Supporting Information

Lawesson's Reagent-Promoted Deoxygenation of γ-Hydroxylactams or Succinimides for the Syntheses of Substituted Pyrroles

Tao Shi, [a],[†] Xiaodong Wang, [a],[†] Gaofeng Yin, [a] Zhen Wang*[a,b,c]

^[a]School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, Gansu, China.

^[b]State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China.

^[c]School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China.

^{*t}</sup><i>These authors contributed equally to this work.*</sup>

Corresponding authors: zhenw@lzu.edu.cn

Table of Contents

I. General Information		
II. Experimental Section and Characterization Data for Synthesized		
Compounds		
i. Optimization of the reaction conditions.	S2	
ii. Preparation and characterization data of succinimides.	S4	
iii. Preparation and characterization data of γ -hydroxylactams	S7	
iv. Preparation and characterization data of pyrroles	S15	
v. Mechanism	S30	
vi. Syntheses of the key intermediate of Stemona alkaloids	S31	
III. Copies of ¹ H and ¹³ C NMR Spectra	S33	
IV. References	S119	

I. General Information

All reactions were carried out in a dry solvent under argon atmosphere, and all reagents were obtained from commercial suppliers and used without further purification, unless otherwise noted. All solvents were processed through the reference Purification of Laboratory Chemicals (Seventh Edition). External bath temperatures were used to record all reaction temperatures. Silica gel (300~400 mesh) and petroleum ether, EtOAc, CH₂Cl₂ and MeOH were used for product purification by flash column chromatography. NMR spectra were recorded on Bruker 300 MHz, 400 MHz or 600 MHz spectrometers. Proton chemical shifts are reported relative to internal standard TMS at δ 0.0 ppm or residual solvent peak (CDCl₃ at 7.26 ppm, methanol- d_4 at 3.31 ppm, acetone- d_6 at 2.05 ppm, DMSO- d_6 at 2.50 ppm). Carbon chemical shifts are reported relative to a residual solvent peak (CDCl₃ at 77.06 ppm, methanol- d_4 at 49.03 ppm, acetone- d_6 at 29.82 ppm, DMSO-d₆ at 39.53 ppm). The following abbreviations were used to designate multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m =multiplet, br = broad. Fourier transform infrared spectra (FT-) were recorded on an Agilent Cary 630 FT-IR instrument. LC-MS spectra were recorded on an Agilent Technologies 1260II-MSD 6125 Quotation with an Agilent HC-C18(2) column (4.6 mm x 250 mm, film: 5 µm). High-resolution mass spectra (HRMS) were measured on a Brucker Daltonics Apex II 47e Specification (for HRMS).

II. Experimental Section and Characterization Data for Synthesized Compounds **i.** Optimization of the reaction conditions.^{*a*}

Procedure: A Schlenk tube was charged with a mixture of γ -hydroxylactam **1a** (0.1 mmol, 17.7 mg) and Lawesson's reagent in indicated solvent under an argon atmosphere. The vial was sealed and stirred vigorously at indicated temperature. After 2 h, the reaction was stopped by rapid cooling. Then the solvent was removed under reduced pressure, and the residue was directly subjected to column chromatography.

Table S1. Optimization of the reaction conditions.^a

Entry	Thiolation reagent	gent Salarant	Tomm (0C)	Isolated
	(equiv)	Solvent	1 emp. (°C)	yield
1	LR (1.0)	mesitylene	60	20%
2	LR (1.0)	toluene	60	45%
3	LR (1.0)	DCM 60		40%
4	LR (1.0)	DCE 60		32%
5	LR (1.0)	dioxane 60		35%
6	LR (1.0)	THF 60		37%
7	LR (1.0)	MeCN 60		18%
8	LR (1.0)	DMSO	60	N. D. ^{<i>b</i>}
9	LR (1.0)	MeOH	60	N. D. ^{<i>b</i>}
10	LR (1.0)	toluene	80	51%
11	LR (1.0)	toluene	90	54%
12	LR (1.0)	toluene	toluene 100	
13	LR (1.0)	toluene	toluene 110	
14	LR (0.5)	toluene	110	61%
15	LR (1.5)	toluene	110	71%
16	LR (2.0)	toluene	110	73%
17	LR (3.0)	toluene	110	21%
18	-	toluene	110	N. R. ^{<i>c</i>}
19	P ₂ S ₅ /HMDO ^d	toluene	110	N. D. ^{<i>b</i>}

^{*a.*} Reaction conditions: **1a** (0.1 mmol), thiolation reagent (1.0 – 3.0 equiv), solvent (1.0 mL), temperature (60 – 110 °C), 2h, Ar. ^{*b.*} No product was detected. ^{*c.*} No reaction happened, and **1a** was recovered in 80% yield. ^{*d.*} P₂S₅ (0.3 equiv), HMDO (1.7 equiv). HMDO = hexamethyldisiloxane.

Procedure: A Schlenk tube was charged with a mixture of succinimide 2a (0.1 mmol, 17.5 mg) and Lawesson's reagent in indicated solvent under an argon atmosphere. The vial was sealed and stirred vigorously at indicated temperature. After several hours, the reaction was stopped by rapid cooling. Then the solvent was removed under reduced pressure, and the residue was directly subjected to column chromatography.

	LR (1.0-3.0 equiv) solvent, temp., Ar	× ×
2a		3a
2a		3a

Table S2. Optimization of the reaction conditions.^a

Entry	Thiolation reagent (equiv)	Solvent	Temp. (°C)	reaction time (h)	Isolated yield
1	LR (2.0)	toluene	110	2	34%
2	LR (2.0)	DCM	110	2	12%
3	LR (2.0)	DCE	110	2	10%
4	LR (2.0)	dioxane	110	2	N. D. ^{<i>b</i>}
5	LR (2.0)	THF	110	2	N. D. ^{<i>b</i>}
6	LR (2.0)	MeCN	110	2	9%
7	LR (2.0)	MeOH	110	2	N. D. ^{<i>b</i>}
8	LR (2.0)	toluene	120	2	29%
9	LR (2.0)	toluene	130	2	39%
10	LR (2.0)	toluene	140	2	31%
11	LR (0.5)	toluene	130	2	N. D. ^{<i>b</i>}
12	LR (1.0)	toluene	130	2	28%
13	LR (3.0)	toluene	130	2	14%
14	LR (2.0)	toluene	130	12	53%
15	LR (2.0)	toluene	130	24	71%
16	-	toluene	130	24	N. R. ^{<i>c</i>}
17	$P_2S_5/HMDO^d$	toluene	130	24	N. D. ^{<i>b</i>}

^{*a*}. Reaction conditions: **2a** (0.1 mmol), thiolation reagent (1.0 - 3.0 equiv), solvent (1.0 mL), temperature (110 - 140 °C), Ar.^{b.} No product was detected.^{c.} No reaction happened, and **2a** was recovered in 80% yield. ^d P₂S₅ (0.3 equiv), HMDO (1.7 equiv). HMDO = hexamethyldisiloxane.

ii. Preparation and characterization data of succinimides.

$$\begin{array}{cccc} & & & \\ & & & & \\ & & & \\ &$$

A solution of succinic anhydride (1.0 equiv) and amine (0.9 equiv) in toluene (0.2 M) was heated at reflux. After the disappearance of amine monitored by TLC, toluene was evaporated and acetyl chloride (0.2 M) was added. Then the reaction mixture was heated at reflux until the disappearance of the acid intermediate. The mixture was cooled and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel to give corresponding succinimides. All succinimides were prepared by following this procedure.

By using the above procedure, succinimide **A** was obtained. The subsequent hydrogenation gave hydrogenated succinimide **2az**. To be specific, **A** (1 equiv) and 10% Pd/C (0.5 equiv) were dissolved in anhyd MeOH (0.2 M) and the mixture was continually stirred under hydrogen atmosphere (hydrogen balloon) at rt. After completion of the reaction monitored by TLC, the mixture was filtered, and the filtrate was evaporated under reduced pressure. The residue was directly purified by silica gel column chromatography (PE : EA = 5 : 1) to give **2az**. Notably, **2y**, **2aj**, **2am**, **2ao**, **and 2aq-2at** are unknown compounds and were characterized by NMR and LC-MS.

1-(quinoxalin-2-yl)pyrrolidine-2,5-dione (2y): eluent: PE : EA = 5 : 1, light yellow powder (400.6 mg, 54%). ¹H NMR (300 MHz, CDCl₃) δ 8.86 (s, 1H), 8.25 – 8.06 (m, 2H), 7.92 – 7.77 (m, 2H), 3.02 (s, 4H). ¹³C NMR (76 MHz, CDCl₃) δ 175.3, 143.1, 142.1, 141.5, 141.4, 131.1, 131.0, 129.4, 129.3, 28.9. **HRMS (ESI, m/z)** $[M + Na]^+$ calcd for $C_{12}H_9N_3NaO_2^+$ 250.0587, found 250.0577.

3-(2-methoxyphenyl)-1-phenylpyrrolidine-2,5-dione (2aj): eluent: PE : EA = 5 : 1, light yellow powder (440 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.43 – 7.36 (m, 1H), 7.36 – 7.28 (m, 3H), 7.26 – 7.20 (m, 1H), 6.99 – 6.88 (m, 2H), 4.05 (dd, *J* = 9.8, 5.2 Hz, 1H), 3.80 (s, 3H), 3.22 (dd, *J* = 18.3, 9.9 Hz, 1H), 2.89 (dd, *J*

= 18.3, 5.2 Hz, 1H). ¹³C NMR (76 MHz, CDCl₃) δ 177.6, 175.9, 156.8, 132.4, 131.2, 129.5, 129.2, 128.5, 126.5, 126.0, 121.0, 111.1, 55.5, 44.3, 36.4. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₁₇H₁₅NNaO₃⁺ 304.0944, found 304.0941.

3-(3-chlorophenyl)-1-phenylpyrrolidine-2,5-dione (2am): eluent: PE : EA = 5 : 1, white powder (300 mg, 33%). ¹H NMR (400 MHz, CDCl₃) δ 7.50 - 7.44 (m, 2H), 7.43 - 7.37 (m, 1H), 7.34 - 7.28 (m, 5H), 7.21 - 7.15 (m, 1H), 4.14 (dd, J = 9.6, 5.0 Hz, 1H), 3.33 (dd, J = 18.5, 9.7 Hz, 1H), \circ 2.93 (dd, J = 18.5, 5.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.0,

174.7, 138.9, 135.0, 131.7, 130.5, 129.2, 128.8, 128.3, 127.8, 126.4, 125.6, 45.5, 36.9. **HRMS (ESI, m/z)** [M + Na]⁺ calcd for C₁₆H₁₂ClNNaO₂⁺ 308.0449, found 308.0455.

1-phenyl-3-(4-(trifluoromethyl)phenyl)pyrrolidine-2,5-dione (2aq): eluent: PE : EA = 5 : 1, light yellow powder (350 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.2 Hz, 2H), 7.52 – 7.39 (m, 5H), 7.35 – 7.30 (m, 2H), 4.27 (dd, J = 9.7, 5.1 Hz, 1H), 3.41 (dd, J = 18.5, 9.8 Hz, 1H), 3.00 (dd, J = 18.5, 5.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ

CF₃

0

CI

175.9, 174.5, 141.0 – 140.8 (m), 131.7, 130.7, 130.4, 129.3, 128.9, 128.0, 126.4, 126.3 (q, J = 3.8 Hz), 45.7, 36.8. **HRMS (ESI, m/z)** [M + Na]⁺ calcd for C₁₇H₁₂F₃NNaO₂⁺ 342.0712, found 342.0717.

