Selective synthesis and reactivity expansion of a, β -unsaturated gemi-

nal diazides

Chen Chen, Jun Ge, Ling He*

Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.

heling2012@scu.edu.cn

Supplementary Information

1.	General Information	2
	General remarks	2
2.	General procedures	2
	General procedures A for the synthesis of 2-phenyl-2H-chromene-3-carbaldehyde derivat	ives
	1a-1f	2
	General procedures B for the synthesis of cinnamaldehyde derivatives 1g-1w.	2
	General procedures C for the synthesis of α , β -unsaturated geminal diazides 2a-2f	3
	General procedures D for the synthesis of α , β -unsaturated bistriazoles 5b-5t.	3
	General procedures for the synthesis of 6a.	3
	General procedures for the synthesis of 5a and 6b.	3
	General procedures E for the synthesis of α , β -unsaturated bis(heterocyclyl)methane 9a-9k	:.3
	General procedures F for the synthesis of (2-phenyl-2H-chromen-3-yl)methanin	nine
	derivatives 11a-11c	3
3.	Experimental data	4
4.	¹ H-, ¹³ C- NMR and HRMS spectra of new compounds	5
5.	Crystallographic data	30
	Crystallographic data for 2a	30
	Crystallographic data for 11a	30 34
6.	Crystallographic data for 11a	30 34 38
6. 7.	Crystallographic data for 11a	3 0 3 4 3 8 3 0
6. 7. 8.	Crystallographic data for 2a	3 0 3 4 3 8 9 0 9 0

1. General Information

General remarks. Commercially available materials were purchased from Energy Chemical (Shanghai, China), Bidepharm (Shanghai, China), Titan (Shanghai, China), and were used as received without further purification. Solvents were purchased from Titan. Dichloromethane, THF, toluene, CHCl₃ and CH₃OH were distilled after the treatment with P_2O_5 or metal sodium. Reactions were monitored by thin-layer chromatography (TLC) carried out on commercial silica gel plates (Yantai Jiangyou Silica gel Development Co.,LTD, Yantai, China) using UV light as a visualizing agent. Commercial silica gel (Qingdao Haiyang Chemical Co.,LTD, Qingdao, China) was used for column chromatography. ¹H- and ¹³C-NMR spectra were recorded on 400 MHz or 600 MHz spectrometers (Agilent Tech., Palo Alto, USA). ¹H-NMR spectra were referenced to Chloroform-*d* (7.26 ppm) or DMSO-*d*₆ (2.50 ppm), and reported as follows: Chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m= multiplet). Chemical shifts of the ¹³C-NMR spectra were measured relative to chloroform-*d* (77.23 ppm) or DMSO-*d*₆ (39.51 ppm). Mass spectral data were obtained from Bruker Daltonics Data analysis 3.2 mass spectrometer (Bruker, Beijing, China).

Caution! Geminal diazides are potentially hazardous and should be handled with appropriate care and safety equipment.

2. General procedures

General procedures A for the synthesis of 2-phenyl-2H-chromene-3-carbaldehyde derivatives 1a-1f. According to the previous report,^{1–3} salicylaldehyde derivatives (4 mmol) and unsaturated aldehydes (4.4 mmol) were taken in a round bottom flask and 5 ml of DMF was added to it followed by pyrrolidine (1.6 mmol). Then it was stirred at room temperature. The progress of the reaction was monitored by TLC and was found to be completed after 12 h. 30 ml of water was added and extracted with ethyl acetate. The combined organic layers were washed with brine (30 mL), dried over Na₂SO₄ and concentrated in rotavapor. Column chromatography on silica gel (petroleum ether/EtOAc =10/1) was performed with hexane-ethyl acetate as eluent to afford the corresponding 2-phenyl-2*H*-chromene-3-carbaldehyde derivatives 1a-1f.

General procedures B for the synthesis of cinnamaldehyde derivatives 1g-1w. According to the previous report,^{4–6} benzaldehyde derivatives (1 mmol) and propanal (1.5 mmol) were added successively at room temperature to a stirred suspension of powdery KOH (1 mmol) in the EtOH (5 mL). Until the condensation was complete (TLC monitoring), 30 ml of water was added and extracted with ethyl acetate (3× 10 mL). The combined organic layers were washed with water (2× 5 mL) and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc =30/1) to

afford the corresponding products cinnamaldehyde derivatives 1g-1w.

General procedures C for the synthesis of α , β -unsaturated geminal diazides 2a-2f. To an overdried reaction tube were added Yb(TfO)₃ (0.02 mmol) and compounds 1a-1d (0.2 mmol) under N₂. Then redistilled dichloromethane (1 mL) and TMSN₃ (0.8 mmol) were added successively by syringe. The mixture was stirred at room temperature for 24 h. The reaction solution was condensed and purified by column chromatography on neutral aluminum oxide with hexane-ethyl acetate (30:1) as eluent to afford the corresponding α , β -unsaturated geminal diazides 2a-2f.

General procedures D for the synthesis of α, β-unsaturated bistriazoles 5b-5t. To an over-dried reaction tube were added Yb(TfO)₃ (0.05 mmol) and compounds 1g-1w (0.5 mmol) under N₂. Then redistilled dichloromethane (2 mL) and TMSN₃ (2 mmol) were added successively by syringe. After stirring for 24 h in room temperature, the reaction solution was condensed and purified by column chromatography on neutral aluminum oxide (hexane/EtOAc=30/1). The crude diazides, 4-ethynylanisole (1.5 mmol), sodium L-ascorbate (0.5 mmol), CuSO₄·5H₂O (0.05 mmol), DMF (2 mL) was added to a round-bottom flask. The mixture was stirred for 12 h at room temperature and was monitored by TLC. Upon completion, ethyl acetate was added, and the mixture was washed with saturated aqueous NaCl and dried with Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel with hexane-ethyl acetate (2:1) as eluent to afford compound α, β-unsaturated bistriazoles 5b-5t.

General procedures for the synthesis of 6a. To a round-bottom flask were added diazide 2a (0.2 mmol), sodium L-ascorbate (0.2 mmol), $CuSO_4 \cdot 5H_2O$ (0.02 mmol) and DCM (20 mL). The mixture was stirred for 12 h at room temperature and was monitored by TLC. Upon completion, the solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel with hexane-ethyl acetate (5:1) as eluent to afford compound **6a**.

General procedures for the synthesis of 5a and 6b. To a round-bottom flask were added diazide 2a (0.2 mmol), 4-ethynylanisole (4a, 0.8 mmol) or 1,7-octadiyne (7, 0.44 mmol), sodium L-ascorbate (0.2 mmol), $CuSO_4 \cdot 5H_2O$ (0.02 mmol) and DMF (5 mL). The mixture was stirred for 12 h at room temperature and was monitored by TLC. Upon completion, the solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel with hexane-ethyl acetate (2:1) as eluent to afford compound 5a or 6b.

General procedures E for the synthesis of α , β -unsaturated bis(heterocyclyl)methane 9a-9k. To an over-dried reaction tube were added Cu(TfO)₂ (0.02 mmol), diazides 2a or 2g (0.2 mmol) and heterocycle 8a-8j (0.8 mmol) under N₂. Then redistilled dichloromethane (1 mL) was added by syringe. The mixture was stirred at room temperature for 5 h. The reaction solution was condensed and purified by column chromatography on silica gel with hexane-ethyl acetate (2:1) as eluent to afford the corresponding α , β -unsaturated bis(heterocyclyl)methane 9a-9k.

General procedures F for the synthesis of (2-phenyl-2H-chromen-3-yl)methanimine derivatives 11a-11c. To an over-dried reaction tube were added $Cu(TfO)_2$ (0.02 mmol), diazides 2a (0.2 mmol) and amino linked to strong electron-withdrawing group 10a-10c (0.4 mmol) under

N₂. Then redistilled dichloromethane (1 mL) was added by syringe. The mixture was stirred at room temperature for 5 h. The reaction solution was condensed and purified by column chromatography on silica gel with hexane-ethyl acetate (2:1) as eluent to afford the corresponding α , β -unsaturated bis(heterocyclyl)methane **11a-11c**.

3. Experimental data

3-(diazidomethyl)-2-phenyl-2H-chromene (2a). According to the general procedure C using (0.05 g, 0.21 mmol, 1.0 equiv) 2-phenyl-2H-chromene-3-carbaldehyde 1a, 3-(diazidomethyl)-2-phenyl-2H-chromene (0.045 g, 0.15 mmol, 70%) (2a) was obtained and chromatography (PE:EA=30:1) as yellow solid. TLC: $R_f = 0.8$ (PE:EA 10:1) [UV]. ¹H NMR (400 MHz, DMSO- d_6) δ 7.37 – 7.29 (m, 6H), 7.15 (td, J = 7.8, 1.7 Hz, 1H), 7.05 (s, 1H), 6.91 (t, J = 7.4 Hz, 1H), 6.70 (d, J = 8.0 Hz, 1H), 5.91 (s, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.1, 138.2, 131.1, 129.5, 129.2, 129.1, 128.3, 128.0, 123.9, 122.1, 121.0, 116.5, 76.6, 75.9. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₆H₁₃N₆O: 305.1145; found 305.1147. For gram scale reaction, using (1.18 g, 5 mmol, 1.0 equiv) 2-phenyl-2H-chromene-3-carbaldehyde 1a, 3-(diazidomethyl)-2-phenyl-2H-chromene (0.924 g, 3.04 mmol, 61%) (2a) was obtained.

2-phenyl-2H-chromene-3-carbonitrile (**3**). According to the general procedure C, when using other catalyst, such as Cu(TfO)₂, the Schmidt product 2-phenyl-2H-chromene-3-carbonitrile (**3**) was obtained and chromatography (PE:EA=20:1) as yellow solid. TLC: $R_f = 0.6$ (PE:EA 10:1) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.77 (s, 1H), 7.45 (m, 5H), 7.33 (m, 2H), 7.02 (td, J = 7.8, 1.7 Hz, 1H), 6.87 (d, J = 8.1 Hz, 1H), 6.19 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 153.1, 139.2, 138.0, 133.7, 129.9, 129.4, 129.3, 127.7, 122.7, 119.7, 117.4, 116.9, 106.7, 75.4. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₆H₁₂NO: 234.0913; found 234.0912.

3-(diazidomethyl)-2-phenyl-2H-chromen-7-yl acetate (**2b**). According to the general procedure C using (0.06 g, 0.2 mmol, 1.0 equiv) 3-formyl-2-phenyl-2H-chromen-7-yl acetate **1b**, 3-(diazidomethyl)-2-phenyl-2H-chromen-7-yl acetate (0.038 g, 0.1 mmol, 52%) (**2b**) was obtained and chromatography (PE:EA=20:1) as colorless oil. TLC: $R_f = 0.5$ (PE:EA 10:1) [UV]. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.34 (m, 5H), 7.30 (d, J = 8.6 Hz, 1H), 6.74 (d, J = 8.6 Hz, 1H), 6.43 (dd, J = 10.1, 2.0 Hz, 1H), 5.94 (dd, J = 3.4, 1.9 Hz, 1H), 5.88 (dd, J = 10.0, 3.4 Hz, 1H), 5.71 (s, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.8, 155.1, 144.1, 139.6, 128.9, 127.4, 127.3, 126.4, 119.7, 117.6, 115.6, 114.1, 77.5, 74.7, 20.6. HRMS (ESI-TOF) m/z: [M + NH₄]⁺ calcd for C₁₈H₁₈N₇O₃: 380.1466; found 380.1461.

