Synthesis of Reverse Glycosyl Fluorides via Organophotocatalytic

Decarboxylative Fluorination of Uronic Acids

Han Ding,^{a,§} Ningjie Yan,^{a,§} Peng Wang,^a Ni Song,^a Qikai Sun,^a Tiantian Li^a and Ming Li^{a,b,*}

^{*a*}Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China Address here.

^b Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine

Science and Technology, Qingdao 266237, China

Email:lmsnouc@ouc.edu.cn

[§]These authors contributed equally to this work.

Table of Contents

	Synthetic	NMR Spectra
	procedure	
General Information	S 1	
Section 1. Synthesis of Uronic Acids	S2-S13	S39–S55
Synthesis of 1h	S2	S39
Synthesis of S3	S2	S40
Synthesis of 1i	S 3	S41
Synthesis of 1j	S 4	S42
Synthesis of S6	S 4	S43
Synthesis of 1k	S 5	S44
Synthesis of S8	S 6	S45
Synthesis of 11	S 7	S46
Synthesis of S13	S 7	S47–S48
Synthesis of 1m	S 8	S49-S50
Synthesis of 1p	S 9	S51
Synthesis of 1q	S10	S52
Synthesis of S18	S10	S53
Synthesis of S20	S11	S54
Synthesis of 1v	S13	S55
Section 2. Decarboxylative Fluorination	S14-S29	S56-S99
of Uronic Acids		
Synthesis of 2a	S14	S56
Synthesis of 2b	S14	S57
Synthesis of 2c	S15	S58-S59
Synthesis of 2d	S15	S60-S61
Synthesis of 2e	S16	\$62 - \$63
Synthesis of 2f	S16	S64

Synthesis of 2g and 2g'	S17	S65-S66
Synthesis of 2h	S18	S67
Synthesis of 2i	S18	S68-S69
Synthesis of 2 j	S19	S70-S71
Synthesis of 2k	S19	S72–S73
Synthesis of 2l and 2l'	S20	S74–S77
Synthesis of 2m	S21	S78–S79
Synthesis of 2n	S22	S80-S81
Synthesis of 20	S22	S82-S83
Synthesis of 2p	S23	S84-S85
Synthesis of 2q	S24	S86
Synthesis of 2r and 2r'	S24	S87–S88
Synthesis of 2s and 2s'	S25	S89-S92
Synthesis of 2t and 2t'	S26	S93–S94
Synthesis of 2u	S27	S95
Synthesis of 2v	S27	S96–S97
Synthesis of 2w and 2w'	S28	S98–S99
Section 3. Synthesis of 4' fluoro	S30-36	S100-S114
nucleoside		
Synthesis of 3	S30	S100
Synthesis of 4	S30	S101
Synthesis of 5a	S 31	S102
Synthesis of 6a	S32	S103
Synthesis of 5b	S 33	S104-S105
Synthesis of 6b	S33	S106
Synthesis of 7a and 7a'	S34	S107-110
Synthesis of 7b and 7b'	S35	S111–S114
References	S37–S38	
NMR Spectra		S39–S114

General Information

All reactions were carried out under argon with magnetic stirring unless otherwise indicated. The decarboxylative fluorination was carried out in a quartz tube under argon. All commercially obtained reagents were used as received, except where specified otherwise. Selectfluor was purchased from Energy Chemical; Mes-Acr ClO₄ was purchased from TCI and used without further purification. Anhydrous dicholoromethane (CH₂Cl₂), N,N-dimethylformamide (DMF) were obtained by passing commercially available pre-dried, oxygen-free formulations through activated alumina columns. Tetrahydrofuran (THF) was distilled immediately before use from sodiumbenzophenone ketyl. Pyridene and acetonitrile were refluxed over calcium hydride and distilled before use. Acetone was distilled from potassium permanganate and stored prior to use. Flash column chromatography was performed on Silica Gel H (300-400 mesh, Qingdao, China). Analytical thin layer chromatography was performed on Silicycle SiliaPlate glass-backed plates coated with silica gel (60 mesh pore size, F-254 indicator) and visualized by exposure to ultraviolet light and/or staining with 8% sulfuric acid in methanol. Optical rotations were determined with a JASCO P-1020 digital polarimeter. NMR spectra were recorded on a JEOL-ECP-600 MHZ spectrometer, an Agilent DD2 500 MHz NMR spectrometer and a Bruker AVENCE NEO 400 MHZ spectrometer. The ¹H NMR signal for residual non-deuterated solvent (& 7.26 ppm for CHCl₃, 2.50 ppm for DMSO, 2.05 ppm for acetone, 3.31 ppm for methanol) was used as an internal reference. The ¹³C NMR signal for CDCl₃ (δ 77.16 ppm), d_6 -DMSO (δ 39.5 ppm), d_4 -methanol (δ 49.0 ppm) or d_6 -acetone (δ 29.8 ppm) was used as an internal reference. ¹⁹FNMR signals were referenced against PhCF₃ (δ – 63.2) as an external standard. ³¹P NMR signals were reported relative to aqueous 85% H_3PO_4 ($\delta 0$ ppm, external standard). The following abbreviations are used to designate multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broadsinglet, DEPT-Q = Distorsionless Enhancement by Polarization Transfer Including the Detection of Quaternary Nuclei.

Section 1. Synthesis of Uronic Acids

The required uronic acids 1a,¹ 1b,² 1c-d,³ 1e,⁴ 1f,¹ 1g,¹ 1n-o⁵, 1r,⁶ 1s,⁷ 1t,⁸ 1u,¹ 1w⁹, were synthesized referred to the procedures in the literatures.

Methyl 2,3-O-isopropylidene-4-C-azidomethyl-α-L-lyxofuranuronic acid (1h)

To a solution of S1¹⁰ (427 mg, 1.65 mmol, 1.0 equiv) in CH₂Cl₂/H₂O (v/v = 4:1, 10 mL) was added 2,2,6,6-tetramethylpiperidine-1-oxy1 (TEMPO, 52 mg, 0.33 mmol, 0.2 equiv) and (diacetoxyiodo)benzene (BAIB, 1.6 g, 4.95 mmol, 3.0 equiv). The reaction mixture was stirred at room temperature overnight. The reaction was quenched with sat. NaS₂O₃ solution. The aqueous phase was extracted with ethyl acetate (EtOAc, 30 mL×5), the organic phase was dried over Na₂SO₄, filtered and concentrated in *vacuo*. The residue was purified by silica gel column chromatography (petroleum ether:EtOAc = 1:1) to afford **1h** (387 mg, 1.42 mmol, 86%) as a colorless syrup. $[\alpha]_D^{22} = -1.2$ (*c* 0.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 5.23 (s, 1H), 4.69 (d, *J* = 5.8 Hz, 1H), 4.65 (d, *J* = 5.8 Hz, 1H), 3.84 (d, *J* = 12.5 Hz, 1H), 3.59 (d, *J* = 12.5 Hz, 1H), 3.48 (s, 3H), 1.45 (s, 3H), 1.29 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.0, 114.0, 110.4, 92.0, 84.9, 83.1, 56.4, 55.9, 25.9, 24.6; HRMS (ESI) *m*/*z* calcd for C₁₀H₁₅N₃NaO₆ [M+Na]⁺ 296.0853, found 296.0853.

Methyl 2,3-O-isopropylidene-5-O-benzoyl-4-fluoro-α-L-lyxofuranoside (S3)

To a solution of $S2^{11}$ (1.0 g, 4.27 mmol, 1.0 equiv) and 4-dimethylaminopyridine (DMAP, 52 mg, 0.43 mmol, 0.1 equiv) in anhydrous pyridine (52 mL) was added benzoyl chloride (BzCl, 750 μ L, 6.41 mmol, 1.5 equiv) drop-wise at -40 °C. The mixture was warm up to -20 °C and was stirred at this temperature for 2 h. After the

completion of the reaction, the mixture was quenched with MeOH (10 mL), and was concentrated in *vacuo*. The residue was dissolved in EtOAc (30 mL), and washed sequentially with 1 M HCl solution (50 mL), sat. NaHCO₃ solution (50 mL) and brine (50 mL). The organic phase was dried over Na₂SO₄, filtered, and concentrated in *vacuo*. The residue was purified by silica gel column chromatography (petroleum ether:EtOAc = 5:1) to afford **S3** (809 mg, 2.39 mmol, 56%) as a white foam. $[\alpha]_D^{22} = -4.4$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 7.1 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 5.02 (s, 1H), 4.91–4.89 (m, 1H), 4.71 (d, *J* = 5.9 Hz, 1H), 4.65 (d, *J* = 11.7 Hz, 1H), 4.40 (d, *J* = 11.7 Hz, 1H), 3.75 (s, 2H), 3.45 (s, 3H), 1.50 (s, 3H), 1.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 133.4, 129.9, 128.6, 112.9, 110.0, 90.1, 86.7, 82.1, 65.3, 64.8, 55.8, 26.3, 24.8; HRMS (ESI) *m/z* calcd for C₁₇H₂₃O₇ [M+H]⁺ 339.1438, found 339.1439.

Methyl 2,3-*O*-isopropylidene-4-*C*-benzoyloxylmethyl-β-D-ribofuranuronic acid (1i)

Following the procedure for **1h**, treatment of **S3** (1.57 g, 4.66 mmol, 1.0 equiv) with TEMPO (109 mg, 0.7 mmol, 0.15 equiv) and BAIB (3.0 g, 9.32 mmol, 2.0 equiv) in CH₂Cl₂/H₂O (v/v = 5:1, 24 mL) afford **1i** (1.32 g, 3.73 mmol, 80%) as a colorless syrup after purification by silica gel column chromatography (petroleum ether:EtOAc = 4:1, containing 7‰ trifluoroacetic acid). $[\alpha]_{D}^{22}$ = -43.3 (*c* 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 9.5 Hz, 2H), 7.53 (t, *J* = 6.9 Hz, 1H), 7.39 (t, *J* = 7.8 Hz, 2H), 5.33 (d, *J* = 5.8 Hz, 1H), 5.05 (s, 1H), 4.69 (d, *J* = 11.1 Hz, 1H), 4.64 (d, *J* = 5.8 Hz, 1H), 4.60 (d, *J* = 11.1 Hz, 1H), 3.40 (s, 3H), 1.50 (s, 3H), 1.33 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 174.8, 165.8, 133.4, 129.9, 129.6, 128.5, 113.4, 109.3, 87.4, 84.8, 81.7, 77.4, 76.9, 65.1, 56.1, 26.1, 24.8; HRMS (ESI) *m/z* calcd for C₁₇H₂₀NaO₈ [M+Na]⁺ 375.1050, found 375.1048.

1,2-*O*-Isopropylidene-3-*O*-benzyl-4-*C*-benzyloxylmethyl-β-L-ribofuranuronic acid (1j)

To a solution of aldehyde $S4^{12}$ (2.87 g, 7.2 mmol, 1.0 equiv) in a mixed solvent of THF/H₂O/tBuOH (v/v/v = 4:1:1, 42 mL) was added sequentially NaH₂PO₄·2H₂O (1.7 g, 10.8 mmol, 1.5 equiv), 2-methyl-2-butene (3.8 mL, 36.0 mmol, 5.0 equiv) and NaClO₂ (1.95 g, 21.6 mmol, 3.0 equiv) under an ice-bath. The mixture was warm up to room temperature and stirred overnight. The pH value of the mixture was adjusted to approximate 1 by addition of 1 M solution of HCl, and EtOAc (50 mL) was added. Two phases were separated and the aqueous phase was extracted with EtOAc (50 mL×5). The organic phase was dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography (CH_2Cl_2 :EtOAc = 2:1) to afford **1**j (2.03 g, 4.9 mmol, 68%) as a colorless syrup. $[\alpha]_{D}^{23} = +85.8 (c \ 0.7, CHCl_{3});$ ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.23 (m, 10H), 5.85 (d, J = 3.6 Hz, 1H), 4.81 (d, J = 11.9 Hz, 1H), 4.74–4.64 (m, 2H), 4.56 (d, J = 11.9 Hz, 1H), 4.50 (d, J = 11.9 Hz, 1H), 4.31 (d, J = 4.8 Hz, 1H), 3.83–3.69 (m, 2H), 1.60 (s, 3H), 1.36 (s, 3H); ¹³C NMR (126) MHz, CDCl₃) δ 169.7, 137.4, 136.3, 128.7, 128.6, 128.5, 128.2, 128.0, 127.9, 114.6, 104.9, 87.3, 78.2, 78.0, 74.1, 73.4, 71.6, 26.3, 25.2; HRMS (ESI) m/z calcd for C₂₃H₂₆NaO₇ [M+Na]⁺ 437.1571, found 437.1559.

1,2:5,6-Di-*O*-isopropylidene-3-*O*-benzoyl-4-*C*-benzoyloxylmethyl-β-Laltrofuranoside (S6)

Followed the procedure for **S3**, **S5**¹² (40.0 g, 137.8 mmol, 1.0 equiv) was treated with BzCl (38.1 mL, 330.7 mmol, 2.4 equiv) and DMAP (3.37 g, 27.6 mmol, 0.2 equiv) in anhydrous pyridine (250 mL) to afford **S6** (65.0 g, 130.4 mmol, 95%) as a white foam after purification by silica gel column chromatography (petroleum ether:EtOAc = 7:1 to 6:1). $[\alpha]_D^{23}$ = +121.8 (*c* 0.7, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 7.3 Hz, 2H), 7.97 (d, *J* = 7.2 Hz, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.48 (t, *J* = 7.9 Hz, 2H), 7.41 (t, *J* = 7.9 Hz, 2H), 6.04 (d, *J* = 4.1 Hz, 1H), 5.50 (d, *J* = 5.9 Hz, 1H), 5.08 (dd, *J* = 5.8, 4.2 Hz, 1H), 4.99 (dd, *J* = 7.3, 6.5 Hz, 1H), 4.56 (s, 2H), 4.24 (dd, *J* = 9.0, 7.8 Hz, 1H), 3.98 (dd, *J* = 9.1, 6.4 Hz, 1H), 1.55 (s, 3H), 1.51 (s, 3H), 1.41 (s, 3H), 1.33 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 165.3, 133.8, 133.5, 129.8, 129.6, 129.5, 129.0, 128.8, 128.7, 114.8, 109.6, 105.6, 86.9, 80.1, 77.4, 74.4, 65.8, 65.5, 27.1, 27.0, 26.0, 24.2; HRMS (ESI) *m*/*z* calcd for C₂₇H₃₄NO₉ [M+NH₄]⁺ 516.2228, found 516.2222.