3-(benzo[d][1,3]dioxol-5-yl)-1-phenylpyrrolidine-2,5-dione (2ar): eluent: PE : EA = 5 : 1, white powder (600 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.28 (m, 5H), 6.83 – 6.67 (m, 3H), 5.90 (s, 2H), 4.00 (dd, *J* = 9.5, 4.8 Hz, 1H), 3.21 (dd, *J* = 18.5, 9.7 Hz, 1H), 2.82 (dd, *J* = 18.5, 4.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 174.9, 148.0, 147.1, 131.8, 130.6, 128.9, 128.4, 126.3, 120.6, 108.4, 107.6,

101.1, 45.4, 37.0. **HRMS (ESI, m/z)** [M + Na]+ calcd for C₁₇H₁₃NNaO₄⁺ 318.0737, found 318.0745.

3-([1,1'-biphenyl]-4-yl)-1-phenylpyrrolidine-2,5-dione (2as): eluent: PE : EA = 5 : 1, white powder (206 mg, 44%). ¹H NMR (400 MHz, **CDCl**₃) δ 7.62 – 7.55 (m, 4H), 7.49 – 7.40 (m, 5H), 7.39 – 7.32 (m, 5H), 4.19 (dd, *J* = 9.7, 4.8 Hz, 1H), 3.35 (dd, *J* = 18.6, 9.7 Hz, 1H), 2.99 (dd, *J* = 18.5, 4.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 175.1, 141.0, 140.3, 136.0, 131.9, 129.2, 128.8, 128.7, 127.9, 127.8, 127.5, 127.1, 126.5, 45.6, 37.1. HRMS (ESI, m/z) [M + Na]+ calcd for C₂₂H₁₇NNaO₂⁺ 350.1151,

3-(naphthalen-1-yl)-1-phenylpyrrolidine-2,5-dione (2at): eluent: PE : EA = 5 : 1, white powder (390 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.84 (m, 3H), 7.62 – 7.39 (m, 9H), 4.91 (dd, *J* = 9.8, 5.0 Hz, 1H), 3.53 (dd, *J* = 18.5, 9.8 Hz, 1H), 2.97 (dd, *J* = 18.5, 5.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 177.1, 175.0, 134.3, 133.8, 132.0,

found 350.1149.

O

131.2, 129.34, 129.26, 128.84, 128.78, 126.9, 126.5, 126.2, 125.6, 124.8, 122.7, 43.2, 37.7. **HRMS (ESI, m/z)** [M + Na]+ calcd for C₂₀H₁₅NNaO₂⁺ 324.0995, found 324.0991.

3,4-dimethyl-1-phenylpyrrolidine-2,5-dione (2ao): eluent: PE : EA = 5 : 1, white solid (504 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.42 (m, 2H), 7.40 – 7.34 (m, 1H), 7.31 – 7.25 (m, 2H), 3.14 – 3.04 (m, 2H), 1.34 – 1.28 (m, 6H). ¹³C NMR (76 MHz, CDCl₃) 179.4, 132.0,

129.1, 128.4, 126.4, 38.5, 11.7. **HRMS (ESI, m/z)** [M + Na]⁺ calcd for C₁₂H₁₃NNaO₂⁺ 226.0838, found 226.0845.

iii. Preparation and characterization data of γ-hydroxylactams.

Method A:

To a stirred solution of succinimide **2** and CeCl₃•7H₂O (1.1 equiv) in MeOH (0.2 M) was added NaBH₄ (0.55 equiv) at 0 °C. After stirring for 20 min, the other batch of NaBH₄ (0.55 equiv) was added. After the completion of the reaction detected by TLC, the reaction was quenched by H₂O, extracted with ethyl acetate, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give corresponding γ -hydroxy lactams. **1x**, **1t**, and **1ai**, were synthesized by following this procedure.

Method B:

To a stirred mixture of **S1** and NaHCO₃ (3.0 equiv) in DCM (0.2M) was added DMP (1.2 equiv) at room temperature. After completion, the reaction was quenched by a 1:1 solution of NaHCO₃ and Na₂S₂O₃, extracted by DCM, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give corresponding γ -hydroxy lactams. **1a-1s, 1u-1w, 1y-1ac, 1ag-1ah, 1au, 1az-1aab** were synthesized by following this procedure. **Method C:**

To a stirred mixture of acid **S2** and aniline (1.0 equiv) in DCM (0.2 M) was added DCC (1.0 equiv) at rt under Ar atmosphere. After the completion, the reaction was quenched by saturated NaHCO₃ aqueous solution. After stirring for 1h in the presence of NaHCO₃, the reaction was extracted with DCM, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give corresponding γ -hydroxy lactams. **1ae-1af** and **1av-1ay** were synthesized by following this procedure. Compounds **1b**, **1c**, **1f**, **1j**, **1p**-**1q**, **1s-1y**, **1aa-1ac**, **1ag-1ah**, **1au**, **1aw** were unknown compounds and were characterized by NMR, IR and LC-MS.

5-Hydroxy-1-(o-tolyl)pyrrolidin-2-one (1b): eluent: PE : EA = 1 : 2, colorless oil, yield: 74%. ¹H NMR (400 MHz, methanol-d4) δ 7.34 - 7.23 (m, 3H), 7.12 - 7.05 (m, 1H), 5.65 - 5.60 (m, 1H), 2.82 - 2.69 (m, 1H), 2.53 - 2.41 (m, 2H), 2.36 (s, 3H), 2.02 - 1.93 (m,

1H). ¹³C NMR (101 MHz, methanol-*d*₄) δ 176.8, 140.0, 138.6, 129.8, 128.3, 126.4, 122.8, 86.8, 30.8, 29.3, 21.5. IR (KBr, *ν* / cm ⁻¹) 3284, 3029, 2932, 2876, 1657, 1588, 1530, 1493, 1456, 1292, 1258, 1057, 751. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₁₁H₁₃NNaO₂⁺ 214.0838, found 214.0829.

1-(2-Chlorophenyl)-5-hydroxypyrrolidin-2-one (1c): eluent: PE : EA = 1 : 2, white power, yield: 65%. ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.41 (m, 1H), 7.31 – 7.21 (m, 3H), 5.42 – 5.33 (m, 1H), 4.31 – 4.14 (m, 1H), 2.68 – 2.56 (m, 1H), 2.50 – 2.30 (m, 2H), 2.06 – 1.92

Me

(m, 1H). ¹³C NMR (76 MHz, CDCl₃) δ 174.9, 133.7, 132.5, 131.1, 130.1, 129.6, 127.6, 84.7, 28.8, 28.6. IR (KBr, ν / cm ⁻¹) 3071, 2995, 2945, 1724, 1485, 1405, 1299, 1252,

S8 / S121

1206, 1163, 1064, 1029, 1014. **HRMS (ESI, m/z)** $[M + Na]^+$ calcd for $C_{10}H_{10}CINNaO_2^+$ 234.0292, found 234.0289.

5-Hydroxy-1-(*m*-tolyl)pyrrolidin-2-one (1f): eluent: PE : EA = 1 : 2, colorless oil, yield: 65%. ¹H NMR (400 MHz, methanol-*d*₄) δ 7.34 - 7.23 (m, 3H), 7.12 - 7.05 (m, 1H), 5.65 - 5.60 (m, 1H), 2.82 - 2.69 (m, 1H), 2.53 - 2.40 (m, 2H), 2.36 (s, 3H), 2.03 - 1.93 (m, 1H). ¹³C

NMR (101 MHz, methanol-*d*₄) δ 176.8, 140.0, 138.6, 129.8, 128.3, 126.4, 122.8, 86.8, 30.8, 29.3, 21.5. IR (KBr, *ν* / cm ⁻¹) 3357, 2958, 1677, 1608, 1590, 1493, 1450, 1407, 1297, 1232, 1180, 1115, 1066, 988, 783, 697. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₁₁H₁₃NNaO₂⁺ 214.0838, found 214.0845.

5-Hydroxy-1-(4-isopropylphenyl)pyrrolidin-2-one (1j): eluent: PE : EA = 1 : 2, colorless oil, yield: 62%. ¹H NMR (400 MHz, HO **CDCl3**) δ 7.40 – 7.35 (m, 2H), 7.23 – 7.19 (m, 2H), 5.55 (d, *J* = 5.0 [Hz, 1H), 4.08 (s, 1H), 2.88 (hept, *J* = 7.0 Hz, 1H), 2.76 – 2.64 (m, 1H), 2.43 – 2.29 (m, 2H), 2.02 – 1.93 (m, 1H), 1.22 (d, *J* = 6.9 Hz, Me

6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 147.1, 134.7, 127.1, 123.9, 85.4, 33.7, 29.7, 28.2, 24.0. IR (KBr, ν / cm ⁻¹) 3316, 2961, 2932, 2870, 1681, 1612, 1517, 1437, 1407, 1295, 1206, 1064, 837. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₁₃H₁₇NNaO₂⁺ 242.1151, found 242.1152.

4-(2-Hydroxy-5-oxopyrrolidin-1-yl)benzonitrile (1p): eluent: PE : EA = 1 : 2, white solid, mp 105-106 °C, yield: 67%. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.7 Hz, 2H), 7.58 (d, J = 8.7 Hz, 2H), 5.68 (t, J = 5.9 Hz, 1H), 4.24 (d, J = 7.9 Hz, 1H), 2.84 – 2.70 (m, 1H), 2.52 – 2.34 (m, 2H), 2.10 – 2.00 (m, 1H). ¹³C NMR (101 MHz,

Ме

CDCl₃) δ 174.8, 141.6, 132.9, 121.7, 118.6, 108.1, 84.6, 29.9, 28.2. **IR** (**KBr**, *v* / **cm**⁻¹) 3371, 2229, 1687, 1603, 1510, 1429, 1390, 1303, 1202, 1064, 842, 665. **HRMS** (**ESI**, **m/z**) [M + Na]⁺ calcd for C₁₁H₁₀N₂NaO₂⁺ 225.0634, found 225.0639.

S9 / S121

Methyl 4-(2-hydroxy-5-oxopyrrolidin-1-yl)benzoate (1q): eluent: PE : EA = 1 : 2, pale yellow solid, mp 130-131 °C, yield: 49%. ¹H HO NMR (400 MHz, CDCl₃) δ 8.02 – 7.96 (m, 2H), 7.71 – 7.65 (m, 2H), 5.73 (d, J = 5.4 Hz, 1H), 3.90 (s, 3H), 2.84 – 2.70 (m, 1H), 2.52 – 2.36 (m, 2H), 2.09 – 2.01 (m, 1H). ¹³C NMR (76 MHz, CDCl₃) δ

174.5, 166.7, 141.6, 130.6, 126.8, 121.4, 84.8, 52.2, 30.0, 28.3. **IR** (**KBr**, *v* / **cm** ⁻¹) 3349, 2958, 1720, 1605, 1513, 1435, 1390, 1282, 1191, 1115, 772. **HRMS** (**ESI**, **m**/z) [M + Na]⁺ calcd for C₁₂H₁₃NNaO₄⁺ 258.0737, found 258.0741.

5-Hydroxy-1-(3,4,5-trimethoxyphenyl)pyrrolidin-2-one (1s): eluent: PE : EA = 1 : 2, colorless oil, yield: 68%. ¹H NMR (400 MHz, CDCl₃) δ 6.60 (s, 2H), 5.56 (dd, J = 6.0, 1.4 Hz, 1H), 3.80 – 3.71 (m, 9H), 2.76 – 2.64 (m, 1H), 2.47 – 2.32 (m, 2H), 2.07 – 1.95 (m, 1H). ¹³C NMR (76 MHz, CDCl₃) δ 174.6, 153.1, 135.9, 132.9, 102.3, 85.5, 60.8, 56.0, 29.7, 27.8. IR (KBr, ν / cm ⁻¹) 3347, 1669, 1590, 1503, 1451, 1121. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₁₃H₁₇NNaO₅⁺ 290.0999, found 290.1006.