3-(diazidomethyl)-7-methoxy-2-phenyl-2H-chromene (2c). According to the general procedure C using (0.057 g, 0.2 mmol, 1.0 equiv) 7-methoxy-2-phenyl-2H-chromene-3-carbaldehyde 1c, 3-(diazidomethyl)-7-methoxy-2-phenyl-2H-chromene (0.02 g, 0.059 mmol, 30%) (2c) was obtained and chromatography (PE:EA=30:1) as yellow oil. TLC: R_f = 0.7 (PE:EA 10:1) [UV]. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.33 (m, 5H), 7.24 (d, *J* = 8.5 Hz, 1H), 6.78 (dt, *J* = 9.2, 1.1 Hz, 1H), 6.67 (dd, *J* = 8.6, 0.8 Hz, 1H), 6.04 (s, 1H), 5.94 – 5.86 (m, 2H), 3.86 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.5, 153.8, 140.1, 128.8, 128.7, 127.3, 127.1, 125.1, 120.7, 118.5, 115.1, 112.5,

77.01, 73.9, 63.4. HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{17}H_{14}N_6O_2Na$: 357.1070; found 357.1069.

3-(diazidomethyl)-8-methoxy-2-phenyl-2H-chromene (2d). According to the general procedure C using (0.057 g, 0.2 mmol, 1.0 equiv) 8-methoxy-2-phenyl-2H-chromene-3-carbaldehyde 1d, 3-(diazidomethyl)-8-methoxy-2-phenyl-2H-chromene (0.041 g, 0.123 mmol, 61%) (2d) was obtained and chromatography (PE:EA=30:1) as yellow oil. TLC: $R_f = 0.8$ (PE:EA 10:1) [UV]. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.38 (m, 2H), 7.36 – 7.30 (m, 3H), 6.88 (s, 1H), 6.86 – 6.83 (m, 1H), 6.79 (m, 2H), 5.91 (s, 1H), 4.94 (s, 1H), 3.74 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.1, 141.4, 137.8, 129.3, 128.9, 128.3, 127.7, 123.4, 121.3, 120.8, 119.9, 113.9, 77.2, 76.7, 56.2. HRMS (ESI-TOF) m/z: [M + NH₄]⁺ calcd for C₁₇H₁₈N₇O₂: 352.1516; found 352.1513.

3-(diazidomethyl)-2H-chromene (2e). According to the general procedure C using (0.032 g, 0.2 mmol, 1.0 equiv) 2H-chromene (3-carbaldehyde 1e, 3-(diazidomethyl)-2H-chromene (0.035 g, 0.152 mmol, 76%) (2e) was obtained and chromatography (PE:EA=30:1) as yellowy solid. TLC: $R_f = 0.8$ (PE:EA 10:1) [UV]. ¹H NMR (400 MHz, DMSO- d_6) δ 7.24 – 7.16 (m, 2H), 6.93 (td, J = 7.5, 1.2 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.77 (s, 1H), 6.08 (s, 1H), 4.73 (s, 2H). ¹³C NMR (101 MHz, DMSO) δ 153.7, 130.7, 128.3, 127.8, 123.3, 122.2, 121.4, 116.0, 77.1, 64.6. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₀H₉ON₆: 229.0832; found: 229.0834.

3-(diazidomethyl)-2-methyl-2H-chromene (2f). According to the general procedure C using (0.035 g, 0.2 mmol, 1.0 equiv) 2-methyl-2H-chromene-3-carbaldehyde 1f, 3-(diazidomethyl)-2-methyl-2H-chromene (0.02 g, 0.084 mmol, 42%) (2f) was obtained and chromatography (PE:EA=30:1) as yellow oil (it is red in Chloroform-d). TLC: $R_f = 0.8$ (PE:EA 10:1) [UV]. ¹H NMR (400 MHz, Chloroform-d) δ 6.98 (td, J = 7.7, 1.7 Hz, 1H), 6.88 (dd, J = 7.5, 1.7 Hz, 1H), 6.70 (td, J = 7.5, 1.2 Hz, 1H), 6.64 (d, J = 8.0 Hz, 1H), 6.43 (s, 1H), 5.03 (s, 1H), 4.72 (q, J = 6.6 Hz, 1H), 1.20 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.0, 130.3, 130.1, 127.4, 122.9, 121.3, 120.4, 116.4, 77.0, 70.7, 19.1. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₁H₂ON₆: 241.0832; found 241.0831. (two hydrogens were lost under the HRMS condition)

1,1'-((2-phenyl-2H-chromen-3-yl)methylene)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (5a, 0.108 g, 0.191 mmol, 95%) (2a) was obtained and chromatography (PE:EA=2:1) as white solid. TLC: $R_f = 0.2$ (PE:EA 2:1) [UV]. ¹H NMR (400 MHz, DMSO- d_6) δ 8.86 (s, 1H), 8.70 (s, 1H), 8.08 (s, 1H), 7.81 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 7.6 Hz, 1H), 7.30 – 7.14 (m, 6H), 7.06 – 6.98 (m, 4H), 6.92 (t, J = 7.5 Hz, 1H), 6.78 – 6.70 (m, 2H), 5.99 (s, 1H), 3.86 – 3.71 (m, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.8, 159.8, 152.1, 147.6, 147.3, 137.2, 131.6, 129.6, 129.0, 128.7, 128.0, 127.7, 127.4, 127.3, 126.1, 122.9, 122.2, 121.1, 120.9, 120.9, 116.5, 114.8, 114.7, 76.6, 72.5, 55.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₄H₂₈N₆O₃Na: 591.2115; found 591.2110.

(E)-1,1'-(2-methyl-3-phenylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (**5b**). According to the general procedure D using (0.07 mL, 0.5 mmol, 1.0 equiv) (E)-2-methyl-3-phenylacrylaldehyde **1g**, (E)-1,1'-(2-methyl-3-phenylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (0.101 g, 0.21 mmol, 42%) (**5b**) was obtained and chromatography (PE:EA=10:3) as white solid. TLC: $R_f = 0.2$ (PE:EA 10:2) [UV]. ¹H NMR (400 MHz, DMSO- d_6) δ 8.81 (s, 2H), 8.29 (s, 1H), 7.87 (d, J = 8.8 Hz, 4H), 7.49 – 7.24 (m, 5H), 7.03 (d, J = 8.8 Hz, 4H), 6.38 (s, 1H), 3.80 (s, 6H), 1.97 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.8, 147.4, 135.7, 131.1, 129.7, 128.9, 128.3, 127.4, 123.1, 120.9, 114.8, 76.9, 55.7, 15.9. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₈H₂₆N₆O₂Na: 501.2009; found 501.2006.

(*E*)-1, *1'*-(2-benzylideneheptane-1, *1*-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (5c). According to the general procedure D using (0.104 mL, 0.5 mmol, 1.0 equiv) (*E*)-2-methyl-3-phenylacrylaldehyde **1h**, (*E*)-1,1'-(2-benzylideneheptane-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (0.09 g, 0.168 mmol, 34%) (5c) was obtained and chromatography (PE:EA=10:2) as white solid. TLC: $R_f = 0.2$ (PE:EA 10:1) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.87 (s, 2H), 8.27 (s, 1H), 7.87 (d, *J* = 8.7, 4H), 7.44 – 7.28 (m, 5H), 7.03 (d, *J* = 8.7, 4H), 6.32 (s, 1H), 3.79 (s, 6H), 2.32 (t, *J* = 7.4, 2H), 1.32 (p, *J* = 7.3 Hz, 2H), 1.19 – 1.07 (m, 4H), 0.73 (t, *J* = 6.9, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.8, 147.4, 135.7, 131.2, 129.2, 129.0, 128.3, 127.4, 123.0, 121.1, 114.8, 75.3, 55.7, 31.5, 29.0, 27.2, 22.0, 14.1. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₆H₃₄N₆O₂Na: 557.2635; found 557.2613.

(*E*)-1,1'-(3-(2-chlorophenyl)-2-methylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3triazole) (**5d**). According to the general procedure D using (0.1 g, 0.607 mmol, 1.0 equiv) (*E*)-3-(2chlorophenyl)-2-methylacrylaldehyde **1i**, (*E*)-1,1'-(3-(2-chlorophenyl)-2-methylprop-2-ene-1,1diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (0.128 g, 0.249 mmol, 41%) (**5d**) was obtained and chromatography (PE:EA=10:2) as white solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-d₆) δ 8.82 (s, 2H), 8.39 (s, 1H), 7.87 (d, *J* = 8.7 Hz, 4H), 7.58 (dd, *J* = 7.5, 1.9 Hz, 1H), 7.51 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.45 – 7.35 (m, 2H), 7.04 (d, *J* = 8.7 Hz, 4H), 6.32 (s, 1H), 3.80 (s, 6H), 1.86 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 159.8, 147.4, 133.8, 133.5, 133.2, 131.5, 130.2, 129.8, 127.9, 127.6, 127.4, 123.0, 120.9, 114.8, 76.2, 55.7, 15.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₈H₂₅ClN₆O₂Na: 535.1620; found 535.1613.

(E)-1,1'-(3-(3-chlorophenyl)-2-methylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-

triazole) (**5e**). According to the general procedure D using (0.142 g, 0.86 mmol, 1.0 equiv) (*E*)-3-(3-chlorophenyl)-2-methylacrylaldehyde **1j**, (*E*)-1,1'-(3-(3-chlorophenyl)-2-methylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1*H*-1,2,3-triazole) (0.126 g, 0.242 mmol, 28%) (**5e**) was obtained and chromatography (PE:EA=10:2) as white solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.82 (s, 2H), 8.30 (s, 1H), 7.87 (d, *J* = 8.8 Hz, 4H), 7.48 (s, 1H), 7.44 – 7.33 (m, 3H), 7.03 (d, *J* = 8.8 Hz,4H), 6.36 (s, 1H), 3.79 (s, 6H), 1.95 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.8, 147.4, 137.9, 133.6, 132.7, 130.7, 129.8, 129.3, 128.3, 128.1, 127.4, 127.2, 123.1, 121.0, 114.8, 76.6, 55.7, 15.9. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₈H₂₆ClN₆O₂: 513.1800; found 513.1804.

(E)-1,1'-(3-(4-chlorophenyl)-2-methylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-

triazole) (**5f**). According to the general procedure D using (0.1 g, 0.607 mmol, 1.0 equiv) (*E*)-3-(4-chlorophenyl)-2-methylacrylaldehyde **1k**, (*E*)-1,1'-(3-(4-chlorophenyl)-2-methylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1*H*-1,2,3-triazole) (0.150 g, 0.293 mmol, 48%) (**5f**) was obtained and chromatography (PE:EA=10:2) as white solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO- d_6) δ 8.81 (s, 2H), 8.29 (s, 1H), 7.87 (d, *J* = 8.8 Hz, 4H), 7.49 – 7.40 (m, 4H), 7.03 (d, *J*)

= 8.8 Hz, 4H), 6.35 (s, 1H), 3.79 (s, 6H), 1.95 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.8, 147.4, 134.6, 132.8, 132.0, 131.5, 129.9, 128.9, 127.4, 127.2, 123.0, 121.0, 114.8, 76.7, 55.7, 15.9. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₈H₂₆ClN₆O₂: 513.1800; found 513.1801.