1,2-*O*-Isopropylidene-3-*O*-benzoyl-4-*C*-benzoyloxylmethyl-β-L-ribofuranuronic acid (1k)

To a solution of **S6** (11.9 g, 23.85 mmol, 1.0 equiv) in aqueous acetonitrile (v/v = 4:1, 220 mL) was sequentially added sodium periodate (NaIO₄, 20.4 g, 95.4 mmol, 4.0 equiv) and iodine (I₂, 3.6 g, 14.3 mmol, 0.6 equiv) under an ice-bath. The ice-bath was removed and the flask was evacuated and backfilled with argon 3 times before the mixture was heated to 80 °C and stirred vigorously at this temperature for 6 h. The mixture was cooled to room temperature. Sat. Na₂S₂O₃ solution (500 mL) was added to quench the reaction and the aqueous solution was taken up with EtOAc (200 mL×3). The combined organic phases were dried over Na₂SO₄, filtered. The filtrate was concentrated in *vacuo*. The resulting aldehyde was used directly without further

purification. Followed the procedure for **1**j, the above obtained aldehyde was transformed into uronic acid **1k** (6.87 g, 15.53 mmol, 65% over 2 steps) as a colorless syrup after purification by silica gel column chromatography (petroleum ether:EtOAc = 4:1, containing 5‰ of acetic acid). $[\alpha]_{D}^{23}$ = +11.4 (*c* 3.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.10 (dd, *J* = 8.4, 1.3 Hz, 2H), 8.01 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.62–7.55 (m, 2H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.44 (t, *J* = 7.4 Hz, 2H), 6.10 (d, *J* = 4.0 Hz, 1H), 5.50 (d, *J* = 5.6 Hz, 1H), 5.09 (dd, *J* = 5.6, 4.0 Hz, 1H), 4.80 (d, *J* = 11.9 Hz, 1H), 4.67 (d, *J* = 11.9 Hz, 1H), 2.09 (s, 1H), 1.57 (s, 3H), 1.36 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 165.7, 165.4, 134.0, 133.6, 130.3, 129.9, 129.3, 128.8, 128.7, 128.6, 115.1, 105.9, 87.0, 78.3, 73.5, 66.5, 26.2, 25.3; HRMS (ESI) *m*/z calcd for C₂₃H₂₁O₉ [M–H]⁻ 441.1191, found 441.1186.

1,2-*O*-Isopropylidene-3-*O*-methyl-5-*O*-benzoyl-4-*C*-hydroxylmethyl-β-Larabinofuranoside (S8)

Following the procedure for **S3**, treatment of **S7**¹³ (2.68 g, 11.43 mmol, 1.0 equiv) with BzCl (2.0 mL, 16.15 mmol, 1.5 equiv) and DMAP (140 mg, 1.14 mmol, 0.1 equiv) in anhydrous pyridine (100 mL) afford **S8** (1.13 g, 3.31 mmol, 29%) as a colorless syrup after purification by silica gel column chromatography (petroleum ether:EtOAc = 3:1). $[\alpha]_{D}^{23} = -4.0$ (*c* 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 8.2 Hz, 2H), 7.57 (t, *J* = 7.9 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 6.01–5.97 (m, 1H), 4.70 (d, *J* = 4.3 Hz, 1H), 4.48 (d, *J* = 11.8 Hz, 1H), 4.43 (d, *J* = 11.7 Hz, 1H), 3.95 (s, 1H), 3.80–3.72 (m, 2H), 3.43 (s, 3H), 1.56 (s, 3H), 1.35 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 133.3, 129.9, 129.8, 128.6, 113.2, 105.3, 88.6, 86.1, 85.2, 63.6, 62.6, 58.6, 27.3, 26.7; HRMS (ESI) *m/z* calcd for C₁₇H₂₂NaO₇ [M+Na]⁺ 361.1258, found 361.1249.

1,2-*O*-Isopropylidene-3-*O*-methyl-4-*C*-benzoyloxylmethyl-β-D-lyxofuranuronic acid (11)

To a solution of S8 (930 mg, 2.75 mmol, 1.0 equiv) in anhydrous MeCN (30 mL) was added 2-iodoxybenzoic acid (IBX, 1.54 g, 5.5 mmol, 2.0 equiv). The mixture was heated to reflux and stirred at this temperature for 2 h. After completion of the reaction, the mixture was cooled to room temperature, filtered, and the filtrate was concentrated in vacuo to obtain **S9** for the next conversion without further purification. Followed the procedure for 1j, treatment of S9 with NaH₂PO₄·2H₂O (644 mg, 4.13 mmol, 1.5 equiv), 2-methyl-2-butene (585 µL, 5.5 mmol, 2.0 equiv) and NaClO₂ (746 mg, 8.25 mmol, 3.0 equiv) in a mixed solvent of THF/H₂O/tBuOH (v/v/v = 4:1:1, 24 mL) afford 11 (829 mg, 2.37 mmol, 86% over 2 steps) as a colorless syrup after purification by silica gel column chromatography (petroleum ether: EtOAc = 3:1 to $CH_2Cl_2:MeOH =$ 9:1). $[\alpha]_{D}^{23} = -50.4 (c \ 0.7, \text{CHCl}_3); {}^{1}\text{H} \text{NMR} (500 \text{ MHz}, \text{CDCl}_3) \delta 8.01 (d, J = 7.2 \text{ Hz},$ 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.8 Hz, 2H), 6.07 (d, J = 3.7 Hz, 1H), 4.68 (d, J = 11.9 Hz, 1H), 4.65 (d, J = 3.7 Hz, 1H), 4.57 (d, J = 11.9 Hz, 1H), 4.36 (s, 1H), 3.51 (s, 3H), 1.54 (s, 3H), 1.30 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.1, 165.8, 133.5, 129.9, 129.4, 128.6, 113.6, 106.9, 90.1, 86.9, 82.0, 66.2, 59.0, 25.4, 25.2; HRMS (ESI) *m/z* calcd for C₁₇H₂₀NaO₈ [M+Na]⁺ 375.1050, found 375.1041.

Methyl 2,3-*O*-isopropylidene-5-*O*-(2'-diethoxy)phosphorylacetyl-4-*C*-hydroxylmethyl-α-L-lyxofuranoside (S13)

To a solution of methyl glucoside S10¹⁴ (1.29 g, 2.73 mmol, 1.0 equiv) and phosphonoacetic acid S11 (794 mg, 4.05 mmol, 1.5 equiv) in anhydrous CH₂Cl₂ (15 added DMAP (66 mg, 0.54 mmol, 0.2 equiv) mL) was and N,N'dicyclohexylcarbodiimide (DCC, 835 mg, 4.05 mmol, 1.5 equiv) The mixture was stirred at room temperature for 1 h before the mixture was filtered, and concentrated in vacuo. The residue was dissolved in THF (5 mL), and this solution was added acetic acid (420 μ L, 7.43 mmol, 2.75 equiv) and 1 M tetrabutylammonium fluoride (TBAF) solution in THF (4.8 mL, 4.80 mmol, 1.8 equiv). The mixture was stirred at room temperature overnight. After completion of the reaction, the mixture was concentrated in *vacuo* and the residue was purified by silica gel column chromatography (petroleum ether: EtOAc = 2:1) to afford S13 (506 mg, 1.22 mmol, 45% over 2 steps) as a colorless syrup. $[\alpha]_{D}^{21} = -24.2$ (c 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 4.93 (s, 1H), 4.78 (d, J = 6.0 Hz, 1H), 4.63 (d, J = 6.0 Hz, 1H), 4.51 (d, J = 11.8 Hz, 1H), 4.20–4.08 (m, 5H), 3.70 (d, J = 12.2 Hz, 1H), 3.57 (d, J = 12.2 Hz, 1H), 3.35 (s, 3H), 3.07-2.91 (m, 2H),1.43 (s, 3H), 1.34–1.29 (m, 6H), 1.27 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.7, 112.7, 109.5, 89.2, 86.3, 82.2, 65.8, 64.0, 63.2 ($J_{C-P} = 6.3 \text{ Hz}$), 62.9 ($J_{C-P} = 6.3 \text{ Hz}$), 55.5, 42.1, 34.6 ($J_{C-P} = 131.8$ Hz), 26.2, 24.6, 16.44 ($J_{C-P} = 5.9$ Hz), 16.39 ($J_{C-P} = 6.3$ Hz); ³¹P NMR (202 MHz, CDCl₃) δ 20.06 (s, 1P); HRMS (ESI) m/z calcd for C₁₆H₃₀O₁₀P [M+H]⁺ 413.1571, found 413.1561.

Methyl 2,3-*O*-isopropylidene-4-*C*-(2'-diethoxy)phosphorylacetyloxylmethyl-β-Dribofuranyronic acid (1m)

Following the procedure for **1h**, treatment of **S13** (410 mg, 0.99 mmol, 1.0 equiv) with TEMPO (31 mg, 0.2 mmol, 0.2 equiv) and BAIB (966 mg, 3.0 mmol, 3.0 equiv) in CH₂Cl₂/H₂O (v/v = 5:1, 10 mL) afford **1m** (213 mg, 0.5 mmol, 50%) as a colorless syrup after purification by silica gel column chromatography (CH₂Cl₂:EtOAc = 1:1). $[\alpha]_{D}^{21}$ = -16.2 (*c* 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 5.38 (d, *J* = 5.9 Hz, 1H), 4.97 (s, 1H), 4.92 (d, *J* = 11.7 Hz, 1H), 4.61 (d, *J* = 5.9 Hz, 1H), 4.22–4.16 (m, 5H), 3.43 (s, 3H), 3.07–2.93 (m, 2H), 1.50 (s, 3H), 1.37–1.33 (m, 6H), 1.31 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 164.6, 113.2, 109.1, 87.6, 85.0, 82.5, 65.6, 63.7 (*J_C*. *p* = 6.5 Hz), 63.3 (*J_C*. *p* = 6.5 Hz), 56.2, 34.6 (*J_C*. *p* = 132.5 Hz), 26.1, 24.8, 16.44 (*J_C*. *p* = 6.2 Hz), 16.39 (*J_C*. *p* = 6.5 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 20.2 (s, 1P); HRMS (ESI) *m*/*z* calcd for C₁₆H₂₈O₁₁P [M+H]⁺ 427.1364, found 427.1355.

*N*₄-Benzoyl-2',3'-di-*O*-benzoyl-cytidinuronic acid (1p)

Following the procedure for **1h**, treatment of **S14**¹⁴ (220 mg, 0.39 mmol, 1.0 equiv) with TEMPO (12 mg, 80.0 µmol, 0.2 equiv) and BAIB (387 mg, 1.2 mmol, 3.0 equiv) in MeCN/CH₂Cl₂/H₂O (v/v = 4:1:1, 6 mL) afford **1p** (151 mg, 0.27 mmol, 68%) as a white foam after purification by silica gel column chromatography (CH₂Cl₂:MeOH = 9:1). $[\alpha]_{D}^{20}$ = -34.1 (*c* 0.4, DMSO); ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.54 (d, *J* = 7.2 Hz, 1H), 8.02 (d, *J* = 7.7 Hz, 2H), 7.95 (d, *J* = 7.9 Hz, 2H), 7.85 (d, *J* = 7.7 Hz, 2H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.66–7.61 (m, 2H), 7.56–7.46 (m, 4H), 7.41–7.47 (m, 3H), 6.38–6.31 (m, 1H), 6.14 (d, *J* = 4.7 Hz, 1H), 5.99–5.92 (m, 1H), 5.06 (d, *J* = 4.8 Hz,

1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 170.3, 164.6, 164.5, 134.1, 134.0, 132.9, 129.4, 128.9, 128.8, 128.61, 128.55, 128.5, 97.0, 91.4, 80.1, 74.3, 73.2; HRMS (ESI) *m/z* calcd for C₃₀H₂₄N₃O₉ [M+H]⁺ 570.1507, found 570.1501.

Following the procedure for **1h**, treatment of **S15**¹⁰ (416 mg, 0.99 mmol, 1.0 equiv) with TEMPO (31 mg, 0.22 mmol, 0.2 equiv) and BAIB (966 mg, 3.0 mmol, 3.0 equiv) in CH₂Cl₂/H₂O (v/v = 4:1, 10 mL) afford **1q** (320 mg, 0.73 mmol, 74%) as a colorless syrup after purification by silica gel column chromatography (CH₂Cl₂:EtOAc = 1:1). $[\alpha]_{D}^{23}$ = -109.3 (*c* 0.9, CHCl₃); ¹H NMR (500 MHz, DMSO-*d*₆) δ 13.06 (s, 1H), 11.38 (s, 1H), 7.91 (d, *J* = 7.5 Hz, 2H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.66 (t, *J* = 7.2 Hz, 1H), 7.52 (t, *J* = 7.4 Hz, 2H), 5.86 (s, 1H), 5.63 (d, *J* = 7.6 Hz, 1H), 5.41–5.31 (m, 2H), 4.51 (d, *J* = 11.7 Hz, 1H), 4.41 (d, *J* = 11.7 Hz, 1H), 1.51 (s, 3H), 1.33 (s, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 171.4, 165.1, 163.5, 151.0, 145.1, 133.6, 129.2, 128.8, 112.6, 101.5, 94.3, 90.4, 84.7, 84.0, 67.4, 25.6, 24.0; HRMS (ESI) *m*/*z* calcd for C₂₀H₂₀N₂NaO₉ [M+Na]⁺ 455.1061, found 455.1058.