1-(2,4-dimethoxyphenyl)-5-methoxypyrrolidin-2-one (1t): eluent: DCM : MeOH = 20 : 1, white powder, yield: 85%. ¹H NMR MeO (**300 MHz, CDCl**₃) δ 8.19 (d, *J* = 8.3 Hz, 1H), 7.73 (s, 1H), 6.50 – 6.41 (m, 2H), 3.84 (s, 3H), 3.78 (s, 3H), 3.70 (s, 3H), 2.78 – 2.66

ĊO₂Me

(m, 4H). ¹³C NMR (**75** MHz, CDCl₃) δ 173.3, 169.0, 156.3, 149.1, 121.1, 120.6, 103.6, 98.5, 55.6, 55.5, 51.8, 32.1, 29.2. IR (KBr, *ν* / cm ⁻¹) 2952, 1737, 1677, 1530, 1459, 1439, 1416, 1282, 1210, 1159, 1128, 1034. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₁₃H₁₇NNaO₄⁺ 274.1050, found 274.1047.

1-(2,6-Dimethylphenyl)-5-hydroxypyrrolidin-2-one (1u): eluent: PE : EA = 1 : 2, colorless oil, yield: 85%. ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.00 (m, 3H), 5.29 – 5.21 (m, 1H), 3.99 – 3.84 (m, 1H), 2.67 – 2.55 (m, 1H), 2.43 – 2.23 (m, 2H), 2.20 (s, 3H), 2.08 (s,

S10 / S121

3H), 2.01 – 1.92 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.4, 138.4, 135.4, 133.7, 128.7, 128.4, 128.3, 85.0, 28.8, 28.5, 18.6, 17.9. IR (KBr, v / cm⁻¹) 3330, 2960, 1720, 1600, 1585, 1491, 1450, 1285, 1232, 1180. **HRMS (ESI, m/z)** [M + Na]⁺ calcd for C₁₂H₁₅NNaO₂⁺ 228.0995, found 228.0990.

5-Hydroxy-1-(pyridin-2-yl)pyrrolidin-2-one (1v): eluent: PE : EA = 1 : 2, yellow powder, yield: 65%. ¹H NMR (300 MHz, **CDCl**₃) δ 8.18 (ddd, J = 5.0, 1.9, 0.8 Hz, 1H), 8.14 – 8.09 (m, 1H), 7.61 (ddd, J = 8.5, 7.4, 1.9 Hz, 1H), 6.96 (ddd, J = 7.3, 5.0, 1.0 Hz,

1H), 5.95 (d, J = 6.1 Hz, 1H), 2.83 – 2.69 (m, 1H), 2.48 – 2.37 (m, 1H), 2.29 – 2.09 (m, 1H), 2.04 – 1.93 (m, 1H). ¹³C NMR (76 MHz, CDCl₃) δ 174.1, 151.2, 146.9, 138.0, 119.7, 114.9, 83.3, 30.6, 25.2. **IR** (**KBr**, *v* / **cm**⁻¹) 3472, 2932, 2958, 1713, 1590, 1474, 1437, 1392, 1303, 1213, 1066. **HRMS (ESI, m/z)** [M + Na]⁺ calcd for C₉H₁₀N₂NaO₂⁺ 201.0634, found 201.0630.

5-Hydroxy-1-(5-methylisoxazol-3-yl)pyrrolidin-2-one (**1**w): eluent: DCM : MeOH = 20 : 1, colorless oil, yield: 57 %. ¹H NMR HO (400 MHz, CDCl₃) δ 6.71 – 6.65 (m, 1H), 5.82 (dd, J = 6.4, 1.6 Hz, 1H), 4.86 (s, 1H), 2.72 (ddd, J = 17.2, 9.5, 8.1 Hz, 1H), 2.44 – 2.26 (m, 5H), 2.09 – 1.99 (m, 1H). ¹³C NMR (76 MHz, CDCl₃) δ 173.6, 169.9, 157.0, 95.4, 82.1, 29.5, 26.6, 12.4. IR (KBr, v / cm⁻¹) 3416, 3170, 2967,

1724, 1612, 1508, 1454, 1388, 1279, 1232, 1169, 1092, 1068, 986, 801. HRMS (ESI, $\mathbf{m/z}$) $[\mathbf{M} + \mathbf{Na}]^+$ calcd for $C_8H_{10}N_2NaO_3^+$ 205.0584, found 205.0592.

5-Hydroxy-1-(naphthalen-1-yl)pyrrolidin-2-one (1x): eluent: PE : EA = 1 : 2, white powder, yield: 65%. ¹H NMR (400 MHz, **CDCl**₃) δ 7.91 – 7.84 (m, 2H), 7.79 – 7.62 (m, 1H), 7.54 – 7.44 (m, 3H), 7.34 (d, *J* = 6.9 Hz, 1H), 5.51 – 5.36 (m, 1H), 3.19 (d, *J* = 4.5

Hz, 1H), 2.86 – 2.70 (m, 1H), 2.60 – 2.45 (m, 2H), 2.15 – 2.06 (m, 1H). ¹³C NMR (76 **MHz**, **DMSO**-*d*₆) δ 174.1, 134.3, 134.0, 130.5, 128.1, 127.9, 126.4, 126.2, 125.7, 123.6,

S11 / S121

85.3, 29.1, 28.9. **IR** (**KBr**, *v* / **cm** ⁻¹) 3416, 1644, 1047, 1027, 997, 828, 766. **HRMS** (**ESI, m/z**) [M + Na]⁺ calcd for C₁₄H₁₃NNaO₂⁺ 250.0838, found 250.0844.

5-Hydroxy-1-(quinoxalin-2-yl)pyrrolidin-2-one (1y): eluent: PE : EA = 1 : 1, white solid, mp 141-142 °C, yield: 55%. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (s, 1H), 7.98 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.74 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.65 – 7.55 (m, 2H), 6.15 (d, *J* = 5.9 Hz, 1H), 5.11 (s, 1H), 2.98 – 2.84 (m, 1H), 2.58 (ddd, *J* = 17.7, 9.8, 3.3 Hz,

1H), 2.46 – 2.32 (m, 1H), 2.22 – 2.11 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 146.2, 139.8, 139.6, 139.5, 130.5, 129.0, 128.4, 127.5, 83.1, 30.6, 25.8. IR (KBr, *ν* / cm ⁻¹) 3338, 2999, 2969, 1716, 1698, 1562, 1476, 1497, 1422, 1398, 1329, 1254, 1206, 1062, 1001, 988, 770. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₁₂H₁₁N₃NaO₂⁺ 252.0743, found 252.0749.

1-(2,4-Dimethoxybenzyl)-5-hydroxypyrrolidin-2-one (1aa):

eluent: PE : EA = 1 : 2, colorless oil, yield: 68%. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, J = 8.7 Hz, 1H), 6.45 – 6.38 (m, 2H), 5.09 – 5.02 (m, 1H), 4.61 (d, J = 14.6 Hz, 1H), 4.55 – 4.44 (m, 1H), 4.22 (d, J = 14.6 Hz, 1H), 3.79 (s, 3H), 3.75 (s, 3H), 2.60 –

HО

2.48 (m, 1H), 2.29 – 2.09 (m, 2H), 1.90 – 1.80 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 160.4, 158.1, 131.2, 116.8, 104.4, 98.4, 82.4, 55.4, 55.2, 37.8, 29.0, 27.2. IR (KBr, v / cm ⁻¹) 3330, 2948, 2840, 1668, 1616, 1592, 1511, 1463, 1420, 1288, 1210, 1159, 1126, 1036, 835. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₁₃H₁₇NNaO₄⁺ 274.1050, found 274.1045.

1-(2,2-Diphenylethyl)-5-hydroxypyrrolidin-2-one (1ab): eluent: PE : EA = 1 : 1, white powder, yield: 67 %. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.22 (m, 8H), 7.22 – 7.15 (m, 2H), 4.67 (d, *J* = 6.3 Hz, 1H), 4.41 (t, *J* = 8.3 Hz, 1H), 4.30 (s, 1H), 4.17 (dd, *J* = 13.7, 8.2 Hz, 1H), 3.68 (dd, *J* = 13.7, 8.4 Hz, 1H), 2.48 –

S12 / S121

2.35 (m, 1H), 2.17 – 2.05 (m, 1H), 2.01 – 1.89 (m, 1H), 1.77 – 1.66 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.4, 142.3, 141.4, 128.6, 128.6, 128.1, 127.9, 126.8, 126.8, 83.3, 48.6, 44.4, 28.8, 28.1. IR (KBr, ν / cm ⁻¹) 3332, 3066, 3030, 2935, 1666, 1495, 1454, 1422, 1329, 1286, 1251, 1169, 1070, 956, 740, 703. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₁₈H₁₉NNaO₂⁺ 304.1308, found 304.1301.

1-(Furan-2-ylmethyl)-5-hydroxypyrrolidin-2-one (1ac): eluent: PE : EA = 1 : 2, yellow oil, yield: 63%. ¹H NMR (400 MHz, acetone- d_6) δ 7.49 – 7.42 (m, 1H), 6.39 – 6.23 (m, 2H), 5.28 (d, J = 7.2 Hz, 1H), 5.20 – 5.14 (m, 1H), 4.74 (d, J = 15.6 Hz, 1H), 4.15 (d,

J = 15.6 Hz, 1H), 2.48 – 2.39 (m, 1H), 2.32 – 2.16 (m, 2H), 1.90 – 1.82 (m, 1H). ¹³C NMR (101 MHz, acetone- d_6) δ 174.2, 151.8, 143.0, 111.1, 108.5, 82.6, 36.3, 29.1, 28.6. IR (KBr, $v / \text{ cm}^{-1}$) 3332, 2961, 1672, 1461, 1422, 1279, 1139, 1077, 1012. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₉H₁₁NNaO₃⁺ 204.0631, found 204.0638.

5-Hydroxy-3-methyl-1-phenylpyrrolidin-2-one (1ag): eluent: PE : EA = 3 : 1, colorless oil, yield: 82%. ¹H NMR (400 MHz, **CDCl**₃) δ 7.56 (d, *J* = 7.7 Hz, 2H), 7.40 (t, *J* = 7.9 Hz, 2H), 7.25 – 7.20 (m, 1H), 5.63 (t, *J* = 5.8 Hz, 1H), 2.98 – 2.86 (m, 1H), 2.73 (d, *J* = 5.9 Hz, 1H), 2.32 (dd, *J* = 13.4, 8.3 Hz, 1H), 2.06 – 1.95 (m, 1H),

1.28 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.9, 137.5, 129.2, 126.1, 123.0, 83.2, 37.2, 35.0, 16.1. IR (KBr, ν / cm ⁻¹) 3375, 2967, 2932, 1685, 1597, 1498, 1459, 1407, 1299, 1284, 1202, 1101, 1058, 1027, 760, 721, 693. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₁₁H₁₃NNaO₂⁺ 214.0838, found 214.0844.

5-Hydroxy-1-phenyl-4-propylpyrrolidin-2-one (1ah): eluent: PE : EA = 1 : 2, colorless oil, yield: 55%. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.8 Hz, 2H), 7.35

(t, J = 7.8 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H), 5.19 (s, 1H), 4.23 (s, 1H), Me 2.78 (dd, J = 17.2, 8.3 Hz, 1H), 2.19 – 2.02 (m, 2H), 1.60 – 1.46 (m, 1H), 1.40 – 1.28 (m, 3H), 0.92 (t, J = 6.9 Hz, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 174.2, 137.1, 129.0, 126.1, 123.5, 90.2, 40.7, 36.1, 35.4, 20.2, 14.0. IR (KBr, $v / \text{ cm}^{-1}$) 3355, 2987, 2928, 1690, 1590, 1488,

1456, 1408, 1276, 1250, 1202. **HRMS (ESI, m/z)** [M + Na]⁺ calcd for C₁₃H₁₇NNaO₂⁺ 242.1151, found 242.1157.

