, 7012-7021.