Supporting Information

Efficiently enantioselective synthesis of pyrazolines and isoxazolines enabled by iridium-catalyzed intramolecular allylic substitution reaction

Fang Hu, Hua Zhang, Yun-Peng Chu, and Xin-Ping Hui*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

E-mail: huixp@lzu.edu.cn

Contents

1. General information	.2
2. General procedure for synthesis of substrates 1a–1s and 3a–3p	.2
3. General procedure for enantioselective synthesis of 1 <i>H</i> -pyrazolines 2a-2q, tetrahydr	0-
pyridazine $2r$ and $1H$ -1,2-diazepine $2s$ enabled by iridium-catalyzed intramolecular ally	lic
substitution reaction	.4
4. General procedure for enantioselective synthesis of dihydroisoxazoles 4a-4n, dihydro-4	H-
1,2-oxazine 40, tetrahydro-1,2-oxazepine 4p enabled by iridium-catalyzed intramolecul	ar
allylic substitution reaction	12
5. Synthetic transformation of products	18
6. Scale-up synthesis of compound 2a	21
7. References	22
8. NMR spectra of compounds 2a–2s, 4a–4p and 5–8	23
9. HPLC spectra of compounds 2a–2s, 4a–4p and 5–6	63

1. General information

¹H NMR and ¹³C NMR spectra were recorded on a Bruker AVANCE III 400 spectrometer using tetramethylsilane as internal reference, and chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz, respectively. Optical rotation was measured by the Perkin Elmer 341 polarimeter. The HRMS analysis was obtained on a Bruker Apex II FT-ICR mass spectrometer with ESI ionization method. The *ee* value determination was carried out using HPLC with chiral Chirapak column on Agilent 1260 with a UVdetector. Melting points were taken on an XT–4 melting point apparatus and were uncorrected. Dichloromethane and acetonitrile were freshly distilled from phosphorous pentoxide. Toluene and THF were freshly distilled from a deep-blue solution of sodium-benzophenone under argon. Phosphoramidite ligand L₁-L₂, [Ir(COD)Cl]₂ and *n*-propylamine were purchased from commercial suppliers and used directly. All syntheses and manipulations were carried out under a dry argon atmosphere. Flash column chromatography was carried out utilizing 200–300 mesh silica gel.

2. General procedure for synthesis of substrates 1a-1s and 3a-3p

2.1 General procedure for synthesis of β , γ -allyl carbonate hydrazones 1a–1r

To a solution of aldehyde (20.0 mmol) in THF (30 mL) was added 3-bromoprop-1-ene (40.0 mmol, 3.46 mL, 2.0 equiv.) and saturated aqueous NH₄Cl (30 mL). Then, zinc dust (40.0 mmol, 2.6 g, 2.0 equiv.) was slowly added to the solution at 0 °C and the resulting suspension was stirred overnight at room temperature. Upon completion of the reaction (monitored by TLC), the reaction mixture was filtered and extracted with ethyl acetate (20 mL×3). The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated in reduced pressure. The 1-substituted but-3-en-1-ol **S1** was directly used in next step without further purification.^[1]

Under argon atmosphere, 1-substituted but-3-en-1-ol **S1** (8.0 mmol) and (*Z*)-but-2-ene-1,4-diyl diethyl dicarbonate (12 mmol, 2.79 g, 1.5 equiv.) were dissolved in anhydrous CH_2Cl_2 (20 mL) at room temperature. The solution of Grubbs catalyst 2nd generation (0.16 mmol, 136 mg, 2 mol %) in anhydrous CH_2Cl_2 (5 mL) was added and the mixture was refluxed overnight. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 9/1) to afford product **S2** in 40–65% yields.^[2]

Compound **S2** (5 mmol) was dissolved in diethyl ether at 0 °C and Jones reagent (10 mmol, 4.0 mL, 2.5 M, 2 equiv.) was added dropwise at 0 °C. Then, the mixture was warmed to room temperature and stirred for another 2.5 h. After completion of the reaction (monitored by TLC), the ether layer was separated and the aqueous layer was extracted with ethyl acetate (20 mL×3). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated in reduced pressure. The crude product was directly used in next step without further purification.^[1]

To a solution of β , γ -unsaturated ketone (4 mmol) in MeOH (16 mL), *p*-toluenesulfonyl hydrazide (4.8 mmol, 0.894 g, 1.2 equiv.) was added at 0 °C. The mixture was stirred at 0 °C until the reaction was completed (monitored by TLC). The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel to afford compounds **1a–1o** in 24–43% yield.

The substrates 1p, 1r and 1s were synthesized using the similar methods.