Methyl 5-*O*-(2',3'-di-*O*-benzoyl-4',6'-*O*-benzylidene-β-D-glactopyranosyl)-2,3-*O*isopropylidene-β-D-ribofuranoside (S18)

To a solution of $S16^{15}$ (1.92 g, 3.62 mmol, 1.2 equiv) and $S17^{16}$ (613 mg, 3.0 mmol, 1.0 equiv) in anhydrous CH₂Cl₂ (30 mL) containing freshly activated 4 Å molecular sieve

(MS) were added silver trifluoromethanesulfonate (AgOTf, 116 mg, 0.45 mmol, 0.2 equiv) and N-iodosuccinimide (NIS, 1.35 g, 6.0 mmol, 2.0 equiv) at 0 °C. The mixture was stirred at 0 °C for 1 h before the reaction was guenched with sat. Na₂S₂O₄ solution (30 mL). Two phases were separated and the aqueous phase was extracted with CH₂Cl₂ (50 mL×3), the organic phase was combined, washed sequentially with sat. NaHCO₃ solution (30 mL) and brine (30 mL). The mixture was dried over Na₂SO₄, filtered. The filtrate was concentrated in vacuo, the residue was purified by silica gel column chromatography (petroleum ether: EtOAc = 3:1) to afford disaccharide S18 (1.81 g, 2.99) mmol, 83%) as a white foam. $[\alpha]_{D}^{23} = +62.2 (c \, 0.8, \text{CHCl}_3); {}^{1}\text{H} \text{NMR} (500 \text{ MHz}, \text{CDCl}_3)$ δ 8.03–7.95 (m, 4H), 7.55–7.46 (m, 4H), 7.40–7.32 (m, 7H), 5.88 (dd, J = 10.3, 8.1 Hz, 1H), 5.55 (s, 1H), 5.36 (dd, J = 10.4, 3.5 Hz, 1H), 4.88 (s, 1H), 4.83 (d, J = 8.0 Hz, 1H), 4.64 (d, J = 6.0 Hz, 1H), 4.59 (d, J = 3.5 Hz, 1H), 4.50 (d, J = 5.9 Hz, 1H), 4.41 (d, J = 12.4 Hz, 1H), 4.29 (dd, J = 8.4, 6.3 Hz, 1H), 4.14 (d, J = 13.2 Hz, 1H), 3.89 (t, J = 9.2Hz, 1H), 3.72–3.67 (m, 2H), 3.22 (s, 3H), 1.37 (s, 3H), 1.15 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.4, 165.3, 137.6, 133.5, 133.1, 130.1, 129.9, 129.8, 129.2, 129.1, 128.5, 128.4, 128.3, 126.4, 112.3, 109.5, 101.0, 100.7, 85.1, 84.6, 81.9, 73.7, 72.9, 69.0, 68.9, 68.8, 66.7, 54.8, 26.4, 24.8; HRMS (ESI) *m/z* calcd for C₃₆H₃₈NaO₁₂ [M+Na]⁺ 685.2255, found 685.2250.

Methyl 5-*O*-(2',3',4'-tri-*O*-benzyl-β-D-glactopyranosyl)-2,3-*O*-isopropylidene-β-Dribofuranoside (S20)

To a solution of **S18** (1.62 g, 2.45 mmol, 1.0 equiv) in MeOH/CH₂Cl₂ (v/v = 4:1, 25 mL) was added NaOMe solution in MeOH (0.5 mL, 0.49 mmol, 0.2 equiv) under an ice-bath. The mixture was stirred at this temperature for 30 min before the reaction was quenched with Dowex (H⁺) resin. The mixture was filtered, and the filtrate was concentrated in *vacuo* to afford the product, which was used for the next transformation

without further purification. To a solution of the crude product in anhydrous DMF (8.0 mL) was added sodium hydride (NaH, 60% in mineral oil, 588 mg, 14.7 mmol, 6.0 equiv) under an ice-bath. The mixture was stirred for 30 min before benzyl bromide (BnBr, 1.3 mL, 11.0 mmol, 4.5 equiv) was added. The resulting mixture was warm up to room temperature and stirred overnight. The reaction was quenched with water (10 mL) at 0 °C, the mixture was concentrated in *vacuo*. The residue was purified by silica gel column chromatography (petroleum ether:EtOAc:CH₂Cl₂ = 4:1:1) to afford **S19** (930 mg, 1.47 mmol, 60% over 2 steps) as a white foam, which was directly exposed to selective ring-opening of benzylidene.

To a solution of S19 (700 mg, 1.10 mmol, 1.0 equiv) in anhydrous CH₂Cl₂ (11 mL) containing freshly activated 4 Å MS was sequentially added borane tetrahydrofuran complex (1 M solution in THF, 11 mL, 11.0 mmol, 10.0 equiv), the mixture was stirred at room temperature for 30 min before dibutylboryl trifluoromethanesulfonate (Bu₂B(OTf)₂, 1 M solution in CH₂Cl₂, 550 µL, 0.55 mmol, 0.5 equiv) was added under an ice-bath. The mixture was stirred at 0 °C for 2 h before the reaction was quenched with MeOH (1 mL) and triethyl amine (TEA, 1 mL). The mixture was concentrated in vacuo, the residue was purified by silica gel column chromatography (petroleum ether: EtOAc = 3:1 to 2:1) to afford S20 (530 mg, 0.85 mmol, 77%) as a colorless syrup. $[\alpha]_{D}^{23} = -56.2$ (c 0.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.42–7.25 (m, 15H), 5.00-4.92 (m, 3H), 4.82 (d, J = 11.8 Hz, 1H), 4.80-4.72 (m, 3H), 4.67 (d, J = 11.8 Hz, 1H)1H), 4.56 (d, J = 6.0 Hz, 1H), 4.41 (dd, J = 8.3, 5.7 Hz, 1H), 4.37 (d, J = 7.6 Hz, 1H), 3.88-3.75 (m, 4H), 3.66 (dd, J = 10.6, 5.6 Hz, 1H), 3.52 (dd, J = 9.8, 2.9 Hz, 1H), 3.45-3.36 (m, 2H), 3.27 (s, 3H), 2.06 (d, J = 5.9 Hz, 1H), 1.48 (s, 3H), 1.31 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 138.8, 138.5, 138.3, 128.9, 128.6, 128.39, 128.37, 128.2, 127.9, 127.8, 127.7, 112.6, 109.2, 104.8, 85.7, 85.2, 82.5, 82.3, 79.7, 75.4, 75.2, 74.3,

73.6, 73.0, 71.6, 62.4, 55.1, 26.6, 25.1; HRMS (ESI) *m/z* calcd for C₃₆H₄₄NaO₁₀ [M+Na]⁺ 659.2827, found 659.2813.

Methyl 5-*O*-[(5'*S*)-2',3',4'-tri-*O*-benzyl-5'-*C*-carboxyl-β-D-arabinopyranosyl]- 2,3-*O*-isopropylidene-β-D-ribofuranoside (1v)

Following the procedure for **1h**, treatment of **S20** (610 mg, 0.96 mmol, 1.0 equiv) with TEMPO (30 mg, 0.21 mmol, 0.2 equiv) and BAIB (928 mg, 2.88 mmol, 3.0 equiv) in CH₂Cl₂/H₂O (v/v = 4:1, 10 mL) afforded **1v** (542 mg, 0.84 mmol, 87%) as a colorless syrup after purification by silica gel column chromatography (petroleum ether:EtOAc = 3:1 to CH₂Cl₂:EtOAc = 1:2). $[\alpha]_D^{23}$ = -9.6 (*c* 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.42–7.20 (m, 15H), 5.01–4.85 (m, 3H), 4.84–4.68 (m, 4H), 4.64 (d, *J* = 11.0 Hz, 1H), 4.58 (d, *J* = 5.6 Hz, 1H), 4.48 (d, *J* = 7.6 Hz, 1H), 4.40 (t, *J* = 7.1 Hz, 1H), 4.28 (s, 1H), 4.06 (s, 1H), 3.91–3.81 (m, 2H), 3.68 (dd, *J* = 10.1, 6.2 Hz, 1H), 3.59 (d, *J* = 8.9 Hz, 1H), 3.27 (s, 3H), 1.49 (s, 3H), 1.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.5, 138.4, 138.0, 137.9, 128.6, 128.41, 128.35, 128.0, 127.9, 127.8, 127.7, 112.8, 109.2, 103.9, 85.3, 85.1, 82.1, 81.0, 78.1, 75.4, 75.3, 75.0, 74.0, 73.2, 71.4, 55.1, 26.5, 25.0; HRMS (ESI) *m/z* calcd for C₃₆H₄₂NaO₁₁ [M+Na]⁺ 673.2619, found 673.2605.

Section 2. Decarboxylative Fluorination of Uronic Acids

Hexyl (4*R*)-2,3-*O*-isopropylidene-4-fluoro-α-D-threoside (2a)

To a solution of **1a** (89 mg, 0.28 mmol, 1.0 equiv) in acetone/H₂O (v/v = 4:1, 3.0 mL) were added sequentially CsHCO₃ (81 mg, 0.42 mmol, 1.5 equiv), Selectfluor (198 mg, 0.56 mmol, 2.0 equiv) and Mes-Acr·ClO₄ (5.8 mg, 14.0 µmol, 5 mol%). The reaction tube was evacuated and backfilled with argon 3 times. The mixture was stirred vigrously under the irradiation of 8 W blue LED belt at room temperature for 1h. After completion of the reaction, the acetone was removed in *vacuo*, the resulting water phase was diluted with CH₂Cl₂ (20 mL) and water (10 mL). Two phases were separated and the aqueous phase was ectracted with CH₂Cl₂ (10 mL×3). The combined organic phase was dried over Na₂SO₄, filtered, the filtrate was concentrated in *vacuo*. The residue was purified by silica gel column chromatography (petroleum ether:EtOAc = 50:1) to afford the titled compound **2a** (65 mg, 0.25 mmol, 89%) as a colorless syrup. ¹H NMR (500 MHz,CDCl₃) δ 5.77 (d, *J*_{H-F} = 60.6 Hz, 1H), 5.25 (d, *J* = 2.8 Hz, 1H), 4.83 (t, *J* = 5.8 Hz, 1H), 4.67 (d, *J* = 5.7 Hz, 1H), 3.75 (m, 1H), 3.43 (m, 1H), 1.59–1.54 (m, 2H), 1.44 (s, 3H), 1.34–1.24 (m, 9H), 0.88 (t, *J* = 6.7 Hz, 3H). The data was identical to previous report.¹⁰

Methyl (4*R*)-2,3-*O*-isopropylidene-4-fluoro-α-D-threoside (2b)

Following the procedure for **2a**, uronic acid **1b** (65 mg, 0.3 mmol, 1.0 equiv) was reacted with CsHCO₃ (87 mg, 0.45 mmol, 1.5 equiv), Selectfluor (213 mg, 0.6 mmol,

2.0 equiv) and Mes-Acr·ClO₄ (6.2 mg, 15.0 μ mol, 5 mol%) in acetone/H₂O (v/v = 4:1, 3.0 mL) to afford titled compound **2b** (51 mg, 0.27 mmol, 89%) as a white foam after purification by silica gel column chromatography (petroleum ether:EtOAc = 19:1). ¹H NMR (500 MHz, CDCl₃) δ 5.78 (d, *J* = 60.5 Hz, 1H), 5.16 (d, *J* = 2.8 Hz, 1H), 4.81 (t, *J* = 6.0 Hz, 1H), 4.66 (d, *J* = 5.7 Hz, 1H), 3.42 (s, 2H), 1.44 (s, 3H), 1.31 (s, 3H). The data was identical to previous report.¹⁰

(1R, 3S, 4R)-1-Methyloxyl-3-benzoyloxyl-4-fluorotetrahydrofuran (2c)

Following the procedure for **2a**, uronic acid **1c** (80 mg, 0.3 mmol, 1.0 equiv) was reacted with CsHCO₃ (87 mg, 0.45 mmol, 1.5 equiv), Selectfluor (213 mg, 0.6 mmol, 2.0 equiv) and Mes-Acr·ClO₄ (6.2 mg, 15.0 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 3.0 mL) to afford titled compound **2c** (64 mg, 0.27 mmol, 89%) as a white foam after purification by silica gel column chromatography (petroleum ether:EtOAc = 15:1). [α] $_{D}^{22}$ = +39.5 (*c* 1.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 7.1 Hz, 2H), 7.58 (t, *J* = 8.1 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 5.89 (d, *J*_{H-F} = 60.8 Hz, 1H), 5.59–5.53 (m, 1H), 5.48 (dd, *J* = 10.0, 5.0 Hz, 1H), 3.50 (s, 3H), 2.49–2.43 (m, 1H), 2.39–2.33 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.5, 133.6, 129.8, 129.2, 128.6, 112.7 (*J*_{C-F} = 226.8 Hz), 108.6, 77.6 (*J*_{C-F} = 40.3 Hz), 56.5, 36.3; ¹⁹F NMR (470 MHz, CDCl₃) δ - 117.69–117.88 (m, 1F). HRMS (ESI): *m*/*z* calcd for C₁₂H₁₃FNaO₄ [M+Na]⁺ 263.3202, found: 263.2595.