(*E*)-1,1'-(2-methyl-3-(3-nitrophenyl)prop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3triazole) (**5g**). According to the general procedure D using (0.144 g, 0.754 mmol, 1.0 equiv) (*E*)-2methyl-3-(3-nitrophenyl)acrylaldehyde **1l**, (*E*)-1,1'-(2-methyl-3-(3-nitrophenyl)prop-2-ene-1,1diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (0.14 g, 0.268 mmol, 36%) (**5g**) was obtained and chromatography (PE:EA=10:3) as white solid. TLC: $R_f = 0.2$ (PE:EA 2:1) [UV]. ¹H NMR (400 MHz, DMSO-d₆) δ 8.85 (s, 2H), 8.35 (s, 1H), 8.24 (t, *J* = 2.0 Hz, 1H), 8.18 (dd, *J* = 8.1, 2.3 Hz, 1H), 7.91 – 7.83 (m, 5H), 7.70 (t, *J* = 7.9 Hz, 1H), 7.03 (d, *J* = 8.8 Hz, 4H), 6.50 (s, 1H), 3.79 (s, 6H), 1.97 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 159.8, 148.3, 147.5, 137.5, 136.1, 133.8, 130.4, 129.1, 127.4, 124.2, 123.1, 122.9, 121.0, 114.8, 76.4, 55.7, 15.9. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₈H₂₅N₇O₄Na: 546.1860; found 546.1867.

(E)-1,1'-(2-methyl-3-(4-nitrophenyl)prop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-

triazole) (**5h**). According to the general procedure D using (0.31 g, 1.62 mmol, 1.0 equiv) (E)-2methyl-3-(4-nitrophenyl)acrylaldehyde **1m**, (*E*)-1,1'-(2-methyl-3-(4-nitrophenyl)prop-2-ene-1,1diyl)bis(4-(4-methoxyphenyl)-1*H*-1,2,3-triazole) (0.442 g, 0.84 mmol, 52%) (**5h**) was obtained and chromatography (PE:EA=10:3) as white solid. TLC: $R_f = 0.2$ (PE:EA 2:1) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.84 (s, 2H), 8.37 (s, 1H), 8.25 (d, *J* = 8.4 Hz, 2H), 7.87 (d, *J* = 8.3 Hz, 4H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.3 Hz, 4H), 6.47 (s, 1H), 3.80 (s, 6H), 1.98 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.8, 147.5, 146.9, 142.7, 134.9, 131.0, 129.3, 127.4, 123.9, 123.0, 121.0, 114.8, 76.4, 55.7, 16.1. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₈H₂₆N₇O₄: 524.2041; found 524.2036.

(*E*)-1,1'-(3-(2-methoxyphenyl)-2-methylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3triazole) (**5i**). According to the general procedure D using (0.14 g, 0.794 mmol, 1.0 equiv) (*E*)-3-(2-methoxyphenyl)-2-methylacrylaldehyde **1n**, (*E*)-1,1'-(3-(2-methoxyphenyl)-2-methylprop-2ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1*H*-1,2,3-triazole) (0.251 g, 0.494 mmol, 62%) (**5i**) was obtained and chromatography (PE:EA=10:2) as white solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO- d_6) δ 8.81 (s, 2H), 8.32 (s, 1H), 7.89 (d, J = 8.3 Hz, 4H), 7.42 (d, J = 7.5 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.09 – 6.95 (m, 6H), 6.41 (s, 1H), 3.80 (s, 6H), 3.72 (s, 3H), 1.89 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.8, 157.3, 147.4, 130.7, 130.6, 130.0, 127.4, 127.0, 124.1, 123.1, 120.9, 120.5, 114.8, 111.5, 76.8, 55.9, 55.7, 15.9. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₉H₂₈N₆O₃Na: 531.2115; found 531.2122.

(*E*)-1, 1'-(3-(3-methoxyphenyl)-2-methylprop-2-ene-1, 1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3triazole) (**5j**). According to the general procedure D using (0.158 g, 0.9 mmol, 1.0 equiv) (*E*)-3-(3methoxyphenyl)-2-methylacrylaldehyde **10**, (*E*)-1,1'-(3-(3-methoxyphenyl)-2-methylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1*H*-1,2,3-triazole) (0.166 g, 0.327 mmol, 36%) (**5j**) was obtained and chromatography (PE:EA=10:2) as white solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.81 (s, 2H), 8.28 (s, 1H), 7.85 (d, *J* = 8.7 Hz, 4H), 7.32 (t, *J* = 7.8 Hz, 1H), 7.03 (d, *J* = 8.7 Hz, 4H), 6.98 – 6.86 (m, 3H), 6.36 (s, 1H), 3.79 (s, 6H), 3.76 (s, 3H), 1.96 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.8, 159.6, 147.4, 137.1, 131.6, 131.0, 129.9, 127.3, 123.0, 122.0, 120.9, 114.9, 114.8, 114.0, 76.8, 55.6, 15.9. HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{29}H_{28}N_6O_3Na$: 531.2115; found 531.2119.

(*E*)-1,1'-(2,3-diphenylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (5k). According to the general procedure D using (0.104 g, 0.5 mmol, 1.0 equiv) (*E*)-2,3-diphenylacrylaldehyde **1p**, (*E*)-1,1'-(2,3-diphenylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (0.082 g, 0.152 mmol, 30%) (5k) was obtained and chromatography (PE:EA=10:2) as white solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.94 (s, 2H), 8.71 (s, 1H), 7.84 (d, *J* = 8.4 Hz, 4H), 7.46 – 7.39 (m, 2H), 7.38 – 7.24 (m, 4H), 7.19 – 7.11 (m, 2H), 7.03 (d, *J* = 8.6, 4H), 6.97 – 6.90 (m, 2H), 6.32 (s, 1H), 3.79 (s, 6H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.8, 147.3, 135.9, 135.3, 134.9, 131.4, 129.9, 129.7, 129.4, 129.0, 128.6, 127.3, 123.0, 121.4, 114.8, 75.8, 55.67. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₃H₂₈N₆O₂Na: 563.2166; found 563.2165.

(*E*)-1,1'-(2-(4-methoxyphenyl)-3-phenylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3triazole) (**5**I). According to the general procedure D using (0.1g, 0.42 mmol, 1.0 equiv) (*E*)-2-(4methoxyphenyl)-3-phenylacrylaldehyde **1q**, (*E*)-1,1'-(2-(4-methoxyphenyl)-3-phenylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1*H*-1,2,3-triazole) (0.125 g, 0.218 mmol, 52%) (**5**I) was obtained and chromatography (PE:EA=10:2) as white solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO- d_6) δ 8.92 (s, 2H), 8.66 (s, 1H), 7.83 (d, J = 8.7 Hz, 4H), 7.35 (d, J = 8.5 Hz, 2H), 7.21 – 7.12 (m, 3H), 7.02 (d, J = 8.7 Hz, 4H), 6.99 – 6.93 (m, 2H), 6.88 (d, J = 8.5 Hz, 2H), 6.25 (s, 1H), 3.79 (s, 6H), 3.71 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 158.7, 158.5, 146.1, 134.1, 133.9, 129.9, 128.7, 127.6, 127.4, 126.6, 126.2, 121.9, 120.2, 113.7, 74.7, 54.6, 54.4. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₄H₃₀N₆O₃Na: 593.2272; found 593.2262.

(*E*)-1,1'-(3-(furan-2-yl)-2-methylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (**5m**). According to the general procedure D using (0.1 mL, 0.8 mmol, 1.0 equiv) (*E*)-3-(furan-2-yl)-2-methylacrylaldehyde **1r**, (*E*)-1,1'-(3-(furan-2-yl)-2-methylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (0.138 g, 0.294 mmol, 37%) (**5m**) was obtained and chromatography (PE:EA=10:2) as white solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO- d_6) δ 8.78 (s, 2H), 8.30 (s, 1H), 7.87 (d, J = 8.8 Hz, 4H), 7.77 (d, J = 1.8 Hz, 1H), 7.03 (d, J = 8.8 Hz, 4H), 6.69 (d, J = 3.4 Hz, 1H), 6.60 (dd, J = 3.5, 1.9 Hz, 1H), 6.14 (s, 1H), 3.80 (s, 6H), 2.08 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.8, 151.1, 147.4, 144.1, 128.4, 127.4, 123.0, 120.9, 119.3, 114.8, 113.0, 112.5, 76.7, 55.7, 16.3. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₆H₂₄N₆O₃Na: 491.1802; found 491.1786.

triazole) (**5n**). According to the general procedure D using (0.105 g, 0.69 mmol, 1.0 equiv) (*E*)-2methyl-3-(thiophen-2-yl)acrylaldehyde **1s**, (*E*)-1,1'-(2-methyl-3-(thiophen-2-yl)prop-2-ene-1,1diyl)bis(4-(4-methoxyphenyl)-1*H*-1,2,3-triazole) (0.109 g, 0.227 mmol, 33%) (**5n**) was obtained and chromatography (PE:EA=10:2) as white solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.78 (s, 2H), 8.29 (s, 1H), 7.86 (d, *J* = 8.7 Hz, 4H), 7.71 (d, *J* = 5.1 Hz, 1H), 7.26 (d, *J* = 3.6 Hz, 1H), 7.14 (dd, *J* = 5.1, 3.7 Hz, 1H), 7.02 (d, *J* = 8.7 Hz, 4H), 6.63 (s, 1H), 3.79 (s, 6H), 2.08 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.8, 147.4, 138.4, 130.8, 128.7, 128.0, 127.4, 124.8, 123.1, 120.9, 114.8, 77.0, 55.7, 16.4. HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{26}H_{24}N_6O_2SNa$: 507.1574; found 507.1586.

(*E*)-1, 1'-(2-methyl-3-(naphthalen-1-yl)prop-2-ene-1, 1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3triazole) (**50**). According to the general procedure D using (0.06 g, 0.31 mmol, 1.0 equiv) (*E*)-2methyl-3-(naphthalen-1-yl)acrylaldehyde **1t**, (*E*)-1,1'-(2-methyl-3-(naphthalen-1-yl)prop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1*H*-1,2,3-triazole) (0.068 g, 0.129 mmol, 42%) (**50**) was obtained and chromatography (PE:EA=10:2) as white solid. TLC: $R_f = 0.2$ (PE:EA 10:1) [UV]. ¹H NMR (400 MHz, DMSO-d₆) δ 8.92 (s, 2H), 8.46 (s, 1H), 8.00 – 7.86 (m, 6H), 7.86 – 7.80 (m, 1H), 7.60 – 7.52 (m, 4H), 7.04 (d, *J* = 8.5 Hz, 4H), 6.81 (s, 1H), 3.80 (s, 6H), 1.82 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 159.8, 147.5, 133.6, 133.3, 132.7, 131.5, 129.2, 129.0, 128.6, 127.4, 127.4, 127.0, 126.6, 125.9, 124.7, 123.0, 121.0, 114.8, 76.5, 55.7, 15.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₂H₂₈N₆O₂Na:551.2166; found 551.2163.

(*E*)-1,1'-(3-(6-methoxynaphthalen-1-yl)-2-methylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (**5p**). According to the general procedure D using (0.03 g, 0.13 mmol, 1.0 equiv) (*E*)-3-(6-methoxynaphthalen-1-yl)-2-methylacrylaldehyde **1u**, (*E*)-1,1'-(3-(6-methoxynaphthalen-1yl)-2-methylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (0.046 g, 0.083 mmol, 64%) (**5p**) was obtained and chromatography (PE:EA=10:2) as white solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO- d_6) δ 8.85 (s, 2H), 8.33 (s, 1H), 7.91 – 7.80 (m, 7H), 7.50 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.33 (d, *J* = 2.5 Hz, 1H), 7.18 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.04 (d, *J* = 8.5 Hz, 4H), 6.46 (s, 1H), 3.88 (s, 3H), 3.79 (s, 6H), 2.06 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 158.7, 157.2, 146.3, 133.0, 130.1, 129.8, 129.5, 129.0, 127.7, 127.6, 126.9, 126.3, 126.1, 122.0, 119.9, 118.4, 113.7, 105.2, 76.0, 54.6, 54.6, 15.0. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₃H₃₀N₆O₃Na: 581.2272; found 581.2275.