2.2 General procedure for synthesis of β , γ -allyl carbonate oximes 3a–3p

1-Aryl-but-3-en-1-ol **S1** (20 mmol) was dissolved in diethyl ether at 0 °C and Jones reagent (40 mmol, 16.0 mL, 2.5 M, 2 equiv.) was added dropwise at 0 °C. The resulting mixture was warmed to room temperature and stirred for another 4 h. After completion of the reaction (monitored by TLC), the ether layer was separated and the aqueous layer was extracted with ethyl acetate (20 mL×3). The combined organic phase was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated under reduce pressure. The crude β , γ -unsaturated ketone was directly used in next step without further purification.^[1]

To a solution of hydroxylamine hydrochloride (50 mmol, 3.48 g, 5 equiv.) and sodium acetate (70 mmol, 5.74g, 7 equiv.) in ethanol (50 mL) was added β , γ -unsaturated ketone (10 mmol) in ethanol (8 mL). The reaction mixture was stirred overnight at room temperature and concentrated under reduced pressure. Then, the mixture was extracted with ethyl acetate (30 mL×3) and the combined organic phase was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 9/1) to afford β , γ -unsaturated oxime **S3** in 50–70% yield.^[3]

Under argon atmosphere, β , γ -unsaturated oxime **S3** (4.0 mmol) and (*Z*)-but-2-ene-1,4-diyl diethyl dicarbonate (6 mmol, 1.40 g, 1.5 equiv.) were dissolved in dry CH₂Cl₂ (10 mL). To the solution was added the solution of Grubbs catalyst 2nd generation (0.08 mmol, 68 mg, 2 mol %) in dry CH₂Cl₂ (3 mL). The mixture was refluxed overnight and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 9/1) to afford the products **3a–3n** in 20–45% yield.

The substrates **30–3p** were synthesized using the similar methods.

3. General procedure for enantioselective synthesis of 1*H*-pyrazolines 2a–2q, tetrahydropyridazine 2r and 1*H*-1,2-diazepine 2s enabled by iridium-catalyzed intramolecular allylic substitution reactions

A flame dried Schlenk tube was cooled to room temperature and filled with argon. To this flask were added $[Ir(COD)Cl]_2$ (0.004 mmol, 4 mol %), phosphoramidite ligand L₂ (0.008 mmol, 8 mol %), *n*-propylamine (0.5 mL) and THF (0.5 mL). The reaction mixture was heated at 50 °C for 0.5 h and the volatile solvent was removed *in vacuo* to afford a pale-yellow solid. Then, K₂CO₃ (0.05 mmol, 0.5 equiv.) and a solution substrate 1 (0.1 mmol) in CH₂Cl₂ (2 mL) were added. The reaction mixture was stirred for another 20 h. Upon completion of the reaction (monitored by TLC), the reaction mixture was filtrated with celite and washed with CH₂Cl₂. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the product **2**.

(R)-3-phenyl-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2a)

white solid, mp 107.2 – 107.8 °C, 32.0 mg, 98% yield, $[\alpha]_{D}^{26}$ +24.6 (c 0.57, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.4 Hz, 2H), 7.65 (dd, J = 7.6, 2.4 Hz, 2H), 7.40 – 7.35 (m, 3H), 7.28 (d, J = 8.0 Hz, 2H), 6.12 – 6.03 (m, 1H), 5.36 (d, J = 17.2 Hz, 1H), 5.29 (d, J = 10.0 Hz, 1H), 4.35 – 4.28 (m, 1H), 3.21 (dd, J = 16.8, 10.8 Hz, 1H), 2.96 (dd, J = 17.2, 10.0 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.04, 144.21, 136.45, 132.46, 130.79, 130.56, 129.50, 128.76, 128.62, 126.85, 117.73, 64.63, 40.22, 21.59. HRMS (ESI): Exact Mass Calcd. for C₁₈H₁₉N₂O₂S (M+H)⁺: 327.1162, Found: 327.1165. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 26.642 min, t_{minor} = 33.923 min, 96% ee).

(R)-3-(4-fluorophenyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2b)

white solid, mp 161.7 – 162.9 °C, 32.0 mg, 93% yield, $[\alpha]_{D}^{26}$ +20.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.4 Hz, 2H), 7.62 (dd, J = 8.8, 5.6 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.04 (t, J = 8.4 Hz, 2H), 6.09 – 6.01 (m, 1H), 5.35 (d, J = 16.8 Hz, 1H), 5.27 (d, J = 10.4 Hz, 1H), 4.34 – 4.27 (m, 1H), 3.18 (dd, J = 16.8, 10.8 Hz, 1H), 2.92 (dd, J = 16.8, 10.0 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.35, 162.85, 156.06, 144.30, 136.31, 132.39, 128.90, 128.82, 128.73, 127.08, 127.05, 117.84, 115.92, 115.70, 64.69, 40.26, 21.61. HRMS (ESI): Exact Mass Calcd. for C₁₈H₁₈FN₂O₂S (M+H)⁺: 345.1068, Found: 345.1072. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 23.365 min, t_{minor} = 29.963 min, 97% ee).