(1S, 3S, 4R)-1-Methyloxyl-3-benzoyloxyl-4-fluorotetrahydrofuran (2d)

Following the procedure for **2a**, uronic acid **1d** (83 mg, 0.31 mmol, 1.0 equiv) was reacted with CsHCO₃ (91 mg, 0.47 mmol, 1.5 equiv), Selectfluor (167 mg, 0.47 mmol,

1.5 equiv) and Mes-Acr·ClO₄ (6.2 mg, 15.5 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 3.0 mL) to afford titled compound **2d** (45 mg, 0.19 mmol, 60%) as a white foam after purification by silica gel column chromatography (petroleum ether:EtOAc = 19:1). $[\alpha]_{D}^{20}$ = +90.6 (*c* 3.3, CHCl₃); ¹H NMR (400 MHz, acetone-*d*₆) δ 8.02–7.96 (m, 2H), 7.65–7.59 (m, 1H), 7.51–7.45 (m, 2H), 6.01 (d, *J*_{C-F} = 62.2 Hz, 1H), 5.47–5.41 (m, 1H), 5.38–5.31 (m, 1H), 3.41 (s, 3H), 2.68–2.59 (m, 1H), 2.09 (d, *J* = 15.1 Hz, 1H); ¹³C NMR (100 MHz, acetone-*d*₆) δ 166.0, 134.3, 130.5, 130.4, 129.4, 113.5 (*J*_{C-F} = 217 Hz), 108.9 (*J*_{C-F} = 1.9 Hz), 76.7 (*J*_{C-F} = 37.3 Hz), 56.4, 35.3; ¹⁹F NMR (376 MHz, acetone-*d*₆) δ -117.8 (dd, *J* = 62.0, 6.4 Hz). HRMS (ESI): *m/z* calcd for C₁₂H₁₄FO₄ [M+H]⁺ 241.3284, found: 241.2597.

Following the procedure for **2a**, uronic acid **1e** (100 mg, 0.34 mmol, 1.0 equiv) was reacted with CsHCO₃ (99 mg, 0.51 mmol, 1.5 equiv), Selectfluor (182 mg, 0.51 mmol, 1.5 equiv) and Mes-Acr·ClO₄ (10.6 mg, 26.0 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 3.5 mL) to afford titled compound **2e** (56 mg, 0.21 mmol, 61%) as a colorless syrup after purification by silica gel column chromatography (petroleum ether:EtOAc = 19:1) along with recovery of **1e** (28 mg, 95.2 µmol, 28%). [α]_D²² = +167.8 (*c* 1.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.34 (m, 4H), 7.34–7.29 (m, 1H), 5.85 (d, *J*_{H-F} = 60.4 Hz, 1H), 5.34 (d, *J* = 2.8 Hz, 1H), 4.88 (t, *J* = 6.0 Hz, 1H), 4.84 (d, *J* = 11.5 Hz, 1H), 4.76 (d, *J* = 5.7 Hz, 1H), 4.53 (d, *J* = 11.5 Hz, 1H), 1.45 (s, 3H), 1.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 136.8, 128.6, 128.5, 128.1, 116.0 (*J*_{C-F} = 227.6 Hz), 113.1, 109.2 (*J*_{C-F} = 2.0 Hz), 84.2 (*J*_{C-F} = 39.9 Hz), 83.6, 69.6, 26.3, 24.9; ¹⁹F NMR (470 MHz, CDCl₃) δ -119.32 (m, 1F). HRMS (ESI): *m*/z calcd for C₁₄H₂₁FNO4 [M+NH4]⁺ 286.3234, found: 286.1595.

Benzoyl (4S)-2,3-O-isopropylidene-4-fluoro-α-D-erythroside (2f)

Following the procedure for **2a**, uronic acid **1f** (95 mg, 0.31 mmol, 1.0 equiv) was reacted with CsHCO₃ (90 mg, 0.46 mmol, 1.5 equiv), Selectfluor (220 mg, 0.62 mmol, 2.0 equiv) and Mes-Acr·ClO₄ (6.4 mg, 15.5 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 3.0 mL) to afford titled compound **2f** (38 mg, 0.13 mmol, 43%) as a colorless syrup after purification by silica gel column chromatography (petroleum ether:EtOAc = 19:1) along with recovery of **1f** (44 mg, 0.14 mmol, 46%). $[\alpha]_D^{20}$ = +51.2 (*c* 1.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 8.1 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 6.60 (d, J = 2.6 Hz, 1H), 5.89 (d, *J*_{H-F} = 59.2 Hz, 1H), 4.96–4.93 (m, 2H), 1.50 (s, 3H), 1.36 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.7, 133.6, 130.0, 129.1, 128.5, 115.7 (*J*_{C-F} = 227.4 Hz), 113.7, 103.36 (*J*_{C-F} = 1.7 Hz), 83.6 (*J*_{C-F} = 39.8 Hz), 83.1, 26.2, 24.9; ¹⁹F NMR (470 MHz,CDCl₃) δ -120.7–-120.4 (m, 1F); HRMS (ESI): *m*/*z* calcd for C₁₄H₁₆FO₅ [M+H]⁺ 283.0976, found: 283.0981.

1,2-*O*-Isopropylidene-3-*O*-methyl-(4*R*)-fluoro-β-L-threoside (2g) and 1,2-*O*-Isopropylidene-3-*O*-methyl-(4*S*)-fluoro-β-L-threoside (2g')

Following the procedure for **2a**, uronic acid **1g** (1.6 g, 7.33 mmol, 1.0 equiv) was reacted with CsHCO₃ (2.13 g, 11.95 mmol, 1.5 equiv), Selectfluor (5.19 g, 14.66 mmol, 2.0 equiv) and Mes-Acr·ClO₄ (30 mg, 73.0 µmol, 1 mol%) in acetone/H₂O (v/v = 4:1, 70.0 mL) to afford titled compound **2g/2g'** (1.19 g, 6.19 mmol, 84%, 1:1.8 *dr*) as a colorless syrup after purification by silica gel column chromatography (petroleum ether:EtOAc = 11:1). **2g**: ¹H NMR (500 MHz, CDCl₃) δ 6.05 (d, *J* = 4.3 Hz, 1H), 5.91 (dd, *J*_{H-F} = 61.9, *J* = 3.8 Hz, 1H), 4.64 (dd, *J* = 4.2, 2.6 Hz, 1H), 3.97–3.91 (m, 1H),

3.50 (s, 3H), 1.48 (s, 3H), 1.40 (s, 3H); **2g'**:¹H NMR (500 MHz, CDCl₃) δ 6.02 (t, J = 4.2 Hz, 1H), 5.72 (d, $J_{H-F} = 61.3$ Hz, 1H), 4.56 (d, J = 3.8 Hz, 1H), 3.98 (d, J = 5.5 Hz, 1H), 3.44 (s, 3H), 1.53 (s, 3H), 1.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 114.6, 113.6 ($J_{C-F} = 230.9$ Hz), 108.6 ($J_{C-F} = 2.5$ Hz), 86.7 ($J_{C-F} = 30.7$ Hz), 81.4, 58.2, 27.0, 26.7 ($J_{C-F} = 1.3$ Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -119.01– -119.23 (m, 1F); ¹³C NMR (126 MHz, CDCl₃) δ 115.4, 108.9 ($J_{C-F} = 230.5$ Hz), 106.0 ($J_{C-F} = 1.1$ Hz), 86.6 ($J_{C-F} = 19.7$ Hz), 83.3, 58.7, 28.0, 27.7; ¹⁹F NMR (470 MHz, CDCl₃) δ -134.75–-134.96 (m, 1F). HRMS (ESI): m/z calcd for C₈H₁₄FO₄ [M+H]⁺ 193.1944, found: 193.2014.

Following the procedure for **2a**, uronic acid **1h** (82 mg, 0.3 mmol, 1.0 equiv) was reacted with CsHCO₃ (87 mg, 0.45 mmol, 1.5 equiv), Selectfluor (213 mg, 0.6 mmol, 2.0 equiv) and Mes-Acr·ClO₄ (6.2 mg, 15.0 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 3.0 mL) to afford titled compound **2h** (51 mg, 0.21 mmol, 69%) as a colorless syrup after purification by silica gel column chromatography (petroleum ether:EtOAc = 19:1). ¹H NMR (500 MHz, CDCl₃) δ 5.14 (d, *J* = 2.7 Hz, 1H), 4.83 (t, *J* = 6.1 Hz, 1H), 4.73 (d, *J* = 5.7 Hz, 1H), 3.65–3.49 (m, 2H), 3.43 (s, 3H), 1.46 (s, 3H), 1.33 (s, 3H). The data was identical to previous report.¹⁰

Following the procedure for **2a**, uronic acid **1i** (88 mg, 0.25 mmol, 1.0 equiv) was reacted with CsHCO₃ (73 mg, 0.38 mmol, 1.5 equiv), Selectfluor (177 mg, 0.5 mmol, 2.0 equiv) and Mes-Acr·ClO₄ (5.1 mg, 12.5 μ mol, 5 mol%) in acetone/H₂O (v/v = 4:1,

2.5 mL) to afford titled compound **2i** (68 mg, 0.21 mmol, 83%) as a colorless syrup after purification by silica gel column chromatography (petroleum ether:EtOAc = 15:1). $[\alpha]_{D}^{22} = -59.9$ (*c* 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 8.4 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 5.18 (d, *J* = 2.7 Hz, 1H), 4.89 (t, *J* = 6.0 Hz, 1H), 4.76 (d, *J* = 5.7 Hz, 1H), 4.67–4.55 (m, 2H), 3.44 (s, 3H), 1.46 (s, 3H), 1.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 133.3, 130.0, 129.8, 128.5, 119.8 (*J*_{C-F} = 229.3 Hz), 113.7, 111.3, 84.1, 83.7 (*J*_{C-F} = 46.6 Hz), 63.0 (*J*_{C-F} = 26.5 Hz), 55.8, 26.3, 25.0; ¹⁹F NMR (470 MHz, CDCl₃) δ -107.9–-108.0 (m, 1F); HRMS (ESI) *m/z* calcd for C₁₆H₁₉FNaO₆ [M+Na]⁺ 349.1058, found 349.1060.

3,5-Di-O-benzyl-4-fluoro-1,2-O-isopropylidene-β-L-lyxofuranoside (2j)

Following the procedure for **2a**, uronic acid **1j** (83 mg, 0.2 mmol, 1.0 equiv) was reacted with CsHCO₃ (58 mg, 0.3 mmol, 1.5 equiv), Selectfluor (142 mg, 0.4 mmol, 2.0 equiv) and Mes-Acr·ClO₄ (4.1 mg, 10.0 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 2.0 mL) to afford titled compound **2j** (52 mg, 0.13 mmol, 67%, 20:1 *dr*) as a colorless syrup after purification by silica gel column chromatography (petroleum ether:EtOAc = 9:1). [α] ²³_D = +30.9 (*c* 0.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.42–7.19 (m, 10H), 5.77–5.70 (m, 1H), 4.80 (d, *J* = 12.5 Hz, 1H), 4.68 (s, 1H), 4.57 (t, *J* = 4.0 Hz, 1H), 4.49 (d, *J* = 11.9 Hz, 1H), 4.44 (d, *J* = 11.9 Hz, 1H), 4.05 (dd, *J* = 18.8, 4.6 Hz, 1H), 3.61 (d, *J* = 3.0 Hz, 2H), 1.64 (s, 3H), 1.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.6, 137.3, 128.6, 128.5, 128.4, 128.3, 128.0, 127.9, 115.8 (*J*_{C-F} = 236.4 Hz), 115.6, 104.7, 76.59, 76.2 (*J*_{C-F} = 20.1 Hz), 73.7, 72.9, 67.8 (*J*_{C-F} = 45.5 Hz), 27.0; ¹⁹F NMR (470 MHz, CDCl₃) δ -118.4 (d, *J* = 18.8, 4.7 Hz, 1F); HRMS (ESI) *m/z* calcd for C₂₂H₂₅FNaO₅ [M+Na]⁺ 411.1578, found 411.1567.

3,5-Di-O-benzoyl-4-fluoro-1,2-O-isopropylidene-β-L-lyxofuranoside (2k)

Following the procedure for **2a**, uronic acid **1k** (121 mg, 0.27 mmol, 1.0 equiv) was reacted with CsHCO₃ (77 mg, 0.4 mmol, 1.5 equiv), Selectfluor (186 mg, 0.53 mmol, 2.0 equiv) and Mes-Acr·ClO₄ (5.4 mg, 14.0 mmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 2.5 mL) to afford titled compound **2k** (56 mg, 0.13 mmol, 50%) as a colorless syrup after purification by silica gel column chromatography (petroleum ether:EtOAc = 13:1) along with recovery of **1k** (52 mg, 0.12 mmol, 43%). $[\alpha]_D^{23}$ = +48.2 (*c* 1.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.03–7.93 (m, 4H), 7.59–7.49 (m, 2H), 7.43–7.34 (m, 4H), 6.15 (d, *J* = 3.8 Hz, 1H), 5.53 (dd, *J* = 11.7, 5.7 Hz, 1H), 5.16 (dd, *J* = 5.7, 3.9 Hz, 1H), 4.82 (d, *J* = 2.4 Hz, 1H), 4.79 (s, 1H), 1.47 (s, 3H), 1.39 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.8, 164.9, 133.8, 133.5, 130.0, 129.9, 129.3, 128.7, 128.6, 128.5, 117.7 (*J*_{C-F} = 222.6 Hz), 116.9, 107.0, 79.2, 75.8 (*J*_{C-F} = 45.3 Hz), 63.1 (*J*_{C-F} = 28.6 Hz), 27.7, 27.5; ¹⁹F NMR (470 MHz, CDCl₃) δ -101.4–-101.6 (m, 1F); HRMS (ESI) *m/z* calcd for C₂₂H₂₁FNaO₇ [M+Na]⁺ 439.1164, found 439.1155.

