1 Nickel Encapsulated in Carbon Dots Derived

2 Nanosheets for Efficient Urea-Assisted Water

3 Electrolysis of Hydrogen Evolution

- 4 Yichen Pan^{†a}, Jiancheng Zhang^{†a}, Qian Zhang^a, Xin Chen^a, Qian Wang^a, Caicai Li^{*a},
- 5 Zonglin Liu*^b and Qingfeng Sun*^a
- 6 aCollege of Chemistry and Materials Engineering, Zhejiang A&F University,
- 7 Hangzhou, Zhejiang Province, 311300, PR China.
- 8 ^bInstitute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and
- 9 Environment, Harbin Institute of Technology, Harbin, 150001, China.
- 10 [†]They are equally contributed to the paper.
- 11 *Corresponding authors: Caicai Li (ccli@zafu.edu.cn); Zonglin Liu
 12 (liuzonglin_yoo@163.com); Qingfeng Sun (qfsun@zafu.edu.cn)

1 Materials and chemicals

2 Citric acid monohydrate ($C_6H_8O_7 \cdot H_2O$) and ethylenediamine (EDA) were 3 obtained from Sinopharm Group Chemical Reagent (Shanghai, China). 4 Nickel(II) acetate tetrahydrate (Ni(OAc)₂) was purchased from Aladdin 5 (Shanghai, China). All reagents were utilized without additional purification, and 6 ultrapure water was utilized throughout the experiments.

- 7
- 8

10 Figure S1. NCDs in ultrapure water at different excitation wavelengths (in 10 nm

11 increments starting from 400 nm to 480 nm).

12

9

13

15 Figure S2. High XPS spectra of (a) C 1s, (b) N 1s, and (c) O 1s of NCDs.

2 Figure S5. CV curves of NCDs-650 (a) and Ni (b) measured at different scan rates.

- -

Catalyst	η (mV)@j (mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	References
Ni-Cu alloy	128@10	57	[1] Electrochim. Acta, 2016, 215 , 609-616.
Ni-doped graphene	~180@10	45	[2] Nat. Commun. 2016, 7 10667.
NiO/Ni@CNT	80@10	82	[3] Nat. Commun. 2014, 5 4695
Ni@SNG	99.8@10	98	[4] ACS Appl. Mater Interfaces, 2021, 13 , 4294 4304.
Ni(OH) ₂ /Ag hybrid	89@10	102	[5] New J. Chem. 2021, 45 13286-13292.
Ni@graphene defects	270@10	47	[6] Chem, 2018, 4 , 285 297.
Ni-N-C	83@10	100	[7] ACS Appl. Mater Interfaces, 2022, 14 29822-29831.
Ni/NiFe LDH	92@10	72	[8] J. Mater. Chem. A 2019, 7 , 21722-21729.
Ni/Graphene	50@10	45	[9] Angew. Chem. Int. Ed 2015, 54 , 14031-14035.
Ni/NiO hybrid	105@10	55	[10] J. Alloys Compd 2021, 853 , 157338.
Nanoprism NiO/oxygen vacancies	115@10	146	[11] New J. Chem. 2020 44, 1703-1706.
NiO _x @bamboo-like carbon nanotubes	79@10	119	[12] ACS Appl. Mater Interfaces, 2017, 9 , 7139 7147.
Ni@NCDs	86@10	78.2	This work

1 Table S1. Comparison of the HER performance of Ni@NCDs with some recently

2 reported Ni-based catalysts in alkaline medium.

