Cp*Rh(III)-catalyzed and solvent-controlled tunable [4+1]/[4+3] annulation for the divergent assembly of dihydrobenzo[*cd*]indoles and dihydronaphtho[1,8*bc*]azepines

Zhuo-Zhuo Zhang,*^a Ya Li^b and Bing-Feng Shi*^b

^aSchool of Food and Biological Engineering, Chengdu University, Chengdu 610106 (China)

^bDepartment of Chemistry, Zhejiang University, Hangzhou 310027 (China)

Supporting Information

Table of contents

1.	General Information	S2
2.	Experiment Details and Characterization Date	S3
	2.1 Optimization of Reaction Conditions.	S3
	2.2 General Procedure for Cp*Rh(III)-Catalyzed and Solvent-Controlled Tunable [4+1]/[4+3] Annulation of free 1-Naphthylamines	S7
	2.3 General Procedure for Mechanistic Experiments	S18
3.	X-Ray Crystallographic Data	S23
4	References	S24
5.	NMR Spectra	S25

1. General Information

NMR spectra were recorded on a Bruke Avance operating for ¹H NMR at 400 MHz, ¹³C NMR at 101 MHz, using TMS as internal standard. Chemical shifts were given relative to CDCl₃ (7.26 ppm for ¹H NMR, 77.16 ppm for ¹³C NMR). The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad singlet. Mass spectroscopy data of the products were collected on an HRMS-TOF instrument using EI ionization and ESI ionization. The Crystal data of the products were collected on a Bruker D8 Venture.

All commercially available chemicals were used as received without further purification, unless otherwise stated. Catalytic reactions were carried out in Schlenk flasks under Ar atmosphere using pre-dried glassware. Free 1-naphthylamine **1** were obtained from Bide Pharmatech Ltd. AgSbF₆ were obtained from Energy. LiOAc, NaOAc, and Cu(OAc)₂ were obtained from Aladdin. $[Cp^*Rh(MeCN)_3][SbF_6]_2$ were prepared according to the literature.^[S1] **2** was known compounds and prepared according to the literature.^[S2]

2. Experiment Details and Characterization Date

2.1 Optimization of Reaction Conditions.

Table S1. Optimization of	Bases."
---------------------------	---------

$H \qquad H_2 \\ H \qquad + Ph$	[C OCO ₂ Me 2a	Cp [*] Rh(MeCN) ₃][SbF ₆] ₂ (10 mol%) Base (2.0 equiv) Acetone (0.1 M) 90 °C, 24 h, Ar	Ph NH 3aa	Ph NH
ontra	hasa	colvent	yield	(%)
entry	Dase	sorvent	3 aa	4aa
1	NaOAc	Aectone	30^b	0
2	KOAc	Aectone	24	0
3	CsOAc	Aectone	trace	0
4	LiOAc	Aectone	46	0
5	Cu(OAc) ₂	Aectone	5	0
6	Zn(OAc) ₂	Aectone	trace	0

`

^{*a*} Reaction conditions: **1a** (0.12 mmol), **2a** (0.1 mmol), $[Cp^*Rh(MeCN)_3][SbF_6]_2$ (10 mol%), Base (2.0 equiv.), Acetone (1.0 mL), 90 °C, 24 h under Ar atmosphere. ¹H NMR yield using 1,3,5-Trimethoxybenzene as internal standard. ^{*b*} Isolated yield.

Table S2.	Optimization	of Solvents. ^a
-----------	--------------	---------------------------

H NH ₂ Ia	+ Ph	[Cp [*] Rh(MeCN) ₃][SbF ₆] ₂ (10 mol%) LiOAc (2.0 equiv) Solvent (0.1 M) 90 °C, 24 h, Ar 3a	-NH Ph-	NH 4aa
entry	base	Solvent	yielo 3aa	l (%) 4aa
1	LiOAc	PhCl	trace	trace
2	LiOAc	PhCF ₃	14	trace
3	LiOAc	DCE	trace	10
4	LiOAc	Dioxane	trace	0
5	LiOAc	MTBE	40	0
6	LiOAc	THF	44	trace
7	LiOAc	EtOAc	36	0
8	LiOAc	MeCN	37	8
9	LiOAc	DMF	0	trace
10	LiOAc	Aectone/MeCN (9:1, v/v)	56	4
11	LiOAc	THF/MeCN (9:1, v/v)	61	0
12	LiOAc	EtOAc/MeCN (9:1, v/v)	63	0
13	LiOAc	MTBE/MeCN (9:1, v/v)	75 (72) ^b	0
14	LiOAc	PhCF ₃ /MeCN (9:1, v/v)	27	15
15	LiOAc	DCE/MeCN (9:1, v/v)	20	40
16	LiOAc	DCE/MeCN (9:1, v/v)	23	55
17	LiOAc	DCE/MeCN (8:2, v/v)	15	58
18	LiOAc	DCE/MeCN (7:3, v/v)	14	65
19	LiOAc (1.0 equiv)	DCE/MeCN (7:3, v/v)	13	70
20	LiOAc (0.5 equiv.)	DCE/MeCN (7:3, v/v)	10	72 (68) ^b

^{*a*} Reaction conditions: **1a** (0.12 mmol), **2a** (0.1 mmol), [Cp^{*}Rh(MeCN)₃][SbF₆]₂ (10 mol%), LiOAc (0.5-2.0 equiv.), solvent (1.0 mL), 90 °C, 24 h under Ar atmosphere. ¹H NMR yield using 1,3,5-Trimethoxybenzene as internal standard. ^{*b*} Isolated yield.

Table S3.	0	ptimiz	ation	of	Leaving	Group	ps.ª

	$H = H_2 + Ph - Ia$	[Cp [*] Rh(MeC (10 m (10 m) LiOAc (0.5- 90 °C, 24 2a	$(N)_{3}[SbF_{6}]_{2}$ $(SN)_{3}[SbF_{6}]_{2}$ $(SN)_{4}[SbF_{6}]_{2}$ $(SN)_{4}[ShF_{6}]_{2}$ $(SN)_{4}[SN]_{4}$ $(SN)_{4}[SN]_{4}$ $(SN)_{4}[SN]_{4}$ $(SN)_{4}[SN]_{4}$ $($	NH 4aa	I
entrv	leaving group	hase	solvent	yield ((%)
enery	(LG)	base	501,0110		4 aa
1	ОН	LiOAc (2.0 equiv)	MTBE/MeCN (9:1, v/v)	0	0
2	OH	LiOAc (0.5 equiv)	DCE/MeCN (7:3, v/v)	0	0
3	OAc	LiOAc (2.0 equiv)	MTBE/MeCN (9:1, v/v)	38	trace
4	OAc	LiOAc (0.5 equiv)	DCE/MeCN (7:3, v/v)	trace	23
5	OBoc	LiOAc (2.0 equiv)	MTBE/MeCN (9:1, v/v)	31	trace
6	OBoc	LiOAc (0.5 equiv)	DCE/MeCN (7:3, v/v)	trace	14

^{*a*} Reaction conditions: **1a** (0.12 mmol), **2a** (0.1 mmol), [Cp^{*}Rh(MeCN)₃][SbF₆]₂ (10 mol%), LiOAc (0.5-2.0 equiv.), solvent (1.0 mL), 90 °C, 24 h under Ar atmosphere. ¹H NMR yield using 1,3,5-Trimethoxybenzene as internal standard.

Table S4. Optimization of Catalysts.^a

	a da bast	have	yiel		ld (%)
entry	catalyst	Dase	solvent	3 aa	4 aa
1	[Cp*Rh(MeCN)3][SbF6]2		MTBE/MeCN (9:1, v/v)	0	0
2	[Cp*Rh(MeCN)3][SbF6]2		DCE/MeCN (7:3, v/v)	0	0
3	$[Cp*RhCl_2] + AgSbF_6$	LiOAc (2.0 equiv.)	MTBE/MeCN (9:1, v/v)	trace	0
4	$[Cp*RhCl_2] + AgSbF_6$	LiOAc (0.5 equiv.)	DCE/MeCN (7:3, v/v)	0	trace
5	[Cp*Ir(MeCN)3][SbF6]2	LiOAc (2.0 equiv.)	MTBE/MeCN (9:1, v/v)	24	0
6	[Cp*Ir(MeCN)3][SbF6]2	LiOAc (0.5 equiv.)	DCE/MeCN (7:3, v/v)	0	22
7	[Cp*Co(MeCN) ₃][SbF ₆] ₂	LiOAc (2.0 equiv.)	MTBE/MeCN (9:1, v/v)	0	0
8	[Cp*Co(MeCN)3][SbF6]2	LiOAc (0.5 equiv.)	DCE/MeCN (7:3, v/v)	0	0
9	[Cp*Rh(OAc) ₂]	LiOAc (2.0 equiv.)	MTBE/MeCN (9:1, v/v)	0	0
10	[Cp*Rh(OAc)2]	LiOAc (0.5 equiv.)	DCE/MeCN (7:3, v/v)	0	0
11	[Cp*Rh(OAc) ₂] + AgSbF ₆	LiOAc (2.0 equiv.)	MTBE/MeCN (9:1, v/v)	49	0
12	[Cp*Rh(OAc) ₂] + AgSbF ₆	LiOAc (0.5 equiv.)	DCE/MeCN (7:3, v/v)	24	16
13		LiOAc (2.0 equiv.)	MTBE/MeCN (9:1, v/v)	0	0
14		LiOAc (0.5 equiv.)	DCE/MeCN (7:3, v/v)	0	0

^{*a*} Reaction conditions: **1a** (0.12 mmol), **2a** (0.1 mmol), [Rh] (10 mol%), LiOAc (0.5-2.0 equiv.), solvent (1.0 mL), 90 °C, 24 h under Ar atmosphere. ¹H NMR yield using 1,3,5-Trimethoxybenzene as internal standard.