(E) - 1, 1' - (3 - (anthracen - 9 - yl) - 2 - methyl prop - 2 - ene - 1, 1 - diyl) bis (4 - (4 - methoxyphenyl) - 1H - 1, 2, 3 - 1) bis (4 - (4 - methoxyphenyl) - 1) bis (4 - (4 - me

triazole) (**5q**). According to the general procedure D using (0.044 mg, 0.18 mmol, 1.0 equiv) (*E*)-3-(anthracen-9-yl)-2-methylacrylaldehyde **1v**, (*E*)-1,1'-(3-(anthracen-9-yl)-2-methylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1*H*-1,2,3-triazole) (0.045 g, 0.077 mmol, 43%) (**5q**) was obtained and chromatography (PE:EA=10:2) as yellow solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.97 (s, 2H), 8.64 (d, *J* = 5.3 Hz, 2H), 8.18 – 8.07 (m, 4H), 7.92 (d, *J* = 8.5 Hz, 4H), 7.64 – 7.53 (m, 4H), 7.04 (d, *J* = 8.4 Hz, 4H), 6.93 (s, 1H), 3.80 (s, 6H), 3.34 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.8, 147.6, 135.9, 131.3, 129.7, 129.3, 129.1, 127.8, 127.4, 126.8, 126.0, 125.9, 123.0, 121.2, 114.8, 76.1, 55.7, 15.9. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₆H₃₁N₆O₂:579.2503; found 579.2508.

(*E*)-1,1'-(3-(2,6-dichlorophenyl)-2-methylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3triazole) (**5r**). According to the general procedure D using (0.4 g, 1.4 mmol, 1.0 equiv) (*E*)-3-(2,6dichlorophenyl)-2-methylacrylaldehyde **1w**, (*E*)-1,1'-(3-(2,6-dichlorophenyl)-2-methylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (0.395 g, 0.722 mmol, 52%) (**5r**) was obtained and chromatography (PE:EA=10:2) as white solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.75 (s, 2H), 8.48 (s, 1H), 7.87 (d, *J* = 8.7 Hz, 4H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.41 (t, *J* = 8.1 Hz, 1H), 7.04 (d, *J* = 8.7 Hz, 4H), 6.21 (s, 1H), 3.80 (s, 6H), 1.63 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.9, 147.5, 136.1, 134.2, 133.2, 131.0, 128.8, 127.4, 126.3, 122.9, 120.7, 114.9, 75.5, 55.7, 15.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₈H₂₄N₆O₂Cl₂Na:569.1230; found 569.1216.

(*E*)-1,1'-(3-phenylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (**5s**). According to the general procedure D using (0.185 g, 1.4 mmol, 1.0 equiv) cinnamaldehyde **1x**, (*E*)-1,1'-(3-phenylprop-2-ene-1,1-diyl)bis(4-(4-methoxyphenyl)-1H-1,2,3-triazole) (0.332 g, 0.714 mmol, 51%) (**5s**) was obtained and chromatography (PE:EA=10:2) as white solid. TLC: $R_f = 0.2$ (PE:EA 10:5) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.95 (s, 2H), 8.30 (d, *J* = 7.7 Hz, 1H), 7.84 (d, *J* = 11.4 Hz, 4H), 7.65 (d, *J* = 7.5 Hz, 2H), 7.47 - 7.32 (m, 4H), 7.11 (d, *J* = 15.7 Hz, 1H), 7.03 (d, *J* = 8.5 Hz, 4H), 3.79 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 159.8, 147.5, 137.7, 135.1, 129.7, 129.3, 127.9, 127.3, 123.1, 121.3, 120.0, 114.8, 73.0, 55.6. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₇H₂₅N₆O₂:465.2034; found 465.2035.

(*E*)-1,1'-(*but-2-ene-1*,1-*diyl*)*bis*(4-(4-*methoxyphenyl*)-1*H*-1,2,3-*triazole*) (**5t**). According to the general procedure D using (0.1 g, 1.4 mmol, 1.0 equiv) crotonaldehyde **1x**, (*E*)-1,1'-(*but-2-ene-1*,1-*diyl*)*bis*(4-(4-*methoxyphenyl*)-1*H*-1,2,3-*triazole*) (0.248 g, 0.616 mmol, 44%) (**5t**) was obtained and chromatography (PE:EA=10:2) as white solid. TLC: $R_f = 0.1$ (PE:EA 10:5) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.95 (s, 1H), 8.65 (s, 1H), 7.87 – 7.75 (m, 4H), 7.67 (d, *J* = 14.3 Hz, 1H), 7.09 – 6.98 (m, 4H), 6.75 (dd, *J* = 14.3, 7.5 Hz, 1H), 5.67 (p, *J* = 6.9 Hz, 1H), 3.80 (s, 6H), 1.81 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 159.5, 147.3, 127.3, 127.0, 123.8, 123.0, 121.2, 119.5, 118.3, 114.8, 76.7, 55.6, 21.1. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₃N₆O₂:403.1877; found 403.1876.

 $\begin{aligned} & l-(azido(2-phenyl-2H-chromen-3-yl)methyl)-4-(4-methoxyphenyl)-1H-1,2,3-triazole \end{aligned} (6a). \\ & \text{According to General procedures for the synthesis of 6a, 6a (0.03 g, 0.069 mmol, 34%) was obtained \\ & \text{and chromatography (PE:EA=10:1) as white solid. TLC: R_f = 0.5 (PE:EA 10:2) [UV]. ¹H NMR \\ & (400 MHz, DMSO-d_6) & 8.67 (s, 1H), 7.80 (d, J = 8.5 Hz, 2H), 7.37 (dd, J = 7.5, 1.6 Hz, 1H), 7.34 - \\ & 7.23 (m, 5H), 7.23 - 7.14 (m, 2H), 7.05 - 6.91 (m, 4H), 6.72 (d, J = 8.0 Hz, 1H), 5.67 (s, 1H), 3.79 (s, 3H). ^{13}C NMR (101 MHz, DMSO-d_6) & 159.8, 152.1, 147.6, 137.5, 131.3, 129.6, 129.1, 128.5, 128.1, 127.9, 127.3, 124.9, 123.1, 122.2, 121.0, 119.7, 116.4, 114.8, 75.9, 73.6, 55.7. HRMS (ESI-TOF) m/z: \\ & [M + Na]^+ calcd for C_{25}H_{20}N_6O_2Na:459.1540; found 459.1535. \end{aligned}$

1,1'-((2-phenyl-2H-chromen-3-yl)methylene)bis(4-(hex-5-yn-1-yl)-1H-1,2,3-triazole) (6b). According to the general procedure for the synthesis of 5a and 6b, (0.045 g, 0. 088 mmol, 44%) (6b) was obtained and chromatography (PE:EA=10:1) as white solid. TLC: $R_f = 0.4$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.19 (s, 1H), 8.04 (s, 1H), 7.98 (s, 1H), 7.33 – 7.21 (m, 4H), 7.20 – 7.12 (m, 3H), 6.91 (t, J = 7.4 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 6.53 (s, 1H), 5.85 (s, 1H), 2.76 (t, J = 2.6 Hz, 2H), 2.61 (t, J = 7.5 Hz, 2H), 2.55 (t, J = 7.6 Hz, 2H), 2.17 (tt, J = 6.9, 3.1 Hz, 4H), 1.69 – 1.55 (m, 4H), 1.44 (h, J = 7.3 Hz, 4H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 151.9, 148.0, 147.7, 137.1, 131.5, 129.6, 129.0, 128.5, 128.3, 127.9, 125.5, 122.7, 122.4, 122.2, 120.9, 116.5, 84.9, 76.6, 71.9, 71.8, 28.2, 28.1, 27.9, 27.9, 24.8, 24.7, 17.9. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₂H₃₂N₆ONa:539.2530; found 539.2525. 3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(1H-pyrrole) (**9a**). According to the general procedure E using (0.05 g, 0.16 mmol, 1.0 equiv) 3-(diazidomethyl)-2-phenyl-2H-chromene **2a**, 3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(1H-pyrrole) (0.040 g, 0.11 mmol, 71%) (**5p**) was obtained and chromatography (PE:EA=10:5) as brown solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO- d_6) δ 10.67 (d, J = 3.0 Hz, 1H), 10.47 (d, J = 3.0 Hz, 1H), 7.35 – 7.27 (m, 5H), 7.06 – 6.99 (m, 2H), 6.84 – 6.78 (m, 1H), 6.69 – 6.59 (m, 3H), 6.27 (s, 1H), 5.99 – 5.88 (m, 3H), 5.75 (s, 1H), 5.58 (s, 1H), 4.55 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 151.4, 138.7, 138.3, 130.6, 130.2, 129.3, 129.0, 128.2, 126.9, 122.6, 121.7, 120.2, 117.8, 117.6, 116.0, 107.7, 107.6, 107.2, 106.6, 78.4, 41.4. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₄H₂₁N₂O: 353.1648; found 353.1646.

l, *l*'-(((2-phenyl-2H-chromen-3-yl)methylene)bis(1H-pyrrole-4,2-diyl))bis(propan-1-one) (**9b**). According to the general procedure E using (0.05 g, 0.16 mmol, 1.0 equiv) 3-(diazidomethyl)-2-phenyl-2H-chromene **2a**, *l*, *l*'-(((2-phenyl-2H-chromen-3-yl)methylene)bis(1H-pyrrole-4,2-diyl))bis(propan-1-one) (0.035 g, 0.084 mmol, 53%) (**9b**) was obtained and chromatography (PE:EA=10:5) as brown solid. TLC: R_f = 0.2 (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.80 (s, 1H), 11.66 (s, 1H), 7.24 (s, 5H), 7.11 – 7.01 (m, 2H), 6.89 (dd, *J* = 3.7, 2.3 Hz, 1H), 6.87 – 6.80 (m, 2H), 6.64 (d, *J* = 8.0 Hz, 1H), 6.36 (s, 1H), 6.06 (dd, *J* = 3.7, 2.3 Hz, 1H), 6.03 (dd, *J* = 3.7, 2.3 Hz, 1H), 5.64 (s, 1H), 4.90 (s, 1H), 2.70 (dq, *J* = 11.5, 7.4 Hz, 4H), 1.05 (td, *J* = 7.4, 1.8 Hz, 6H). ¹³C NMR (101 MHz, DMSO) δ 190.4, 151.5, 138.2, 138.0, 137.2, 135.6, 131.9, 131.6, 129.7, 128.9, 128.7, 128.2, 127.1, 122.4, 121.8, 121.6, 117.0, 116.9, 116.1, 110.2, 109.8, 78.6, 41.2, 30.7, 9.5. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₀H₂₉N₂O₃: 465.2173; found 465.2169.

