Supporting Information

The Kröhnke synthesis of benzo[*a***]indolizines revisited: towards small, red light emitters**

Jaqueline S. A. Badaro,^a Beata Koszarna,^a Manon H. E. Bousquet,^b Erik Ouellette,^c Denis Jacquemin,*^b and Daniel T. Gryko,*^a

a Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.

^bCEISAM Lab—UMR 6230, CNRS, University of Nantes, Nantes, France.

^cDepartment of Chemistry, University of California, Berkeley, 420 Latimer Hall, Berkeley, CA, USA.

^cChemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA.

Table of Contents

1. Optimization studies

According to the two-step approach initially proposed by Kröhnke *et al.* two different bases were required (Scheme 1), however 5 years later the same group published an optimized one-pot protocol (Scheme 1). We considered it to be a promising starting point and we focused on a one-step procedure modifying bases and solvents (Table S1). First, Lewis bases were evaluated in DMSO, but unfortunately the yield was not satisfactory, only ca. 20% (Table 1, entries 2-3). Common Brønsted bases were then investigated, but this strategy was also not efficient enough. In fact, the best result was obtained for Cs_2CO_3 (entry 1), so we decided to increase its concentration to 4 mmol which allowed to obtain a 56% yield for the desired product **3cCF** (entry 8). Finally, different aprotic polar solvents were evaluated and sulfolane gave the most gratifying result, increasing the yield to 68% (entry 1). Additionally, we tried increasing the temperature and decreasing the reaction time; but both changes did not enhance the yield; in fact, in some cases it resulted in a yield decrease as well as many side-products, so we set on room temperature and 16 h as optimal conditions. Furthermore, the reactivity of reagents having different leaving groups at position 4 of nitroarenes was compared. The reaction was successful not only when 4-chloro-3,5-dinitrobenzotrifluoride was used (68%) but also with 4-fluoro-3,5-dinitrobenzotrifluoride, though with a slight decrease in yield (60%).

^a Reaction was performed using 1 mmol of substrates and 4 mmol of base in sulfolane at RT and overnight. ND = not detected.

Further optimization study. As stated previously, under the previously optimized conditions, dye **3eCN** was obtained in a considerably lower yield (24%) compared to analogous benzo[*a*]indolizines (Scheme 2). First, various Brønsted bases were evaluated, but in line with the first optimization study the yield was even lower (Table S2, entry 3). At this point, our focus moved towards non-nucleophilic Lewis bases. Among those both *tert*-butyliminotri(pyrrolidino) phosphorane (BTPP) and tetramethylguanidine (TMG) gave better yields (Table S2, entries 1, 5 and 6), BTPP being the best choice. Consistent with the former study, an increase in temperature and a variation in reaction time did not enhance reactivity.

Table S2 Second optimization studies of the reaction conditions^a

^a Reaction was performed using 1 mmol of substrate and 4 mmol of P1-*t*-Bu-tris (tetramethylene) BTTP = P1-*t-*Bu-tris(tetramethylene)

2. Crystallographic data of 3bCN

Table S1: Summary of crystal data for 3bCN

Figure S1: Packing diagram of crystals in elementary cell and thermal elipsoid plot with 50% probability level of ellipsoid contour

3. Photophysical measurements

Figure S2: Absorption (solid) and Emission (dashed) of compounds in DCM (red) and Toluene (green)

4. Computational Details

Figure S3: Representation of the optimal ground-state geometries of 3cCN and 3eCN in two views, together with the corresponding frontier orbitals. Note the clear twist of the groups at positions 6 and 7 due to the steric clash in 3eCN

XYZ geometries are available as a separate SI file, in which GS indicate the (DFT) groundstate geometries and ES the (TD-DFT) excited-state geometries.

5. Electrochemical Studies

Cyclic voltammograms of compounds (1 mg/mL) were measured at 20 °C, under argon atmosphere, in deoxygenated 0.1 M solutions of tetrabutylammonium perchlorate in anhydrous dichloromethane. A glassy carbon working electrode, a Ag/AgCl / NaCl (sat) reference electrode s, and auxiliary platinum wire were used, while the scan rate was $v = 100$ mV×s⁻¹. All values of *E* [V] are reported with respect to Fc⁺ /Fc redox potential.

3eCN

Figure S4: Cyclic voltammograms of compounds

 $\frac{1}{100}$ 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -4
 $\frac{1}{10}$ f1 (ppm)

 $\frac{1}{100}$ 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -4
 $\frac{1}{10}$