2.2 General Procedure for Cp*Rh(III)-Catalyzed and Solvent-Controlled Tunable [4+1]/[4+3] Annulation of free 1-Naphthylamines

The Synthesis of 3:

General Procedure A: To a 20 mL Schlenk tube was added free 1-naphthylamine **1** (0.12 mmol), propargyl carbonate **2** (0.1 mmol), $[Cp^*Rh(MeCN)_3][SbF_6]_2$ (8.3 mg, 10 mol%), LiOAc (13.2 mg, 0.2 mmol), MTBE (0.9 mL) and MeCN (0.1 mL), the tube was sealed up with a cap and evacuated then refilled with Ar and kept stirring at 90 °C (aluminum heat transfer block) for 24 h. After cooling to room temperature, the mixture was diluted with ethyl acetate, filtrated through celite. After concentration, the resulting residue was purified by preparative TLC using Hexane/EtOAc or Hexane/Acetone as the eluent to afford the desired product **3**.

The Synthesis of 4:

General Procedure B: To a 20 mL Schlenk tube was added 1-naphthylamine 1 (0.12 mmol), propargyl carbonate 2 (0.1 mmol), $[Cp^*Rh(MeCN)_3][SbF_6]_2$ (8.3 mg, 10 mol%), LiOAc (3.3 mg, 0.05 mmol), DCE (0.7 mL) and MeCN (0.3 mL), the tube was sealed up with a cap and evacuated then refilled with Ar and kept stirring at 90 °C (aluminum heat transfer block) for 24 h. After cooling to room temperature, the mixture was diluted with ethyl acetate, filtrated through celite. After concentration, the resulting residue was purified by preparative TLC using Hexane/EtOAc or Hexane/Acetone as the eluent to afford the desired product 4.

2-(2-methylprop-1-en-1-yl)-2-phenyl-1,2-dihydrobenzo[cd]indole (3aa)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 15 : 1 to give **3aa** as yellow solid (20.5 mg, 72% yield) m.p.: 73-74 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.2 Hz, 1H), 7.52 (d, J = 7.5 Hz, 2H), 7.43 (t, J = 7.6 Hz, 1H), 7.35 (t, J = 7.7 Hz, 1H), 7.30 (t, J = 7.6 Hz, 2H), 7.20 (t, J = 7.3 Hz, 1H), 7.12 (dd, J = 7.6, 5.0 Hz, 2H), 6.55 (d, J = 7.2 Hz, 1H), 5.99 (s, 1H), 5.03

(s, 1H), 1.81 (s, 3H), 1.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 149.0, 147.1, 137.5, 132.0, 131.1, 129.8, 128.7, 128.6, 128.0, 126.9, 125.9, 122.9, 116.7, 113.7, 100.0, 73.5, 26.8, 20.0. HRMS (ESI)

m/z: $[M+H]^+$ calc. for $C_{21}H_{20}N$ 286.1590; found: 286.1591.

6-bromo-2-(2-methylprop-1-en-1-yl)-2-phenyl-1,2-dihydrobenzo[cd]indole (3ba)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3ba** as yellow powder (16.3 mg, 45% yield). m.p.: 105-106 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.3 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.49 – 7.44 (m, 2H), 7.29 (t, J = 7.6 Hz, 2H), 7.24 – 7.19 (m, 1H), 7.15 (d, J = 7.0 Hz, 1H), 6.42 (d, J = 7.6 Hz, 1H), 5.96 (t, J = 1.5 Hz, 1H), 5.05 (s, 1H), 1.81 (d, J = 1.5 Hz, 3H), 1.42 (d, J = 1.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.6, 149.0, 146.5,

138.1, 132.5, 131.1, 130.3, 129.8, 128.8, 127.1, 125.8, 122.4, 117.7, 105.8, 100.8, 74.0, 26.8, 20.0. **HRMS (ESI)** m/z: [M+H]⁺ calc. for C₂₁H₁₉Br 364.0695; found: 364.0694.

2-(2-methylprop-1-en-1-yl)-2,6-diphenyl-1,2-dihydrobenzo[cd]indole (3ca)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3ca** as yellow solid (28.9 mg, 80% yield). m.p.: 124-125 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.3 Hz, 1H), 7.62 – 7.54 (m, 4H), 7.52 – 7.46 (m, 2H), 7.45 – 7.42 (m, 1H), 7.38 (d, J = 7.4 Hz, 2H), 7.36 – 7.30 (m, 2H), 7.25 – 7.21 (m, 1H), 7.16 (d, J = 7.0 Hz, 1H), 6.64 (d, J = 7.4 Hz, 1H), 6.03 (p, J = 1.5 Hz, 1H), 5.10 (s, 1H), 1.83 (d, J = 1.5 Hz, 3H), 1.50 (d, J = 1.5 Hz, 3H). ¹³C NMR

 $(101 \text{ MHz, CDCl}_3) \delta 149.5, 149.3, 147.0, 140.8, 137.5, 131.1, 130.6, 130.1, 129.7, 128.9, 128.7, 128.5, 128.1, 127.3, 126.9, 126.4, 126.0, 121.6, 116.9, 100.0, 73.7, 26.8, 20.1. HRMS (ESI) m/z: [M+H]^+ calc. for C₂₇H₂₄N 362.1903; found: 362.1901.$

2-(2-methylprop-1-en-1-yl)-6-(naphthalen-2-yl)-2-phenyl-1,2-dihydrobenzo[cd]indole (3da)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3da** as yellow oil (29.2 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 1.8 Hz, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.93 – 7.89 (m, 2H), 7.82 (d, J = 8.3 Hz, 1H), 7.76 (dd, J = 8.4, 1.7 Hz, 1H), 7.60 – 7.56 (m, 2H), 7.55 – 7.48 (m, 3H), 7.47 – 7.43 (m, 1H), 7.34 (dd, J = 8.4, 6.9 Hz, 2H),

2-Naphthyl 7.23 (d, J = 7.3 Hz, 1H), 7.18 (d, J = 6.9 Hz, 1H), 6.68 (d, J = 7.4 Hz, 1H), 6.10 – 5.92 (m, 1H), 5.14 (s, 1H), 1.85 (d, J = 1.5 Hz, 3H), 1.51 (d, J = 1.5 Hz, 3H). ¹³C NMR (101 MHz, CDCI₃) δ 149.6, 149.3, 147.0, 138.4, 137.6, 133.9, 132.4, 131.0, 131.0, 130.3, 129.0, 128.8, 128.5, 128.2, 128.1, 127.9, 127.9, 127.8, 127.1, 127.0, 126.2, 126.0, 125.6, 121.6, 117.1, 100.1, 73.8, 26.8, 20.1. HRMS (ESI) m/z: [M+H]⁺ calc. for C₃₁H₂₆N 412.2060; found: 412.2058.

2-(2-methylprop-1-en-1-yl)-2-phenyl-6-(thiophen-3-yl)-1,2-dihydrobenzo[cd]indole (3ea)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3ea** as brown solid (20.2 mg, 55% yield). m.p.: 121-123 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.3 Hz, 1H), 7.61 – 7.51 (m, 2H), 7.50 – 7.43 (m, 1H), 7.46 – 7.39 (m, 2H), 7.37 (d, J = 4.0 Hz, 2H), 7.31 (dd, J = 8.4, 6.9 Hz, 2H), 7.26 – 7.18 (m, 1H), 7.15 (d, J = 7.0 Hz, 1H), 6.59 (d, J = 7.4 Hz, 1H), 6.01 (t, J = 1.5 Hz, 1H), 5.09 (s, 1H), 1.82 (d, J = 1.4 Hz, 3H), 1.47 (d, J = 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.5, 149.3, 146.9, 141.4, 137.6, 131.0, 130.3, 130.2, 129.3,

129.0, 128.7, 128.1, 126.9, 125.9, 125.2, 121.9, 121.6, 121.4, 117.0, 99.9, 73.7, 26.8, 20.0. HRMS (ESI)

m/z: $[M+H]^+$ calc. for $C_{25}H_{22}NS$ 368.1467; found: 368.1465.