3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(1H-indole) (9c). According to the general procedure E using (0.05 g, 0.16 mmol, 1.0 equiv) 3-(diazidomethyl)-2-phenyl-2H-chromene 2a, 3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(1H-indole) (0.032 g, 0.071 mmol, 44%) (9b) was obtained and chromatography (PE:EA=10:5) as brown solid. TLC: R_f = 0.2 (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-d₆) δ 11.03 (d, J = 2.5 Hz, 1H), 10.82 (d, J = 2.5 Hz, 1H), 7.45 – 7.27 (m, 10H), 7.09 – 6.92 (m, 6H), 6.91 – 6.82 (m, 2H), 6.81 – 6.74 (m, 2H), 6.63 (d, J = 8.0 Hz, 1H), 6.27 (s, 1H), 5.78 (s, 1H), 4.90 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 151.5, 139.6, 139.6, 137.3, 136.9, 129.4, 129.2, 129.1, 128.0, 127.2, 126.9, 126.8, 125.1, 124.0, 122.4, 121.5, 121.5, 121.4, 119.3, 118.9, 118.8, 115.8, 115.2, 115.2, 112.1, 112.1, 79.5, 36.9. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₂H₂₅N₂O: 453.1961; found 453.1959.

3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(4-methyl-1H-indole) (9d). According to the general procedure E using (0.05 g, 0.16 mmol, 1.0 equiv) 3-(diazidomethyl)-2-phenyl-2H-chromene 2a, 3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(1H-indole) (0.050 g, 0.104 mmol, 63%) (9d) was obtained and chromatography (PE:EA=10:5) as brown solid. TLC: R_f = 0.2 (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-d₆) δ 10.99 (d, J = 2.5 Hz, 1H), 10.78 (d, J = 2.6 Hz, 1H), 7.35 – 7.26 (m, 1H), 7.26 – 7.20 (m, 3H), 7.19 – 7.05 (m, 5H), 6.98 – 6.75 (m, 5H), 6.57 (d, J = 7.1 Hz, 2H), 6.41 (d, J = 2.5 Hz, 1H), 6.01 (s, 1H), 5.89 (s, 1H), 5.44 (s, 1H), 2.13 (s, 3H), 1.97 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 152.7, 142.1, 140.4, 137.6, 129.8, 129.8, 129.3, 129.0, 128.6, 127.3, 127.0, 126.8, 125.4, 124.9, 123.8, 122.4, 121.6, 121.3, 120.5, 119.9, 117.1, 117.0, 115.6, 110.1, 110.1, 80.6, 38.9, 19.9, 19.6. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₄H₂₉N₂O: 481.2274; found 481.2272.

3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(5-methoxy-1H-indole) (**9e**). According to the general procedure E using (0.05 g, 0.16 mmol, 1.0 equiv) 3-(diazidomethyl)-2-phenyl-2H-chromene **2a**, 3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(5-methoxy-1H-indole) (0.068 g, 0.133 mmol, 81%) (**9e**) was obtained and chromatography (PE:EA=10:5) as brown solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.91 (d, J = 2.5 Hz, 1H), 10.68 (d, J = 2.5 Hz, 1H), 7.47 – 7.38 (m, 5H), 7.31 (dd, J = 5.6, 3.2 Hz, 2H), 7.24 (d, J = 8.8 Hz, 1H), 7.02 (td, J = 7.7, 1.6 Hz, 1H), 6.97 (dd, J = 7.6, 1.6 Hz, 1H), 6.82 – 6.72 (m, 4H), 6.69 (dd, J = 8.7, 2.4 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H), 6.42 (d, J = 2.4 Hz, 1H), 6.23 (s, 1H), 5.74 (s, 1H), 4.80 (s, 1H), 3.56 (d, J = 3.4 Hz, 6H). ¹³C NMR (101 MHz, DMSO) δ 153.4, 153.3, 151.5, 140.0, 139.3, 132.5, 132.0, 129.4, 129.2, 127.8, 127.6, 127.0, 126.9, 125.8, 124.9, 122.3, 121.6, 118.8, 115.8, 114.8, 114.6, 112.8, 111.8, 111.2, 101.5, 100.2, 79.5, 55.7, 36.9, 31.2. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₄H₂₉N₂O₃Na: 513.2173; found 513.2169.

3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(2-methyl-1H-indole) (**9f**). According to the general procedure E using (0.05 g, 0.16 mmol, 1.0 equiv) 3-(diazidomethyl)-2-phenyl-2H-chromene **2a**, 3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(2-methyl-1H-indole) (0.019 g, 0.040 mmol, 25%) (**9f**) was obtained and chromatography (PE:EA=10:5) as brown solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.87 (s, 1H), 10.81 (s, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.39 – 7.34 (m, 3H), 7.29 – 7.19 (m, 4H), 7.04 (td, J = 7.7, 1.7 Hz, 1H), 7.00 – 6.83 (m, 5H), 6.78 (td, J = 7.5, 1.1 Hz, 1H), 6.67 (dt, J = 7.6, 3.5 Hz, 2H), 6.20 (d, J = 1.9 Hz, 1H), 5.78 (s, 1H), 4.81 (d, J = 1.9 Hz, 1H), 2.16 (s, 3H), 2.01 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 151.6, 139.5, 139.4, 135.6, 135.5, 133.4, 132.5, 129.4, 129.3, 129.1, 128.9, 128.4, 127.9, 126.9, 122.2, 121.6, 120.3, 120.2, 120.2, 119.0, 118.6, 118.4, 115.9, 111.1, 111.0, 110.3, 108.6, 79.6, 36.5, 12.3, 12.0. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₄H₂₉N₂O: 481.2274; found 481.2272.

3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(1H-indole-5-carbonitrile) (**9g**). According to the general procedure E using (0.05 g, 0.16 mmol, 1.0 equiv) 3-(diazidomethyl)-2-phenyl-2H-chromene **2a**, 3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(1H-indole-5-carbonitrile) (0.022 g, 0.044 mmol, 27%) (**9g**) was obtained and chromatography (PE:EA=10:5) as brown solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO- d_6) δ 11.65 (d, J = 2.4 Hz, 1H), 11.47 (d, J = 2.4 Hz, 1H), 7.90 (d, J = 1.6 Hz, 1H), 7.61 – 7.49 (m, 3H), 7.45 – 7.31 (m, 7H), 7.29 (d, J = 1.5 Hz, 1H), 7.11 (d, J = 2.3 Hz, 1H), 7.08 – 6.99 (m, 2H), 6.80 (td, J = 7.4, 1.2 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H), 6.33 (s, 1H), 5.83 (s, 1H), 5.14 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 151.6, 139.4, 139.0, 138.9, 138.7, 129.5, 129.0, 128.0, 127.6, 127.1, 127.0, 127.0, 126.4, 125.0, 124.7, 124.4, 124.2, 122.3, 121.6, 121.2, 121.0, 120.0, 116.2, 116.1, 116.0, 113.4, 100.9, 79.2, 36.2, 31.2. HRMS (ESI-TOF) m/z: [M + NH₄]⁺ calcd for C₃₄H₂₆N₅O: 520.2132; found 520.2133.

3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(5-chloro-1H-indole) (9h). According to the general procedure E using (0.05 g, 0.16 mmol, 1.0 equiv) 3-(diazidomethyl)-2-phenyl-2H-chromene 2a, 3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(5-chloro-1H-indole) (0.055 g, 0.103 mmol, 64%) (9h) was obtained and chromatography (PE:EA=10:5) as brown solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-d₆) δ 11.28 (d, J = 2.5 Hz, 1H), 11.07 (d, J = 2.5 Hz, 1H), 7.47 - 7.35 (m, 8H), 7.30 (d, J = 2.1 Hz, 1H), 7.11 - 6.97 (m, 4H), 6.88 (dd, J = 14.9, 2.3 Hz, 2H), 6.79 (td, J

= 7.4, 1.2 Hz, 1H), 6.66 (d, J = 8.0 Hz, 1H), 6.26 (s, 1H), 5.80 (s, 1H), 4.91 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 151.6, 139.5, 139.1, 135.8, 135.5, 129.5, 129.4, 129.1, 128.3, 128.0, 127.8, 127.0, 126.8, 126.0, 123.6, 123.6, 122.3, 121.6, 121.6, 121.5, 119.5, 118.4, 118.2, 115.9, 114.9, 114.7, 113.8, 113.6, 79.3, 36.6. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₂H₂₃N₂OCl₂: 521.1182; found 521.1178.

dimethyl 3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(1H-indole-6-carboxylate) (**9i**). According to the general procedure E using (0.035 g, 0.115 mmol, 1.0 equiv) 3-(diazidomethyl)-2-phenyl-2H-chromene **2a**, *dimethyl* 3,3'-((2-phenyl-2H-chromen-3-yl)methylene)bis(1H-indole-6-carboxylate) (0.050 g, 0.088 mmol, 77%) (**9i**) was obtained and chromatography (PE:EA=10:5) as brown solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.49 (d, J = 2.6 Hz, 1H), 11.30 (d, J = 2.6 Hz, 1H), 8.07 (d, J = 1.5 Hz, 1H), 8.02 (d, J = 1.5 Hz, 1H), 7.61 (d, J = 2.5 Hz, 1H), 7.54 – 7.45 (m, 2H), 7.41 – 7.34 (m, 6H), 7.10 – 7.00 (m, 3H), 6.97 (dd, J = 7.5, 1.6 Hz, 1H), 6.78 (t, J = 7.4 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 6.27 (s, 1H), 5.79 (s, 1H), 4.99 (s, 1H), 3.84 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 167.7, 151.6, 139.4, 139.0, 136.5, 136.2, 130.6, 130.1, 129.4, 129.1, 129.0, 128.3, 128.0, 127.0, 122.7, 122.5, 122.3, 121.6, 119.8, 119.7, 119.6, 119.0, 118.6, 115.9, 115.7, 115.5, 114.2, 79.4, 52.3, 36.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₆H₂₈N₂O₅Na: 591.1890; found 591.1894.

(*E*)-3,3'-(2-methyl-3-phenylprop-2-ene-1,1-diyl)bis(1H-pyrrole) (**9j**). According to the general procedure E using (0.1 g, 0.47 mmol, 1.0 equiv) (E)-(3,3-diazido-2-methylprop-1-en-1-yl)benzene **2g**, (*E*)-3,3'-(2-methyl-3-phenylprop-2-ene-1,1-diyl)bis(1H-pyrrole) (0.050 g, 0.19 mmol, 41%) (**9j**) was obtained and chromatography (PE:EA=10:5) as brown solid. TLC: $R_f = 0.2$ (PE:EA 10:3) [UV]. ¹H NMR (400 MHz, DMSO-d₆) δ 10.70 (s, 1H), 10.56 (s, 1H), 7.35 – 7.27 (m, 2H), 7.25 – 7.17 (m, 3H), 6.70 – 6.61 (m, 2H), 6.11 – 5.99 (m, 3H), 5.93 (d, *J* = 2.7 Hz, 1H), 5.63 (d, *J* = 2.2 Hz, 1H), 4.80 (s, 1H), 1.83 (s, 3H). ¹³C NMR (151 MHz, cdcl₃) δ 147.8, 139.6, 137.4, 134.8, 133.8, 133.3, 131.4, 123.3, 123.2, 122.4, 122.1, 113.8, 112.6, 112.2, 111.7, 58.9, 24.1. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₈H₁₉N₂: 263.1543; found 263.1541.