(R)-3-(4-chlorophenyl)-1-tosyl-5-vinyl-4,5-dihydro-1*H*-pyrazole (2c)

colorless oil, 32.5 mg, 90% yield, $[\alpha]_{D}^{26}$ -10.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.4 Hz, 2H), 7.58 (dd, J = 6.8, 2.0 Hz, 2H), 7.35 – 7.33 (m, 2H), 7.29 (d, J = 8.4 Hz, 2H), 6.11 – 6.02 (m, 1H), 5.37 (d, J = 17.2 Hz, 1H), 5.29 (d, J = 10.4 Hz, 1H), 4.37 – 4.30 (m, 1H), 3.19 (dd, J = 16.8, 10.8 Hz, 1H), 2.93 (dd, J = 16.8, 10.0 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.89, 144.29, 136.58, 136.19, 132.38, 129.49, 129.23, 128.88, 128.67, 128.01, 117.87, 64.71, 40.05, 21.56. HRMS (ESI): Exact Mass Calcd. for C₁₈H₁₈ClN₂O₂S (M+H)⁺: 361.0772, Found: 361.0777. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 27.728 min, t_{minor} = 33.757 min, 93% ee).

(R)-3-(4-bromophenyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2d)

white solid, mp 149.8 – 150.9 °C, 34.8 mg, 86% yield, $[\alpha]_D^{26}$ –55.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.4 Hz, 2H), 7.49 (s, 4H), 7.28 (d, J = 8.0 Hz, 2H), 6.10 – 6.01 (m, 1H), 5.35 (d, J = 17.2 Hz, 1H), 5.28 (d, J = 10.0 Hz, 1H), 4.36 – 4.29 (m, 1H), 3.18 (dd, J = 17.2, 10.8 Hz, 1H), 2.92 (dd, J = 16.8, 10.0 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.01, 144.35, 136.22, 132.41, 131.89, 129.70, 129.54, 128.71, 128.25, 125.00, 117.94, 64.78, 40.04, 21.62. HRMS (ESI): Exact Mass Calcd. for C₁₈H₁₈BrN₂O₂S (M+H)⁺: 405.0267, Found: 405.0272. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 0.5 mL/min, retention time: t_{major} = 28.883 min, t_{minor} = 33.922 min, 90% ee).

(R)-3-(p-tolyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2e)

colorless oil, 31.3 mg, 92% yield, $[\alpha]_D^{26}$ –33.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 6.10 – 6.01 (m, 1H), 5.34 (d, *J* = 17.2 Hz, 1H), 5.26 (d, *J* = 10.0 Hz, 1H), 4.29 – 4.22 (m, 1H), 3.17 (dd, *J* = 16.8, 10.4 Hz, 1H), 2.92 (dd, *J* = 16.8, 10.0 Hz, 1H), 2.36 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.22, 144.16, 140.99, 136.54, 132.33, 129.48, 129.33, 128.76, 128.00, 126.83, 117.64, 64.55, 40.26, 21.59, 21.48. HRMS (ESI): Exact Mass Calcd. for C₁₉H₂₁N₂O₂S (M+H)⁺: 341.1318, Found: 341.1323. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 30.452 min, t_{minor} = 35.454 min, 97% ee).

(R)-3-(4-methoxyphenyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2f)

white solid, mp 147.1 – 148.6 °C, 19.9 mg, 56% yield, $[\alpha]_{D}^{26}$ –56.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 8.8 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 6.88 (d, J = 9.2 Hz,

2H), 6.12 - 6.04 (m, 1H), 5.36 (d, J = 17.2 Hz, 1H), 5.28 (d, J = 10.0 Hz, 1H), 4.30 - 4.23 (m, 1H), 3.83 (s, 3H), 3.17 (dd, J = 16.8, 10.8 Hz, 1H), 2.93 (dd, J = 16.8, 10.0 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.52, 156.88, 144.11, 136.60, 132.36, 129.45, 128.79, 128.49, 123.41, 117.58, 114.03, 64.48, 55.39, 40.31, 21.59. HRMS (ESI): Exact Mass Calcd. for C₁₉H₂₁N₂O₃S (M+H)⁺: 357.1267, Found: 357.1274. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 46.998 min, t_{minor} = 66.760 min, 98% ee).