6-(furan-3-yl)-2-(2-methylprop-1-en-1-yl)-2-phenyl-1,2-dihydrobenzo[cd]indole (3fa)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3fa** as brown solid (18.6 mg, 53% yield). m.p.: 109-110 °C.¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.3 Hz, 1H), 7.70 (t, J = 1.2 Hz, 1H), 7.57 – 7.51 (m, 3H), 7.47 (dd, J = 8.3, 7.0 Hz, 1H), 7.39 (d, J = 7.4 Hz, 1H), 7.34 – 7.28 (m, 2H), 7.25 – 7.19 (m, 1H), 7.15 (d, J = 7.0 Hz, 1H), 6.77 – 6.70 (m, 1H), 6.58 (d, J = 7.4 Hz, 1H), 6.00 (p, J = 1.4 Hz, 1H), 5.08 (s, 1H), 1.82 (d, J = 1.5 Hz, 3H), 1.46 (d, J = 1.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.4, 149.3, 146.9, 142.8, 139.3,

137.7, 130.9, 130.2, 129.9, 129.0, 128.8, 128.2, 127.0, 125.9, 124.8, 121.4, 117.5, 117.0, 111.8, 99.9, 73.7, 26.8, 20.0. **HRMS (ESI)** m/z: $[M+H]^+$ calc. for C₂₅H₂₂NO 351.1623; found: 351.1620.

5-methoxy-2-(2-methylprop-1-en-1-yl)-2-phenyl-1,2-dihydrobenzo[cd]indole (3ga)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3ga** as yellow oil (17.6 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.46 (m, 2H), 7.33 (dd, J = 8.4, 6.5 Hz, 1H), 7.31 – 7.25 (m, 3H), 7.22 – 7.17 (m, 1H), 7.01 (d, J = 7.6 Hz, 1H), 6.78 (d, J = 7.6 Hz, 1H), 6.56 (dd, J = 6.5, 1.2 Hz, 1H), 5.98 (p, J = 1.4 Hz, 1H), 4.98 (s, 1H), 3.95 (s, 3H), 1.80 (d, J = 1.6 Hz, 3H), 1.44 (d, J = 1.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.7, 149.2, 147.5,

140.9, 137.0, 131.5, 129.2, 129.0, 128.7, 126.7, 125.9, 123.7, 116.7, 109.2, 106.8, 100.8, 72.9, 55.8, 26.8, 19.9. **HRMS (ESI)** m/z: $[M+H]^+$ calc. for $C_{22}H_{22}NO$ 316.1696; found: 316.1696.

8-methyl-2-(2-methylprop-1-en-1-yl)-2-phenyl-1,2-dihydrobenzo[cd]indole (3ha)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3ha** as yellow oil (23.0 mg, 77% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.50 (m, 3H), 7.38 (dd, *J* = 8.2, 7.0 Hz, 1H), 7.30 (dd, *J* = 8.4, 6.9 Hz, 2H), 7.25 – 7.18 (m, 2H), 7.11 (t, *J* = 7.5 Hz, 2H), 6.01 (p, *J* = 1.4 Hz, 1H), 4.71 (s, 1H), 2.36 (s, 3H), 1.82 (d, *J* = 1.5 Hz, 3H), 1.47 (d, *J* = 1.5 Hz,

3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.7, 147.3, 147.3, 137.2, 132.3, 131.5, 130.5, 128.7, 127.8, 127.6, 126.8, 126.0, 122.8, 116.7, 114.1, 109.8, 73.6, 26.9, 20.0, 16.4. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₂H₂₂N 300.1747; found: 300.1749.

8-bromo-2-(2-methylprop-1-en-1-yl)-2-phenyl-1,2-dihydrobenzo[cd]indole (3ia)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3ia** as yellow oil (15.6 mg, 43% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.56 - 7.48 (m, 3H), 7.42 (dd, J = 8.2, 7.0 Hz, 1H), 7.38 (d, J = 8.7 Hz, 1H), 7.31 (dd, J = 8.5, 6.9 Hz, 2H), 7.24 - 7.19 (m, 1H), 7.14 (d, J = 7.0 Hz, 1H), 7.00 (d, J = 8.7 Hz, 1H), 5.95 (t, J = 1.5 Hz, 1H), 5.11 (s, 1H), 1.81 (d,

J = 1.5 Hz, 3H), 1.43 (d, J = 1.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.9, 147.7, 146.3, 138.1, 132.2, 130.7, 130.2, 128.8, 128.7, 128.1, 127.1, 125.9, 123.2, 117.8, 115.3, 92.1, 73.7, 26.9, 19.9. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₁H₁₉BrN 364.0695; found: 364.0697.

4-(2-methylprop-1-en-1-yl)-4-phenyl-4,5-dihydrodibenzo[cd,f]indole (3ja)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3ja** as yellow oil (18.1 mg, 54% yield). ¹**H NMR (400 MHz, CDCl₃)** δ 8.48 – 8.39 (m, 1H), 8.26 (d, *J* = 8.1 Hz, 1H), 7.69 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.56 – 7.52 (m, 2H), 7.48 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.38 – 7.34 (m, 1H), 7.33 – 7.27 (m, 3H), 7.24 – 7.18 (m, 1H), 6.69 (s, 1H), 6.04 (p, *J* = 1.5 Hz, 1H), 5.08 (s, 1H), 1.82 (d, *J* = 1.5 Hz, 3H), 1.44 (d, *J* = 1.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 148.1, 147.3, 147.1, 137.9, 136.9, 130.5, 129.2, 128.9, 128.8, 128.7, 127.1, 127.0, 127.0, 125.8, 124.9, 123.0, 122.2, 120.0, 119.3, 96.6, 73.4, 26.9, 19.9. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₅H₂₂N 336.1747; found: 336.1746.

2-(2-methylprop-1-en-1-yl)-2-(p-tolyl)-1,2-dihydrobenzo[cd|indole (3ab)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3ab** as yellow oil (15.8 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.1 Hz, 1H), 7.42 (dd, *J* = 8.2, 7.0 Hz, 1H), 7.37 (dd, *J* = 8.5, 2.1 Hz, 2H), 7.34 – 7.31 (m, 1H), 7.10 (dd, *J* = 8.2, 5.8 Hz, 4H), 6.53 (d, *J* = 7.2 Hz, 1H), 6.10 – 5.85 (m, 1H), 5.00 (s, 1H), 2.30 (s,

3H), 1.79 (d, J = 1.6 Hz, 3H), 1.45 (d, J = 1.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 149.2, 144.1, 137.3, 136.5, 132.1, 131.1, 129.8, 129.4, 128.6, 128.0, 125.9, 122.8, 116.6, 113.6, 99.9, 73.4, 26.8, 21.1, 20.0. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₂H₂₂N 300.1747; found: 300.1748.

2-(4-(tert-butyl)phenyl)-2-(2-methylprop-1-en-1-yl)-1,2-dihydrobenzo[cd|indole (3ac)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3ac** as yellow oil (16.4 mg, 48% yield). ¹**H NMR (400 MHz, CDCl₃)** δ 7.55 (d, *J* = 8.1 Hz, 1H), 7.43 (dd, *J* = 8.1, 7.0 Hz, 1H), 7.40 - 7.35 (m, 2H), 7.34 - 7.25 (m, 3H), 7.11 (dd, *J* = 7.6, 6.2 Hz, 2H), 6.52 (d, *J* = 7.1 Hz, 1H), 5.97 (t, *J* = 1.4 Hz, 1H), 5.00 (s, 1H), 1.79 (d, *J* =

1.5 Hz, 3H), 1.43 (d, J = 1.3 Hz, 3H), 1.28 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 149.7, 148.9, 144.0, 137.3, 132.0, 131.0, 129.8, 128.6, 128.2, 125.6, 125.6, 122.8, 116.8, 113.5, 99.9, 73.4, 34.5, 31.5, 27.0, 19.8. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₅H₂₈N 342.2216; found: 342.2215.

2-(2-methylprop-1-en-1-yl)-2-(4-(trifluoromethyl)phenyl)-1,2-dihydrobenzo[cd]indole (3ad)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3ad** as yellow oil (24.7 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.58 (dd, *J* = 9.9, 8.2 Hz, 3H), 7.44 (dd, *J* = 8.2, 7.0 Hz, 1H), 7.39 (dd, *J* = 8.3, 7.2 Hz, 1H), 7.17 (d, *J* = 8.2 Hz, 1H), 7.10 (d, *J* = 7.0 Hz, 1H), 6.62 (d, *J* = 7.2 Hz, 1H), 6.00 (t, *J* =

1.5 Hz, 1H), 5.02 (s, 1H), 1.82 (d, J = 1.5 Hz, 3H), 1.44 (d, J = 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.2, 149.7, 148.5, 138.4, 132.1, 130.7, 129.9, 129.0 (q, C–F, $2J_{C-F}$ = 32.3 Hz), 128.7, 127.7, 126.3, 125.7 (q, C–F, $3J_{C-F}$ = 3.9 Hz), 124.4 (q, C–F, $1J_{C-F}$ = 272.2 Hz), 123.3, 116.7, 114.2, 100.5, 73.1, 26.6, 20.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.2. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₂H₁₉F₃N 354.1464; found: 354.1462.