3-benzyl-5-hydroxy-1-phenylpyrrolidin-2-one (1au): eluent: DCM : MeOH = 40: 1, white powder, yield: 75%. ¹H NMR (400 MHz, methanol-d4) δ 7.48 – 7.44 (m, 2H), 7.41 – 7.36 (m, 2H), 7.32 – 7.27 (m, 2H), 7.27 – 7.21 (m, 4H), 5.37 (dd, J = 6.2, 1.4 Hz, 1H), 3.25 – 3.15 (m, 2H), 2.81 – 2.73 (m, 1H), 2.21 – 2.11 (m, 1H), 2.03 – 1.95 (m, 1H). ¹³C NMR (101 MHz, methanol-d4) δ 177.7, 140.2, 138.9, 130.2, 129.9, 129.6, 127.6, 127.4, 125.3, 84.7, 43.5, 37.6, 35.6. IR (KBr, ν / cm ⁻¹) 3375, 2943, 1677, 1597, 1498, 1407, 1288, 1215, 1118, 1083, 1051. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₁₇H₁₇NNaO₂⁺ 290.1151, found 290.1150.

6a-Hydroxy-1-phenylhexahydrocyclopenta[b]pyrrol-2(1H)-one

(1aw): eluent: PE : EA = 3:1, colorless oil, yield: 74%. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.33 (m, 4H), 7.32 – 7.26 (m, 1H), 4.09 (s, 1H), 2.85 (dd, J = 17.8, 9.4 Hz, 1H), 2.51 – 2.39 (m, 1H), 2.23 – 2.09 (m, 2H), 1.91 – 1.80 (m, 1H), 1.79 – 1.67 (m, 2H), 1.67 – 1.53 (m, 1H),

1.47 – 1.35 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 136.3, 129.0, 127.2, 127.0, 103.0, 44.3, 37.4, 37.2, 34.0, 24.3. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₁₃H₁₅NNaO₂⁺ 240.0995, found 240.0991.

HO

iv. Preparation and characterization data of pyrroles.

Procedure A (succinimides as the substrates): Unless otherwise noted, a Schlenk tube was charged with a mixture of succinimides **2** (0.1 mmol) and Lawesson's reagent (80.8 mg, 0.2 mmol) in toluene (1.0 mL) under an argon atmosphere. The vial was sealed and stirred vigorously at 130 °C. After stirring for 24 h, the reaction was cooled to room temperature, and the solvent was removed under reduced pressure. The residue was directly subjected to column chromatography. The yields were depicted in the main text.

Procedure B (γ -hydroxylactams as the substrates): Unless otherwise noted, a Schlenk tube was charged with a mixture of γ -hydroxylactams **1** (0.1 mmol) and Lawesson's reagent (80.8 mg, 0.2 mmol) in toluene (1.0 mL) under an argon atmosphere. The vial was sealed and stirred vigorously at 110 °C. After stirring for 2 h, the reaction was cooled to room temperature, and the solvent was removed under reduced pressure. The residue was directly subjected to column chromatography. The yields were depicted in parentheses.

1-Phenyl-1H-pyrrole (3a):^[1] eluent: PE : EA = 10 : 1, white solid (10.4 mg, 73%), mp 58.3-59.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.36 (m, 4H), 7.27 – 7.20 (m, 1H), 7.09 (t, *J* = 2.1 Hz, 2H), 6.35 (t, *J* = 2.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.8, 129.6, 125.6, 120.6, 119.3, 110.4. IR (KBr, *ν* / cm ⁻¹) 3144, 1605, 1513, 1461, 1327, 1256, 1085, 759, 721, 690.

1-(*o***-Tolyl)-1H-pyrrole (3b):^[1]** eluent: PE : EA = 50 : 1, colorless oil (14.1 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 4H), 6.87 – 6.81 (m, 2H), 6.41 – 6.33 (m, 2H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.6, 133.8, 131.0, 127.5, 126.6, 126.5, 122.0, 108.7,

17.9. **IR** (**KBr**, *v* / **cm** ⁻¹) 3103, 3071, 3030, 2958, 2926, 1504, 1480, 1459, 1325, 1101, 1072, 1018, 926, 762, 727.

1-(2-Chlorophenyl)-1H-pyrrole (3c):^[2] eluent: PE : EA = 50 : 1, white solid (14.5 mg, 82%), mp 86-87 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.49 (m, 1H), 7.38 – 7.32 (m, 2H), 7.32 – 7.27 (m, 1H), 6.92 (t, *J* = 2.1 Hz, 2H), 6.35 (t, *J* = 2.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 138.8,

130.7, 129.7, 128.2, 127.9, 127.6, 122.2, 109.3. **IR** (**KBr**, *v* / **cm** ⁻¹) 3134, 2935, 1606, 1532, 1460, 1341, 1268.

1-(2-Bromophenyl)-1H-pyrrole (3d):^[3] eluent: PE : EA = 30 : 1, white solid, (19.4 mg, 88%), mp 73-75 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 8.0, 1.2 Hz, 1H), 7.41 – 7.31 (m, 2H), 7.26 – 7.20 (m, 1H), 6.88 (t, J = 2.1 Hz, 2H), 6.34 (t, J = 2.1 Hz, 2H). ¹³C NMR (76 MHz, CDCl₃)

δ 140.4, 133.8, 128.8, 128.3, 128.2, 122.3, 119.9, 109.2. **IR** (**KBr**, *ν* / **cm** ⁻¹) 3130, 2930, 1601, 1573, 1502, 1431, 1339, 1256, 1078, 860, 771, 728, 679.

1-(2-Iodophenyl)-1H-pyrrole (3e):^[3] eluent: PE : EA = 30 : 1, white solid (21.0 mg, 78%), mp 114-116 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, J = 7.9, 1.4 Hz, 1H), 7.41 (td, J = 7.7, 1.4 Hz, 1H), 7.31 (dd, J = 7.9, 1.7 Hz, 1H), 7.10 (td, J = 7.7, 1.7 Hz, 1H), 6.82 (t, J = 2.2 Hz, 2H),

6.34 (t, *J* = 2.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 139.9, 129.4, 129.0, 128.1, 122.2, 109.1, 95.9. IR (KBr, ν / cm ⁻¹) 3050, 2987, 1586, 1498.

1-(*m***-Tolyl)-1H-pyrrole (3f): ^[1]** eluent: PE : EA = 30 : 1, colorless oil (12.5 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, *J* = 7.6 Hz, 1H), 7.23 – 7.17 (m, 2H), 7.10 – 7.04 (m, 3H), 6.34 (t, *J* = 2.1 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 140.8, 139.6, 129.4, 126.5, 121.4, 119.4, 117.7, 110.2, 21.5, IR (KBr, ν / cm ⁻¹) 3100, 2984, 1597, 1576, 1

CI

Br

119.4, 117.7, 110.2, 21.5. **IR** (**KBr**, *v* / **cm** ⁻¹) 3100, 2984, 1597, 1576, 1490, 1466, 1331, 1312, 1052, 771, 709, 682.

1-(3-Bromophenyl)-1H-pyrrole (3g):^[4] eluent: PE : EA = 30 : 1, white solid (19.2 mg, 87%), mp 62-63 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (t, J = 1.9 Hz, 1H), 7.38 – 7.22 (m, 3H), 7.05 (t, J = 2.2 Hz, 2H), 6.34 (t, J = 2.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.9, 130.8, 128.5, 123.5, 123.1, 119.2, 118.9, 111.1. IR (KBr, ν / cm ⁻¹) 3152, 3133, 3073, 1597, 1575, 1500, 1469, 1433, 1336, 1254, 1075, 1021, 993, 863, 775, 727, 678.

1-(4-Methoxyphenyl)-1H-pyrrole (3h): ^[1] eluent: PE : EA = 40 : 1, pale yellow oil (14.7 mg, 85%). ¹H NMR (**300** MHz, CDCl₃) δ 7.32 (d, *J* = 8.5 Hz, 2H), 7.04 – 6.98 (m, 2H), 6.95 (d, *J* = 8.5 Hz, 2H), 6.41 – 6.25 (m, 2H), 3.84 (s, 3H). ¹³C NMR (**101** MHz, CDCl₃) δ 157.7, 134.5, 122.2, 119.7, 114.6, 109.9, 55.6. IR (KBr, ν / cm ⁻¹) 3144, 3016, 2961, 2837, 1522, 1258, 1027, 824, 720.

1-(4-(methylthio)phenyl)-1H-pyrrole(3i):^[5] eluent: PE : EA = 30 : 1, white solid (12.7 mg, 67%). mp 112-113 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (s, 4H), 7.06 (t, *J* = 2.2 Hz, 2H), 6.34 (t, *J* = 2.2 Hz, 2H), 2.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.3, 135.5, 128.1, 121.1, 119.3, 110.4, 16.5. IR (KBr, ν / cm ⁻¹) 3079, 2911, 1469, 1424, 1381, 1113, 1089, 1063, 1001, 969, 802.

1-(4-Isopropylphenyl)- pyrrole (3j): ^[1] eluent: PE : EA = 30 : 1, white solid (15.0 mg, 81%), mp 67.0-67.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.30 (m, 2H), 7.30 – 7.26 (m, 2H), 7.07 (t, *J* = 2.2 Hz, 2H), 6.34 (t, *J* = 2.2 Hz, 2H), 2.94 (hept, *J* = 6.9 Hz, 1H), 1.28 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 146.4, 138.7, 127.5, 120.7, 119.5, 110.0, 33.6, 24.1. IR (KBr, ν / cm ⁻¹) 3446, 2963, 2926, 1638, 1525, 1461, 1329, 1077.

SMe

OMe

Br

S17 / S121

1-(*p***-Tolyl)-1H-pyrrole (3k):^[6]** eluent: PE : EA = 30 : 1, colorless oil (12.1 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.26 (m, 2H), 7.21 (d, *J* = 8.2 Hz, 2H), 7.05 (t, *J* = 2.2 Hz, 2H), 6.33 (t, *J* = 2.2 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.5, 135.4, 130.1, 120.6, 119.4, 110.1, 20.9. IR (KBr, *v* / cm ⁻¹) 3049, 2950, 1653, 1457, 1403, 1025, 814, 718.

Me

CI

Br

1-(4-Chlorophenyl)-1H-pyrrole (31):^[1] eluent: PE : EA = 30 : 1, white solid (16.4 mg, 93%), mp 87-89 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.36 – 7.30 (m, 2H), 7.05 (t, *J* = 2.1 Hz, 2H), 6.36 (t, *J* = 2.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.4, 131.1, 129.7, 121.7, 119.3, 110.9. IR (KBr, *ν* / cm ⁻¹) 3133, 3111, 2926, 1508, 1075, 826, 732.

1-(4-Bromophenyl)-1H-pyrrole (3m): ^[1] eluent: PE : EA = 50 : 1, white solid (16.6 mg, 75%), mp 92-93 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.69 (m, 2H), 7.48 – 7.44 (m, 2H), 7.24 (t, *J* = 2.2 Hz, 2H), 6.55 (t, *J* = 2.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.8, 132.6, 122.0, 119.2, 118.7, 110.9. IR (KBr, ν / cm ⁻¹) 3100, 3064, 1582, 1489, 1406, 1102, 1051, 908, 812, 722.

1-(4-Iodophenyl)-1H-pyrrole (3n):^[7] eluent: PE : EA = 30 : 1, white solid (18.9 mg, 70%), mp 129-130 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.70 (m, 2H), 7.19 – 7.12 (m, 2H), 7.05 (t, *J* = 2.2 Hz, 2H), 6.36 (t, *J* = 2.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 138.5, 122.2, 119.1, 111.0, 89.4. IR (KBr, *v* / cm ⁻¹) 3149, 3130, 3100, 3059, 1589, 1493, 1405, 1328, 1246, 1189, 1119, 1072, 994, 920, 814.

1-(4-Nitrophenyl)-pyrrole (30):^[1] eluent: PE : EA = 30 : 1, white solid (13.7 mg, 73%), mp 182-183 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 9.1 Hz, 2H), 7.52 (d, *J* = 9.1 Hz, 2H), 7.20 – 7.16 (m, 2H), 6.46 – 6.40 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 144.7, 125.6, 119.4, 119.1, 112.6. IR (KBr, *v* / cm ⁻¹) 1581, 1512, 1501, 1459, 1312, 1171, 1079, 1034, 987, 834.