(R)-3-(1,1'-biphenyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2g)

white solid, mp 158.6 – 159.4 °C, 35.4 mg, 88% yield, $[\alpha]_D^{26}$ –111.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 7.61 – 7.58 (m, 4H), 7.47 – 7.43 (m, 2H), 7.39 – 7.35 (m, 1H), 7.30 (d, J = 8.0 Hz, 2H), 6.14 – 6.05 (m, 1H), 5.38 (d, J = 17.2 Hz, 1H), 5.30 (d, J = 10.0 Hz, 1H), 4.37 – 4.29 (m, 1H), 3.25 (dd, J = 16.8, 10.8 Hz, 1H), 2.99 (dd, J = 16.8, 10.0 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.76, 144.22, 143.30, 140.03, 136.46, 132.46, 129.65, 129.52, 128.93, 128.77, 127.94, 127.33, 127.26, 127.05, 117.76, 64.68, 40.23, 21.61. HRMS (ESI): Exact Mass Calcd. for C₂₄H₂₃N₂O₂S (M+H)⁺: 403.1475, Found: 403.1480. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 49.871 min, t_{minor} = 59.985 min, 95% ee).

(R)-3-(m-tolyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2h)

white solid, mp 163.5 – 164.8 °C, 32.0 mg, 94% yield, $[\alpha]_D^{26}$ –26.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.4 Hz, 2H), 7.51 (s, 1H), 7.42 (d, J = 7.6 Hz, 1H), 7.30 – 7.20 (m, 4H), 6.12 – 6.03 (m, 1H), 5.36 (d, J = 16.8 Hz, 1H), 5.28 (d, J = 10.4 Hz, 1H), 4.33 – 4.26 (m, 1H), 3.20 (dd, J = 16.8, 10.8 Hz, 1H), 2.95 (dd, J = 16.8, 10.0 Hz, 1H), 2.39 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.25, 144.17, 138.40, 136.51, 132.44, 131.40, 130.69, 129.49, 128.74, 128.50, 127.39, 124.07, 117.64, 64.53, 40.28, 21.58, 21.31. HRMS (ESI): Exact Mass Calcd. for C₁₉H₂₁N₂O₂S (M+H)⁺: 341.1318, Found: 341.1325. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 21.884 min, t_{minor} = 28.315 min, 97% ee).

(R)-1-tosyl-3-(trifluoromethyl)-5-vinyl-4,5-dihydro-1H-pyrazole (2i)

colorless oil, 38.2 mg, 97% yield, $[\alpha]_D^{26}$ +17.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.79 (m, 4H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 6.11 – 6.02 (m, 1H), 5.38 (d, *J* = 17.2 Hz, 1H), 5.30 (d, *J* = 10.4 Hz, 1H), 4.41 – 4.34 (m, 1H), 3.26 (dd, *J* = 16.8, 10.8 Hz, 1H), 2.98 (dd, *J* = 16.8, 10.0 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.63, 144.49, 136.07, 132.37, 131.64, 131.37, 131.05, 129.88, 129.61, 129.26, 128.68, 127.01, 126.98, 125.06, 123.56, 123.52, 122.35, 118.08, 64.87, 40.04, 21.60. HRMS (ESI): Exact Mass Calcd. for C₁₉H₁₈F₃N₂O₂S (M+H)⁺: 395.1036, Found: 395.1041. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 92/8, flow rate = 1.0 mL/min, retention time: t_{major} = 38.514 min, t_{minor} = 41.838 min, 95% ee).

(R)-3-(3-chlorophenyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2j)

colorless oil, 34.2 mg, 95% yield, $[\alpha]_{D}^{26}$ -7.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.4 Hz, 2H), 7.64 (s, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.33 – 7.30 (m, 3H), 6.11 – 6.02 (m, 1H), 5.37 (d, *J* = 17.2 Hz, 1H), 5.30 (d, *J* = 10.4 Hz, 1H), 4.38 – 4.31 (m, 1H), 3.21 (dd, *J* = 16.8, 10.8 Hz, 1H), 2.94 (dd, *J* = 16.8, 10.0 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.72, 144.40, 136.16, 134.77, 132.54, 132.42, 130.49, 129.92, 129.59, 128.70, 126.78, 124.90, 117.98, 64.75, 40.06, 21.62. HRMS (ESI): Exact Mass Calcd. for C₁₈H₁₈ClN₂O₂S (M+H)⁺: 361.0772, Found: 361.0776. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 19.910 min, t_{minor} = 24.079 min, 97% ee).