2-(4-fluorophenyl)-2-(2-methylprop-1-en-1-yl)-1,2-dihydrobenzo[cd|indole (3ae)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3ae** as yellow oil (20.6 mg, 68% yield). ¹H NMR (**400 MHz, CDCl**₃) δ 7.57 (d, J = 8.2 Hz, 1H), 7.49 (dd, J = 8.7, 5.5 Hz, 2H), 7.43 (dd, J = 8.2, 7.0 Hz, 1H), 7.36 (t, J = 7.7 Hz, 1H), 7.14 (d, J = 8.2 Hz, 1H), 7.08 (d, J = 7.0 Hz, 1H), 6.98 (t, J = 8.7 Hz, 2H), 6.57 (d, J = 7.2 Hz, 1H),

6.04 – 5.91 (m, 1H), 5.01 (s, 1H), 1.81 (d, J = 1.5 Hz, 3H), 1.46 (d, J = 1.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.8 (d, C–F, $1J_{C-F} = 246.4$ Hz), 149.7, 149.0, 142.9 (d, C–F, $4J_{C-F} = 4.0$ Hz), 137.7, 132.1, 131.0, 129.9, 128.6, 127.8, 127.7 (d, C–F, $3J_{C-F} = 7.2$ Hz), 123.0, 116.6, 115.4 (d, C–F, $2J_{C-F} = 21.2$ Hz), 113.9, 100.2, 73.0, 26.7, 20.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.6. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₁H₁₉FN 304.1496; found: 304.1498.

2-(4-chlorophenyl)-2-(2-methylprop-1-en-1-yl)-1,2-dihydrobenzo[cd]indole (3af)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3af** as yellow oil (20.4 mg, 64% yield). ¹**H NMR (400 MHz, CDCl**₃) δ 7.56 (d, *J* = 8.1 Hz, 1H), 7.49 – 7.45 (m, 2H), 7.42 (dd, *J* = 8.2, 7.0 Hz, 1H), 7.35 (dd, *J* = 8.3, 7.2 Hz, 1H), 7.27 – 7.23 (m, 2H), 7.13 (d, *J* = 8.3 Hz, 1H), 7.06 (d, *J* = 7.0 Hz, 1H), 6.56 (d, *J* = 7.1 Hz, 1H),

5.95 – 5.94 (m, 1H), 4.98 (s, 1H), 1.79 (d, J = 1.6 Hz, 3H), 1.44 (d, J = 1.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.7, 148.8, 145.8, 138.0, 132.7, 132.1, 130.8, 129.8, 128.8, 128.7, 127.7, 127.4, 123.1, 116.6, 114.0, 100.3, 73.0, 26.7, 20.1. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₁H₁₉ClN 320.1201; found: 320.1201.

methyl 4-(2-(2-methylprop-1-en-1-yl)-1,2-dihydrobenzo[cd]indol-2-yl)benzoate (3ag)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 6 : 1 to give **3ag** as yellow oil (19.6 mg, 57% yield). ¹**H NMR (400 MHz, CDCl₃)** δ 8.00 – 7.92 (m, 2H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.55 (d, *J* = 8.1 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 1H), 7.13 (d, *J* = 8.3 Hz, 1H), 7.08 (d, *J* = 7.0 Hz, 1H), 6.59 (d, *J* = 7.2 Hz,

1H), 5.98 (t, J = 1.7 Hz, 1H), 5.02 (s, 1H), 3.88 (s, 3H), 1.80 (d, J = 1.4 Hz, 3H), 1.41 (d, J = 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 152.3, 149.7, 148.5, 138.1, 132.1, 130.8, 130.1, 129.9, 128.7, 127.8, 126.0, 123.2, 116.7, 114.1, 100.4, 73.3, 52.2, 26.6, 20.1. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₁H₁₉ClN 344.1645; found: 344.1645.

2-(2-methylprop-1-en-1-yl)-2-(m-tolyl)-1,2-dihydrobenzo[cd]indole (3ah)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3ah** as yellow oil (16.4 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.1 Hz, 1H), 7.43 (dd, *J* = 8.2, 7.0 Hz, 1H), 7.35 (dd, *J* = 8.2, 7.2 Hz, 1H), 7.33 – 7.29 (m, 2H), 7.23 – 7.16 (m, 1H), 7.12 (d, *J* = 3.8 Hz, 1H), 7.10 (d, *J* = 2.5 Hz, 1H), 7.02 (d, *J* = 7.4 Hz, 1H),

6.55 (d, J = 7.1 Hz, 1H), 5.97 (p, J = 1.5 Hz, 1H), 5.01 (s, 1H), 2.30 (s, 3H), 1.80 (d, J = 1.4 Hz, 3H), 1.44 (d, J = 1.3 Hz, 3H). ¹³**C NMR (101 MHz, CDCl**₃) δ 149.8, 149.0, 147.0, 138.3, 137.3, 132.0, 131.2, 129.8, 128.6, 128.6, 128.0, 127.7, 126.5, 123.1, 122.8, 116.7, 113.6, 99.9, 73.5, 26.8, 21.8, 19.9. **HRMS (ESI)** m/z: [M+H]⁺ calc. for C₂₂H₂₂N 300.1747; found: 300.1747.

2-(3-chlorophenyl)-2-(2-methylprop-1-en-1-yl)-1,2-dihydrobenzo[cd]indole (3ai)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3ai** as yellow oil (20.7 mg, 65% yield). ¹**H NMR (400 MHz, CDCl**₃) δ 7.58 – 7.54 (m, 2H), 7.46 – 7.40 (m, 2H), 7.36 (dd, *J* = 8.3, 7.2 Hz, 1H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.19 – 7.15 (m, 1H), 7.14 (d, *J* = 8.2 Hz, 1H), 7.09 (d, *J* = 6.9 Hz, 1H), 6.58 (d, *J* = 7.2 Hz, 1H), 6.07 – 5.88 (m,

1H), 4.98 (s, 1H), 1.80 (d, J = 1.5 Hz, 3H), 1.43 (d, J = 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.6, 149.4, 148.6, 138.2, 134.5, 132.1, 130.7, 130.0, 129.9, 128.6, 127.7, 127.0, 126.2, 124.2, 123.2, 116.7, 114.0, 100.4, 73.0, 26.7, 20.1. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₁H₁₉ClN 320.1201; found: 320.1203.

2-(2-fluorophenyl)-2-(2-methylprop-1-en-1-yl)-1,2-dihydrobenzo[cd]indole (3aj)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3aj** as yellow oil (14.0 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.1 Hz, 1H), 7.53 – 7.47 (m, 1H), 7.43 (td, J = 8.0, 1.8 Hz, 1H), 7.38 (d, J = 7.0 Hz, 1H), 7.33 (dd, J = 8.2, 7.2 Hz, 1H), 7.23 – 7.18 (m, 1H), 7.13 – 7.06 (m, 2H), 7.00 (td, J = 7.5, 1.3 Hz, 1H), 6.51 (d, J = 7.1 Hz,

1H), 5.99 – 5.87 (m, 1H), 5.19 (s, 1H), 1.74 (s, 3H), 1.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.5 (d, C–F, 1*J_{C-F}* = 242.4 Hz), 149.0, 146.5, 135.6, (d, C–F, 4*J_{C-F}* = 2.0 Hz), 133.7 (d, C–F, 2*J_{C-F}* = 13.3 Hz), 132.1, 130.2 (d, C–F, 4*J_{C-F}* = 1.0 Hz), 129.8, 128.8 (d, C–F, 3*J_{C-F}* = 7.2 Hz), 128.5, 128.4, 128.2 (d, C–F, 4*J_{C-F}* = 4.0 Hz), 124.0 (d, C–F, 4*J_{C-F}* = 3.0 Hz), 123.4, 118.1 (d, C–F, 4*J_{C-F}* = 5.0 Hz), 116.5 (d, C–F, 2*J_{C-F}* = 20.2 Hz),113.5, 99.9, 71.6, 26.9, 18.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.1. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₁H₁₉FN 304.1496; found: 304.1498.

2-(2-methylprop-1-en-1-yl)-2-(thiophen-2-yl)-1,2-dihydrobenzo[cd|indole (3ak)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3ak** as yellow oil (11.9 mg, 41% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.1 Hz, 1H), 7.50 – 7.42 (m, 1H), 7.39 – 7.31 (m, 1H), 7.19 (d, *J* = 7.0 Hz, 1H), 7.16 – 7.12 (m, 2H), 7.00 – 6.95 (m, 1H), 6.93 – 6.90 (m, 1H), 6.55 (dd, *J* = 7.2, 1.2 Hz, 1H), 6.01 (q, *J* = 1.5 Hz, 1H), 5.14 (s, 1H),

1.79 (s, 3H), 1.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 149.0, 148.4, 138.7, 132.0, 130.6, 129.8, 128.6, 127.6, 127.2, 124.6, 123.3, 123.1, 116.8, 114.1, 100.5, 71.0, 26.9, 19.8. HRMS (ESI) m/z: [M+H]⁺ calc. for C₁₉H₁₈NS 292.1154; found: 292.1154.