4-(1H-Pyrrol-1-yl)benzonitrile (3p):^[2] eluent: PE : EA = 30 : 1, white solid (12.4 mg, 74%), mp 101-102 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.69 (m, 2H), 7.51 – 7.45 (m, 2H), 7.17 – 7.12 (m, 2H), 6.43 – 6.38 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 133.9, 120.0, 118.9, 118.5, 112.2, 108.7. IR (KBr, *ν* / cm ⁻¹) 2218, 1620, 1510, 1455, 1330.

Methyl 4-(1H-pyrrol-1-yl)benzoate (3q): ^[8] eluent: PE : EA = 30 : 1, white solid (18.9 mg, 94%), mp 125-126 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.8 Hz, 2H), 7.44 (d, J = 8.7 Hz, 2H), 7.20 – 7.13 (m, 2H), 6.44 – 6.34 (m, 2H), 3.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 144.0, 131.3, 126.9, 119.3, 119.0, 111.5, 52.2. IR (KBr, ν / cm ⁻¹) 1722, 1601, 1518, 1462, 1428, 1327, 1279, 1183, 1103, 837, 754, 709.

1, yellow powder (10.3 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 6.95 (t, J = 2.2 Hz, 2H), 6.86 (dd, J = 1.8, 0.8 Hz, 1H), 6.82 – 6.79 (m, 2H), 6.29 (t, J = 2.2 Hz, 2H), 5.96 (s, 2H). ¹³C NMR (76 MHz, CDCl₃) δ 148.3, 145.6, 135.7, 119.8, 114.0, 110.0, 108.4, 103.0, 101.6. IR (KBr, ν

 $1-(benzo[d][1,3]dioxol-5-yl)-1H-pyrrole (3r):^{[9]} eluent: PE : EA = 50 :$

/ cm ⁻¹) 3129, 2904, 1616, 1515, 1484, 1454, 1239, 1105, 1077, 1046, 936, 809.

CN

1-(3,4,5-Trimethoxyphenyl)-1H-pyrrole (3s): ^[10] eluent: PE : EA = 10 : 1, white solid (20.8 mg, 89%), mp 88-89 °C. ¹H NMR (**400 MHz, CDCl**₃) δ 7.02 (t, *J* = 2.1 Hz, 2H), 6.60 (s, 2H), 6.34 (t, *J* = 2.1 Hz, 2H), 3.90 (s, 6H), 3.87 (s, 3H). ¹³C NMR (**101** MeO MHz, CDCl₃) δ 153.8, 137.2, 136.2, 119.8, 110.2, 98.9, 61.1,

56.3. **IR** (**KBr**, *v* / **cm** ⁻¹) 3000, 2943, 2833, 2846, 1599, 1511, 1467, 1426, 1258, 1234, 1129, 1075, 1006.

ОМе

MeO

1-(2,4-dimethoxyphenyl)-1H-pyrrole (3t): eluent: PE : EA = 30 : 1, pale yellow solid (15.0 mg, 74%), mp 45-46 °C. ¹H NMR (400 MHz, **CDCl**₃) δ 7.20 (d, *J* = 8.6 Hz, 1H), 6.90 (t, *J* = 2.2 Hz, 2H), 6.58 (d, *J* = 2.6 Hz, 1H), 6.51 (dd, *J* = 8.6, 2.6 Hz, 1H), 6.29 (t, *J* = 2.1 Hz, 2H), 3.84 (s, 3H), 3.80 (s, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 159.4, 154.1, 126.7, 124.0, 122.3, 108.4, 104.2, 99.8, 55.8, 55.6. IR (KBr, *v* / cm ⁻¹) 2967, 2937, 1618, 1593, 1521, 1299, 1286, 1210, 1163, 1074, 1044. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₁₂H₁₃NNaO₂⁺ 226.0838, found 226.0845.

1-(2,6-Dimethylphenyl)-pyrrole (3u): ^[1] eluent: PE : EA = 30 : 1, pale yellow solid (7.7 mg, 45%), mp 45-46 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.07 (m, 1H), 7.06 – 7.00 (m, 2H), 6.52 (t, J = 2.1 Hz, 2H), 6.23 (t, J = 2.1 Hz, 2H), 1.95 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 139.9, 136.3, 128.0, 127.9, 121.3, 108.5, 17.3. IR (KBr, ν / cm ⁻¹) 3120, 3099, 2956, 2924, 1498, 1472, 1314, 1265, 1090, 783, 736.

2-(1H-Pyrrol-1-yl)pyridine (3v):^[11] eluent: PE : EA = 50 : 1, colorless oil (4.5 mg, 31%). ¹H NMR (400 MHz, CDCl₃) δ 8.46 – 8.40 (m, 1H), 7.77 – 7.71 (m, 1H), 7.53 – 7.51 (m, 2H), 7.32 (dt, *J* = 8.4, 0.9 Hz, 1H), 7.13 – 7.08 (m, 1H), 6.38 – 6.34 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.7, 138.5, 120.2, 118.1, 111. 5, 111.3. **IR (KBr, v / cm ⁻¹)** 3140, 3103, 3065, 3018, 1862, 1710, 1591, 1486, 1440, 1392, 1331, 1250, 1152, 1061, 1015, 989, 927, 870, 780, 739, 612.

S20 / S121

5-Methyl-3-(1H-pyrrol-1-yl)isoxazole (3w): eluent: PE : EA = 8 : 1, colorless oil. 9.6 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, *J* = 2.2 Hz, 2H), 6.34 (t, *J* = 2.2 Hz, 2H), 6.11 (s, 1H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 159.5, 119.0, 111.5, 94.1, 12.8. IR (KBr, *v* / cm ⁻¹) 2958, 2920, 2851, 1620, 1597, 1536, 1497, 1444, 1295, 1075, 1027, 755,

693. **HRMS** (**ESI**, **m**/**z**) [M + Na]⁺ calcd for C₈H₈N₂NaO⁺ 171.0529, found 171.0531.

1-(Naphthalen-1-yl)-1H-pyrrole (3x): ^[1] eluent: PE : EA = 30 : 1, colorless oil (13.5 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.76 (d, J = 8.3 Hz, 1H), 7.56 – 7.45 (m, 4H), 7.01 (t, J = 2.1 Hz, 2H), 6.42 (t, J = 2.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 138.3, 134.3, 129.9, 128.1, 127.9, 127.0,

126.6, 125.3, 123.32, 123.30, 123.2, 109.1. **IR** (**KBr**, *v* / **cm** ⁻¹) 2924, 2857, 1589, 1511, 1489, 1459, 1400, 725.

2-(1*H***-Pyrrol-1-yl)quinoxaline (3y):** eluent: PE : EA = 8 : 1, pale brown solid (9.9 mg, 51%), mp 98-99 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.12 (s, 1H), 8.06 (d, *J* = 8.3 Hz, 1H), 7.99 (d, *J* = 8.3 Hz, 1H), 7.79 – 7.71 (m, 3H), 7.70 – 7.65 (m, 1H), 6.47 (t, *J* = 2.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.1, 141.0, 140.5, 136.6, 131.0, 129.2, 128.4,

128.4, 118.4, 112.8. **IR** (**KBr**, *v* / **cm** ⁻¹) 3137, 3107, 3056, 1571, 1534, 1500, 1465, 1357, 1299, 1122, 1070, 969, 926, 759, 732, 677. **HRMS** (**ESI, m/z**) [M + Na]⁺ calcd for C₁₂H₉N₃Na⁺ 218.0689, found 218.0691.

1-Benzyl-1H-pyrrole (3z): ^[6] eluent: PE : EA = 10 : 1, colorless oil (9.9 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.26 (m, 3H), 7.12 (d, *J* = 7.2 Hz, 2H), 6.70 (t, *J* = 2.0 Hz, 2H), 6.20 (t, *J* = 2.0 Hz, 2H), 5.08 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 138.2, 128.8, 127.7, 127.0, 121.2, 108.5, 53.4. IR (KBr, ν / cm ⁻¹) 2922, 2853, 1500, 1456, 1288, 1090, 723.

1-(2,4-Dimethoxybenzyl)-1H-pyrrole (3aa): ^[12] eluent: PE : EA = 30 : 1, colorless oil (14.9 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 6.81 (d, J = 8.3 Hz, 1H), 6.71 (t, J = 2.1 Hz, 2H), 6.46

(d, J = 2.3 Hz, 1H), 6.41 (dd, J = 8.3, 2.4 Hz, 1H), 6.15 (t, J = 2.1

Hz, 2H), 5.01 (s, 2H), 3.83 (s, 3H), 3.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.6, 157.8, 129.4, 121.1, 119.2, 107.9, 104.1, 98.4, 55.4, 55.4, 47.9. IR (KBr, *ν* / cm ⁻¹) 3002, 2939, 2838, 1614, 1590, 1510, 1463, 1439, 1292, 1269, 1210, 1157, 1124, 1087, 1036.

OMe

OMe

1-(2,2-Diphenylethyl)-1H-pyrrole (3ab): ^[13] eluent: PE : EA = 20 : 1, pale yellow oil (12.6 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 7.24 - 7.18 (m, 4H), 7.18 - 7.13 (m, 2H), 7.13 - 7.08 (m, 4H), 6.37 (t, *J* = 2.1 Hz, 2H), 5.95 (t, *J* = 2.1 Hz, 2H), 4.42 (d, *J* = 7.7 Hz, 2H), 4.27 (t, *J* = 7.7 Hz, 1H). ¹³C NMR (76 MHz, CDCl₃) δ 141.9, 128.7, 127.9, 126.9, 120.9, 107.9, 54.7, 53.4. IR (KBr, *v* / cm ⁻¹) 3062, 3029, 2926, 2853, 1601, 1497, 1452, 1284, 1090, 1068, 1034, 788, 725.

1-(Furan-2-ylmethyl)-1H-pyrrole (**3ac**):^[2] eluent: PE : EA = 30 : 1, colorless oil (9.7 mg, 66%). ¹H NMR (**400** MHz, CDCl₃) δ 7.37 (dd, J = 1.8, 0.8 Hz, 1H), 6.71 (t, J = 2.1 Hz, 2H), 6.33 (dd, J = 3.2, 1.9 Hz, 1H), 6.26 – 6.23 (m, 1H), 6.17 (t, J = 2.1 Hz, 2H), 5.02 (s, 2H). ¹³C NMR (**101** MHz, CDCl₃) δ 150.8, 142.7, 120.7, 110.4, 108.5, 108.1, 46.1.

1,4-di(1H-pyrrol-1-yl)benzene (3ad):^[14] eluent: PE : EA = 30 : 1, white powder (15.6 mg, 75%, this product was obtained only from the corresponding succinimide substrate). ¹H NMR (600 MHz, CDCl₃) δ 7.45 (s, 4H), 7.10 (t, *J* = 2.2 Hz, 4H), 6.38 (t, *J* = 2.2 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 138.5, 121.6, 119.4, 110.7. IR (KBr, ν / cm ⁻¹) 1655, 1478, 1403, 1135, 1124, 1092.

S22 / S121

1-Benzyl-2-methyl-1H-pyrrole (3ae): eluent: PE : EA = 30 : 1, colorless oil (13.0 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.26 – 7.22 (m, 1H), 6.99 (d, *J* = 7.4 Hz, 2H), 6.65 – 6.60 (m, 1H), 6.10 (t, *J* = 3.0 Hz, 1H), 5.96 – 5.91 (m, 1H), 5.02 (s, 2H), 2.14 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.5, 128.8, 128.7, 127.3, 126.4, 120.9, 107.1, 107.1, 50.4, 12.0. IR (KBr, *v* / cm ⁻¹) 2933, 2861, 1703, 1687, 1497, 1456, 1422, 1357, 1303, 1079, 1031. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₁₂H₁₃NNa⁺ 194.0940, found 194.0943.