3-(di(furan-3-yl)methyl)-2-phenyl-2H-chromene (**9k**). According to the general procedure E using (0.05 g, 0.16 mmol, 1.0 equiv) 3-(diazidomethyl)-2-phenyl-2H-chromene **2a**, *3-(di(furan-3-yl)methyl)-2-phenyl-2H-chromene* (0.036 g, 0.10 mmol, 64%) (**9k**) was obtained and chromatography (PE:EA=20:1) as colorless oil. TLC: $R_f = 0.7$ (PE:EA 10:1) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.61 (dd, *J* = 1.9, 0.9 Hz, 1H), 7.58 (dd, *J* = 1.9, 0.9 Hz, 1H), 7.33 – 7.25 (m, 5H), 7.11 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.06 (td, *J* = 7.8, 1.7 Hz, 1H), 6.84 (td, *J* = 7.5, 1.2 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 6.44 – 6.37 (m, 3H), 6.31 (d, *J* = 3.2 Hz, 1H), 6.12 (d, *J* = 3.3 Hz, 1H), 5.72 (s, 1H), 4.82 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 151.9, 151.6, 151.4, 143.3, 143.1, 138.2, 134.3, 129.9, 129.2, 129.0, 128.1, 127.3, 122.1, 121.9, 121.8, 116.2, 111.1, 111.0, 108.6, 78.0, 42.0. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₄H₁₉O₃: 355.1329; found 355.1326.

(*E*)-*N*-((2-phenyl-2H-chromen-3-yl)methylene)cyanamide (**11a**). According to the general procedure F using (0.09 g, 0.3 mmol, 1.0 equiv) 3-(diazidomethyl)-2-phenyl-2H-chromene **2a**, (*E*)-*N*-((2-phenyl-2H-chromen-3-yl)methylene)cyanamide (0.040 g, 0.154 mmol, 51%) (**11a**) was obtained and chromatography (PE:EA=10:3) as yellow soild. TLC: $R_f = 0.2$ (PE:EA 10:1) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.09 (s, 1H), 7.97 (s, 1H), 7.49 (dd, J = 7.7, 1.7 Hz, 1H), 7.41 – 7.29 (m, 6H), 7.01 (td, J = 7.7, 1.7 Hz, 1H), 7.41 – 7.29 (m, 6H), 7.01 (td, J = 7.7, 1.7 Hz, 1H), 7.41 – 7.29 (m, 6H), 7.01 (td, J = 7.7, 1.7 Hz, 1H), 7.41 – 7.29 (m, 6H), 7.01 (td, J = 7.7, 1.7 Hz, 1H), 7.41 – 7.29 (m, 6H), 7.01 (td, J = 7.7, 1.7 Hz, 1H), 7.41 – 7.29 (m, 6H), 7.01 (td, J = 7.7, 1.7 Hz, 1H), 7.41 – 7.29 (m, 6H), 7.01 (td, J = 7.7, 1.7 Hz, 1H), 7.41 – 7.29 (m, 6H), 7.01 (td, J = 7.7, 1.7 Hz, 1H), 7.41 – 7.29 (m, 6H), 7.01 (td, J = 7.7, 1.7 Hz, 1H), 7.41 – 7.29 (m, 6H), 7.01 (td, J = 7.7, 1.7 Hz, 1H), 7.41 – 7.29 (m, 6H), 7.01 (td, J = 7.7, 1.7 Hz, 1H), 7.41 – 7.29 (m, 6H), 7.01 (td, J = 7.7, 1.7 Hz, 1H), 7.41 – 7

7.4, 1.1 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 6.34 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 182.7, 154.8, 145.4, 138.3, 135.1, 130.8, 129.4, 129.1, 127.6, 122.7, 121.0, 117.5, 116.5, 73.7. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₇H₁₃N₂O: 261.1022; found 261.1019.

(*E*)-*N*-((2-phenyl-2*H*-chromen-3-yl)methylene)methanesulfonamide (**11b**). According to the general procedure F using (0.05 g, 0.16 mmol, 1.0 equiv) 3-(diazidomethyl)-2-phenyl-2*H*-chromene **2a**, (*E*)-*N*-((2-phenyl-2*H*-chromen-3-yl)methylene)methanesulfonamide (0.03 g, 0.115 mmol, 70%) (**11b**) was obtained and chromatography (PE:EA=10:3) as yellow soild. TLC: $R_f = 0.2$ (PE:EA 10:1) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.83 (s, 1H), 8.07 (s, 1H), 7.42 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.38 – 7.27 (m, 6H), 7.00 (td, *J* = 7.5, 1.1 Hz, 1H), 6.91 (d, *J* = 8.1 Hz, 1H), 6.36 (s, 1H), 3.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 155.1, 143.3, 138.5, 134.4, 129.6, 129.4, 128.8, 128.5, 127.0, 122.0, 120.3, 117.4, 74.9, 40.3. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₇H₁₅NO₃SNa: 336.0665; found 336.0670.

(*E*)-*N*-((2-phenyl-2*H*-chromen-3-yl)methylene)-4-(trifluoromethyl)benzenesulfonamide (**11c**). According to the general procedure F using (0.05 g, 0.16 mmol, 1.0 equiv) 3-(diazidomethyl)-2-phenyl-2H-chromene **2a**, (*E*)-*N*-((2-phenyl-2*H*-chromen-3-yl)methylene)-4-(trifluoromethyl)benzenesulfonamide (0.028 g, 062 mmol, 39%) (**11c**) was obtained and chromatography (PE:EA=10:3) as yellow soild. TLC: $R_f = 0.2$ (PE:EA 10:1) [UV]. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.94 (s, 1H), 8.14 (s, 1H), 8.01 – 7.91 (m, 4H), 7.43 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.36 (td, *J* = 7.5, 1.5 Hz, 1H), 7.26 – 7.17 (m, 5H), 7.01 (td, *J* = 7.6, 1.1 Hz, 1H), 6.88 (d, *J* = 8.2 Hz, 1H), 6.32 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.4, 154.8, 146.0, 142.6, 138.7, 135.1, 130.7, 129.4, 129.1, 128.9, 128.7, 127.1 (q, *J* = 3.6 Hz), 123.8 (q, *J* = 274.1 Hz), 122.7, 120.9, 117.4, 74.3. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₃H₁₇NO₃F₃S: 444.0876; found 444.0875.

4. ¹H-, ¹³C- NMR and HRMS spectra of new compounds

CC-4-38 #17 RT: 0.14 AV: 1 NL: 3.23E6 T: FTMS + p ESI Full ms [100.0000-1000.0000]

 $1 \ 6$

 $1 \ 9$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

 $4\ 1$

In tensity

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

 $5\ 8$

 $7\ 0$

 $7\ 3$

7.6

5. Crystallographic data

Crystallographic data for 2a

CCDC 2121586 Empirical formula C₁₆H₁₂N₆O Formula weight 304.32 Temperature/K 293.4(2) Crystal system orthorhombic Pccn Space group a/Å 25.5258(11) b/Å 16.0414(7) c/Å 7.3397(3) $\alpha/^{\circ}$ 90 β/° 90 γ/° 90

Table 1 Crystal data and structure refinement for 2a.

Volume/Å ³	3005.4(2)
Ζ	8
$\rho_{calc}g/cm^3$	1.345
µ/mm ⁻¹	0.742
F(000)	1264.0
Crystal size/mm ³	0.4 imes 0.2 imes 0.1
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	6.926 to 142.722
Index ranges	$-28 \le h \le 30, -19 \le k \le 13, -7 \le l \le 8$
Reflections collected	7901
Independent reflections	2850 [$R_{int} = 0.0355$, $R_{sigma} = 0.0334$]
Data/restraints/parameters	2850/0/208
Goodness-of-fit on F ²	1.025
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0598, wR_2 = 0.1651$
Final R indexes [all data]	$R_1 = 0.0702, wR_2 = 0.1827$
Largest diff. peak/hole / e Å-3	0.21/-0.24

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 2a. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom <i>x</i>	У	Z	U(eq)
0001 3930.2(6)	4712.0(9)	5543.8(19)	58.4(4)
N002 5100.0(6)	6222.9(11)	2634(3)	59.6(5)
N003 4429.8(8)	6553.5(13)	-1272(3)	68.1(5)
N004 4241.7(8)	6491.4(13)	267(3)	67.7(5)
N005 4955.6(7)	5666.0(12)	1578(3)	65.4(5)
C006 4060.9(7)	5601.5(11)	2857(3)	47.4(4)
C007 3738.9(7)	4133.1(11)	2546(2)	46.0(4)
C008 3783.5(8)	6203.3(11)	3650(3)	50.6(5)
C009 4072.0(7)	4731.6(11)	3648(3)	48.4(4)
C00A 3499.9(7)	6043.2(12)	5322(3)	48.5(4)
C00B 3579.0(7)	5281.5(12)	6200(3)	49.1(5)
C00C 4384.3(8)	5705.5(12)	1171(3)	54.4(5)
N00D 5270.0(9)	6702.5(15)	3578(4)	86.0(7)
C00E 3197.8(8)	4207.4(13)	2483(3)	58.0(5)
C00F 3327.7(9)	5090.9(14)	7811(3)	59.0(5)
C00G 3976.1(9)	3507.2(12)	1554(3)	58.8(5)
N00H 4584.4(11)	6674.6(18)	-2681(3)	97.4(8)
C00I 3160.1(8)	6613.7(13)	6134(3)	59.6(5)

	. ,			
C00N 3682.6(11)	2969.6(14)	499(4)	73.9(7)	
C00M 2904.7(9)	3654.7(16)	1456(3)	68.0(6)	
C00L 3147.1(11)	3042.7(15)	457(3)	72.6(7)	
C00K 2901.2(9)	6418.3(16)	7725(3)	68.7(6)	
C00J 2984.7(9)	5663.1(16)	8570(3)	66.5(6)	

Table 3 Anisotropic Displacement Parameters (Å²×10³) for 2a. The Anisotropic displacementfactor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O001	67.6(9)	55.3(8)	52.4(8)	3.8(6)	-0.6(6)	15.2(6)
N002	45.5(9)	63.2(10)	70.1(11)	6.2(9)	-1.8(8)	-3.4(7)
N003	55.7(11)	80.8(13)	67.7(12)	14(1)	-9.8(9)	-17.5(9)
N004	66.7(11)	70.0(12)	66.3(12)	13.6(9)	5.1(9)	-2.0(9)
N005	49.5(10)	70.1(11)	76.7(12)	-10.4(10)	4.8(9)	-1.3(8)
C006	41.1(9)	48.2(9)	53(1)	-0.1(8)	-3.7(8)	-3.4(7)
C007	46.2(9)	40.1(9)	51.8(10)	4.4(7)	3.9(7)	0.5(6)
C008	49.3(10)	43.9(9)	58.5(11)	0.4(8)	-3.8(8)	-1.3(7)
C009	43.0(9)	47.6(9)	54.6(11)	0.3(8)	-1.3(8)	5.5(7)
C00A	44.5(9)	47.5(9)	53.6(11)	-6.5(8)	-5.5(8)	-1.0(7)
C00B	47.2(10)	51.6(10)	48.4(10)	-6.5(8)	-5.3(8)	-0.8(7)
C00C	51.6(11)	52.8(10)	58.8(11)	-1.7(9)	2.5(9)	-6.2(7)
N00D	70.3(14)	82.4(14)	105.4(18)	-9.5(13)	-21.6(13)	-8.2(11)
C00E	48.4(11)	62.1(11)	63.4(12)	-5.3(10)	6.1(8)	-0.6(8)
C00F	62.9(12)	64.6(12)	49.7(10)	-0.8(9)	-2.8(9)	-3.1(9)
C00G	56.2(11)	49.7(10)	70.4(13)	-4.4(9)	5.0(9)	5.1(8)
N00H	86.9(16)	138(2)	67.0(13)	27.0(15)	-2.2(12)	-25.5(15)
C00I	57.4(11)	54.7(11)	66.8(13)	-9.8(10)	-5.4(10)	6.4(8)
C00J	62.6(13)	83.0(15)	54.0(12)	-9.5(11)	5.3(10)	-4.7(10)
C00K	61.7(13)	76.5(14)	68.1(14)	-19.5(12)	6.4(11)	7.6(10)
C00L	79.7(16)	62.2(13)	75.9(15)	-7.5(11)	-0.8(12)	-22.3(11)
C00M	50.8(12)	77.9(14)	75.2(15)	-4.1(12)	1.7(10)	-13.9(10)
C00N	85.2(17)	54.2(12)	82.2(16)	-18.5(12)	5.9(13)	0.2(10)

Table 4 Bond Lengths for 2a.