Catalyst	Cell Voltage at 10 mA cm ⁻² (V)	References	
NiS/Ni ₃ S ₄ /GCW	1.44	[13] J. Colloid Interface Sci. 2022,626, 848-857.	
NiS/MoS2@CC	1.46	[14] Chem. Eng. J. 2022, 443 , 136321	
MZS/NF-180	1.51	[15] <i>Renewable Energy</i> , 2022, 193 , 715-724.	
8%Co:Ni-P-O/NF	1.48	[16] J. Alloys Compd. 2022, 914 , 165362.	
CoS ₂ -Ti	1.59	[17] Electrochim. Acta, 2017, 246 , 776-782.	
Ni@NCNT	1.56	[18] Appl. Catal. B-Environ. 2021, 280, 119436.	
MnO ₂ /MnCo ₂ O ₄ /Ni	1.55	[19] J. Mater. Chem. A, 2017, 5 , 7825- 7832.	
Ni/C	1.6	[20] ACS Appl. Mater. Interfaces, 2018, 10 , 4750-4756.	
HC-NiMoS/Ti	1.59	[21] Nano Res. 2018, 11 , 988-996.	
Ni@NCDs	1.47	This work	

1 Table S2. Comparison of the Ni@NCDs with recently reported catalysts for urea-

2 assisted water electrolysis.

3

4

5

1 References

2 [1] M. Y. Gao, C. Yang, Q. B. Zhang, Y. W. Yu, Y. X. Hua, Y. Li and P. Dong,
3 Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic
4 activity for hydrogen evolution, *Electrochim. Acta*, 2016, 215, 609-616.

5 [2] L. Fan, P. F. Liu, X. Yan, L. Gu, Z. Z. Yang, H. G. Yang, S. Qiu and X. Yao,
Atomically isolated nickel species anchored on graphitized carbon for efficient
hydrogen evolution electrocatalysis, *Nat. Commun.*, 2016, 7, 10667.

8 [3] M. Gong, W. Zhou, M. C. Tsai, J. Zhou, M. Guan, M. C. Lin, B. Zhang, Y. Hu, D.

9 Y. Wang, J. Yang, S. J. Pennycook, B. J. Hwang and H. Dai, Nanoscale nickel
10 oxide/nickel heterostructures for active hydrogen evolution electrocatalysis, *Nat.*11 *Commun.*, 2014, 5, 4695.

[4] C. Zhang, S. Ju, T. H. Kang, G. Park, B. J. Lee, H. Miao, Y. Wu, J. Yuan and J. S.
Yu, Self-Limiting Growth of Single-Layer N-Doped Graphene Encapsulating
Nickel Nanoparticles for Efficient Hydrogen Production, *ACS Appl. Mater. Interfaces*, 2021, 13, 4294-4304.

[5] T. Xu, J. Wang, M. Wang, Y. Xue, J. Liu, N. Cai, W. Chen, F. Huang, X. Li and F.
Yu, Ni(OH)₂-Ag hybrid nanosheet array with ultralow Ag loading as a highly
efficient and stable electrocatalyst for hydrogen evolution reaction, *New J. Chem.*,
2021, 45, 13286-13292.

- [6] L. Zhang, Y. Jia, G. Gao, X. Yan, N. Chen, J. Chen, M. T. Soo, B. Wood, D. Yang
 and A. Du, Graphene defects trap atomic Ni species for hydrogen and oxygen
 evolution reactions, *Chem*, 2018, 4, 285-297.
- [7] J. Guo, W. Shang, J. Hu, C. Xin, X. Cheng, J. Wei, C. Zhu, W. Liu and Y. Shi,
 Synergistically enhanced single-atom nickel catalysis for alkaline hydrogen
 evolution reaction, *ACS Appl. Mater. Interfaces*, 2022, 14, 29822-29831.
- [8] Z. Cai, X. Bu, P. Wang, W. Su, R. Wei, J. C. Ho, J. Yang and X. Wang, Simple and
 cost effective fabrication of 3D porous core–shell Ni nanochains@NiFe layered
 double hydroxide nanosheet bifunctional electrocatalysts for overall water

- 2 [9] H. J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata, T. Fujita, Z. Tang and M.
 3 Chen, Nanoporous graphene with single-atom nickel dopants: an efficient and
 4 stable catalyst for electrochemical hydrogen production, *Angew. Chem. Int. Ed.*,
 5 2015, 54, 14031-14035.
- 6 [10] H. Han, S. Park, D. Jang and W. B. Kim, N-doped carbon nanoweb-supported
 7 Ni/NiO heterostructure as hybrid catalysts for hydrogen evolution reaction in an
 8 alkaline phase, *J. Alloys Compd.*, 2021, 853, 157338.