1-Benzyl-2-butyl-1H-pyrrole (3af):^[15] eluent: PE : EA = 30 :

1, colorless oil (13.4 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.26 – 7.21 (m, 1H), 6.98 (d, *J* = 7.6 Hz, Me 2H), 6.63 – 6.58 (m, 1H), 6.13 (t, *J* = 3.1 Hz, 1H), 5.97 – 5.93

(m, 1H), 5.03 (s, 2H), 2.44 (t, *J* = 7.8 Hz, 2H), 1.54 (p, *J* = 7.4 Hz, 2H), 1.33 (h, *J* = 7.3 Hz, 2H), 0.87 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR (101 MHz, CDCl**₃) δ 138.6, 133.7, 128.7, 127.3, 126.4, 120.8, 107.1, 105.9, 50.2, 31.0, 25.9, 22.5, 13.9. **IR (KBr, ν / cm ⁻¹)** 2963, 2922, 2857, 1697, 1606, 1499, 1320, 1080, 757, 697.

Bn

3-Methyl-1-phenyl-1H-pyrrole (3ag): ^[1] eluent: PE : EA = 50 : 1, Me white solid (9.1 mg, 58%), mp 49-51 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.34 (m, 4H), 7.23 – 7.18 (m, 1H), 7.01 (t, *J* = 2.5 Hz, 1H), 6.90 – 6.87 (m, 1H), 6.21 – 6.17 (m, 1H), 2.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 129.5, 125.2, 121.2, 120.0, 119.0, 117.2, 112.0, 12.0.

IR (**KBr**, *v* / **cm**⁻¹) 3470, 3140, 2928, 2868, 1644, 1601, 1510, 1461, 1349, 1265, 1213, 1075, 1053.

1-Phenyl-3-propyl-1H-pyrrole (3ah): eluent: PE : EA = 30 : 1, colorless oil (16.6 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 4H), 7.15 - 7.07 (m, 1H), 6.93 (t, J = 2.5 Hz, 1H), 6.80 (s, 1H), 6.12(s, 1H), 2.41 (t, J = 7.6 Hz, 2H), 1.56 (h, J = 7.4 Hz, 2H), 0.90 (t, J = 7.3Hz, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 140.8, 129.5, 126.8, 125.1, 119.9, 118.8, 116.4, 110.9, 29.3, 24.2, 14.1. **IR** (**KBr**, *v* / **cm**⁻¹) 2930, 2958, 2872, 1601, 1510, 1459, 1366, 1074, 1053, 755, 691. HRMS (ESI, m/z) $[M + Na]^+$ calcd for $C_{13}H_{15}NNa^+$ 208.1097, found 208.1099.

1,3-Diphenyl-1H-pyrrole (3ai):^[16] eluent: PE : EA = 30 : 1, pale yellow solid (10.3 mg, 47%), mp 118-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 -7.58 (m, 2H), 7.48 - 7.44 (m, 4H), 7.42 - 7.36 (m, 3H), 7.32 - 7.27 (m, 1H), 7.25 – 7.20 (m, 1H), 7.16 – 7.13 (m, 1H), 6.70 – 6.66 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.5, 135.3, 129.7, 128.7, 126.9, 125.9,

ÒМе

Me

125.8, 125.2, 120.37, 120.35, 115.8, 108.7. IR (KBr, v/cm⁻¹) 3130, 3045, 2920, 2855, 1598, 1560, 1507, 1447, 1365, 1307, 1264, 1238, 1183, 1155, 1113, 1082, 1063, 1035, 932, 916, 780, 753, 691.

3-(2-methoxyphenyl)-1-phenyl-1H-pyrrole (3aj): eluent: PE : EA = 30 : 1, white powder (13.4 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (t, J = 2.0 Hz, 1H), 7.58 (dd, J = 7.6, 1.8 Hz, 1H), 7.46 – 7.39 (m, 4H), 7.26 - 7.16 (m, 2H), 7.11 (t, J = 2.6 Hz, 1H), 7.01 - 6.94 (m, 2H), 7.01 - 6.94 (m2H), 6.75 (dd, J = 3.0, 1.7 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.2, 140.8, 129.5, 127.9, 126.7, 125.6, 124.1, 122.4, 120.8, 120.4, 119.17, 119.15, 111.2, 110.3, 55.4. HRMS (ESI, m/z) [M + Na]⁺ calcd

for C₁₇H₁₅NNaO⁺ 272.1046, found 272.1033.

3-(2-chlorophenyl)-1-phenyl-1H-pyrrole (3ak): eluent: PE : EA = 50 : 1 to 20 : 1, pale yellow powder (11.3 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.51 (m, 2H), 7.46 – 7.42 (m, 5H), 7.29 – 7.23 (m, 2H), 7.18 – 7.11 (m, 2H), 6.69 (dd, *J* = 3.0, 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.5, 134.1, 131.8, 130.4, 130.2, 129.7, 127.0, 126.9, 125.9,

123.6, 120.5, 119.3, 119.2, 111.4. **IR (KBr, v / cm ⁻¹)** 3079, 1597, 1510, 1437, 1351, 1077, 1057, 1033, 751, 691. **HRMS (ESI, m/z)** [M + Na]⁺ calcd for C₁₆H₁₂ClNNa⁺ 276.0550, found 276.0557.

3-(3-methoxyphenyl)-1-phenyl-1H-pyrrole (3al): eluent: PE : EA = 20 : 1, pale yellow powder (16.4 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.41 (m, 4H), 7.37 (t, *J* = 2.0 Hz, 1H), 7.30 – 7.22 (m, 2H), 7.19 – 7.16 (m, 1H), 7.13 – 7.09 (m, 2H), 6.78 – 6.74 (m, 1H), 6.64 (dd, *J* = 2.9, 1.8 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 140.5, 136.8, 129.7, 129.6, 126.8, 125.8, 120.4, 120.3, 117.9, 116.0, 111.2, 111.0, 108.9, 55.2. **IR** (**KBr**, *ν* / **cm** ⁻¹) 1599, 1508, 1370, 1213, 1047, 759, 691. **HRMS (ESI,**

m/z [M + Na]⁺ calcd for C₁₇H₁₅NNaO⁺ 272.1046, found 272.1038.

3-(3-chlorophenyl)-1-phenyl-1H-pyrrole (3am): eluent: PE : EA = 50 : 1 to 20 : 1, pale yellow powder (16.4 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (t, J = 1.7 Hz, 1H), 7.49 – 7.42 (m, 5H), 7.39 (t, J = 1.9 Hz, 1H), 7.32 – 7.26 (m, 2H), 7.20 – 7.16 (m, 1H), 7.13 (t, J = 2.6 Hz, 1H), 6.64 (dd, J = 2.7, 1.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 137.3, 134.6, 129.9, 129.7, 126.1, 125.7, 125.6, 125.2, 123.2, 120.7,

120.5, 116.3, 108.7. **HRMS (ESI, m/z)** $[M + Na]^+$ calcd for $C_{16}H_{12}CINNa^+$ 276.0550, found 276.0555.

1-phenyl-3-(3-(trifluoromethyl)phenyl)-1H-pyrrole (3an): eluent: PE : EA = 50 : 1 to 20 : 1, pale yellow powder (19.5 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.76 – 7.72 (m, 1H), 7.50 – 7.43 (m, 7H), 7.34 – 7.28 (m, 1H), 7.17 – 7.14 (m,

S25 / S121

1H), 6.69 (dd, J = 3.0, 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.3, 136.2, 131.2, 130.9, 129.7, 129.1, 128.6 - 127.8 (m), 126.2, 125.5, 122.3 (q, J = 3.8 Hz), 121.8 (q, J = 3.8 Hz), 120.8, 120.5, 116.4, 108.6. IR (KBr, v / cm⁻¹) 1329, 1174, 1109, 1075, 770, 697. HRMS (ESI, m/z) $[M + Na]^+$ calcd for $C_{17}H_{12}F_3NNa^+$ 310.0814, found 310.0812.

F₃C

OMe

Br

3-(4-methoxyphenyl)-1-phenyl-1H-pyrrole (3ao):^[17] eluent: PE : EA = 50 : 1 to 20 : 1, white solid, mp115–118 °C (22.1 mg, 89%). ¹H **NMR (600 MHz, CDCl₃)** δ 7.49 (d, J = 8.6 Hz, 2H), 7.45 – 7.41 (m, 4H), 7.30 (t, J = 2.0 Hz, 1H), 7.26 – 7.23 (m, 1H), 7.10 (t, J = 2.4 Hz, 1H), 6.91 (d, J = 8.6 Hz, 2H), 6.60 – 6.58 (m, 1H), 3.82 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.0, 140.6, 129.6, 128.2, 126.7, 126.4, 125.7, 120.3, 120.2, 115.1, 114.2, 108.7, 55.4. IR (KBr, v / cm⁻¹) 3040, 2815, 1602, 1507, 1477, 1263.

3-(4-bromophenyl)-1-phenyl-1H-pyrrole (3ap):^[17] eluent: PE : EA = 50 : 1 to 20 : 1, yellow solid, mp 114-116 °C, (27.3 mg, 92%). ¹H NMR (**400 MHz, CDCl**₃) δ 7.47 – 7.37 (m, 8H), 7.33 (s, 1H), 7.28 – 7.21 (m, 1H), 7.08 (t, J = 2.4 Hz, 1H), 6.59 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 134.3, 131.7, 129.7, 126.7, 126.0, 125.7, 120.6, 120.4, 119.3, 116.0, 108.6.

1-phenyl-3-(4-(trifluoromethyl)phenyl)-1H-pyrrole (3aq): eluent: PE : EA = 50 : 1 to 20 : 1, pale yellow powder (26.1 mg, 91%). ¹H **NMR** (400 MHz, CDCl₃) δ 7.67 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.3Hz, 2H), 7.50 – 7.43 (m, 5H), 7.34 – 7.28 (m, 1H), 7.15 (t, J = 2.6 Hz, 1H), 6.71 – 6.67 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 139.0, 129.7, 126.2, 125.7 (q, J = 3.8 Hz), 125.5, 125.1, 120.9, 120.6, 116.8, 108.8. **HRMS (ESI, m/z)** $[M + Na]^+$ calcd for $C_{17}H_{12}F_3NNa^+$ 310.0814, found 310.0818.

3-(benzo[d][1,3]dioxol-5-yl)-1-phenyl-1H-pyrrole (3ar): eluent: PE : EA = 20 : 1, pale yellow powder (24.2 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.38 (m, 4H), 7.28 – 7.21 (m, 2H), 7.09 – 7.07 (m, 1H), 7.06 – 7.02 (m, 2H), 6.84 – 6.79 (m, 1H), 6.55 (dd, *J* = 2.9, 1.8 Hz, 1H), 5.94 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.0, 145.8, 140.5, 129.8, 129.6, 126.8, 125.7, 120.3, 120.2, 118.4, 115.3, 108.7, 108.6, 106.0,

100.9. **IR** (**KBr**, *v* / **cm** ⁻¹) 1601, 1506, 1482, 1450, 1256, 1228, 1038, 936, 770, 755, 691. **HRMS** (**ESI**, **m**/**z**) [M + Na]⁺ calcd for C₁₇H₁₃NNaO₂⁺ 286.0838, found 286.0844.

3-([1,1'-biphenyl]-4-yl)-1-phenyl-1H-pyrrole (3as): eluent: PE : EA = 50 : 1 to 20 : 1, pale yellow powder (23.0 mg, 78%). ¹H NMR (**400 MHz, CDCl**₃) δ 8.43 – 8.38 (m, 1H), 7.92 – 7.86 (m, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.55 (dd, *J* = 7.1, 1.4 Hz, 1H), 7.50 – 7.44 (m, 7H), 7.34 – 7.32 (m, 1H), 7.30 – 7.24 (m, 1H), 7.24 – 7.21 (m, 1H), 6.65 (dd, *J* = 2.8, 1.7 Hz, 1H). ¹³C NMR (**101 MHz, CDCl**₃) δ 140.6, 134.2, 134.0, 131.9, 129.7, 128.4, 126.8, 126.5, 126.2, 125.9, 125.8, 125.7, 125.6, 125.5, 120.4, 119.4, 118.4, 112.6. **IR (KBr, \nu / cm ⁻¹)** 1653, 1625, 751, 688. **HRMS (ESI, m/z)** [M + Na]⁺ calcd for C₂₂H₁₇NNa⁺ 318.1253, found 318.1250.