2-cyclopropyl-2-(2-methylprop-1-en-1-yl)-1,2-dihydrobenzo[cd]indole (3al)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3al** as yellow oil (9.2 mg, 37% yield). ¹H **NMR (400 MHz, CDCl₃)** δ 7.54 (d, J = 8.2 Hz, 1H), 7.43 (dd, J = 8.2, 6.9 Hz, 1H), 7.34 – 7.27 (m, 1H), 7.07 (d, J = 1.9 Hz, 1H), 7.05 (d, J = 3.3 Hz, 1H), 6.43 (d, J = 7.2 Hz, 1H), 5.72 (p, J = 1.4 Hz, 1H), 4.41 (s, 1H), 1.73 (d, J = 1.4 Hz, 3H), 1.39 – 1.30 (m, 1H),

1.20 (d, J = 1.2 Hz, 3H), 0.48 – 0.40 (m, 1H), 0.39 – 0.32 (m, 1H), 0.32 – 0.21 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 147.9, 138.2, 131.8, 129.6, 129.3, 128.6, 128.3, 122.6, 115.9, 113.2, 99.6, 69.9, 27.3, 23.7, 19.0, 1.4, 0.5. HRMS (ESI) m/z: [M+H]⁺ calc. for C₁₈H₂₀N 250.1590; found: 250.1591.

2-(2-methylbut-1-en-1-yl)-2-phenyl-1,2-dihydrobenzo[cd]indole (3am)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3am** as yellow oil (12.9 mg, 43% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.49 (m, 3H), 7.42 (ddd, J = 8.2, 7.0, 1.5 Hz, 1H), 7.35 (td, J = 7.8, 7.1, 1.4 Hz, 1H), 7.29 (ddd, J = 7.9, 6.6, 1.4 Hz, 2H), 7.23 – 7.17 (m, 1H), 7.11 (dd, J = 7.7, 4.0 Hz, 2H), 6.55 (d, J = 7.1 Hz, 1H), 5.97 (dd, J = 4.8, 1.7 Hz,

1H), 5.02 (s, 0.28H), 4.97 (s, 0.72H), 2.09 (qd, J = 7.5, 1.3 Hz, 0.6H), 1.92 – 1.83 (m, 1.4H), 1.79 (d, J = 1.5 Hz, 2.2H), 1.44 (d, J = 1.3 Hz, 0.8H), 1.05 (t, J = 7.4 Hz, 0.8H), 0.79 (t, J = 7.5 Hz, 2.2H). ¹³C NMR (101 MHz, CDCl₃) (Z) δ 149.8, 149.2, 147.4, 142.5, 132.0, 131.0, 129.8, 128.6, 127.9, 126.9, 125.9, 122.9, 116.7, 113.7, 100.0, 73.5, 26.4, 23.3, 11.7. ¹³C NMR (101 MHz, CDCl₃) (E) δ 149.9, 149.1, 147.2, 142.9, 132.0, 131.0, 129.7, 128.7, 128.6, 127.9, 126.8, 125.9, 122.9, 116.7, 113.7, 100.0, 73.4, 33.3, 18.2, 12.9. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₂H₂₂N 300.1747; found: 300.1748.

2-(cyclopentylidenemethyl)-2-phenyl-1,2-dihydrobenzo[cd]indole (3an)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3an** as yellow oil (12.8 mg, 41% yield). ¹H **NMR (400 MHz, CDCl₃)** δ 7.57 (d, J = 8.2 Hz, 1H), 7.53 – 7.50 (m, 2H), 7.44 (dd, J = 8.2, 7.0 Hz, 1H), 7.38 – 7.28 (m, 3H), 7.25 – 7.19 (m, 1H), 7.12 (dd, J = 7.6, 6.0 Hz, 2H), 6.52 (d, J = 7.1 Hz, 1H), 6.14 – 6.00 (m, 1H), 4.98 (s, 1H), 2.47 – 2.25 (m, 2H), 1.98 – 1.74 (m, 2H), 1.61 – 1.48 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 149.7, 148.0, 147.9,

146.6, 132.0, 129.8, 128.7, 128.5, 128.2, 127.0, 126.2, 125.5, 122.9, 116.9, 113.4, 99.5, 74.1, 35.6, 29.8, 27.1, 25.8. **HRMS (ESI)** m/z: $[M+H]^+$ calc. for $C_{23}H_{22}N$ 312.1747; found: 312.1748.

2-(cyclohexylidenemethyl)-2-phenyl-1,2-dihydrobenzo[cd]indole (3ao)

Prepared following General Procedure A and purified by flash chromatography in petroleum ether : ethyl acetate = 12 : 1 to give **3ao** as yellow oil (20.2 mg, 62% yield). ¹H **NMR (400 MHz, CDCl**₃) δ 7.59 – 7.50 (m, 3H), 7.42 (dd, J = 8.2, 7.0 Hz, 1H), 7.35 (dd, J = 8.2, 7.2 Hz, 1H), 7.28 (dd, J = 8.4, 6.9 Hz, 2H), 7.22 – 7.17 (m, 1H), 7.11 (t, J = 7.9 Hz, 2H), 6.55 (d, J = 7.1 Hz, 1H), 5.94 (s, 1H), 4.97 (s, 1H), 2.20 – 2.11 (m, 2H), 1.94 – 1.89 (m, 2H), 1.64 – 1.58 (m, 2H), 1.54 – 1.47 (m, 2H), 1.36 – 1.28 (m, 2H). ¹³C NMR

(101 MHz, CDCl₃) δ 149.9, 149.4, 147.3, 145.0, 132.0, 129.8, 128.7, 128.6, 128.5, 127.9, 126.8, 125.9, 122.9, 116.7, 113.7, 100.1, 73.3, 37.5, 30.8, 28.6, 26.9, 26.4. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₄H₂₄N 326.1903; found: 326.1905.

2,2-dimethyl-4-phenyl-1,2-dihydronaphtho[1,8-bc]azepine (4aa)

Prepared following General Procedure B and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give **4aa** as yellow oil (19.4 mg, 68% yield). ¹H NMR (**400 MHz, CDCl**₃) δ 7.65 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.36 (dt, *J* = 8.1, 1.4 Hz, 2H), 7.33 (dt, *J* = 4.8, 1.7 Hz, 2H), 7.31 – 7.25 (m, 3H), 7.19 (t, *J* = 7.8 Hz, 1H), 6.99 (dd,

J = 7.5, 1.4 Hz, 1H), 6.72 (dd, J = 7.3, 1.4 Hz, 1H), 6.14 (s, 1H), 4.07 (s, 1H), 1.43 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 146.4, 145.7, 142.6, 139.2, 136.3, 135.9, 130.0, 129.4, 129.1, 128.3, 126.8, 126.1, 124.8, 124.4, 121.1, 114.6, 53.6, 29.2. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₁H₂₀N 286.1590; found: 286.1589.

10-methoxy-2,2-dimethyl-4-phenyl-1,2-dihydronaphtho[1,8-bc]azepine (4ba)

Prepared following General Procedure B and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give **4ba** as yellow oil (22.7 mg, 72% yield). ¹**H NMR (400 MHz, CDCl₃)** δ 7.61 (d, *J* = 8.1 Hz, 1H), 7.35 (dd, *J* = 8.3, 4.9 Hz, 3H), 7.33 – 7.27 (m, 4H), 7.09 (t, *J* = 7.7 Hz, 1H), 6.97 (d, *J* = 7.4 Hz, 1H),

6.16 (s, 1H), 5.09 (s, 1H), 4.00 (s, 3H), 1.46 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 146.6, 144.6, 142.6, 138.8, 135.4, 133.6, 131.0, 130.1, 129.5, 129.1, 128.2, 126.7, 124.4, 122.7, 119.7, 112.6, 57.1, 53.3, 29.3. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₁H₂₂NO 316.1696; found: 316.1695.

2,2-dimethyl-4,8-diphenyl-1,2-dihydronaphtho[1,8-bc]azepine (4ca)

Prepared following General Procedure B and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give **4ca** as yellow oil (7.2 mg, 20% yield). ¹H **NMR (400 MHz, CDCl**₃) δ 7.74 (d, *J* = 8.4 Hz, 1H), 7.50 – 7.43 (m, 4H), 7.43 – 7.32 (m, 2H), 7.30 (t, *J* = 8.5 Hz, 4H), 7.22 (d, *J* = 7.7 Hz, 1H), 7.12 (t, *J* = 7.9 Hz, 1H), 7.00 (d, *J* = 7.3 Hz, 1H), 6.76 (d, *J* = 7.6 Hz, 1H), 6.18 (s, 1H), 4.13 (s, 1H), 1.46 (s, 6H). ¹³C

NMR (101 MHz, CDCl₃) δ 146.5, 145.2, 142.7, 142.1, 139.2, 136.1, 134.1, 132.6, 130.5, 129.9, 129.3, 128.2, 128.2, 127.5, 126.9, 126.7, 126.7, 124.6, 124.4, 113.9, 53.4, 29.1. **HRMS (ESI)** m/z: [M+H]⁺ calc. for C₂₇H₂₄N 362.1903; found: 362.1899.