(*R*)-3-(2-chlorophenyl)-1-tosyl-5-vinyl-4,5-dihydro-1*H*-pyrazole (2k)

colorless oil, 18.4 mg, 51% yield, $[\alpha]_{D}^{26}$ +83.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.4 Hz, 2H), 7.50 (dd, J = 7.6, 2.0 Hz, 1H), 7.27 – 7.14 (m, 5H), 6.03 – 5.95 (m, 1H), 5.25 (d, J = 17.2 Hz,

1H), 5.19 (d, J = 10.4 Hz, 1H), 4.25 – 4.18 (m, 1H), 3.24 (dd, J = 17.2, 10.4 Hz, 1H), 3.07 (dd, J = 17.2, 10.4 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.21, 144.37, 136.08, 132.80, 132.39, 131.08, 130.55, 130.54, 130.26, 129.51, 128.85, 126.91, 117.97, 65.48, 43.17, 21.63. HRMS (ESI): Exact Mass Calcd. for C₁₈H₁₈ClN₂O₂S (M+H)⁺: 361.0772, Found: 361.0778. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{minor} = 21.507 min, t_{major} = 26.629 min, 89% ee).

(R)-3-(naphthaien-2-yl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2l)

white solid, mp 124.6 – 125.3 °C, 35.3 mg, 94% yield, $[\alpha]_{D}^{26}$ +5.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 8.8, 1.6 Hz, 1H), 7.85 – 7.80 (m, 6H), 7.54 – 7.47 (m, 2H), 7.28 (d, J = 8.0 Hz, 2H), 6.16 – 6.07 (m, 1H), 5.40 (d, J = 17.2 Hz, 1H), 5.31 (d, J = 10.4 Hz, 1H), 4.40 – 4.33 (m, 1H), 3.34 (dd, J = 16.8, 10.8 Hz, 1H), 3.07 (dd, J = 16.8, 10.0 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.15, 144.25, 136.48, 134.25, 132.82, 132.43, 129.52, 128.77, 128.46, 128.45, 128.38, 127.84, 127.40, 127.34, 126.76, 123.53, 117.78, 64.76, 40.18, 21.59. HRMS (ESI): Exact Mass Calcd. for C₂₂H₂₁N₂O₂S (M+H)⁺: 377.1318, Found: 377.1322. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 33.806 min, t_{minor} = 40.933 min, 99% ee).

(R)-tert-butyl-3-(1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazol-3-yl)-1H-indole-1-carboxylate (2m)

colorless oil, 46.0 mg, 99% yield, $[\alpha]_{D}^{27}$ –37.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.38 – 8.36 (m, 1H), 8.12 (d, *J* = 7.6 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.66 (s, 1H), 7.43 – 7.36 (m, 2H), 7.26 (d, *J* = 8.4 Hz, 2H), 6.15 – 6.06 (m, 1H), 5.40 (d, *J* = 17.2 Hz, 1H), 5.31 (d, *J* = 10.0 Hz, 1H), 4.32 – 4.25 (m, 1H), 3.23 (dd, *J* = 16.4, 10.4 Hz, 1H), 3.01 (dd, *J* = 16.8, 10.0 Hz, 1H), 2.36 (s, 3H), 1.67 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 152.80, 149.17, 144.16, 136.48, 135.68, 132.26, 129.44, 128.76, 127.50, 127.08, 125.57, 123.98, 123.04, 117.75, 115.01, 113.27, 84.86, 63.67, 41.02, 28.13, 21.57. HRMS (ESI): Exact Mass Calcd. for C₂₅H₂₈N₃O₄S (M+H)⁺: 466.1795, Found: 466.1798. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{minor} = 23.247 min, t_{major} = 29.962 min, 97% ee).

(R)-3-(furan-2-yl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2n)

colorless oil, 25.9 mg, 82% yield, $[\alpha]_{D}^{27}$ +70.0 (c 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 1.2 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 6.78 (d, J = 3.2 Hz, 1H), 6.47 (dd, J = 3.6, 2.0 Hz, 1H), 6.09 – 6.01 (m, 1H), 5.36 (d, J = 17.2 Hz, 1H), 5.29 (d, J = 10.4 Hz, 1H), 4.32 – 4.25 (m, 1H), 3.18 (dd, J = 16.8, 10.8 Hz, 1H), 2.93 (dd, J = 17.2, 10.0 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.85, 146.41, 144.68, 144.25, 136.12, 132.38, 129.53, 128.79, 117.89, 112.44, 111.97, 64.08, 40.07, 21.62. HRMS (ESI): Exact Mass Calcd. for C₁₆H₁₇N₂O₃S (M+H)⁺: 317.0954, Found: 317.0960. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, retention time: t_{major} = 20.299 min, t_{minor} = 45.552 min, 94% ee).