9 [11] X. Zhang and X. Du, Oxygen vacancies confined in nickel oxide nanoprism arrays
10 for promoted electrocatalytic water splitting, *New J. Chem.*, 2020, 44, 1703-1706.
11 [12] J. Wang, S. Mao, Z. Liu, Z. Wei, H. Wang, Y. Chen and Y. Wang, Dominating
12 role of Ni⁰ on the interface of Ni/NiO for enhanced hydrogen evolution reaction,
13 *ACS Appl. Mater. Interfaces*, 2017, 9, 7139-7147.

- [13] Z. Jiang, L. Zheng, C. Sheng, H. Xu, S. Chen, Y. Liao, Y. Qing and Y. Wu,
 Construction of NiS/Ni₃S₄ heteronanorod arrays in graphitized carbonized wood
 frameworks as versatile catalysts for efficient urea-assisted water splitting, *J. Colloid Interface Sci.*, 2022, **626**, 848-857.
- [14] C. Gu, G. Zhou, J. Yang, H. Pang, M. Zhang, Q. Zhao, X. Gu, S. Tian, J. Zhang,
 L. Xu and Y. Tang, NiS/MoS₂ Mott-Schottky heterojunction-induced local charge
 redistribution for high-efficiency urea-assisted energy-saving hydrogen
 production, *Chem. Eng. J.*, 2022, 443, 136321.
- [15] N. Chen, X. Du and X. Zhang, Controlled synthesis of MnS/ZnS hybrid material
 with different morphology as efficient water and urea electrolysis catalyst, *Renewable Energy*, 2022, 193, 715-724.
- 25 [16] J. Cao, Z. Jiao, R. Zhu, H. Long, Y. Zheng, J. Pan, J. Wang, F. Luo, C. Li and Q.
- Wei, Enhancing hydrogen evolution through urea electrolysis over Co-doped NiP-O film on nickel foam, *J. Alloys Compd.*, 2022, **914**, 165362.
- 28 [17] S. Wei, X. Wang, J. Wang, X. Sun, L. Cui, W. Yang, Y. Zheng and J. Liu, CoS₂

¹ splitting, J. Mater. Chem. A, 2019, 7, 21722-21729.

nanoneedle array on Ti mesh: A stable and efficient bifunctional electrocatalyst for
 urea-assisted electrolytic hydrogen production, *Electrochim. Acta*, 2017, 246, 776 782.

4 [18] Q. Zhang, F. M. D. Kazim, S. Ma, K. Qu, M. Li, Y. Wang, H. Hu, W. Cai and Z.
Yang, Nitrogen dopants in nickel nanoparticles embedded carbon nanotubes
promote overall urea oxidation, *Appl. Catal. B- Environ.*, 2021, 280, 119436.

7 [19] C. Xiao, S. Li, X. Zhang and D. R. MacFarlane, MnO₂/MnCo₂O₄/Ni

8 heterostructure with quadruple hierarchy: a bifunctional electrode architecture for

9 overall urea oxidation, J. Mater. Chem. A, 2017, 5, 7825-7832.

[20] L. Wang, L. Ren, X. Wang, X. Feng, J. Zhou and B. Wang, Multivariate MOFTemplated Pomegranate-Like Ni/C as Efficient Bifunctional Electrocatalyst for
Hydrogen Evolution and Urea Oxidation, *ACS Appl. Mater. Interfaces*, 2018, 10,
4750-4756.

[21] X. Wang, J. Wang, X. Sun, S. Wei, L. Cui, W. Yang and J. Liu, Hierarchical corallike NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall

16 urea electrolysis, *Nano Res.*, 2018, **11**, 988-996.