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Characterization

Powder X-ray diffraction (PXRD) analysis was carried on a Bruker AXS D8
Advance Labx diffractometer using Cu Ko as X-ray source (A = 1.5406 A, 2 0 range 2-
40°); Solid-state '3C cross-polarization magic angle spinning nuclear magnetic
resonance spectrum ('*C CP/MAS NMR) was recorded on a Bruker AVANCE III 500
MHz nuclear magnetic resonance spectrometer; X-ray photoelectron spectroscopy
(XPS) was obtained by a Thermo Scientific ESCALAB 250Xi spectrometer with Al
Ka radiation as the X-ray excitation source; High-resolution transmission electron
microscopy (HRTEM), high-angle annular dark field scanning transmission electron
microscopy (HAADF-STEM), and energy-dispersive X-ray (EDX) mapping of COF-
TZ and Co@COF-TZ were performed on a Thermo Scientific Talos F200i S/TEM at
an acceleration voltage of 200 kV; Nitrogen adsorption-desorption isotherms of various
COFs-based materials were acquired by a Micromeritics ASAP 2460 automated
sorption analyzer at liquid nitrogen (77 K).
Electrocatalytic oxygen reduction measurement

The ORR activity of COF-TZ in 0.1 M KOH was assessed with electrochemical
measurements conducted on an electrochemical workstation (Ivium, The Netherlands)
at room temperature (24 + 2°C), using a three-electrode cell with a rotating ring-disk
electrode (RRDE) system. The three-electrode cell made up a glassy-carbon-based
working electrode, a graphite rod counter electrode, and an Hg/HgO reference
electrode. All potentials in the thesis were quoted with reference to the reversible

hydrogen electrode (RHE).



In order to explore the production rate of the H;O, and ORR electron transfer
mechanism, the electron transfer number (n) and H,0O, yield were calculated through

the following equation:
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where I represent the absolute values of the ring current, 7, represent the absolute
values of the disk current, and N = 0.37 represent the current collection efficiency at
the Pt ring electrode.

Finally, the accelerated durability test (ADT) was carried out the COF-TZ in O,-
saturated 0.1 M KOH via chronoamperometric method for 36, 000 s at 0.6 V vs. RHE.
Li-S battery test

The CR2032 coin cells were assembled with Li-anode, S-cathode, separator, and
electrolyte in an inert gas-filled glovebox. Among them, different S-cathodes were
manufactured though mixing functional material (S@COF-CN, S@COF-TZ, or S-
Co@COF-TZ composite), polyvinylidene fluoride, and carbon black (8:1:1, by weight)
in N-methylpirrodinone, and sulfur loading was approximately 1.5 mg cm™2; The
Celgard 2400 membrane was served as a separator; The electrolyte was obtained via
adding 1.0 wt% LiNOj; into 1.0 M bis(trifluoromethane) sulfonimide lithium salt
solution (1,2-dimethoxy ethane : 1,3-dioxolane = 1 : 1, by volume). The
electrolyte/sulfur ratio is around 25 pL/mg per cell. The cyclic voltammogram and

electrochemical impedance spectroscopy of different S-cathodes were recorded by



electrochemical workstation (CHI760E, Shanghai Chenhua). Discharge-charge
performance of different functional materials were tested at the 2001 A.L Land battery.
Synthesis of TPB-DMTP-COF via Schiff base reaction

A mixed solvent of 0-DCB (1 mL) and n-butanol (1 mL) was added to a Pyrex tube
containing TAPB (56 mg, 0.16 mmol) and DMTA (46 mg, 0.24 mmol). The mixture
was sonicated to complete dissolution and then HAc (0.2 mL, 6 M) was added. The air
in the Pyrex tube was removed by freeze-pump-thaw cycles, then it was sealed through
heating and heated at 120°C for 3 d. After the reaction stopped, the mixture was cooled,
separated, and washed. At last, the solid powder was further purified by Soxhlet

extractor filled with THF and dried at 60°C to obtain the TPB-DMTP-COF.
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Scheme S1. Schematic representation of synthetic strategy for TPB-DMTP-COF.
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Preparation of COF-CN by Povarov cycloaddition reaction

Typically, TPB-DMTP-COF (40 mg, 0.2 mmol), 4-cyanophenylacetylene (63.5 mg,
0.5 mmol), 2,3,5,6-tetrachloro-1,4-benzoquinone (74 mg, 0.3 mmol), toluene (6 mL),
and BF;-OEt, (20 uL) were sequentially added to a 25 mL round-bottom flask and then

the mixture was stirred at 110°C for 72 h under argon atmosphere. Subsequently, the
4



precipitate was obtained via filtered, washed three times alternately with THF and

saturated NaHCOj solution, respectively and dried at 60°C to get the COF-CN.
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Scheme S2. Schematic illustration of the preparation process of the COF-CN.

Fabrication of S @COF-CN though sulfur melting and diffusing technique
S@COF-CN was obtained through a sulfur melting and diffusing technique. In brief,
COF-CN and sublimed sulfur (mass ratio 3:2) were adequately mixed in a Teflon

container and then heated at 155°C for 12 h to get S@COF-CN
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Scheme S3. Schematic representation of the transformation of COF-CN into

S@COF-CN.
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Fig. S1. (a) XPS survey scan of COF-CN, COF-TZ, and Co@COF-TZ; (b) N 1s XPS,

Co 2p XPS, and (d) CI 2p XPS of the Co@COF-TZ.
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Fig. S2. BET surface area plot of TPB-DMTP-COF.



0. 000728

0. 000655 —

0.000582 =

0.000509 =

0. 000437

0.000364 —

P/Po/[N(1-P/Po) ]

0.000291 =

0.000218 —

0.000146 —

0. 000073 =

COF-CN
BET surface area: 1280 m? g',

0. 000000
0.000

T T T T T T T T T
0.018 0.036 0.054 0.072 0.090 0.108 0.126 0.144 0.162 0.180

Relative pressure [P/Po]

Fig. S3. BET surface area plot of COF-CN.
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Fig. S4. BET surface area plot of COF-TZ.
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Fig. S5. BET surface area plot of Co@COF-TZ.
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Fig. S6. Tafel plots of COF-TZ.
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Fig. S7. Discharge-charge profiles of a S@COF-CN modified battery at different
8



rates.
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Fig. S8. Discharge-charge profiles of a S@COF-TZ modified battery at different rates.
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Fig. S9. Discharge-charge profiles of a S-Co@COF-TZ modified battery at 0.5 C for

different cycles.
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Fig. S10. Discharge-charge profiles of a S-@COF-CN modified battery at 0.5 C for

different cycles.
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Fig. S11. Discharge-charge profiles of a S@COF-TZ modified battery at 0.5 C for

different cycles.
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