3-(naphthalen-1-yl)-1-phenyl-1H-pyrrole (3at): eluent: PE : EA = 50 : 1 to 20 : 1, pale yellow powder (13.9 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 8.43 – 8.38 (m, 1H), 7.92 – 7.86 (m, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.55 (dd, J = 7.1, 1.4 Hz, 1H), 7.50 – 7.44 (m, 7H), 7.34 – 7.32 (m, 1H), 7.30 – 7.24 (m, 1H), 7.24 – 7.21 (m, 1H), 6.65

(dd, *J* = 2.8, 1.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.6, 134.2, 134.0, 131.9, 129.7, 128.4, 126.8, 126.5, 126.2, 125.9, 125.8, 125.7, 125.6, 125.5, 120.4, 119.4, 118.4,

112.6. **IR** (**KBr**, *v* / **cm** ⁻¹) 1508, 1355, 1159, 1053, 781, 757. **HRMS** (**ESI**, **m**/z) [M + Na]⁺ calcd for C₂₀H₁₅NNa⁺ 292.1097, found 292.1091.

3-benzyl-1-phenyl-1H-pyrrole (3au):^[17] eluent: PE : EA = 50 : 1, yellow solid, mp 82-83 °C (17.4 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.33 (m, 4H), 7.31 – 7.28 (m, 4H), 7.23 – 7.18 (m, 2H), 7.03 (t, *J* = 2.5 Hz, 1H), 6.85 (s, 1H), 6.22 – 6.16 (m, 1H), 3.89 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.9, 140.7, 129.5, 128.7, 128.4, 125.9, 125.6, 125.3, 120.1, 119.3, 117.3, 111.3, 33.6. IR (KBr, ν / cm ⁻¹) 2920, 1601, 1510, 1357, 1325, 1228, 1074, 1051, 757, 691.

2,3-Dimethyl-1-phenyl-1H-pyrrole (3av):^[18] eluent: PE : EA = 30 : 1, colorless oil (11.8 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.41 (m, 2H), 7.37 – 7.27 (m, 3H), 6.73 (d, J = 2.8 Hz, 1H), 6.12 (d, J = 2.8 Hz, 1H), 2.15 (s, 3H), 2.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.7, 129.0, 126.6, 125.7, 125.2, 119.9, 116.2, 109.8, 11.5, 10.6. IR (KBr, ν / cm ⁻¹) 2922, 2861, 1689, 1599, 1500, 1385, 1182, 1124.

1-Phenyl-1,4,5,6-tetrahydrocyclopenta[b]pyrrole (**3aw**):^[19] eluent: PE : EA = 30 : 1, yellow oil (14.3 mg, 78%). ¹H NMR (**400 MHz**, **CDCl**₃) δ 7.43 – 7.34 (m, 4H), 7.24 – 7.18 (m, 1H), 6.93 (d, *J* = 2.8 Hz, 1H), 6.11 (d, *J* = 2.8 Hz, 1H), 2.88 (t, *J* = 6.9 Hz, 2H), 2.68 (t, *J* = 7.0 Hz, 2H), 2.50 – 2.42 (m, 2H). ¹³C NMR (**101 MHz, CDCl**₃) δ 140.8,

137.2, 129.4, 129.0, 125.1, 122.3, 120.9, 105.3, 29.3, 26.7, 25.4. **IR** (**KBr**, *v* / **cm** ⁻¹) 2928, 2855, 1685, 1599, 1500, 1456, 1381, 1264, 759, 695.

1-Phenyl-4,5,6,7-tetrahydro-1H-indole (3ax):^[19] eluent: PE : EA = 30 : 1, yellow oil (15.1 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.44 - 7.37 (m, 2H), 7.33 - 7.24 (m, 3H), 6.77 (d, *J* = 2.6 Hz, 1H), 6.10 (d, *J* = 2.6 Hz, 1H), 2.63 - 2.53 (m, 4H), 1.82 - 1.75 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 140.2, 129.1, 128.1, 126.1, 124.5, 119.8, 119.0, 108.1, 23.6, 23.5, 23.4, 23.3. IR (KBr, ν / cm ⁻¹) 1603, 1502, 1308, 692.

1-Phenyl-1,4,5,6,7,8-hexahydrocyclohepta[b]pyrrole (3ay):^[19] eluent: PE : EA = 30 : 1, yellow oil (11.8 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.39 (m, 2H), 7.34 – 7.29 (m, 1H), 7.26 – 7.22 (m, 2H), 6.58 (d, *J* = 2.7 Hz, 1H), 6.05 (d, *J* = 2.7 Hz, 1H), 2.67 – 2.61 (m, 4H), 1.85 – 1.78 (m, 2H), 1.75 – 1.67 (m, 2H), 1.65 – 1.58 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 140.5, 131.8, 128.9, 126.6, 126.2, 123.7, 118.9, 109.6, 32.3, 28.9, 28.6, 27.8, 27.0. IR (KBr, *ν* / cm ⁻¹) 2922, 2879, 1600, 1510, 1298, 687.

3,4-dimethyl-1-phenyl-1H-pyrrole (**3az**):^[20] eluent: PE : EA = 60 : 1, Me Me light yellow solid, mp 62-63 °C, (15.2 mg, 89%). ¹H NMR (**400 MHz**, **CDCl**₃) δ 7.37 – 7.32 (m, 2H), 7.31 – 7.27 (m, 2H), 7.16 – 7.10 (m, 1H), 6.82 (s, 2H), 2.07 (s, 6H). ¹³C NMR (**76 MHz, CDCl**₃) δ 140.7, 129.4, 124.6, 120.8, 119.4, 116.7, 10.2. **IR** (**KBr**, *ν* / **cm** ⁻¹) 2933, 1599, 1502, 1463, 1239, 1154, 1124, 1092.

3-Methyl-1-phenyl-4-propyl-1H-pyrrole (3aaa): eluent: PE : EA = 30 : 1, colorless oil (14.9 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.44 - 7.32 (m, 4H), 7.22 - 7.16 (m, 1H), 6.91 - 6.83 (m, 2H), 2.50 - 2.42 (m, 2H), 2.15 - 2.09 (m, 3H), 1.71 - 1.60 (m, 2H), 1.04 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 140.8, 129.4,

Me N

126.0, 124.6, 120.3, 119.4, 116.8, 116.2, 27.7, 23.4, 14.2, 10.3. **IR** (**KBr**, *v* / **cm** ⁻¹) 2987, 2837, 1598, 1457, 1430, 1377, 758, 749, 677. **HRMS** (**ESI**, **m**/**z**) [M + Na]⁺ calcd for C₁₄H₁₇NNa⁺ 222.1253, found 222.1255.

S29 / S121

2-Phenyl-4,5,6,7-tetrahydro-2H-isoindole (3aab): eluent: PE : EA = 30 : 1, white solid (14.9 mg, 76%), mp 103-104 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.30 (m, 4H), 7.21 – 7.14 (m, 1H), 6.80 (s, 2H), 2.68 – 2.61 (m, 4H), 1.81 – 1.73 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 129.5, 124.8, 122.2, 119.9, 114.6, 24.1, 22.1. IR (KBr, v / cm ⁻¹) 2922, 2851, 1593, 1461, 1437, 1383, 766, 751, 688. HRMS (ESI, m/z) [M + Na]⁺ calcd for C₁₄H₁₅NNa⁺ 220.1097, found 220.1099.

1-phenyl-1,5-dihydro-2H-pyrrol-2-one (**10**):^[21] brown solid, mp 88-90 °C. ¹**H NMR (400 MHz, CDCl**₃) δ 7.74 – 7.67 (m, 2H), 7.40 – 7.34 (m, 2H), 7.20 – 7.09 (m, 2H), 6.27 (dt, *J* = 6.1, 1.9 Hz, 1H), 4.44 (t, *J* = 1.9 Hz, 2H). ¹³**C NMR (76 MHz, CDCl**₃) δ 170.2, 142.2, 139.1, 129.2, 129.1, 124.2, 118.9, 53.2.

5-Fluoro-1H-indole (7):^[22] eluent: PE : EA = 6 : 1, colorless crystalline powder (6.0 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.34 – 7.27 (m, 2H), 7.26 – 7.24 (m, 1H), 6.95 (td, J =9.1, 2.5 Hz, 1H), 6.56 – 6.49 (m, 1H). ¹³C NMR (76 MHz, CDCl₃) δ 157.9 (d, J =234.0 Hz), 132.3, 128.1 (d, J = 10.7 Hz), 126.0, 111.6 (d, J = 9.8 Hz), 110.4 (d, J = 26.5Hz), 105.4 (d, J = 23.4 Hz), 102.7 (d, J = 4.6 Hz). IR (KBr, ν / cm ⁻¹) 3427, 3097, 3075, 1627, 1482, 1454, 1420, 1342, 1325, 1241, 1211, 1137, 1118, 1090.

v. Mechanism

S30 / S121

vi. Syntheses of the key intermediate of Stemona alkaloids

NaHCO₃ (0.76 g, 9 mmol, 5.0 eq), NaIO₄ (0.77 g, 3.6 mmol, 2.0 eq), and RuCl₃· 3H₂O (94 mg, 0.36 mmol, 0.2 eq) were added to a solution of stemoamide (0.4 g, 1.8 mmol, 1.0 eq) in CCl₄: MeCN: H₂O (95 mL, 2:2:3) at rt. After stirring for 3 h, the reaction was quenched with aqueous saturated Na₂S₂O₃. The mixture was extracted with DCM/MeOH = 15:1 (10 × 150 mL) and the combined organic phases were washed with brine (200 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuum. The residue was purified by flash chromatography on silica gel (eluent: ether / EtOAc = 2:3 to DCM/MeOH = 10:1) to give compound **4** (0.37 g, 85%) as a white solid. ¹H NMR (400 MHz, methanol-*d*₄) δ 4.13 – 3.98 (m, 1H), 3.92 – 3.77 (m, 1H), 3.08 – 2.97 (m, 1H), 2.88 (dq, *J* = 11.8, 7.0 Hz, 1H), 2.75 – 2.58 (m, 1H), 2.49 (dd, *J* = 12.0, 10.0 Hz, 1H), 2.38 – 2.32 (m, 1H), 2.32 – 2.20 (m, 2H), 2.06 – 1.87 (m, 1H), 1.89 – 1.78 (m, 1H), 1.63 (tdd, *J* = 12.6, 10.9, 4.5 Hz, 1H), 1.56 – 1.40 (m, 1H), 1.33 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, methanol-*d*₄) δ 179.0, 175.5, 90.3, 78.2, 58.7, 37.3, 37.1, 34.3, 28.9, 28.1, 24.7, 14.1. IR (KBr, *v* / cm⁻¹) 3623, 3451, 2927, 1780, 1643, 1423, 1212, 1194, 998. HRMS (ESI, m/z): [M + Na]⁺ calcd for [C₁₂H₁₇NO₄Na]⁺ 262.1050, found 262.1055.