3-*O*-Methyl-5-*O*-benzoyl-4-fluoro-1,2-*O*-isopropylidene-β-L-*arabino*furanoside (2l) and 3-*O*-Methyl-5-*O*-benzoyl-4-fluoro-1,2-*O*-isopropylidene-α-Dxylofuranoside (2l')

Following the procedure for **2a**, uronic acid **1l** (164 mg, 0.47 mmol, 1.0 equiv) was reacted with CsHCO₃ (135 mg, 0.7 mmol, 1.5 equiv), Selectfluor (329 mg, 0.93 mmol, 2.0 equiv) and Mes-Acr·ClO₄ (9.0 mg, 23.0 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 5.4 mL) to afford titled compound **2l/2l'** (103 mg, 0.32 mmol, 68%, 3.1:1 *dr*) as a colorless syrup after purification by silica gel column chromatography (petroleum ether:EtOAc = 12:1). **2l**: $[\alpha]_{D}^{23} = +19.6$ (*c* 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ

8.04 (d, J = 7.1 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.8 Hz, 2H), 6.07 (d, J = 4.2 Hz, 1H), 4.71 (dd, J = 4.1, 2.4 Hz, 1H), 4.61–4.52 (m, 2H), 4.03 (dd, J = 15.2, 2.3 Hz, 1H), 3.52 (s, 3H), 1.49 (s, 3H), 1.40 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.7, 133.5, 129.9, 129.3, 128.5, 115.5, 115.0 ($J_{C-F} = 230.8$ Hz), 105.8, 86.2 ($J_{C-F} = 20.5$ Hz), 84.3, 62.9 ($J_{C-F} = 41.0$ Hz), 59.0, 28.1, 27.5; ¹⁹F NMR (470 MHz, CDCl₃) δ -118.9–119.0 (m, 1F); HRMS (ESI) m/z calcd for C₁₆H₁₉FNaO₆ [M+Na]⁺ 349.1058, found 349.1049. **2l'**: $[\alpha]_{D}^{23} = -33.7$ (c 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 7.1 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.8 Hz, 2H), 6.06 (t, J = 3.9 Hz, 1H), 4.65 (d, J = 3.6 Hz, 1H), 4.61–4.49 (m, 2H), 4.10 (d, J = 6.2 Hz, 1H), 3.46 (s, 3H), 1.58 (s, 3H), 1.36 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.8, 133.4, 129.9, 129.7, 128.6, 119.5 ($J_{C-F} = 233.4$ Hz), 115.0, 108.4 ($J_{C-F} = 2.1$ Hz), 86.4 ($J_{C-F} = 36.2$ Hz), 81.5, 62.8 ($J_{C-F} = 27.6$ Hz), 58.9, 27.1, 26.6 ($J_{C-F} = 1.2$ Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ - 105.9–106.1 (m, 1F); HRMS (ESI) m/z calcd for C₁₆H₁₉FNaO₆ [M+Na]⁺ 349.1058, found 349.1054.

Methyl 2,3-*O*-isopropylidene-5-*O*-[(2''-diethoxy)-phosphoryl-2'-fluroacety]-4fluoro-α-L-lyxofuanoside (2m)

Following the procedure for **2a**, uronic acid **1m** (63 mg, 0.15 mmol, 1.0 equiv) was reacted with CsHCO₃ (86 mg, 0.44 mmol, 3.0 equiv), Selectfluor (157 mg, 0.44 mmol, 3.0 equiv) and Mes-Acr·ClO₄ (3.0 mg, 7.4 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 3.0 mL) to afford titled compound **2m** (43 mg, 0.10 mmol, 69%, 1.15:1 *dr*) as a white foam after purification by silica gel column chromatography (petroleum ether:EtOAc = 3:2). ¹H NMR (400 MHz,CDCl₃) δ 5.35 (dd, *J* = 12.8, 5.7 Hz, 1H), 5.24 (dd, *J* = 12.8, 5.7 Hz, 1H), 5.14 (dd, *J* = 2.8, 1.5 Hz, 2H), 4.86–4.78 (m, 2H), 4.72 (d, *J* = 5.7 Hz, 2H), 4.54 (s, 3H), 4.32–4.19 (m, 7H), 3.42 (d, *J* = 1.8 Hz, 5H), 1.45 (d, *J* = 2.7 Hz, 5H), 1.41–1.37 (m, 10H), 1.31 (d, *J* = 4.5 Hz, 7H); ¹³C NMR (151 MHz, CDCl₃) δ 164.4, 164.3, 119.2 (*J*_{C-F} = 229.8 Hz), 119.1 (*J*_{C-F} = 229.8 Hz), 113.79, 113.76, 111.41, 111.39,

85.13 ($J_{C-F} = 196.5$ Hz, $J_{C-P} = 158.6$ Hz), 85.09 ($J_{C-F} = 195.8$ Hz, $J_{C-P} = 158.7$ Hz), 84.02, 83.99, 83.46 ($J_{C-F} = 45.9$ Hz), 83.44 ($J_{C-F} = 46.2$ Hz), 64.52, 64.49, 63.69 ($J_{C-F} = 26.3$ Hz), 63.66 ($J_{C-F} = 26.2$ Hz), 55.9, 26.3, 24.9, 16.52, 16.48; ¹⁹F NMR (376 MHz, CDCl₃) δ -108.07 (s, 1F), -108.14 (s, 1F), -210.70 (d, $J_{F-P} = 72$ Hz, 1F), -210.80 (d, $J_{F-P} = 72$ Hz, 1F); ³¹P NMR (162 MHz, CDCl₃) δ 9.64 (s, 1P), 9.20 (s, 1P); HRMS (ESI) m/z calcd for C₁₅H₂₅O₉F₂NaP [M+Na]⁺ 441.1096, found 441.1087.

Uracil (4*R*)-2,3-*O*-isopropylidene-4-fluoro-α-D-threoside (2n)

Following the procedure for **2a**, uronic acid **1n** (75 mg, 0.25 mmol, 1.0 equiv) was reacted with CsHCO₃ (145 mg, 0.75 mmol, 3.0 equiv), Selectfluor (266 mg, 0.75 mmol, 3.0 equiv) and Mes-Acr·ClO₄ (5.2 mg, 12.5 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 5.0 mL) to afford titled compound **2n** (52 mg, 0.19 mmol, 76%) as a white foam after purification by silica gel column chromatography (petroleum ether:EtOAc = 1:1). $[\alpha]_{D}^{23}$ = -10.3 (*c* 0.5, CHCl₃); ¹H NMR (500 MHz, acetone-*d*₆) δ 10.19 (s, 1H), 7.51 (d, J = 8.2 Hz, 1H), 6.22 (d, J = 3.8 Hz, 1H), 5.94 (d, J_{H-F} = 62.4 Hz, 1H), 5.66 (d, J = 8.1 Hz, 1H), 5.31 (d, J = 5.7 Hz, 1H), 5.11 (t, J = 6.3 Hz, 1H), 1.47 (s, 3H), 1.35 (s, 3H); ¹³C NMR (126 MHz, acetone-*d*₆) δ 163.2, 151.3, 142.2, 117.3 (J_{C-F} = 225.8 Hz), 114.0, 103.2, 96.0 (J_{C-F} = 2.4 Hz), 85.6 (J_{C-F} = 38.0 Hz), 83.4, 26.5, 24.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.95–117.30 (m, 1F); HRMS (ESI) *m*/*z* calcd for C₁₁H₁₄O₅FN₂ [M+H]⁺ 273.0881, found 273.0883.

5-Fluorouracil (4*R*)-2,3-*O*-isopropylidene-4-fluoro-α-D-threoside (20)

Following the procedure for **2a**, uronic acid **1o** (94 mg, 0.3 mmol, 1.0 equiv) was reacted with CsHCO₃ (175 mg, 0.9 mmol, 3.0 equiv), Selectfluor (319 mg, 0.9 mmol, 3.0 equiv) and Mes-Acr·ClO₄ (6.2 mg, 15.0 µmol, 5 mol%) in acetone/H₂O ($\nu/\nu = 4$:1, 6.0 mL) to afford titled compound **2o** (59 mg, 0.2 mmol, 68%) as a white foam after purification by silica gel column chromatography (petroleum ether:EtOAc = 2:1). [α] $^{23}_{D} = -5.0$ (*c* 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, J = 6.0 Hz, 1H), 6.09 (d, J = 4.2 Hz, 1H), 5.96 (d, $J_{H-F} = 61.5$ Hz,1H), 5.04 (d, J = 5.7 Hz, 1H), 4.90 (t, J = 6.1 Hz, 1H), 1.53 (s, 3H), 1.36 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.7 ($J_{C-F} = 26.8$ Hz), 148.7, 140.5 ($J_{C-F} = 2.4$ Hz), 83.8 ($J_{C-F} = 38.4$ Hz), 83.3, 26.2, 24.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.65–-117.01 (m, 1F), -163.90 (d, J = 5.2 Hz, 1F); HRMS (ESI) m/z calcd for C₁₁H₁₃F₂N₂O₅ [M+H]⁺ 291.0787, found 291.0792.

*N*₄-Benzoylcytosine 2,3-di-*O*-benzoyl-4-fluoro-α-D-threoside (2p)

Following the procedure for **2a**, uronic acid **1p** (114 mg, 0.2 mmol, 1.0 equiv) was reacted with CsHCO₃ (116 mg, 0.6 mmol, 3.0 equiv), Selectfluor (213 mg, 0.6 mmol, 3.0 equiv) and Mes-Acr·ClO₄ (4.1 mg, 10.0 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 4.0 mL) to afford titled compound **2p** (64 mg, 0.12 mmol, 59%, 20:1 *dr*) as a white foam after purification by silica gel chromatography (CH₂Cl₂:EtOAc = 15:1). $[\alpha]_D^{23} = -154.7$ (*c* 1.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 9.22 (brs, 1H), 8.05–8.00 (m, 3H),

7.95–7.87 (m, 4H), 7.65–7.42 (m, 8H), 7.31 (t, J = 7.6 Hz, 2H), 7.08 (t, J = 6.9 Hz, 1H), 6.06 (d, $J_{H-F} = 60.4$ Hz, 1H), 5.91–5.88 (m, 1H), 5.83 (t, J = 5.4 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.2, 164.9, 134.1, 133.8, 133.3, 130.1, 130.0, 129.0, 128.8, 128.5, 128.3, 128.2, 127.9, 112.0 ($J_{C-F} = 230.3$ Hz), 88.9 ($J_{C-F} = 2.7$ Hz), 74.2 ($J_{C-F} = 35.6$ Hz), 74.2 ($J_{C-F} = 1.4$ Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -115.1 (dd, J = 60.5, 5.3 Hz, 1F); HRMS (ESI) m/z calcd for C₂₉H₂₃FN₃O₇ [M+H]⁺ 544.1515, found 544.1502.

Uracil 2,3-O-isopropylidene-4-fluoro-5-O-benzoyl-α-L-lyxofuranoside (2q)

Following the procedure for **2a**, uronic acid **1q** (87 mg, 0.2 mmol, 1.0 equiv) was reacted with CsHCO₃ (116 mg, 0.6 mmol, 3.0 equiv), Selectfluor (213 mg, 0.6 mmol, 3.0 equiv) and Mes-Acr·ClO₄ (4.1 mg, 10.0 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 4.0 mL) to afford titled compound **2q** (68 mg, 0.17 mmol, 84%) as a white foam after purification by silica gel column chromatography (CH₂Cl₂:EtOAc = 1:1). ¹H NMR (500 MHz, CDCl₃) δ 9.68 (s, 1H), 8.06 (d, *J* = 7.2 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.40 (d, *J* = 8.2 Hz, 1H), 6.17 (d, *J* = 2.9 Hz, 1H), 5.76 (d, *J* = 8.2 Hz, 1H), 5.14 (d, *J* = 6.7 Hz, 1H), 4.98 (t, *J* = 6.2 Hz, 1H), 4.76–4.62 (m, 2H), 1.55 (s, 3H), 1.36 (s, 3H). The data is identical with previous report.¹⁰

Methyl (5*R*)-2,3,4-tri-*O*-benzyl-5-fluoro-α-D-xylopyranoside (2r) and Methyl (5*S*)-2,3,4-tri-*O*-benzyl-5-fluoro-α-D-xylopyranoside (2r')