Table T Dona Dongons to	
Atom Atom Length/Å	Atom Atom Length/Å
O001 C009 1.438(2)	C007 C00G 1.380(3)
O001 C00B 1.367(2)	C008 C00A 1.447(3)
N002 N005 1.239(3)	C00A C00B 1.396(3)
N002 N00D 1.123(3)	C00A C00I 1.395(3)
N003 N004 1.231(3)	C00B C00F 1.380(3)

N003 N00H 1.124(3)	C00E C00M 1.384(3)
N004 C00C 1.470(3)	C00F C00J 1.385(3)
N005 C00C 1.490(3)	C00G C00N 1.380(3)
C006 C008 1.332(3)	C00I C00K 1.378(3)
C006 C009 1.512(2)	C00J C00K 1.377(4)
C006 C00C 1.496(3)	C00L C00M 1.373(4)
C007 C009 1.516(3)	C00L C00N 1.372(4)
C007 C00E 1.387(3)	

_

Table 5 Bond Angles for 2a.

Atom Atom Atom Angle/°	Atom Atom Angle/°
C00B O001 C009 119.40(14)	C00I C00A C00B 117.84(19)
N00D N002 N005 174.5(2)	O001 C00B C00A 121.14(18)
N00H N003 N004 174.3(3)	O001 C00B C00F 117.29(18)
N003 N004 C00C 112.7(2)	C00F C00B C00A 121.49(19)
N002 N005 C00C 112.68(17)	N004 C00C N005 111.67(16)
C008 C006 C009 120.74(18)	N004 C00C C006 109.39(17)
C008 C006 C00C 125.04(17)	N005 C00C C006 111.69(17)
C00C C006 C009 114.21(16)	C00M C00E C007 120.1(2)
C00E C007 C009 121.44(17)	C00B C00F C00J 119.4(2)
C00G C007 C009 119.74(17)	C00N C00G C007 120.8(2)
C00G C007 C00E 118.81(18)	C00K C00I C00A 120.8(2)
C006 C008 C00A 120.54(18)	C00K C00J C00F 120.0(2)
O001 C009 C006 112.78(15)	C00J C00K C00I 120.5(2)
O001 C009 C007 111.17(15)	C00N C00L C00M119.9(2)
C006 C009 C007 111.66(15)	C00L C00M C00E 120.4(2)
C00B C00A C008 118.31(17)	C00L C00N C00G 120.0(2)
C00I C00A C008 123.84(19)	

Table 6	Hydrogen	Atom	Coordinates	(Å×10 ⁴)	and	Isotropic	Displacement	Parameters
(Å ² ×10 ³)	for 2a.							

Atom x	у	Z	U(eq)
H008 3772	6731	3127	61
H009 4435	4534	3563	58
H00C 4300	5247	341	65
H00E 3032	4629	3133	70
H00F 3388	4583	8384	71
H00G 4338	3447	1597	71
H00I 3108	7132	5596	72
H00J 2811	5537	9649	80

H00K 2668	6799	8232	82
H00L 2949	2678	-247	87
H00M 2541	3698	1442	82
H00N 3848	2558	-183	89

Experimental

Single crystals of $C_{16}H_{12}N_6O$ [2a] were obtained by slow evaporation of a mixture solution (*n*-hexane and ether) of the compound. A suitable crystal was selected and mounte in oil on a New Gemini, Dual, Cu at home/near, EosS2 diffractometer. The crystal was kept at 293.4(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [hl-cc-2-1]

Crystal Data for C₁₆H₁₂N₆O (M=304.32 g/mol): orthorhombic, space group Pccn (no. 56), a = 25.5258(11) Å, b = 16.0414(7) Å, c = 7.3397(3) Å, V = 3005.4(2) Å³, Z = 8, T = 293.4(2) K, μ (CuK α) = 0.742 mm⁻¹, *Dcalc* = 1.345 g/cm³, 7901 reflections measured ($6.926^{\circ} \le 2\Theta \le 142.722^{\circ}$), 2850 unique ($R_{int} = 0.0355$, $R_{sigma} = 0.0334$) which were used in all calculations. The final R_1 was 0.0598 (I > 2 σ (I)) and wR_2 was 0.1827 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups

2.a Ternary CH refined with riding coordinates:

C009(H009), C00C(H00C)

2.b Aromatic/amide H refined with riding coordinates:

C008(H008), C00E(H00E), C00F(H00F), C00G(H00G), C00I(H00I), C00J(H00J),

C00K(H00K), C00L(H00L), C00M(H00M), C00N(H00N)

Crystallographic data for 11a

Table 1 Crystal data and structure refinement for 11a.

CCDC	2121587
Empirical formula	$C_{17}H_{12}N_2O$
Formula weight	260.29
Temperature/K	293.15
Crystal system	monoclinic

Space group	P2 ₁ /c
a/Å	6.1263(19)
b/Å	28.328(3)
c/Å	11.289(4)
$\alpha/^{\circ}$	90
β/°	136.87(6)
γ/°	90
Volume/Å ³	1339.5(12)
Ζ	4
$ ho_{calc}g/cm^3$	1.291
μ/mm^{-1}	0.082
F(000)	544.0
Crystal size/mm ³	$0.35 \times 0.3 \times 0.25$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/ ^c	6.012 to 52.744
Index ranges	$-7 \le h \le 7, -35 \le k \le 31, -9 \le l \le 14$
Reflections collected	5598
Independent reflections	2734 [$R_{int} = 0.0201, R_{sigma} = 0.0343$]
Data/restraints/parameters	2734/0/181
Goodness-of-fit on F ²	1.049
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0503, wR_2 = 0.1133$
Final R indexes [all data]	$R_1 = 0.0757, wR_2 = 0.1338$
Largest diff. peak/hole / e Å-3	0.15/-0.18

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 11a. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{LI} tensor.

C 13 C					
Atom x		у	z	U(eq)	-
01	-1752(3)	1427.4(5)	549.2(15)	58.5(4)	-
N1	7555(3)	833.7(5)	4477.5(18)	49.0(4)	
N2	12865(4)	445.6(7)	6484(2)	76.1(6)	
C1	1558(3)	1315.5(6)	2119(2)	44.6(4)	
C2	1986(4)	815.3(6)	2700(2)	42.2(4)	
C3	-495(4)	563.0(6)	2127(2)	45.6(4)	
C4	-3664(4)	752.1(6)	881(2)	46.2(4)	
C5	-6277(4)	515.0(7)	332(2)	57.9(5)	
C6	-9278(4)	707.0(9)	-902(3)	69.1(6)	
C7	-9704(4)	1140.9(10)	-1602(2)	74.0(7)	
C8	-7181(4)	1384.2(8)	-1090(2)	65.4(6)	
C9	-4158(4)	1188.1(7)	148(2)	49.8(5)	

C10	2890(4)	1673.3(6)	3503(2)	44.0(4)
C11	5079(5)	1999.2(7)	3978(3)	69.1(6)
C12	6350(6)	2329.5(9)	5232(4)	97.9(9)
C13	5442(6)	2337.4(9)	6021(4)	98.4(9)
C14	3250(6)	2018.0(9)	5572(3)	83.6(7)
C15	1988(4)	1683.5(7)	4314(2)	59.4(5)
C16	5098(4)	610.1(6)	3902(2)	46.9(4)
C17	10378(4)	607.7(7)	5574(2)	53.5(5)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 11a. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	n U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	45.6(7)	58.4(8)	44.1(7)	12.9(6)	24.0(6)	6.6(6)
N1	40.1(8)	50.1(9)	47.8(8)	-0.7(7)	29.1(7)	1.3(7)
N2	42.7(9)	74.1(12)	79.3(12)	-4.2(10)	34.2(9)	5.1(9)
C1	38.6(9)	48.0(10)	40.9(9)	2.9(8)	27.0(8)	2.5(7)
C2	38.1(8)	41.2(9)	38.6(8)	-2.4(8)	25.2(7)	1.3(7)
C3	43.3(9)	39.0(9)	43.5(9)	-2.4(8)	28.1(8)	-0.1(7)
C4	37.6(9)	51.8(10)	37.0(8)	-9.6(8)	23.4(7)	-1.6(8)
C5	47.0(10)	66.7(13)	52.7(10)	-18.0(10)	34.0(9)	-9.2(9)
C6	39.8(10)	95.7(17)	56.9(12)	-25.9(13)	30.5(10)	-10.1(11)
C7	38.9(11)	102.6(19)	44.9(11)	-11.2(13)	19.2(9)	12.2(12)
C8	50.2(11)	73.5(14)	41.6(9)	1.3(10)	23.6(9)	14.0(10)
C9	39.0(9)	57.5(11)	33.6(8)	-5.0(8)	20.3(8)	3.9(8)
C10	40.8(9)	36.7(9)	45.3(9)	4.0(8)	28.5(8)	5.4(7)
C11	71.8(13)	50.3(12)	87.6(15)	-8.4(12)	58.9(12)	-10.5(10)
C12	89.7(18)	60.4(15)	129(2)	-35.8(16)	75.3(18)	-24.2(13)
C13	86.0(18)	77.1(18)	93.5(18)	-43.6(15)	53.2(16)	-8.6(14)
C14	84.8(16)	89.3(17)	74.3(14)	-16.6(14)	57.2(14)	8.9(14)
C15	58.8(11)	59.8(12)	59.6(11)	-5.0(10)	43.2(10)	-0.2(9)
C16	42.5(9)	42.8(10)	44.8(9)	0.9(8)	28.6(8)	2.8(8)
C17	41.4(10)	50.9(11)	57.0(10)	-6.8(9)	32.3(9)	-3.5(8)

Table 4 Bond Lengths for 11a.

Ator	m Aton	n Length/Å	Ator	n Atoı	n Length/Å			
01	C1	1.452(3)	C4	С9	1.392(3)			
01	C9	1.365(2)	C5	C6	1.370(3)			
N1	C16	1.289(2)	C6	C7	1.379(3)			
N1	C17	1.345(2)	C7	C8	1.376(3)			
N2	C17	1.141(2)	C8	C9	1.383(3)			

C1	C2	1.502(2)	C10 (C11	1.374(2)
C1	C10	1.507(2)	C10 (C15	1.373(2)
C2	C3	1.343(2)	C11 (C12	1.370(3)
C2	C16	1.428(2)	C12 (C13	1.352(4)
C3	C4	1.431(3)	C13 (C14	1.373(3)
<u>C4</u>	C5	1.397(2)	C14 (C15	1.382(3)

Table 5 Bond Angles for 11a.