A Schlenk tube was charged with a mixture of compound **4** (316.0 mg, 1.32 mmol) and Lawesson's reagent (534 mg, 1.32 mmol, 1.0 equiv) in toluene (6.6 mL) under an argon atmosphere. The vial was sealed and stirred vigorously at 110 °C. After stirring for 2h, the reaction was cooled to room temperature, and the solvent was removed under reduced pressure. The residue was directly subjected to column chromatography (eluent: PE : EA = 3 : 1) on silica gel to give pure **5** as a colorless oil (151.5 mg, 56%). $[\alpha]_{\rm p}^{23.6}$ = -210.00 (*c* 0.1 in CHCl₃) ¹**H NMR (400 MHz, CDCl₃)** δ 6.66 – 6.60 (m, 1H), 6.05

S31 / S121

(t, J = 3.1 Hz, 1H), 5.99 - 5.94 (m, 1H), 4.12 (dd, J = 14.4, 5.2 Hz, 1H), 3.94 - 3.82 (m, 2H), 3.07 - 2.92 (m, 2H), 2.58 - 2.48 (m, 1H), 2.17 - 2.06 (m, 1H), 1.82 - 1.61 (m, 2H), 1.43 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.3, 128.6, 122.6, 106.5, 105.0, 81.6, 49.3, 49.1, 39.6, 34.1, 26.2, 13.8. IR (KBr, $v / \text{ cm}^{-1}$) 2937, 1774, 1489, 1454, 1323, 1221, 1202, 1169, 1146, 1013, 937, 723. LC-MS (ESI, m/z) cacl C₁₂H₁₅NNaO₂ 228.0995, found 228.1.

III. Copies of ¹H and ¹³C NMR Spectra

¹³C NMR spectrum of compound 2y (76 MHz, CDCl₃)

¹H NMR spectrum of compound 2aj (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 2aj (101 MHz, CDCl₃)

¹H NMR spectrum of compound 2am (400 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR spectrum of compound 2am (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3aq (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3aq (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3ar (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3ar (101 MHz, CDCl₃)

¹H NMR spectrum of compound 2as (400 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR spectrum of compound 2as (101 MHz, CDCl₃)

¹H NMR spectrum of compound 2at (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 2at (101 MHz, CDCl₃)

¹³C NMR spectrum of compound 2az (76 MHz, CDCl₃)

¹³C NMR spectrum of compound 1b (101 MHz, methanol-d₄)

¹³C NMR spectrum of compound 1c (76 MHz, CDCl₃)

S42 / S121

¹³C NMR spectrum of compound 1f (101 MHz, methanol-d₄)

¹H NMR spectrum of compound 1j (400 MHz, CDCl₃)

¹H NMR spectrum of compound 1p (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 1p (101 MHz, CDCl₃)

¹³C NMR spectrum of compound 1q (76 MHz, CDCl₃)

¹H NMR spectrum of compound 1s (400 MHz, CDCl₃)

¹H NMR spectrum of compound 1u (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 1u (101 MHz, CDCl₃)

¹³C NMR spectrum of compound 1v (76 MHz, CDCl₃)

S50 / S121

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR spectrum of compound 1w (76 MHz, CDCl₃)

¹H NMR spectrum of compound 1x (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 1x (76 MHz, DMSO-*d*₆)

¹³C NMR spectrum of compound 1aa (101 MHz, CDCl₃)

¹H NMR spectrum of compound 1aa (400 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR spectrum of compound 1ab (101 MHz, CDCl₃)

S55 / S121

¹³C NMR spectrum of compound 1ac (101 MHz, acetone-*d*₆)

¹H NMR spectrum of compound 1ag (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 1ag (101 MHz, CDCl₃)

¹³C NMR spectrum of compound 1ah (76 MHz, CDCl₃)

¹H NMR spectrum of compound 1au (400 MHz, methanol-*d*₄)

¹³C NMR spectrum of compound 1aw (101 MHz, CDCl₃)

¹H NMR spectrum of compound 1aw (400 MHz, CDCl₃)

¹H NMR spectrum of compound 3a (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3a (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3b (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3b (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3c (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3c (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3d (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3d (76 MHz, CDCl₃)

¹H NMR spectrum of compound 3e (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3e (101 MHz, CDCl₃)

¹³C NMR spectrum of compound 3f (76 MHz, CDCl₃)

¹H NMR spectrum of compound 3g (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3g (101 MHz, CDCl₃)

¹³C NMR spectrum of compound 3h (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3i (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3i (101 MHz, CDCl₃)

¹³C NMR spectrum of compound 3j (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3k (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3k (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3l (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3l (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3m (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3m (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3n (400 MHz, CDCl₃)

¹H NMR spectrum of compound 3o (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 30 (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3p (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3p (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3q (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3q (101 MHz, CDCl₃)

¹³C NMR spectrum of compound 3r (76 MHz, CDCl₃)

¹H NMR spectrum of compound 3s (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3s (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3t (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3t (76 MHz, CDCl₃)

¹³C NMR spectrum of compound 3u (101 MHz, CDCl₃)

¹³C NMR spectrum of compound 3v (101 MHz, CDCl₃)

¹³C NMR spectrum of compound 3w (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3w (400 MHz, CDCl₃)

¹H NMR spectrum of compound 3x (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3x (101 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR spectrum of compound 3y (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3z (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3z (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3aa (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3aa (101 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR spectrum of compound 3ab (76 MHz, CDCl₃)

¹H NMR spectrum of compound 3ac (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3ac (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3ad (600 MHz, CDCl₃)

¹³C NMR spectrum of compound 3ad (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3ae (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3ae (101 MHz, CDCl₃)

¹³C NMR spectrum of compound 3af (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3ag (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3ag (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3ah (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3ai (101 MHz, CDCl₃)

¹³C NMR spectrum of compound 3aj (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3ak (400 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR spectrum of compound 3ak (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3al (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3al (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3am (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3am (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3an (400 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR spectrum of compound 3an (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3ao (600 MHz, CDCl₃)

¹H NMR spectrum of compound 3ap (400 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR spectrum of compound 3ap (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3aq (400 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR spectrum of compound 3aq (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3ar (400 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR spectrum of compound 3ar (101 MHz, CDCl₃)

¹³C NMR spectrum of compound 3as (101 MHz, CDCl₃)

¹³C NMR spectrum of compound 3at (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3at (400 MHz, CDCl₃)

¹H NMR spectrum of compound 3au (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3au (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3av (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3av (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3aw (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3aw (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3ax (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3ay (101 MHz, CDCl₃)

¹H NMR spectrum of compound 3az (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3az (76 MHz, CDCl₃)

¹H NMR spectrum of compound 3aaa (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 3aaa (151 MHz, CDCl₃)

¹³C NMR spectrum of compound 3aab (101 MHz, CDCl₃)

¹H NMR spectrum of compound 10 (400 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR spectrum of compound 10 (76 MHz, CDCl₃)

¹³C NMR spectrum of compound 7 (76 MHz, CDCl₃)

¹³C NMR spectrum of compound 4 (101 MHz, methanol-*d*₄)

IV. References

1. W. Chen, J. Wang, Synthesis of Pyrrole Derivatives from Diallylamines by One-Pot Tandem Ring-Closing Metathesis and Metal-Catalyzed Oxidative Dehydrogenation. *Organometallics* **32**, 1958-1963, (2013).

 J. C. Borghs, Y. Lebedev, M. Rueping, O. El-Sepelgy, Sustainable Manganese-Catalyzed Solvent-Free Synthesis of Pyrroles from 1,4-Diols and Primary Amines. *Org. Lett.* 21, 70-74, (2019).

3. H. Liu, T. Duan, Z. Zhang, C. Xie, C. Ma, One-Pot Synthesis of Pyrrolo[1,2-a]quinoxaline Derivatives via a Copper-Catalyzed Aerobic Oxidative Domino Reaction. *Org. Lett.* **17**, 2932-2935, (2015).

4. X. Li, D. Yang, Y. Jiang, H. Fu, Efficient copper-catalyzed N-arylations of nitrogencontaining heterocycles and aliphatic amines in water. *Green Chem.* **12**, 1097-1105, (2010).

5. P. Ryabchuk, T. Leischner, C. Kreyenschulte, A. Spannenberg, K. Junge, M. Beller, Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst. *Angew. Chem., Int. Ed.* **59**, 18679-18685, (2020).

 K. Singh, L. M. Kabadwal, S. Bera, A. Alanthadka, D. Banerjee, Nickel-Catalyzed Synthesis of N-Substituted Pyrroles Using Diols with Aryl- and Alkylamines. *J. Org. Chem.* 83, 15406-15414, (2018).

7. H.-X. Zheng, X.-H. Shan, J.-P. Qu, Y.-B. Kang, Transition-Metal-Free Hydrogenation of Aryl Halides: From Alcohol to Aldehyde. *Org. Lett.* **19**, 5114-5117, (2017).

Y. Ma, X. Yao, L. Zhang, P. Ni, R. Cheng, J. Ye, Direct Arylation of α-Amino C(sp3)-H
Bonds by Convergent Paired Electrolysis. *Angew. Chem., Int. Ed.* 58, 16548-16552, (2019).

9. P. Ryabchuk, T. Leischner, C. Kreyenschulte, A. Spannenberg, K. Junge, M. Beller, *Angew. Chem. Int. Ed.* **59**, 18679-18685, (2020).

R. Romagnoli, P. Oliva, M. K. Salvador, S. Manfredini, C. Padroni, A. Brancale, S. Ferla,
E. Hamel, R. Ronca, F. Maccarinelli, F. Rruga, E. Mariotto, G. Viola, R. Bortolozzi, A facile synthesis of diaryl pyrroles led to the discovery of potent colchicine site antimitotic agents. *Eur. J. Med. Chem.* **214**, 113229, (2021).

S119 / S121

11. G. S. Kumar, M. Kapur, Ruthenium-Catalyzed, Site-Selective C–H Allylation of Indoles with Allyl Alcohols as Coupling Partners. *Org. Lett.* **18**, 1112-1115, (2016).

12. X. Wang, M. Makha, S.-W. Chen, H. Zheng, Y. Li, GaCl₃-Catalyzed C–H Cyanation of Indoles with N-Cyanosuccinimide. *J. Org. Chem.* **84**, 6199-6206, (2019).

13. M. Shigeno, R. Nakamura, K. Hayashi, K. Nozawa-Kumada, Y. Kondo, Catalytic Amination of β -(Hetero)arylethyl Ethers by Phosphazene Base t-Bu-P4. *Org. Lett.* **21**, 6695-6699, (2019).

14. K. Singh, L.-M. Kabadwal, S. Bera, A. Alanthadka, D. Banerjee, *J. Org. Chem.* **83**, 15406-15414, (2018).

 J. Han, Z. Lu, G. B. Hammond, B. Xu, Synthesis of Pyrrolidines and Pyrroles by Tandem Amination/Cyanation/Alkylation and Amination/Oxidation Sequences. *Eur. J. Org. Chem.* 2014, 5786-5792, (2014).

16. W. Huang, S. Chen, Z. Chen, M. Yue, M. Li, Y. Gu, Synthesis of Multisubstituted Pyrroles from Enolizable Aldehydes and Primary Amines Promoted by Iodine. *J. Org. Chem.* **84**, 5655-5666, (2019).

17. A. Bunrit, S. Sawadjoon, S. Tšupova, P. J. R. Sjöberg, J. S. M. Samec, *J. Org. Chem.* **81**, 1450-1460, (2016).

18. N. Thies, M. Gerlach, E. Haak, Ruthenium-Catalyzed Synthesis of Highly Substituted Pyrroles from 1-Vinylpropargyl Alcohols and Amines. *Eur. J. Org. Chem.* **2013**, 7354-7365, (2013).

 B. François, L. Eberlin, F. Berrée, A. Whiting, B. Carboni, Access to Fused Pyrroles from Cyclic 1,3-Dienyl Boronic Esters and Arylnitroso Compounds. *J. Org. Chem.* 85, 5173-5182, (2020).

20. N. Yasukawa, M. Kuwata, T. Imai, Y. Monguchi, H. Sajiki, Y. Sawama, *Green Chem.* **20**, 4409-4413, (2018).

21. F. Souquet, W. Drici, S. A. Fayssal, I. Lazouni, S. Thueillon, J. Pérard-Viret, N-Acyliminium Ion Chemistry: Improving the Access to Unsaturated γ -Lactams and Their N- α -Methoxylated Derivatives: Application to an Expeditive Synthesis of (±)-Crispine A. *Synthesis* **52**, 2970-2978, (2020).

S120 / S121

22. L. Huang, A. Bismuto, S. A. Rath, N. Trapp, B. Morandi, *Angew. Chem. Int. Ed.* **60**, 7290-7296, (2021).