Following the procedure for 2a, uronic acid 1r (107 mg, 0.22 mmol, 1.0 equiv) was reacted with CsHCO₃ (65 mg, 0.34 mmol, 1.5 equiv), Selectfluor (158 mg, 0.45 mmol, 2.0 equiv) and Mes-Acr·ClO₄ (4.6 mg, 11.0 μ mol, 5 mol%) in acetone/H₂O (v/v = 4:1, 2.0 mL) to afford titled compound 2r/2r' (63 mg, 0.14 mmol, 63%, 1:2 dr) as a white foam after purification by silica gel column chromatography (petroleum ether:EtOAc = 13:1). **2r**: $[\alpha]_{D}^{20}$ = -12.0 (*c* 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.42–7.30 (m, 15H), 5.49 (dd, J = 54.5, 7.1 Hz, 1H), 4.94–4.82 (m, 4H), 4.77 (d, J = 11.1 Hz, 1H), 4.70-4.66 (m, 2H), 3.99 (t, J = 9.3 Hz, 1H), 3.63 (dd, J = 9.6, 3.5 Hz, 1H), 3.60-3.52(m, 1H), 3.50 (s, 3H); ¹³C NMR (126 MHz, CDCl₃):δ 138.6, 137.9, 128.3, 128.5, 128.2, 128.1, 127.9, 127.8, 107.2 ($J_{C-F} = 210.8 \text{ Hz}$), 98.3 ($J_{C-F} = 7.6 \text{ Hz}$), 81.9 ($J_{C-F} = 20.1 \text{ Hz}$), 79.1 ($J_{C-F} = 11.9 \text{ Hz}$), 78.7, 74.8, 73.8, 56.2; ¹⁹F NMR (470 MHz,CDCl₃): δ -150.2 (dd, J = 54.5, 14.9, 1F); HRMS (ESI): m/z calcd for C₂₇H₂₉O₅FNa [M+Na] + 475.1891, found: 475.1880. **2r'**: ¹H NMR (500 MHz, CDCl₃) δ 7.42–7.27 (m, 15H), 5.45 (dd, J =54.1, 3.4 Hz, 1H), 4.96 (d, J = 10.7 Hz, 1H), 4.90 (d, J = 10.7 Hz, 1H), 4.83 (d, J = 12.1 Hz, 2H), 4.74-4.65 (m, 3H), 4.26 (t, J = 9.7 Hz, 1H), 3.52 (dd, J = 9.7, 3.5 Hz, 1H), 3.49-3.45 (m, 4H). The data is identical with previous report.¹⁰

Methyl (5*R*)-2,3,4-tri-*O*-benzyl-5-fluoro-β-D-xylopyranoside (2s) and Methyl (5*S*)-2,3,4-tri-*O*-benzyl-5-fluoro-β-D-xylopyranoside (2s')

Following the procedure for **2a**, uronic acid **1s** (96 mg, 0.2 mmol, 1.0 equiv) was reacted with CsHCO₃ (58 mg, 0.3 mmol, 1.5 equiv), Selectfluor (141 mg, 0.4 mmol, 2.0 equiv) and Mes-Acr·ClO₄ (4.1 mg, 10.0 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 2.0 mL) to afford titled compound **2s/2s'** (65 mg, 0.144 mmol, 72%, 1:1.8 *dr*) as a white foam after purification by silica gel column chromatography (toluene:petroleum ether = 2:1). **2s**: $[\alpha]_D^{23} = -15.2$ (*c* 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.43–7.27 (m, 15H), 5.52 (dd, *J*_{H-F} = 57.2, *J* = 5.1 Hz, 1H), 4.83–4.71 (m, 6H), 4.65 (d, *J* = 11.5 Hz,

1H), 3.95–3.86 (m, 1H), 3.68 (dd, J = 7.3, 3.2 Hz, 1H), 3.66–3.60 (m, 1H), 3.50 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 138.4, 137.91, 137.87, 128.6, 128.54, 128.46, 128.10, 128.07, 128.01, 128.00, 109.7 ($J_{C-F} = 225.1$ Hz), 103.2, 82.6, 80.2 ($J_{C-F} = 36.1$ Hz), 80.2, 74.9, 74.2, 73.5, 56.4; ¹⁹F NMR (470 MHz, CDCl₃) δ -122.9 (dd, J = 57.2, 14.2 Hz, 1F); HRMS (ESI) m/z calcd for C₂₇H₃₃FNO₅ [M+NH₄]⁺470.2348, found 470.2339. **2s'**: $[\alpha]_D^{23} = +14.6$ (c 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.27 (m, 15H), 5.51 (dd, $J_{H-F} = 52.7$, J = 2.1 Hz, 1H), 4.91–4.80 (m, 5H), 4.75–4.68 (m, 2H), 3.93 (t, J = 9.5 Hz, 1H), 3.61–3.51 (m, 4H), 3.44 (t, J = 8.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 138.5, 138.4, 137.8, 128.7, 128.5, 128.2, 128.1, 127.8, 104.8 ($J_{C-F} = 226.3$ Hz), 101.3 ($J_{C-F} = 4.5$ Hz), 81.5, 79.1, 78.8 ($J_{C-F} = 24.4$ Hz), 76.2, 75.1, 73.9, 57.7; ¹⁹F NMR (470 MHz, CDCl₃) δ -146.7 (dd, J = 52.7, 25.6 Hz, 1F); HRMS (ESI) m/z calcd for C₂₇H₃₃FNO₅ [M+NH₄]⁺470.2337, found 470.2339.

Methyl (5*R*)-2,3,4-tri-*O*-benzoyl-5-fluoro- α -D-xylopyranoside (2t) and Methyl (5*S*)-2,3,4-tri-*O*-benzoyl-5-fluoro- α -D-xylopyranoside (2t')

Following the procedure for **2a**, uronic acid **1t** (118 mg, 0.23 mmol, 1.0 equiv) was reacted with CsHCO₃ (134 mg, 0.69 mmol, 3.0 equiv), Selectfluor (244 mg, 0.69 mmol, 3.0 equiv) and Mes-Acr·ClO₄ (14 mg, 35.0 µmol, 15 mol%) in acetone/H₂O (v/v = 4:1, 2.5 mL) to afford titled compound **2t/2t'** (25 mg, 51.0 µmol, 22%, 1:1 *dr*) as a colorless syrup after purification by silica gel column chromatography (petroleum ether:EtOAc = 10:1). **2t**: ¹H NMR (500 MHz, CDCl₃) δ 8.02–7.09 (m, 4H), 7.94 (d, *J* = 7.9 Hz, 2H), 7.54–7.47(m, 3H), 7.41–7.33 (m, 6H), 6.09 (t, *J* = 8.6 Hz, 1H), 5.82 (dd, *J* = 6.1 Hz, *J*_{*H*-*F*} = 52.8 Hz, 1H), 5.65–5.58 (m, 1H), 5.42–5.38 (m, 2H), 3.60 (s, 3H). **2t'**: ¹H NMR (500 MHz, CDCl₃) δ 8.02–7.98 (m, 4H), 7.92 (d, *J* = 8.2 Hz, 2H), 7.53–7,51 (m, 2H), 7.46–7,37 (m, 5H), 7.32 (t, *J* = 8.0 Hz, 2H), 6.47 (t, *J* = 10.2 Hz, 1H), 6.01 (dd, *J* = 3.4

Hz, $J_{H-F} = 54.1$ Hz, 1H), 5.47–5.38 (m, 1H), 5.38–5.34 (m, 2H), 3.54 (s, 3H). These datas are identical with previous report.¹⁰

(5S)-1,2:3,4-Di-O-isopropylidene-5-fluoro-α-L-arabinopyranose (2u)

Following the procedure for **2a**, uronic acid **1u** (82 mg, 0.3 mmol, 1.0 equiv) was reacted with CsHCO₃ (87 mg, 0.45 mmol, 1.5 equiv), Selectfluor (320 mg, 0.9 mmol, 3.0 equiv) and Mes-Acr·ClO₄ (16.8 mg, 45.0 µmol, 15 mol%) in acetone/H₂O (v/v = 4:1, 3.0 mL) to afford titled compound **2u** (24 mg, 96.0 µmol, 32%) as a white foam after purification by silica gel column chromatography (petroleum ether:EtOAc = 30:1), along with recovery of **1u** (50 mg, 0.18 mmol, 61%). ¹H NMR (500 MHz, CDCl₃) δ 5.51 (d, J_{H-F} = 50.7 Hz, 1H), 5.51 (dd, J = 4.6, 1.5 Hz, 1H), 4.71 (dd, J = 7.2, 2.2 Hz, 1H), 4.41 (dd, J = 4.6, 2.2 Hz, 1H), 4.30 (dd, J = 7.1, 4.3 Hz, 1H), 1.53 (s, 3H), 1.43 (s, 3H), 1.35 (s, 3H), 1.33 (s, 3H). The data is identical with previous report.¹⁰

Methyl 5-O-[(5'R)-2',3',4'-tri-O-benzyl-5'-fluoro- β -D-arabinopyranosyl]-2,3-Oisopropylidene- β -D-ribofuranoside (2v)

Following the procedure for **2a**, uronic acid **1v** (106 mg, 0.16 mmol, 1.0 equiv) was reacted with CsHCO₃ (48 mg, 0.25 mmol, 1.5 equiv), Selectfluor (115 mg, 0.33 mmol, 2.0 equiv) and Mes-Acr·ClO₄ (3.4 mg, 8.0 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 1.6 mL) to afford titled compound **2v** (64 mg, 0.10 mmol, 64%) as a white foam after purification by silica gel column chromatography (petroleum ether:EtOAc = 11:1). [α] ²³_D = -35.1 (*c* 1.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, *J* = 7.4 Hz, 2H), 7.37–7.24 (m, 13H), 5.54 (d, *J*_{H-F} = 50.5 Hz, 1H), 4.99 (s, 1H), 4.95 (d, *J* = 11.0 Hz,

1H), 4.86–4.75 (m, 5H), 4.69 (d, J = 12.2 Hz, 1H), 4.65 (d, J = 11.8 Hz, 1H), 4.60 (d, J = 5.9 Hz, 1H), 4.41 (t, J = 7.3 Hz, 1H), 3.96–3.87 (m, 2H), 3.85–3.78 (m, 2H), 3.62 (dd, J = 9.8, 6.6 Hz, 1H), 3.29 (s, 3H), 1.51 (s, 3H), 1.33 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 138.6, 138.3, 137.8, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 127.83, 127.80, 127.7, 112.5, 109.4, 106.0 ($J_{C-F} = 221.6$ Hz), 101.0 ($J_{C-F} = 1.8$ Hz), 85.2 ($J_{C-F} = 8.1$ Hz), 82.1, 78.6, 77.0, 75.3, 73.7, 73.6 ($J_{C-F} = 34.4$ Hz), 73.5, 70.8, 55.0, 26.6, 25.1; ¹⁹F NMR (470 MHz, CDCl₃) δ -134.8 (d, J = 50.5 Hz, 1F); HRMS (ESI) *m/z* calcd for C₃₅H₄₁FNaO₉ [M+Na]⁺ 647.2627, found 647.2615.

4,7-Di-O-benzyl-2-O-benzoyl-3-O-(4'-bromobenzyl)-6-deoxy-D-gulo-

heptopyranosyl-a-fluoride (2w) and 4,7-Di-O-benzyl-2-O-benzoyl-3-O-(4'-

bromobenzyl)- 6-deoxy-D-gulo-heptopyranosyl-β-fluoride (2w')

Following the procedure for **2a**, uronic acid **1w** (69 mg, 0.12 mmol, 1.0 equiv) was reacted with CsHCO₃ (29 mg, 0.15 mmol, 1.25 equiv), Selectfluor (70 mg, 0.2 mmol, 1.64 equiv) and Mes-Acr·ClO₄ (2.1 mg, 5.0 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 1.0 mL) to afford titled compound **2w/2w'** (20 mg, 37.6 µmol, 31%, α : β = 1:1.4) as a clourless syrup after purification by silica gel column chromatography (petroleum ether:EtOAc = 11:1).**2w**: ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 7.7 Hz, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.38–7.25 (m, 12H), 7.09 (d, *J* = 8.0 Hz, 2H), 5.73 (dd, *J* = 3.1 Hz, *J*_{H-F} = 54.7 Hz, 1H), 5.42–5.31(m, 1H), 4.64 (d, *J* = 11.9 Hz, 1H), 4.58 (dd, *J* = 8.9, 4.9 Hz, 1H), 4.55–4.45 (m, 5H), 4.07 (t, *J* = 3.8 Hz, 1H), 3.58–3.50 (m, 3H), 2.10–2.03 (m, 1H), 1.84–1.77 (m, 1H); **2w'**: ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 7.7 Hz, 2H), 7.70–7.25 (m, 15H), 7.01 (d, *J* = 7.9 Hz, 2H), 5.69 (dd, *J* = 6.9 Hz, *J*_{H-F} = 54.2 Hz, 1H), 5.34–5.30 (m, 1H), 4.67 (d, *J* = 12.0 Hz, 1H), 3.63–3.59 (m, 1H), 3.55–3.44 (m, 2H), 2.15–2.08 (m, 1H), 1.91–1.84 (m, 1H); The data is identical with previous report.⁹

Section 3. Synthesis of 4' fluoro nucleoside

1,2-*O*-Isopropylidene-3,5-di-*O*-benzyl-4-*C*-methylester-α-D-ribofuranoside (3)

To a solution of 1j (2.98 g, 7.19 mmol, 1.0 equiv) in anhydrous THF (50 mL) was added sequentially 18-crown-6 (95 mg, 0.36 mmol, 0.05 equiv), K₂CO₃ (3.0 g, 21.6 mmol, 3.0 equiv) and iodomethane (MeI, 1.4 mL, 21.6 mmol, 3.0 equiv) at 0 °C. The reaction mixture was warm up to room temperature and stirred overnight. The reaction was quenched by adding water (30 mL), THF was removed in vacuo. The aqueous phase was extracted with CH₂Cl₂ (30 mL×3). The combined organic phase was dried over Na₂SO₄, filtered, and the filtrate was concentrated in *vacuo*. The residue was purified by silica gel column chromatography (petroleum ether: EtOAc = 6:1) to afford the ester **3** (2.68 g, 6.26 mmol, 87%) as a colorless syrup. $[\alpha]_{D}^{23} = +29.9$ (c 0.4, CHCl₃); ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.39-7.22 \text{ (m, 10H)}, 5.89 \text{ (d, } J = 3.9 \text{ Hz}, 1\text{H}), 4.77 \text{ (d, } J = 12.1 \text{ H})$ Hz, 1H), 4.68–4.65 (m, 1H), 4.59 (d, J = 12.1 Hz, 1H), 4.54 (d, J = 12.0 Hz, 1H), 4.50 (d, J = 12.0 Hz, 1H), 4.25 (d, J = 5.2 Hz, 1H), 3.82 (d, J = 10.2 Hz, 1H), 3.75 (s, 3H),3.67 (d, J = 10.2 Hz, 1H), 1.64 (s, 3H), 1.38 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.4, 137.8, 128.6, 128.5, 127.92, 127.86, 127.8, 127.7, 115.2, 106.1, 89.7, 80.6, 79.4, 73.9, 73.8, 73.1, 52.4, 27.4, 26.3; HRMS (ESI) *m/z* calcd for C₂₄H₃₂NO₇ [M+NH₄]⁺ 446.2173, found 446.2166.