2,2-dimethyl-4-(p-tolyl)-1,2-dihydronaphtho[1,8-bc]azepine (4ab)

Prepared following General Procedure B and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give **4ab** as yellow oil (16.0 mg, 54% yield). ¹H NMR (**400 MHz, CDCl**₃) δ 7.66 – 7.62 (m, 1H), 7.35 (dd, J = 8.1, 1.4 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 7.21 – 7.13 (m, 5H), 7.02 (dd, J = 7.5, 1.3 Hz,

1H), 6.71 (dd, J = 7.3, 1.3 Hz, 1H), 6.12 (s, 1H), 4.06 (s, 1H), 2.39 (s, 3H), 1.42 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 142.5, 138.8, 136.4, 136.3, 136.0, 129.9, 129.3, 129.1, 128.9, 126.1, 124.8, 124.4, 121.1, 114.6, 53.6, 29.2, 21.3. HRMS (ESI) m/z: [M–H]⁻ calc. for C₂₂H₂₀N 298.1600; found: 298.1593.

4-(4-fluorophenyl)-2,2-dimethyl-1,2-dihydronaphtho[1,8-bc]azepine (4ac)

Prepared following General Procedure B and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give **4ac** as yellow oil (18.8 mg, 62% yield). ¹H NMR (**400 MHz, CDCl**₃) δ 7.65 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.36 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.20 (t, *J* = 7.8

Hz, 1H), 7.08 – 6.99 (m, 2H), 6.95 (dd, J = 7.5, 1.3 Hz, 1H), 6.72 (dd, J = 7.3, 1.5 Hz, 1H), 6.12 (s, 1H), 4.06 (s, 1H), 1.42 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.0 (d, C–F, 1 $J_{C-F} = 246.4$ Hz), 145.6, 142.3 (d, C–F, 4 $J_{C-F} = 4.0$ Hz), 141.7, 139.3, 136.3, 135.8, 131.0 (d, C–F, 2 $J_{C-F} = 7.2$ Hz), 129.8, 129.3, 126.2, 124.7, 124.3, 121.1, 115.1 (d, C–F, 2 $J_{C-F} = 21.2$ Hz), 114.7, 53.5, 29.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.1. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₁H₁₉FN 304.1496; found: 304.1496.

4-(4-chlorophenyl)-2,2-dimethyl-1,2-dihydronaphtho[1,8-bc]azepine (4ad)

Prepared following General Procedure B and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give **4ad** as yellow oil (25.2 mg, 79% yield). ¹**H NMR (400 MHz, CDCl**₃) δ 7.70 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.40 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.37 – 7.33 (m, 2H), 7.30 (t, *J* = 3.9 Hz, 1H), 7.26 (dt, *J* = 6.4,

2.2 Hz, 2H), 7.22 (d, *J* = 7.9 Hz, 1H), 6.98 (dd, *J* = 7.4, 1.3 Hz, 1H), 6.76 (dd, *J* = 7.4, 1.4 Hz, 1H), 6.16 (s, 1H), 4.08 (s, 1H), 1.46 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 144.8, 141.6, 139.5, 136.3, 135.5, 132.7, 130.8, 129.8, 129.4, 128.4, 126.2, 124.7, 124.3, 121.1, 114.7, 53.6, 29.1. HRMS (ESI) m/z: $[M+H]^+$ calc. for C₂₁H₁₉ClN 320.1201; found: 320.1200.

4-(4-bromophenyl)-2,2-dimethyl-1,2-dihydronaphtho[1,8-bc]azepine (4ae)

in petroleum ether : ethyl acetate = 10 : 1 to give **4ae** as yellow foam (9.4 mg, 26% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, J = 8.1, 1.4 Hz, 1H), 7.49 -7.43 (m, 2H), 7.35 (dd, J = 8.1, 1.4 Hz, 1H), δ 7.28 (d, J = 7.5 Hz, 1H), 7.19 (t, J = 7.8 Hz, 1H), 7.17 – 7.13 (m, 2H), 6.94 (dd, J = 7.5, 1.3 Hz, 1H), 6.72 (dd, J = 7.4, 1.4 Hz, 1H), 6.12 (s, 1H), 4.05 (s, 1H), 1.41 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 145.3, 141.7, 139.5, 136.3, 135.4, 131.4, 131.1, 129.8, 129.4, 126.2, 124.7, 124.3, 121.1, 120.8, 114.7, 53.6, 29.1. HRMS (ESI) m/z: $[M+H]^+$ calc. for C₂₁H₁₉BrN 364.0695; found: 364.0693.

4-(2,2-dimethyl-1,2-dihydronaphtho[1,8-bc]azepin-4-yl)benzonitrile (4af)

Prepared following General Procedure B and purified by flash chromatography NH in petroleum ether : ethyl acetate = 8 : 1 to give **4af** as yellow foam (15.5 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 8.2, 1.3 Hz, 1H), 7.65 -7.60 (m, 2H), 7.41 - 7.35 (m, 3H), 7.29 (t, J = 7.7 Hz, 1H), 7.19 (t, J = 7.8 Hz,

Prepared following General Procedure B and purified by flash chromatography

1H), 6.83 (dd, *J* = 7.4, 1.3 Hz, 1H), 6.74 (dd, *J* = 7.3, 1.3 Hz, 1H), 6.15 (s, 1H), 4.06 (s, 1H), 1.43 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 151.1, 145.5, 141.6, 140.7, 136.3, 134.7, 132.2, 130.1, 129.7, 126.4, 124.7, 124.2, 121.2, 119.1, 114.9, 110.6, 53.7, 29.0. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₂H₁₉N₂ 311.1543; found: 311.1543.

methyl 4-(2,2-dimethyl-1,2-dihydronaphtho[1,8-bc]azepin-4-yl)benzoate (4ag)

Prepared following General Procedure B and purified by flash chromatography in petroleum ether : ethyl acetate = 6 : 1 to give **4ag** as yellow foam (19.6 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.13 -7.94 (m, 2H), 7.66 (dd, J = 8.1, 1.3 Hz, 1H), 7.36 – 7.34 (m, 3H), 7.31 – 7.26

(m, 1H), 7.18 (t, *J* = 7.8 Hz, 1H), 6.89 (dd, *J* = 7.5, 1.3 Hz, 1H), 6.73 (dd, *J* = 7.4, 1.3 Hz, 1H), 6.17 (s, 1H), 4.07 (s, 1H), 3.93 (s, 3H), 1.43 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 151.2, 145.6, 142.1, 140.0, 136.3, 135.2, 129.8, 129.7, 129.4, 128.6, 126.3, 124.7, 124.3, 121.2, 114.8, 53.7, 52.2, 29.1. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₃H₂₂NO₂ 344.1645; found: 344.1644.

2,2-dimethyl-4-(m-tolyl)-1,2-dihydronaphtho[1,8-bc]azepine (4ah)

Prepared following General Procedure B and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give **4ah** as yellow oil (15.2 mg, 51%) yield). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, J = 8.1, 1.4 Hz, 1H), 7.36 (dd, J = 8.1, 1.3 Hz, 1H), 7.28 (d, J = 7.6 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.20 (t, J = 7.8 Hz,

1H), 7.15 – 7.07 (m, 3H), 7.01 (dd, J = 7.5, 1.4 Hz, 1H), 6.72 (dd, J = 7.3, 1.3 Hz, 1H), 6.13 (s, 1H), 4.06 (s, 1H), 2.36 (s, 3H), 1.43 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 146.3, 145.8, 142.7, 139.0, 137.8, 136.3, 135.9, 130.2, 130.0, 129.1, 128.1, 127.5, 126.5, 126.1, 124.8, 124.4, 121.0, 114.6, 53.6, 29.2, 21.5. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₂H₂₂N 300.1747; found: 300.1745.

4-(3-fluorophenyl)-2,2-dimethyl-1,2-dihydronaphtho[1,8-bc]azepine (4ai)

Prepared following General Procedure B and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give **4ai** as yellow foam (18.8 mg, 62% yield). ¹H NMR (**400 MHz, CDCl**₃) δ 7.66 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.36 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.21 (t, *J* = 7.8 Hz, 1H), 7.10 – 6.95 (m, 4H),

6.73 (dd, J = 7.4, 1.4 Hz, 1H), 6.15 (s, 1H), 4.05 (s, 1H), 1.42 (s, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 162.8 (d, C–F, $1J_{C-F} = 246.4$ Hz), 148.6 (d, C–F, $3J_{C-F} = 7.0$ Hz), 145.6, 141.7, 139.7, 136.3, 135.3, 129.8, 129.7 (d, C–F, $3J_{C-F} = 8.1$ Hz), 129.4, 126.2, 125.2, 124.8, 124.3, 121.1, 116.4 (d, C–F, $2J_{C-F} = 22.2$ Hz), 114.7, 113.7 (d, C–F, $2J_{C-F} = 21.2$ Hz), 53.6, 29.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.8. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₁H₁₉FN 304.1496; found: 304.1496.