(R)-3-(thiophen-2-yl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (20)

white solid, mp 145.1 – 146.9 °C, 32.2 mg, 97% yield, $[\alpha]_{D}^{27}$ –65.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.4 Hz, 2H), 7.41 (dd, J = 5.2, 0.8 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.15 (dd, J = 3.6, 0.8 Hz, 1H), 7.02 (dd, J = 4.8, 3.6 Hz, 1H), 6.11 – 6.02 (m, 1H), 5.36 (d, J = 17.2 Hz, 1H), 5.29 (d, J = 10.4 Hz, 1H), 4.33 – 4.26 (m, 1H), 3.19 (dd, J = 16.8, 10.8 Hz, 1H), 2.97 (dd, J = 16.8, 10.0 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.69, 144.25, 136.23, 134.33, 132.25, 129.49, 129.32, 128.93, 128.84, 127.44, 117.85, 64.70, 40.93, 21.60. HRMS (ESI): Exact Mass Calcd. for C₁₆H₁₇N₂O₂S₂ (M+H)⁺: 333.0726, Found: 333.0732. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 29.916 min, t_{minor} = 35.600 min, 98% ee).

(R)-5-methyl-3-phenyl-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2p)

white solid, mp 120.1 – 120.8 °C, 31.9 mg, 94% yield, $[\alpha]_{D}^{27}$ +19.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.4 Hz, 2H), 7.67 – 7.65 (m, 2H), 7.39 – 7.37 (m, 3H), 7.27 (d, J = 7.2 Hz, 2H), 6.04 (dd, J = 17.2, 10.8 Hz, 1H), 5.28 (d, J = 17.6 Hz, 1H), 5.15 (d, J = 10.8 Hz, 1H), 3.21 (d, J = 16.4 Hz, 1H),

3.05 (d, J = 16.8 Hz, 1H), 2.39 (s, 3H), 1.69 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.45, 143.50, 139.66, 137.03, 131.23, 130.17, 129.14, 128.59, 128.37, 126.53, 114.76, 71.49, 47.98, 23.65, 21.57. HRMS (ESI): Exact Mass Calcd. for C₁₉H₂₁N₂O₂S (M+H)⁺: 341.1318, Found: 341.1325. HPLC (Chiralpak AD–H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, retention time: t_{major} = 25.521 min, t_{minor} = 30.528 min, 30% ee).

(R)-3-cyclohexyl-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2q)

colorless oil, 30.6 mg, 92% yield, $[\alpha]_{D}^{26}$ +242.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 7.6 Hz, 2H), 7.31 (d, J = 7.6 Hz, 2H), 6.03 – 5.95 (m, 1H), 5.28 (d, J = 17.2 Hz, 1H), 5.22 (d, J = 10.0 Hz, 1H), 4.09 – 4.03 (m, 1H), 2.73 – 2.66 (m, 1H), 2.57 – 2.50 (m, 1H), 2.43 (s, 3H), 2.28 (s, 1H), 1.71 – 1.68 (m, 5H), 1.24 – 1.17 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 166.32, 144.04, 136.71, 131.96, 129.26, 128.87, 117.20, 63.75, 40.67, 39.22, 30.29, 29.91, 25.78, 25.64, 25.57, 21.61. HRMS (ESI): Exact Mass Calcd. for C₁₈H₂₅N₂O₂S (M+H)⁺: 333.1631, Found: 333.1629. HPLC (Chiralpak AD–H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, retention time: t_{minor} = 12.270 min, t_{major} = 14.196 min, 97% ee).

(R)-3-phenyl-1-tosyl-6-vinyl-1,4,5,6-tetrahydropyridazine (2r)

colorless oil, 30.9 mg, 91% yield, $[\alpha]_{D}^{27}$ +150.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.4 Hz, 2H), 7.69 (dd, J = 7.6, 2.0 Hz, 2H), 7.38 – 7.32 (m, 3H), 7.26 (d, J = 8.0 Hz, 2H), 5.66 – 5.57 (m, 1H), 5.19 – 5.18 (m, 1H), 5.14 – 5.11 (m, 1H), 5.03 – 5.00 (m, 1H), 2.63 – 2.57 (m, 1H), 2.41 – 2.31 (m, 4H), 2.06 – 2.00 (m, 1H), 1.98 – 1.90 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.45, 143.58, 136.95, 135.92, 134.30, 129.21, 129.14, 128.41, 128.32, 125.24, 117.77, 53.99, 23.27, 21.57, 18.55. HRMS (ESI): Exact Mass Calcd. for C₁₉H₂₁N₂O₂S (M+H)⁺: 341.1318, Found: 341.1326. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{minor} = 23.508 min, t_{major} = 27.270 min, 96% ee).