Aton	Atom Atom Angle/°			Atom Atom Angle/°			
C9	01	C1	120.31(14)	C7	C8	C9	119.2(2)
C16	N1	C17	118.29(17)	01	C9	C4	121.99(15)
01	C1	C2	112.46(13)	01	C9	C8	117.47(19)
01	C1	C10	109.63(14)	C8	C9	C4	120.47(18)
C2	C1	C10	113.10(14)	C11	C10	C1	119.53(17)
C3	C2	C1	121.07(15)	C15	C10	C1	121.88(16)
C3	C2	C16	119.86(17)	C15	C10	C11	118.59(18)
C16	C2	C1	119.06(14)	C12	C11	C10	121.3(2)
C2	C3	C4	121.36(17)	C13	C12	C11	119.7(2)
C5	C4	C3	123.33(18)	C12	C13	C14	120.5(2)
С9	C4	C3	117.86(15)	C13	C14	C15	119.6(2)
C9	C4	C5	118.79(17)	C10	C15	C14	120.3(2)
C6	C5	C4	120.9(2)	N1	C16	C2	122.48(17)
C5	C6	C7	119.3(2)	N2	C17	N1	174.3(2)
<u>C8</u>	C7	C6	121.37(19)				

Table 6 Torsion Angles for 11a.

A	B	С	D	Angle/°	Α	B	С	D	Angle/°
01	C1	C2	C3	-18.6(2)	C5	C4	С9	01	-176.26(15)
01	C1	C2	C16	162.48(14)	C5	C4	C9	C8	0.6(3)
01	C1	C10)C11	-108.51(18)	C5	C6	C7	C8	0.1(3)
01	C1	C10)C15	71.7(2)	C6	C7	C8	C9	0.2(3)
C1	01	C9	C4	-19.3(2)	C7	C8	C9	01	176.37(16)
C1	01	C9	C8	163.78(15)	C7	C8	C9	C4	-0.6(3)
C1	C2	C3	C4	3.0(3)	C9	01	C1	C2	26.4(2)
C1	C2	C16	5N1	-1.9(2)	C9	01	C1	C10	0-100.30(17)
C1	C10	C11	C12	2-179.89(19)	С9	C4	C5	C6	-0.2(3)
C1	C10)C15	5 C14	-179.73(17)	C10	C1	C2	C3	106.29(19)
C2	C1	C10)C11	125.12(18)	C10	C1	C2	C16	5-72.7(2)
C2	C1	C10)C15	5-54.7(2)	C10	C11	C12	2 C13	30.0(4)
C2	C3	C4	C5	-175.75(16)	C11	C10)C15	5 C14	0.5(3)

C2 C3 C4 C9	6.3(3)	C11 C12 C13 C14 -0.2(4)
C3 C2 C16 N1	179.10(16)	C12 C13 C14 C15 0.6(4)
C3 C4 C5 C6	-178.13(16)	C13 C14 C15 C10 -0.7(3)
C3 C4 C9 O1	1.8(2)	C15 C10 C11 C12 -0.1(3)
C3 C4 C9 C8	178.65(16)	C16C2 C3 C4 -178.04(14)
C4 C5 C6 C7	-0.2(3)	C17N1 C16C2 -178.35(15)

Table 7 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 11a.

Atom	1 <i>x</i>	у	Z	U(eq)	
H1	2752.08	1348.86	1850.43	53	
Н3	-147.02	259.08	2548.37	55	
H5	-5976.77	222.97	810.39	69	
H6	-11007.26	546.56	-1263.05	83	
H7	-11739.07	1271.77	-2437.88	89	
H8	-7504.87	1676.95	-1571.27	78	
H11	5709.86	1995.34	3438.62	83	
H12	7829.8	2547.39	5537.94	117	
H13	6308.36	2560.87	6875.17	118	
H14	2618.68	2026.65	6111.33	100	
H15	520.84	1464.31	4016.04	71	
H16	5363.25	303.51	4285.05	56	

Experimental

Single crystals of $C_{17}H_{12}N_2O$ [11a] were obtained by slow evaporation of a mixture solution (*n*-hexane and ether) of the compound. A suitable crystal was selected and mounted in oil on a **Xcalibur, Eos** diffractometer. The crystal was kept at 293.15 K during data collection. Using Olex2 [1], the structure was solved with the ShelXS [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [11a]

Crystal Data for C₁₇H₁₂N₂O (M=260.29 g/mol): monoclinic, space group P2₁/c (no. 14), a = 6.1263(19) Å, b = 28.328(3) Å, c = 11.289(4) Å, $\beta = 136.87(6)^{\circ}$, V = 1339.5(12) Å³, Z = 4, T = 293.15 K, μ (MoK α) = 0.082 mm⁻¹, *Dcalc* = 1.291 g/cm³, 5598 reflections measured ($6.012^{\circ} \le 2\Theta \le 52.744^{\circ}$), 2734 unique ($R_{int} = 0.0201$, $R_{sigma} = 0.0343$) which were used in all calculations. The final R_1 was 0.0503 (I > 2 σ (I)) and wR_2 was 0.1338 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown. Details:

1. Fixed Uiso

At 1.2 times of: All C(H) groups 2.a Ternary CH refined with riding coordinates: C1(H1) 2.b Aromatic/amide H refined with riding coordinates: C3(H3), C5(H5), C6(H6), C7(H7), C8(H8), C11(H11), C12(H12), C13(H13), C14(H14), C15(H15), C16(H16)

6. Optimization of The Reaction Conditions

	CHO +	Cat. 10% TMSN ₃ Add. 1eqv	• 🗘	N ₃ N ₃ + [CN	
		4 equiv	I		0	
Entrv ^a	<i>Cat.</i> 10%mol	Add 1	Solvent	2a 2a Cmpd. % ^b	$\frac{3}{3 Cmnd. \%^b}$	2a:3
2		eqv.	2011011	- a company o		
1	Fe(acae) ₃	-	DCM	0		0:100
2	$Cu(AcO)_2$	-	DCM	0		0:100
3	Rh ₂ (AcO) ₂	-	DCM	0		0:100
4	AlCl ₃	-	DCM	NR ^c	-	-
5	Cu(TfO) ₂	-	DCM	42	20	2.07:1
6	AgTfO	-	DCM	44	18	2.38:1
7	Bi(TfO) ₃	-	DCM	30	4.	7.09:1
8	Yb(TfO) ₃	-	DCM	70	0	100:0
9	LiTfO	-	DCM	NR	-	-
10	In(TfO) ₃	-	DCM	39	16	2.40:1
11	$Cu(ClO_4)_2$	-	DCM	41	29	1.42:1
12	Zn(TfO) ₂	-	DCM	36	0	100:0
13	$AgSbF_6$	-	DCM	NR		-
14	Sm(TfO) ₃	-	DCM	22	0	100:0
15	Cu[(CH ₃ CN) ₄ ClO ₄]] -	DCM	22	4	5.37:1
16	$CoMoO_4$	-	DCM	NR	-	-
17	LiClO ₄	-	DCM	NR	-	-
18	Bi(NO ₃) ₃ .5H ₂ O	-	DCM	trace	-	-

19	RuCl ₃	-	DCM	NR	-	-
20	NiCl ₂	-	DCM	NR	-	-
21	Sc(TfO) ₃	-	DCM	47	0	100:0
22	Yb(TfO) ₃	K ₂ CO ₃	DCM	trace	0	-
23	Yb(TfO) ₃	PhCOOH	DCM	27	4	6.52:1
24	Yb(TfO) ₃	TMSTfO	DCM	0		0:100
25	Yb(TfO) ₃	-	CH ₃ OH	ND^d	ND	-
26	Yb(TfO) ₃	-	CH ₃ CN	9	0	100:0
27	Yb(TfO) ₃	-	THF	22	0	100:0
28	Yb(TfO) ₃	-	Toluen	19	0	100:0
			e			
29	Yb(TfO) ₃	-	CHCl ₃	20	0	100:0
30	Yb(TfO) ₃	40°C	DCM	20	4	4.99:1
31	Yb(TfO) ₃	50°C	DCM	17	6	2.82:1
32	Yb(TfO) ₃	60°C	DCM	16	8	1.92:1

^{*a*}**1a** (0.21 mmol), TMSN₃ (0.84 mmol), catalyst (0.02 mmol). ^{*b*}Isolated yields. ^{*c*}No reaction. ^{*d*}Not detected.

7. Antiproliferative Activity Data

In 5% CO₂ humidified incubator, the A549 was cultured in RPMI 1640 medium which mixed with 10% FBS at 37 °C. Cells were plated in a 96-well plate raged 2000–4000 cells per well. After 24 h culturing, different concentrations of the compounds were added and cultured for 48 h. After treating with 10% trichloroacetic acid (TCA) at 4 °C for 1 hour, each well was washed with distilled water for 5 times and dry naturally. Subsequently, the cells were stained by 0.4% (w/v) SRB at room temperature for 20 minutes, followed washing with 1% glacial acetic acid for 5 times to remove the excess unbound SRB dye. After the SRB bounded protein was dissolved in 10 mm tris(hydroxymethylamino)methane (Tris) for 15 min, the absorbance was read by a microtiter-plate reader at 540 nm and the IC₅₀ values were calculated according to the corresponding concentrations and the inhibitory ratios.

Concentration (µM)	10.0000	1.11111	0.37037	0.123457	0.04115	0.013717	0.004572	0
		1			2			
OD Value	0.9317	2.5665	2.8071	2.8099	2.8385	2.8766	2.8892	3.5295
background OD	0.1184	-	-	-	-	-	-	-
Value								

8. Quantitative Transformation of α, β-Unsaturated Diazides

into Bistriazole

References

- S. Kang, J. Baek, Y. Ko, C. Im and Y. Park, *Synlett*, 2013, 24, 630–634. Asymmetric Preparation of New N,N-Dialkyl-2-amino-1,1,2-triphenylethanol Catalysts and a Kinetic Resolution in the Addition of Diethylzinc to Flavene-3-carbaldehydes
- 2 S. Nayak, S. Chakroborty, S. Bhakta, P. Panda, S. Mohapatra, S. Kumar, P. Jena and C. Purohit, *Lett. Org. Chem.*, 2015, **12**, 352–358. Design and Synthesis of (E)-4-(2-Phenyl-2H-chromen-3yl)but-3-en-2-ones and Evaluation of their In Vitro Antimicrobial Activity
- P. Panda, S. Nayak, S. K. Sahoo, S. Mohapatra, D. Nayak, R. Pradhan and C. N. Kundu, *RSC Adv.*, 2018, 8, 16802–16814. Diastereoselective synthesis of novel spiro indanone fused pyrano[3,2- c]chromene derivatives following hetero-Diels–Alder reaction and in vitro anticancer studies
- G. V. Kryshtal, G. M. Zhdankina and S. G. Zlotin, *European J. Org. Chem.*, 2005, 2822–2827.
 Tetraalkylammonium and 1,3-dialkylimidazolium salts with fluorinated anions as recoverable phase-transfer catalysts in solid base-promoted cross-aldol
- L. Chen, W. Teng, X. Le Geng, Y. F. Zhu, Y. H. Guan and X. Fan, *Appl. Organomet. Chem.*,
 2017, **31**, 1–6. Facile synthesis of indene and fluorene derivatives through AlCl3-catalyzed cyclization of in situ formed iminium ions
- E. Ji, H. Meng, Y. Zheng, V. Ramadoss and Y. Wang, *European J. Org. Chem.*, 2019, 2019, 7367–7371. Copper-Catalyzed Stereospecific Hydroboration of Internal Allylic Alcohols