4-(3-chlorophenyl)-2,2-dimethyl-1,2-dihydronaphtho[1,8-bc]azepine (4aj)

Prepared following General Procedure B and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give **4aj** as yellow foam (21.1 mg, 66% yield). ¹H NMR (**400 MHz, CDCl**₃) δ 7.66 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.36 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.32 – 7.27 (m, 3H), 7.25 (d, *J* = 5.7 Hz, 1H), 7.21 (t, *J* = 7.8 Hz,

1H), 7.15 (dt, J = 6.7, 1.8 Hz, 1H), 6.95 (dd, J = 7.4, 1.3 Hz, 1H), 6.73 (dd, J = 7.4, 1.4 Hz, 1H), 6.14 (s, 1H), 4.05 (s, 1H), 1.52 – 1.27 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 148.1, 145.6, 141.6, 139.9, 136.3, 135.2, 134.1, 129.9, 129.5, 129.5, 129.4, 127.7, 127.0, 126.2, 124.8, 124.3, 121.2, 114.8, 53.6, 29.1. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₁H₁₉ClN 320.1201; found: 320.1200.

4-(2-fluorophenyl)-2,2-dimethyl-1,2-dihydronaphtho[1,8-bc]azepine (4ak)

Prepared following General Procedure B and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give **4ak** as yellow oil (13.0 mg, 43% yield). **¹H NMR (400 MHz, CDCl₃)** δ 7.66 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.37 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.34 - 7.27 (m, 3H), 7.23 - 7.13 (m, 2H), 7.11 - 7.06 (m, 1H), 6.95 (dt, *J* = 6.1, 1.3 Hz, 1H), 7.34 - 7.27 (m, 3H), 7.23 - 7.13 (m, 2H), 7.11 - 7.06 (m, 1H), 6.95 (dt, *J* = 6.1, 1.3 Hz, 1H), 7.34 - 7.27 (m, 3H), 7.23 - 7.13 (m, 2H), 7.11 - 7.06 (m, 1H), 6.95 (dt, *J* = 6.1, 1.3 Hz, 1H), 7.34 - 7.27 (m, 3H), 7.23 - 7.13 (m, 2H), 7.11 - 7.06 (m, 1H), 6.95 (dt, *J* = 6.1, 1.3 Hz, 1H), 7.34 - 7.27 (m, 3H), 7.23 - 7.13 (m, 2H), 7.11 - 7.06 (m, 1H), 6.95 (dt, *J* = 6.1, 1.3 Hz, 1H), 7.34 - 7.27 (m, 3H), 7.23 - 7.13 (m, 2H), 7.11 - 7.06 (m, 1H), 6.95 (dt, *J* = 6.1, 1.3 Hz, 1H), 7.34 - 7.27 (m, 3H), 7.23 - 7.13 (m, 2H), 7.11 - 7.06 (m, 1H), 6.95 (dt, *J* = 6.1, 1.3 Hz, 1H), 7.34 - 7.27 (m, 3H), 7.23 - 7.13 (m, 2H), 7.11 - 7.06 (m, 1H), 6.95 (dt, *J* = 6.1, 1.3 Hz, 1H), 7.34 - 7.27 (m, 3H), 7.23 - 7.13 (m, 2H), 7.11 - 7.06 (m, 1H), 6.95 (dt, *J* = 6.1, 1.3 Hz, 1H), 7.34 - 7.27 (m, 3H), 7.23 - 7.13 (m, 2H), 7.11 - 7.06 (m, 1H), 6.95 (dt, *J* = 6.1, 1.3 Hz, 1H), 7.34 - 7.27 (m, 3H), 7.23 - 7.13 (m, 2H), 7.11 - 7.06 (m, 1H), 6.95 (dt, *J* = 6.1, 1.3 Hz, 1H), 7.34 - 7.27 (m, 3H), 7.23 - 7.13 (m, 2H), 7.11 - 7.06 (m, 1H), 7.11 - 7.00 (m, 1H), 7.11 - 7.00 (m, 1H), 7.11 - 7.00

7.6, 1.2 Hz, 1H), 6.74 (dd, J = 7.4, 1.4 Hz, 1H), 6.15 (s, 1H), 4.04 (s, 1H), 1.43 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.1 (d, C–F, $IJ_{C-F} = 247.4$ Hz), 145.4, 141.0, 136.3, 136.0, 134.9, 133.1 (d, C–F, $3J_{C-F} = 16.2$ Hz), 131.9 (d, C–F, $4J_{C-F} = 3.0$ Hz), 129.3, 128.8 (d, C–F, $2J_{C-F} = 7.1$ Hz), 128.4, 126.1, 124.9, 124.2, 124.1 (d, C–F, $4J_{C-F} = 7.1$ Hz), 121.4, 115.7 (d, C–F, $2J_{C-F} = 22.2$ Hz), 115.0, 54.0, 29.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.5. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₁H₁₉FN 304.1496; found: 304.1496.

2,2-dimethyl-4-(thiophen-2-yl)-1,2-dihydronaphtho[1,8-bc]azepine (4al)

Prepared following General Procedure B and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give **4al** as brown oil (9.3 mg, 32% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.33 (dt, *J* = 7.5, 1.7 Hz, 2H), 7.26 (d, *J* = 3.4 Hz, 1H), 7.24 – 7.21 (m, 2H), 6.99 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.94

(dd, J = 3.5, 1.3 Hz, 1H), 6.69 (dd, J = 7.3, 1.4 Hz, 1H), 6.37 (s, 1H), 4.04 (s, 1H), 1.42 (s, 6H). ¹³C **NMR (101 MHz, CDCl**₃) δ 148.4, 145.7, 140.1, 136.2, 135.6, 135.5, 129.6, 129.5, 126.8, 126.4, 126.1, 124.7, 124.3, 123.9, 120.9, 114.4, 53.5, 28.9. **HRMS (ESI)** m/z: [M+H]⁺ calc. for C₁₉H₁₈NS 292.1154; found: 292.1154.

2-ethyl-2-methyl-4-phenyl-1,2-dihydronaphtho[1,8-bc]azepine (4am)

Prepared following General Procedure B and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give **4am** as yellow oil (10.2 mg, 34% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, J = 8.1, 1.4 Hz, 1H), 7.38 – 7.26 (m, 7H), 7.18 (t, J = 7.8 Hz, 1H), 6.97 (dd, J = 7.4, 1.3 Hz, 1H), 6.72 (dd, J = 7.3, 1.4 Hz, 1H), 6.11 (s,

1H), 4.16 (s, 1H), 1.74 (q, J = 7.4Hz, 2H), 1.37 (s, 3H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.6, 145.5, 142.8, 138.7, 136.3, 135.9, 129.9, 129.5, 129.1, 128.3, 126.8, 126.2, 124.8, 124.4, 120.9, 114.8, 56.3, 33.1, 26.6, 8.4. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₂H₂₂N 300.1747; found: 300.1744.

4-phenyl-1H-spiro[cyclopentane-1,2-naphtho[1,8-bc]azepine] (4an)

Prepared following General Procedure B and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give **4an** as yellow oil (13.1 mg, 42% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, J = 8.2, 1.3 Hz, 1H), 7.37 – 7.26 (m, 7H), 7.19 (t, J = 7.8 Hz, 1H), 6.98 (dd, J = 7.5, 1.4 Hz, 1H), 6.69 (dd, J = 7.3, 1.4 Hz, 1H), 6.27 (s, U) = 1.02 = 1.844 (m, 4H), 1.81 = 1.744 (m, 4H), 130 NMP (101 MHz, CDCl) δ 1.44 (m, 2H), 1.81 = 1.744 (m, 4H), 130 NMP (101 MHz, CDCl) δ 1.44 (m, 2H), 1.81 = 1.744 (m, 2H), 130 NMP (101 MHz, CDCl) δ 1.44 (m, 2H), 1.81 = 1.744 (m, 2H), 130 NMP (101 MHz, CDCl) δ 1.44 (m, 2H), 1.81 = 1.744 (m, 2H), 130 NMP (101 MHz, CDCl) δ 1.44 (m, 2H), 1.81 = 1.744 (m, 2H), 130 NMP (101 MHz, CDCl) δ 1.44 (m, 2H), 140 NMZ, 14

1H), 4.12 (s, 1H), 1.92 – 1.84 (m, 4H), 1.81 – 1.74 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 146.3, 146.0, 143.5, 139.0, 136.4, 136.4, 129.8, 129.4, 129.0, 128.3, 126.8, 126.0, 124.8, 124.4, 121.0, 114.6, 64.9, 39.1, 23.0. HRMS (ESI) m/z: [M+H]⁺ calc. for C₂₃H₂₂N 312.1747; found: 312.1745.