(R)-3-phenyl-1-tosyl-7-vinyl-4,5,6,7-tetrahydro-1*H*-1,2-diazepine (2s)

white solid, mp 125.2 – 126.9 °C, 35.0 mg, 99% yield, $[\alpha]_{D}^{27}$ +678.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.4 Hz, 2H), 7.72 (dd, J = 8.0, 1.6 Hz, 2H), 7.42 – 7.37 (m, 3H), 7.30 (d, J = 8.0 Hz, 2H), 5.28 – 5.20 (m, 1H), 5.07 – 5.06 (m, 1H), 4.90 (d, J = 17.2 Hz, 1H), 4.80 (d, J = 10.8 Hz, 1H), 3.08 – 3.03 (m, 1H), 2.92 – 2.85 (m, 1H), 2.42 (s, 3H), 2.10 – 2.05 (m, 2H), 1.76 – 1.68 (m, 1H), 1.51 – 1.40 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.71, 143.77, 137.29, 134.44, 133.64, 130.15, 129.41, 129.09, 128.41, 127.20, 117.13, 60.53, 33.96, 30.73, 21.63, 15.74. HRMS (ESI): Exact Mass Calcd. for C₂₀H₂₃N₂O₂S (M+H)⁺: 355.1475, Found: 355.1482. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{minor} = 15.596 min, t_{major} = 24.030 min, 92% ee).

4. General procedure for enantioselective synthesis of dihydroisoxazoles 4a–4n, dihydro-4*H*-1,2-oxazine 4o, tetrahydro-1,2-oxazepine 4p enabled by iridium-catalyzed intramolecular allylic substitution reactions

A flame dried Schlenk tube was cooled to room temperature and filled with argon. To this flask were added $[Ir(COD)Cl]_2$ (0.004 mmol, 4 mol %), phosphoramidite ligand L₂ (0.008 mmol, 8 mol %), *n*-propylamine (0.5 mL) and THF (0.5 mL). The reaction mixture was heated at 50 °C for 0.5 h and the volatile solvents were removed *in vacuo* to afford a pale-yellow solid. Then, K₂CO₃ (0.05 mmol, 0.5 equiv.) and a solution of allylic carbonate **3** (0.1 mmol) in CH₂Cl₂ (2 mL) were added. The reaction mixture was stirred for another 20 h. Upon completion of the reaction (monitored by TLC), the reaction mixture was filtrated with celite and washed with CH₂Cl₂. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the product **4**.

(R)-3-phenyl-5-vinyl-4,5-dihydroisoxazole (4a)

white solid, mp 43.6 – 44.5 °C, 15.7 mg, 91% yield, $[\alpha]_{D}^{24}$ –110.0 (c 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.66 (m, 2H), 7.41 – 7.40 (m, 3H), 6.01 – 5.93 (m, 1H), 5.41 (d, *J* = 17.2 Hz, 1H), 5.27 (d, *J* = 10.0 Hz, 1H), 5.20 – 5.13 (m, 1H), 3.50 (dd, *J* = 16.4, 10.4 Hz, 1H), 3.13 (dd, *J* = 16.4, 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.36, 136.10, 130.08, 129.57, 128.71, 126.68, 117.93, 82.03, 40.53. HRMS (ESI): Exact Mass Calcd. for C₁₁H₁₂NO (M+H)⁺: 174.0913, Found: 174.0916. HPLC (Chiralpak IC column, *n*hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, retention time: t_{major} = 28.121 min, t_{minor} = 30.563 min, 92% ee).

(R)-3-(4-fluorophenyl)-5-vinyl-4,5-dihydroisoxazole (4b)

white solid, mp 67.0 – 67.7 °C, 18.9 mg, 99% yield, $[\alpha]_{D}^{25}$ –119.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 8.8, 5.6 Hz, 2H), 7.09 (t, J = 8.8 Hz, 2H), 6.00 – 5.92 (m, 1H), 5.41 (d, J = 16.8 Hz, 1H), 5.27 (d, J = 10.4 Hz, 1H), 5.19 – 5.13 (m, 1H), 3.48 (dd, J = 16.4, 10.8 Hz, 1H), 3.10 (dd, J = 16.4, 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.00, 162.51, 155.39, 135.97, 128.65, 128.56, 125.87, 125.84, 118.04, 115.97, 115.75, 82.14, 40.58. HRMS (ESI): Exact Mass Calcd. for C₁₁H₁₁FNO (M+H)⁺: 192.0819, Found: 192.0821. HPLC (Chiralpak IC column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, retention time: t_{major} = 19.721 min, t_{minor} = 22.818 min, 76% ee).