1,2-Di-*O*-acetyl-3-*O*-benzyl-4-*C*-benzyloxylmethyl-L-lyxofuranuronide methyl ester (4)

To a solution of acetonide **3** (1.3 g, 3.03 mmol, 1.0 equiv) in anhydrous EtOAc (15 mL) was added acetic anhydride (Ac₂O, 1.2 ml, 12.14 mmol, 4.0 equiv) and concentrated

sulfuric acid (32 µL, 0.61 mmol, 0.2 equiv) under an ice-bath. The reaction was warmed up to room temperature for 2 h before the mixture was poured into water (100 mL). The aqueous phase was extracted with EtOAc (50 mL×5). The combined organic phase was washed sequentially with water (200 mL×3) and sat. NaHCO₃ solution (100 mL). The mixture was dried over Na₂SO₄, filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (petroleum ether:EtOAc = 4:1 to 3:1) to afford acetate 4 (1.28 g, 2.36 mmol, 78%, $\alpha:\beta = 3.3:1$) as a colorless syrup. α isomer ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.24 (m, 10H), 6.41 (d, J = 2.2 Hz, 1H), 5.24 (dd, J = 5.4, 2.3 Hz, 1H), 4.63–4.47 (m, 4H), 4.42–4.39 (m, 1H), 3.81 (d, J = 10.6Hz, 1H), 3.77–3.73 (m, 4H), 2.04 (s, 3H), 1.94 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.2, 169.3, 169.2, 137.8, 137.3, 128.5, 128.1, 127.9, 127.8, 127.7, 90.1, 89.8, 78.4, 74.8, 74.3, 73.7, 71.8, 52.6, 21.0, 20.7; HRMS (ESI) m/z calcd for C₂₅H₂₈O₉Na $[M+Na]^+$ 495.1626, found 495.1613. β isomer ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.24 (m, 10H), 6.50 (d, J = 4.8 Hz, 1H), 5.15 (t, J = 5.1 Hz, 1H), 4.63–4.47 (m, 4H), 4.42-4.39 (m, 1H), 3.92 (d, J = 10.4 Hz, 1H), 3.67-3.63 (m, 4H), 2.13 (s, 3H), 2.00 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.5, 170.2, 168.9, 138.1, 137.5, 128.7, 128.3, 128.0, 127.8, 127.7, 127.2, 95.0, 92.1, 79.2, 77.4, 74.9, 74.0, 72.3, 52.6, 21.4, 20.6; HRMS (ESI) *m/z* calcd for C₂₅H₂₈O₉Na [M+Na]⁺ 495.1626, found 495.1613.

5-Methyluracil 2-*O*-acetyl-3-*O*-benzyl-4-*C*-benzyloxylmethyl-L-lyxofuranuronide methyl ester (5a)

To a solution of donor **4** (165 mg, 0.39 mmol, 1.0 equiv) in anhydrous acetonitrile (3 mL) was added thymine (93 mg, 0.74 mmol, 2.0 equiv) and *N*,*O*-bis(trimethylsilyl)acetamide (BSA, 475 μ L, 1.95 mmol, 5.0 equiv). The suspension was heated to reflux and stirred vigorously for 1 h to obtain a clear solution before the

mixture was cooled to 0 °C. To this solution was added trimethylsilyl trifluoromethanesulfonate (TMSOTf, 145 µL, 1.17 mmol, 3.0 equiv). The mixture was heated to reflux for another 2.5 h before the mixture was cooled to room temperature and diluted with CH₂Cl₂ (20 mL). The solution was washed with sat. NaHCO₃ solution (20 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated in *vacuo*. The residue was purified by silica gel column chromatography (petroleum ether:EtOAc = 3:2) to afford the titled nucleoside **5a** (210 mg, 0.39 mmol, quant.) as a white foam. $[\alpha]_{D}^{21}$ = -29.0 (*c* 0.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.34 (s, 1H), 7.40–7.24 (m, 11H), 6.49 (d, *J* = 7.3 Hz, 1H), 5.24–5.19 (m, 1H), 4.64 (d, *J* = 11.6 Hz, 1H), 4.60–4.52 (m, 4H), 4.02 (d, *J* = 10.2 Hz, 1H), 3.80 (d, *J* = 10.2 Hz, 1H), 3.70 (s, 3H), 2.04 (s, 3H), 1.59 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.6, 169.2, 163.4, 150.4, 137.1, 137.0, 135.7, 128.9, 128.6, 128.5, 128.2, 128.0, 127.9, 111.9, 89.8, 86.7, 79.4, 75.4, 74.5, 74.1, 71.8, 52.8, 20.7, 12.3; HRMS (ESI) *m/z* calcd for C₂₈H₃₁N₂O₉ [M+H]⁺ 539.2000, found 539.2006.

5-Methyluracil 3-*O*-benzyl-4-*C*-benzyloxylmethyl-α-L-lyxofuranuronic acid (6a)

To a solution of nucleoside **5a** (282 mg, 0.52 mmol, 1.0 equiv) in aqueous THF (v/v = 4:1, 6.5 mL) was added lithium hydroxide monohydrate (LiOH·H₂O, 88 mg, 2.09 mmol, 4.0 equiv) at room temperature. The mixture was stirred at room temperature for 2 h before the reaction was quenched with Dowex (H⁺) resin. The resin was filtered and the filtrate was concentrated in *vacuo*. The residue was purified by silica gel column chromatography (CH₂Cl₂:MeOH = 15:1 to 9:1) to afford the uronic acid **6a** (201 mg, 0.43 mmol, 82%) as a white foam. $[\alpha]_{D}^{21}$ = -11.6 (*c* 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.37–7.19 (m, 11H), 6.23 (s, 1H), 4.72–4.63 (m, 2H), 4.58–4.42 (m, 2H), 4.34–4.19 (m, 2H), 4.06 (d, *J* = 9.8 Hz, 1H), 3.78 (d, *J* = 8.9 Hz, 1H), 1.42 (s, 3H); ¹³C

NMR (126 MHz, CDCl₃) δ 171.8, 164.0, 151.5, 137.1, 136.8, 135.8, 128.8, 128.6, 128.4, 127.8, 112.0, 89.6, 89.1, 75.2, 74.5, 74.0, 71.8, 12.1; HRMS (ESI) *m/z* calcd for C₂₅H₂₆N₂NaO₈ [M+Na]⁺ 505.1581, found 505.1569.

6-Chloro-9-(2-*O*-acetyl-3-*O*-benzyl-4-*C*-benzyloxylmethyl-L-lyxofuran uronide methyl ester)-purine (5b)

To a solution of 6-chloropurine (327 mg, 2.12 mmol, 2.0 equiv) and 1,8diazabicyclo[5.4.0]undec-7-ene (DBU, 475 µL, 3.17 mmol, 3.0 equiv) in dry MeCN (5 mL) was added dropwise TMSOTf (960 µL, 5.29 mmol, 5.0 equiv) at 0 °C. The resulting solution was stirred for 2 h at 60 °C, after which it was cooled to room temperature and compound 4 (501 mg, 1.06 mmol, 1.0 equiv) in 5 mL MeCN and TMSOTf (960 µL, 5.29 mml, 5.0 equiv) were added. The resulting solution was stirred for 2 h at 60 °C. TEA (5 mL) was added. The residue evaporated under reduced pressure. The crude was purified by silica gel column chromatography (petroleum ether:EtOAc = 2:1) to afford the **5b** product as a white foam (534 mg, 0.94 mmol, 89%). $[\alpha]_{D}^{25} = -27.2$ (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 8.36 (s, 1H), 7.42–7.24 (m, 10H), 6.60 (d, J = 6.8 Hz, 1H), 5.79–5.70 (m, 1H), 4.71 (d, J = 5.6 Hz, 1H), 4.63–4.52 (m, 4H), 4.01 (d, J = 10.2 Hz, 1H), 3.84 (d, J = 10.2 Hz, 1H), 3.74 (s, 3H), 1.98 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 170.1, 169.0, 152.3, 151.8, 151.4, 132.1, 144.1, 137.0, 136.9, 128.8, 128.6, 128.4, 128.3, 128.03, 128.01, 90.7, 86.7, 79.4, 75.4, 75.3, 74.1, 71.5, 52.8, 20.6; HRMS (ESI): m/z calcd for C₂₈H₂₈ClN₄O₇ [M+H]⁺ 567.1641, found 567.1626.

6-Chloro-9-(3-*O*-benzyl-4-*C*-benzyloxylmethyl-L-lyxofuranuronic acid)-purine (6b)

Following the procedure for **6a**, **5b** (475 mg, 0.84 mmol, 1.0 equiv) was treated with LiOH·H₂O (141 mg, 3.35 mmol, 4.0 equiv) in THF/H₂O (v/v = 6:1, 5.6 mL) for 2 h at room temperature to give **6b** (325 mg, 0.64 mmol, 76%) as a white foam after purification by silica gel column chromatography (petroleum ether:EtOAc = 2:1 to DCM:MeOH = 20:1). $[\alpha]_D^{25}$ = +6.7 (*c* 0.3, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 8.63 (s, 2H), 7.45–7.21 (m, 10H), 6.37 (d, *J* = 6.9 Hz, 1H), 5.14 (dd, *J* = 6.8, 4.8 Hz, 1H), 4.89 (overlap, 1H), 4.90 (d, *J* = 11.1 Hz, 1H) 4.71 (d, *J* = 11.1 Hz, 1H), 4.58–4.47 (m, 2H), 4.43 (d, *J* = 4.9 Hz, 1H), 4.09 (d, *J* = 10.1 Hz, 1H), 3.89 (d, *J* = 10.1 Hz, 1H); ¹³C NMR (101 MHz, CD₃OD) δ 153.14, 153.09, 151.4, 147.1, 139.2, 138.9, 132.7, 129.5, 129.23, 129.19, 128.98, 128.96, 128.8, 90.6, 81.4, 75.8, 75.7, 74.6, 73.2; HRMS (ESI): *m/z* calcd for C₂₅H₂₄ClN₄O₆ [M+H]⁺ 511.1379, found 511.1364.

5-Methyluracil3,5-di-O-benzyl-4-fluoro-β-D-ribofuranoside(7a)and5-Methyluracil3,5-di-O-benzyl-4-fluoro-α-L-lyxofuranoside(7a')

Following the procedure for **2a**, uronic acid **6a** (28 mg, 58.0 µmol, 1.0 equiv) was reacted with CsHCO₃ (35 mg, 0.2 mmol, 3.0 equiv), Selectfluor (43 mg, 0.12 mmol, 2.0 equiv) and Mes-Acr·ClO₄ (1.2 mg, 3.0 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 1.2 mL) to afford titled compound **7a** (9.3 mg, 20.4 µmol, 35%) and **7a'** (11.1 mg, 24.3 µmol, 42%) as white foams after purification by silica gel column chromatography (petroleum ether:EtOAc = 3:2). **7a**: $[\alpha]_{D}^{21}$ = -37.7 (*c* 0.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.77 (s, 1H), 7.42–7.27 (m, 10H), 7.20 (s, 1H), 6.28 (t, *J* = 7.0 Hz, 1H), 4.85
(d, J = 11.2 Hz, 1H), 4.75 (d, J = 11.2 Hz, 1H), 4.68 (d, J = 11.8 Hz, 1H), 4.62 (d, J = 11.8 Hz, 1H), 4.43 (s, 1H), 4.25–4.19 (m, 1H), 3.91 (dd, $J_{C-F} = 27.0$, J = 11.2 Hz, 1H), 3.72 (t, J = 10.9 Hz, 1H), 3.31 (d, J = 11.3 Hz, 1H), 1.93 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.4, 151.0, 137.1, 136.7, 134.59, 134.56, 128.8, 128.7, 128.6, 128.4, 128.3, 128.1, 119.9 ($J_{C-F} = 232.1$ Hz), 112.6, 107.8, 89.8 ($J_{C-F} = 2.1$ Hz), 80.0, 79.8 ($J_{C-F} = 37.4$ Hz), 75.0, 74.2, 68.0 ($J_{C-F} = 27.9$ Hz), 12.8; ¹⁹F NMR (470 MHz, CDCl₃) δ -102.7 (d, J = 26.6 Hz, 1F); HRMS (ESI) m/z calcd for C₂₄H₂₅O₆FN₂Na [M+Na]⁺ 479.1589, found 479.1576. **7a'**: $[\alpha]_{\rm D}^{21} = -2.0$ (c 0.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 9.39 (s, 1H), 7.43–7.16 (m, 11H), 6.07 (s, 1H), 4.75 (d, J = 11.7 Hz, 1H), 4.67 (d, J = 11.7 Hz, 1H), 4.53 (d, J = 11.4 Hz, 1H), 4.47 (d, J = 11.4 Hz, 1H), 3.74 (d, J = 11.4 Hz, 1H), 3.74 (s, 1H), 1.57 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.8, 150.3, 137.0, 136.7, 136.2, 128.8, 128.7, 128.6, 128.4, 128.3, 128.0, 116.4 ($J_{C-F} = 232.7$ Hz), 111.4, 93.8, 75.6 ($J_{C-F} = 18.4$ Hz), 73.9, 73.5, 71.8, 68.5 ($J_{C-F} = 43.4$ Hz), 12.1; ¹⁹F NMR (470 MHz, CDCl₃) δ -118.0 (d, J = 15.3 Hz, 1F); HRMS (ESI) m/z calcd for C₂₄H₂₅O₆FN₂Na [M+Na]⁺ 479.1589, found 479.1575.