4-phenyl-1H-spiro[cyclohexane-1,2-naphtho[1,8-bc]azepine] (4ao)

Prepared following General Procedure B and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give **4an** as yellow oil (21.6 mg, 67% yield). ¹**H NMR (400 MHz, CDCl₃)** δ 7.67 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.43 – 7.31 (m, 7H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.01 (dd, *J* = 7.5, 1.3 Hz, 1H), 6.80 (dd, *J* = 7.2, 1.5 Hz, 1H), 6.17 (s, 1H), 4.32 (s, 1H), 1.93 – 1.87 (m, 2H), 1.68 – 1.54 (m, 8H). ¹³**C NMR (101 MHz, CDCl₃)** δ

146.7, 145.2, 142.7, 138.7, 136.2, 136.0, 129.9, 129.5, 129.1, 128.3, 126.8, 126.2, 124.8, 124.5, 120.8, 114.7, 55.2, 36.8, 25.8, 22.6. **HRMS (ESI)** m/z: [M+H]⁺ calc. for C₂₄H₂₄N 324.1903; found: 324.1903.

2.3 General Procedure for Mechanistic Experiments.

(a) Deuterium-Labeling Experiments without 2a

The mixture of 1-naphthylamine **1a** (17.1 mg, 0.12 mmol) and CD₃OD (41 μ L, 1.0 mmol) under standard conditions A or standard conditions B for 24 h. Afterwards, the mixture was purified by flash silica gel column chromatography to afford the product **1a-d**.

MTBE:MeCN = 0.9 mL:0.1 mL

(b) Deuterium-Labeling Experiments with 2a

The mixture of 1-naphthylamine **1a** (17.1 mg, 0.12 mmol), propargyl carbonate **2a** (21.8 mg, 0.1 mmol) and CD₃OD (41 μ L, 1.0 mmol) under standard conditions A or standard conditions B for 24 h. Afterwards, the mixture was purified by flash silica gel column chromatography to afford the product **3aa-d** or **4aa-d**.

3aa-d

4aa-d

(c) Control Experiments

To six separated 20 mL Schlenk tubes were added 1-naphthylamine **1a** (34.3 mg, 0.24 mmol), propargyl carbonate **2a** (43.6 mg, 0.2 mmol), $[Cp^*IrCl_2]_2$ (8.0 mg, 5 mol%), Zn(OAc)₂ (18.2 mg, 0.1 mmol) and MeCN (2.0 mL), the tubes were sealed up with a cap and evacuated then refilled with Ar and kept stirring at 100 °C (aluminum heat transfer block) for 24 h. After cooling to room temperature, the mixture was diluted with ethyl acetate, filtrated through celite. After concentration, the resulting residue was purified by preparative TLC using Hexane/EtOAc or Hexane/Acetone as the eluent to afford the desired product **5**.

The mixture of **5** (0.1 mmol, 1.0 equiv) and $[Cp^*Rh(MeCN)_3][SbF_6]_2$ (8.3 mg, 10 mol%) kept stirring for 24 h under standard conditions A or standard conditions B. When the reaction was completed, the mixture was purified by flash silica gel column chromatography to afford the desired products **3aa** or **4aa** in 0% yield.

8-(3-methyl-1-phenylbuta-1,2-dien-1-yl)naphthalen-1-amine (5)

Prepared following General Procedure C and purified by flash chromatography in petroleum ether : ethyl acetate = 6 : 1 to give **5** as yellow oil (61.5 mg, 18% yield). ¹**H NMR (400 MHz, CDCl₃)** δ 9.00 (dd, *J* = 8.5, 1.2 Hz, 1H), 7.96 – 7.87 (m, 1H), 7.59 – 7.52 (m, 1H), 7.51 – 7.46 (m, 1H), 7.36 (dd, *J* = 6.8, 2.6 Hz, 3H), 7.24 (dd, *J* = 5.1, 2.0 Hz, 3H), 6.75 (d, *J* = 7.9 Hz, 1H), 4.11 (s, 2H), 1.89 (s, 6H). ¹³C **NMR (101 MHz, CDCl₃)**

δ 141.7, 132.5, 132.0, 131.6, 128.2, 127.6, 127.5, 125.2, 125.1, 124.5, 124.2, 122.9, 121.7, 109.0, 98.1, 81.6, 34.4, 31.7. **HRMS (ESI)** m/z: [M+H]⁺ calc. for C₂₁H₂₀N 286.1596; found: 286.1589.

To a 20 mL Schlenk tube was added free 1-naphthylamine **1a** (0.12 mmol), propargyl carbonate **2a** (0.1 mmol), $[Cp^*Rh(MeCN)_3][SbF_6]_2$ (8.3 mg, 10 mol%), LiOAc (3.3 mg, 0.05 mmol), DCE (0.7 mL) and MeCN (0.3 mL), the tube was sealed up with a cap and evacuated then refilled with Ar and kept stirring at 90 °C (aluminum heat transfer block). Then immediately quenched with DCM, the ¹H NMR yields of desired product **4aa** and recovery of the **3aa** were determined by 1,3,5-Trimethoxybenzene as internal standard.

	4:	yield	l (%)
entry	time (min)	3 aa	4aa
1	30	11	4
2	60	24	6
3	90	25	14
4	120	13	20
5	180	9	33
6	240	8	38

Table S5. Reaction rate of 4aa under standard conditions B

Figure S1. Reaction rate under standard conditions B

(e) Control Experiments with Different Solvents

In three separated oven-dried 20 mL Schlenk tubes were added **3aa** (28.5 mg, 0.10 mmol), $[Cp^*Rh(MeCN)_3][SbF_6]_2$ (8.3 mg, 10 mol%), LiOAc and different solvents (1.0 mL), the tubes were sealed up with a cap and evacuated then refilled with Ar and kept stirring at 90 °C (aluminum heat transfer block) for 24 h. After cooling to room temperature, the mixture was diluted with ethyl acetate, filtrated through celite. After concentration, the ¹H NMR yield of desired product **4aa** and recovery of the **3aa** were determined by 1,3,5-Trimethoxybenzene as internal standard.

antur	[ast]	hasa	actions	yield	(%) ^a
entry	[cat]	Dase	solvent	3aa	4 aa
1	[Cp*Rh(MeCN)3][SbF6]2	LiOAc (2.0 equiv.)	MTBE/MeCN (9:1, v/v)	89	0
2	[Cp*Rh(MeCN)3][SbF6]2	LiOAc (0.5 equiv.)	DCE/MeCN (7:3, v/v)	13	74
3		LiOAc (0.5 equiv.)	DCE/MeCN (7:3, v/v)	95	0

Table S6. Control experiments with different solvents

^{*a* ¹}H NMR yield using 1,3,5-Trimethoxybenzene as internal standard.

3. X-Ray Crystallographic Data

A single crystal of **3aa** suitable for X-ray crystallography was obtained by crystallization via evaporation from its hexane/ethyl acetate solution.

Bond precision	C-C = 0.0037 A	Wavelength $= 0.71073$				
Cell:	a = 7.7743(9)	b = 21.708(3)	c = 18.561(2)			
	alpha = 90	beta = 96.518(4)	gamma = 90			
Temperature:	170 K					
	Calculated	Reported				
Volume	3112.2 (7)	3112.2 (6)				
Space group	P 21/c	P 1 21/c 1				
Hall group	-P 2ybc	-P 2ybc				
Moiety formula	$C_{21}H_{19}N$	$C_{21}H_{19}N$				
Sum formula	$C_{21}H_{19}N$	$C_{21}H_{19}N$				
Mr	285.37	285.37				
Dx, g cm-3	1.218	1.218				
Ζ	8	8				
Mu (mm-1)	0.070	0.070				
F000	1216.0	1216.0				
F000'	1216.42					
h, k, 1max	9,27,23	9,27,23				
Nref	6418	6389				
Tmin, Tmax	0.996,0.999	0.630,0.745				
Tmin'	0.994					
Correction method= # R	eported T Limits: Tmin = 0.0	630 Tmax = 0.745				
AbsCorr = MULTI-SCA	AN					
Data completeness $= 0.9$	995 Theta(max) = 26.443					
R(reflections) = 0.0711(R(reflections) = 0.0711(3724) wR2(reflections) = 0.2199(6389)					
S = 1.029	Npar= 401					

Table S5. Crystal data and structure refinement for 3aa.

4. References

[1] M. P. Huestis, Rhodium(III)-Catalyzed C–H Functionalization of 1-(2H)-Phthalazinones at C8. *J. Org. Chem.* 2016, **81**, 12545-12552.

[2] Y. Li, H. Zou, J. Gong, J. Xiang, T. Luo, J. Quan, G. Wang and Z. Yang, Efficient Synthesis of Maleimides and Carbazoles via Zn(OTf)₂-Catalyzed Tandem Annulations of Isonitriles and Allenic Esters *Org. Lett.* 2007, **9**, 4057-4060.

5. NMR Spectra

S25

f1 (ppm)

3da, ¹H NMR, 400 MHz, CDCl₃

3ea, ¹H NMR, 400 MHz, CDCl₃

fl (ppm)

f1 (ppm)

f1 (ppm)

S42

f1 (ppm)

fl (ppm)

f1 (ppm)

3ao, ¹H NMR, 400 MHz, CDCl₃

fl (ppm)

S56

fl (ppm)

fl (ppm)

fl (ppm)

fl (ppm)

fl (ppm)