6-Chloro-9-(3', 5'-di-*O*-benzyl-4'-fluoro-β-D-ribofuranoside)-purine (7b) and 6-Chloro-9-(3', 5'-di-*O*-benzyl-4'-fluoro-α-L-lyxoribofuranoside)-purine (7b')

Following the procedure for **2a**, uronic acid **6b** (104 mg, 0.2 mmol, 1.0 equiv) was reacted with CsHCO₃ (59 mg, 0.3 mmol, 1.5 equiv), Selectfluor (144 mg, 0.4 mmol, 2.0 equiv) and Mes-Acr·ClO₄ (4.2 mg, 100.0 µmol, 5 mol%) in acetone/H₂O (v/v = 4:1, 7.5 mL) to afford titled compound **7b** (23 mg, 46.8 µmol, 23%) and **7b'** (28 mg, 57.0 µmol, 28%) as white foams after purification by silica gel column chromatography (petroleum ether:EtOAc = 3:2). **7b**: $[\alpha]_{D}^{25}$ = -49.2 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 8.30 (s, 1H), 7.50–7.22 (m, 11H), 6.31 (t, *J* = 5.5 Hz, 1H),

4.96–4.89 (m, 1H), 4.88 (d, J = 11.2 Hz, 1H), 4.77 (d, J = 11.2 Hz, 1H), 4.72 (d, J = 11.8 Hz, 1H), 4.65 (d, J = 11.8 Hz, 1H), 4.44 (t, J = 5.0 Hz, 1H), 3.95 (dd, $J_{F-H} = 24.3$, 11.1 Hz, 1H), 3.80 (dd, J = 11.1, 9.2 Hz, 1H), 3.63 (d, J = 10.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 152.4, 151.65, 151.62, 143.12, 143.08, 136.9, 136.6, 128.9, 128.8, 128.4, 128.2, 120.6 ($J_{C-F} = 233.1$ Hz), 90.4, 80.1 ($J_{C-F} = 37.0$ Hz), 75.0, 74.8, 74.4, 67.8 ($J_{C-F} = 30.4$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -105.2 (s, 1F); HRMS (ESI): m/z calcd for C₂₄H₂₃ClFN₄O₄ [M+H]⁺ 485.1386, found 485.1376. **7b'**: [α]_D²⁵ = -31.1 (c 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 8.26 (s, 1H), 7.43–7.23 (m, 9H), 7.21–7.11 (m, 2H), 6.37 (s, 1H), 4.89 (dd, J = 16.3, 6.0 Hz, 1H), 4.74 (s, 2H), 4.67–4.61 (m, 1H), 4.51–4.42 (m, 2H), 3.78–3.69 (m, 2H), 3.25 (dd, J = 5.1, 1.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 152.3, 151.7, 150.9, 144.2, 136.9, 136.4, 132.4, 128.9, 128.7, 128.6, 128.3, 127.8, 116.9 ($J_{C-F} = 234.7$ Hz), 91.7, 75.5 ($J_{C-F} = 18.6$ Hz), 73.9, 73.8, 71.8, 68.1 ($J_{C-F} = 42.2$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -117.8 (s, 1F); HRMS (ESI): m/z calcd for C₂₄H₂₃O₄N₄ClF [M+H]⁺ 485.1386, found 485.1373.

References

- X. Zhou, P. Wang, L. Zhang, P. Chen, M. Ma, N. Song, S. Ren, M. Li, Transition-Metal-Free Synthesis of C-Glycosylated Phenanthridines via K₂S₂O₈-Mediated Oxidative Radical Decarboxylation of Uronic Acids, *J. Org. Chem.* 2018, 83, 588– 603.
- S. Ventre, F. R. Petronijević, D. W. C. MacMillan, Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis, *J. Am. Chem. Soc.* 2015, 137, 5654–5657.
- M.-Y. Jang, X.-P. Song, M. Froeyen, P. Marlière, E. Lescrinier, J. Rozenski, P. Herdewijn. A Synthetic Substrate of DNA Polymerase Deviating from the Bases, Sugar, and Leaving Group of Canonical Deoxynucleoside Triphosphates, *Chem. Bio.* 2013, 20, 416–423.
- 4. R. E. Ireland, D. W. Norbeck, J. Am. Chem. Soc. 1985, 107, 3279–3285.
- H. Fujino, M. Nagatomo, A. Paudel, S. Panthee, H. Hamamoto, K. Sekimizu, M. Inoue, Unified Total Synthesis of Polyoxins J, L, and Fluorinated Analogues on the Basis of Decarbonylative Radical Coupling Reactions, *Angew. Chem. Int. Ed.* 2017, 56, 11865–11869.
- Z. Guan, L.-H. Zhang, P. Sinaÿ, Y.-M. Zhang, Study on Metal-Induced Reactions of α-Diazocarbonyl Glucosides, *J. Org. Chem.* 2012, 77, 8888-8895.
- 7. N. Pravdić, D. Keglević, Glucuronic Esters—III: The synthesis of the fully benzylated C-1 hydroxyl free glucuronic acid, *Tetrahedron* 1965, **21**, 1897–1901.
- 8. D. Crich, K. Sasaki, Org. Lett. 2009, 11, 3514-3517.
- T. Li, S, Sun, P. Wang, M. Li, Synthesis of 6-deoxy-D-guloheptopyranosyl fluoride. J. Ocean Univ. China. 2020, 50, 70–75.
- X. Zhou, H. Ding, P. Chen, L. Liu, Q. Sun, X. Wang, P. Wang, Z. Lv, M. Li, Radical Dehydroxymethylative Fluorination of Carbohydrates and Divergent Transformations of the Resulting Reverse Glycosyl Fluorides, *Angew. Chem. Int. Ed.* 2020, **59**, 4138–4144.
- 11. G. H. Jones, M. Taniguchi, D. Tegg, J. G. Moffatt, 4'-Substituted nucleosides. 5.

Hydroxymethylation of nucleoside 5'-aldehydes, J. Org. Chem. 1979, 44, 1309–1317.

- K. Fukuyama, H. Ohrui, S. Kuwahara, Synthesis of EFdA via a Diastereoselective Aldol Reaction of a Protected 3-Keto Furanose, *Org. Lett.* 2015, 17, 828–831.
- G. V. M. Sharma, P. S. Reddy, D. Chatterjee, A. C. Kunwar, Synthesis and Structural Studies of Homooligomers of Geminally Disubstituted β 2,2-Amino Acids with Carbohydrate Side Chain, *J. Org. Chem.* 2011, **76**, 1562–1571.
- Y. Hari, S. Obika, M. Sakaki, K. Morio, Y. Yamagata, T. Imanishi, Effective synthesis of C-nucleosides with 2',4'-BNA modification, *Tetrohedron* 2002, 58, 3051–3063.
- 15. L. Chen, F. Kong, Unusual α-glycosylation with galactosyl donors with a C2 ester capable of neighboring group participation, *Tetrahedron Lett.* 2003, **44**, 3691–3695.
- P. Ji, Y. Zhang, Y. Wei, H. Huang, W. Hu, P. A. Mariano, W. Wang, Visible-Light-Mediated, Chemo- and Stereoselective Radical Process for the Synthesis of C-Glycoamino Acids, *Org. Lett.* 2019, **21**, 3086–3092.

NMR Spectra

¹H NMR Spectrum of **1h**

DEPT-Q NMR Spectrum of 1h

^{10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

DEPT-Q NMR Spectrum of 1i

DEPT-Q NMR Spectrum of 1j

S45

S46

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

DEPT-Q NMR Spectrum of S13

DEPT-Q NMR Spectrum of 1m

³¹P NMR Spectrum of **1m**

¹³C NMR Spectrum of **1q**

BzO

1q 500 MHz, DMSO-*d*₆

¹H NMR Spectrum of **S18**

¹H NMR Spectrum of **S20**

¹³C NMR Spectrum of **S20**

¹H NMR Spectrum of **1v**

DEPT-Q NMR Spectrum of 1v

¹H NMR Spectrum of **2a**

¹H NMR Spectrum of **2b**

¹H NMR Spectrum of **2c**

DEPT-Q NMR Spectrum of 2c

¹⁹F NMR Spectrum of **2c**

¹H NMR Spectrum of **2d**

¹³C NMR Spectrum of **2d**

¹⁹F NMR Spectrum of **2d**

C-117.6803 -117.6973 C-117.8458 C-117.8624

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 fl (ppm)

¹H NMR Spectrum of **2e**

DEPT-Q NMR Spectrum of 2e

¹⁹F NMR Spectrum of **2e**

 $F_{in} \underbrace{-}_{2e} \underbrace{-}_{2e} \underbrace{-}_{2e} \underbrace{-}_{470 \text{ MHz}, \text{ CDCb}}$

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2. f1 (ppm)

¹H NMR Spectrum of **2f**

¹H NMR Spectrum of **2g/2g'**

DEPT-Q NMR Spectrum of 2g/2g'

¹⁹F NMR Spectrum of **2g/2g'**

-119.0322 -119.0429 -119.0537 -119.1625 -119.1625 -119.1840 -119.1840 -134.7697 -134.9374

470 MHz, CDCb

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 f1 (ppm) ¹H NMR Spectrum of **2h**

DEPT-Q NMR Spectrum of 2i

¹⁹F NMR Spectrum of **2i**

DEPT-Q NMR Spectrum of 2j

¹⁹F NMR Spectrum of **2**j

¹H NMR Spectrum of **2**k

DEPT-Q NMR Spectrum of 2k

¹⁹F NMR Spectrum of **2**k

-101.5764 -101.5022 -101.5094 -101.5384 -101.5384 -101.5457 -101.5712

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -24 11 (ppm)

¹⁹F NMR Spectrum of **2**I

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -24 11 (ppm)

DEPT-Q NMR Spectrum of 2l'

¹⁹F NMR Spectrum of **2l'**

-105.9600 -105.9706 -105.9818 -105.9818 -105.9872 -106.0082 -106.0082 -106.0291 -106.0291 -106.0456

- apper

DEPT-Q NMR Spectrum of 2m

³¹P NMR Spectrum of **2m**

¹H NMR Spectrum of **2n**

DEPT-Q NMR Spectrum of 2n

¹⁹F NMR Spectrum of **2n**

-117.0280 -117.0434 -117.0568 -117.1917 -117.2058

-100 -120 -140 f1 (ppm) 100 -280 -300 80 60 -80 -160 -180 -200 -220 -240 -260 40 20 -20 -40 -60


```
<sup>13</sup>C NMR Spectrum of 20
```


¹⁹F NMR Spectrum of **20**

¹H NMR Spectrum of **2p**

¹³C NMR Spectrum of **2p**

¹⁹F NMR Spectrum of **2p**

¹H NMR Spectrum of **2r**

¹H NMR Spectrum of **2r'**

7,4007 7,73652 7,73615 7,73615 7,73615 7,73615 7,73615 7,7315 7,7318 7,7318 7,7318 7,7318 7,7318 7,7318 7,7318 7,7318 7,7318 7,7318 7,7318 7,7318 7,7318 7,7318 7,7318 7,7328 7,7318 7,7318 7,7318 7,7318 7,7318 7,7328 7,7338 7,7338 7,7338 7,7238 7,7238 7,7238 7,7238 7,7238 7,7238 7,7238 7,7238 7,7238 7,7238 7,7238 7,7238 7,7238 7,7238

¹H NMR Spectrum of **2s**

DEPT-Q NMR Spectrum of 2s

¹⁹F NMR Spectrum of **2s**

¹H NMR Spectrum of **2s'**

DEPT-Q NMR Spectrum of 2s'

¹⁹F NMR Spectrum of **2s'**

¹H NMR Spectrum of **2t**

¹H NMR Spectrum of **2t'**

¹H NMR Spectrum of **2u**

DEPT-Q NMR Spectrum of $\mathbf{2v}$

¹H NMR Spectrum of 2w

¹H NMR Spectrum of **2w'**

¹H NMR Spectrum of **3**

¹H NMR Spectrum of 4

DEPT-Q NMR Spectrum of 4

¹H NMR Spectrum of **5a**

DEPT-Q NMR Spectrum of 5a

¹H NMR Spectrum of **6a**

¹³CNMR Spectrum of **5b**

¹³C NMR Spectrum of **6b**

¹H NMR Spectrum of **7a**

DEPT-Q NMR Spectrum of 7a

¹⁹F NMR Spectrum of **7a**

¹H NMR Spectrum of 7a'

DEPT-Q NMR Spectrum of 7a'

¹⁹F NMR Spectrum of **7a'**

¹H NMR Spectrum of **7b**

¹³C NMR Spectrum of **7b**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm) ¹H NMR Spectrum of **7b'**

¹³C NMR Spectrum of **7b'**

¹⁹F NMR Spectrum of **7b'**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)