(R)-3-(4-chlorophenyl)-5-vinyl-4,5-dihydroisoxazole (4c)

white solid, mp 84.5 – 85.4 °C, 19.3 mg, 93% yield, $[\alpha]_{D}^{25}$ –130.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 6.8, 2.0 Hz, 2H), 7.37 (dd, J = 6.8, 2.0 Hz, 2H), 6.00 – 5.92 (m, 1H), 5.41 (d, J = 17.2 Hz, 1H), 5.28 (d, J = 10.4 Hz, 1H), 5.20 – 5.14 (m, 1H), 3.47 (dd, J = 16.4, 10.4 Hz, 1H), 3.09 (dd, J = 16.4, 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 155.45, 136.04, 135.87, 129.00, 128.09, 127.89, 118.13, 82.29, 40.35. HRMS (ESI): Exact Mass Calcd. for C₁₁H₁₁ClNO (M+H)⁺: 208.0524, Found: 208.0526. HPLC (Chiralpak IC column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, retention time: t_{major} = 20.322 min, t_{minor} = 22.814 min, 91% ee).

(R)-3-(4-bromophenyl)-5-vinyl-4,5-dihydroisoxazole (4d)

white solid, mp 100.1 – 101.2 °C, 22.9 mg, 91% yield, $[\alpha]_{\rm p}^{22}$ –86.0 (c 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 4H), 6.00 – 5.91 (m, 1H), 5.41 (d, *J* = 16.8 Hz, 1H), 5.28 (d, *J* = 10.0 Hz, 1H), 5.20 – 5.14 (m, 1H), 3.47 (dd, *J* = 16.4, 10.4 Hz, 1H), 3.09 (dd, *J* = 16.4, 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 155.56, 135.85, 131.96, 128.52, 128.11, 124.35, 118.19, 82.34, 40.28. HRMS (ESI): Exact Mass Calcd. for C₁₁H₁₁BrNO (M+H)⁺: 252.0019, Found: 252.0022. HPLC (Chiralpak IC column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, retention time: t_{major} = 22.617 min, t_{minor} = 25.395 min, 93% ee).

(R)-3-(p-tolyl)-5-vinyl-4,5-dihydroisoxazole (4e)

white solid, mp 68.2 – 70.1 °C, 17.2 mg, 92% yield, $[\alpha]_{D}^{25}$ –171.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.01 – 5.93 (m, 1H), 5.40 (d, J = 16.8 Hz, 1H), 5.26 (d, J = 10.4 Hz, 1H), 5.17 – 5.11 (m, 1H), 3.48 (dd, J = 16.4, 10.4 Hz, 1H), 3.11 (dd, J = 16.4, 8.4 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.33, 140.31, 136.21, 129.41, 126.75, 126.63, 117.83, 81.87, 40.66, 21.43. HRMS (ESI): Exact Mass Calcd. for C₁₂H₁₄NO (M+H)⁺: 188.1070, Found: 188.1073. HPLC (Chiralpak AD–H column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, retention time: t_{major} = 15.941 min, t_{minor} = 17.777 min, 94% ee).

(R)-3-(4-methoxyphenyl)-5-vinyl-4,5-dihydroisoxazole (4f)

white solid, mp 77.4 – 77.8 °C, 20.1 mg, 99% yield, $[\alpha]_{D}^{25}$ –166.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 5.99 – 5.91 (m, 1H), 5.38 (d, J = 17.2 Hz, 1H), 5.24 (d, J = 10.4 Hz, 1H), 5.14 – 5.08 (m, 1H), 3.82 (s, 3H), 3.45 (dd, J = 16.4, 10.4 Hz, 1H), 3.08 (dd, J = 16.4, 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 161.06, 155.95, 136.25, 128.20, 122.14, 117.80, 114.13, 81.78, 55.35, 40.79. HRMS (ESI): Exact Mass Calcd. for C₁₂H₁₄NO₂ (M+H)⁺: 204.1019, Found: 204.1022. HPLC (Chiralpak OD–H column, *n*-hexane/*i*-PrOH = 95/5, flow rate = 1.0 mL/min, retention time: t_{minor} = 19.754 min, t_{major} = 22.778 min, 94% ee).

(*R*)-3-([1,1'-biphenyl]-4-yl)-5-vinyl-4,5-dihydroisoxazole (4g)

white solid, mp 130.1 – 130.9 °C, 22.7 mg, 91% yield, $[\alpha]_D^{25}$ –158.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.4 Hz, 2H), 7.63 – 7.59 (m, 4H), 7.44 (t, J = 7.6 Hz, 2H), 7.38 – 7.34 (m, 1H), 6.01 – 5.93 (m, 1H), 5.41 (d, J = 16.8 Hz, 1H), 5.26 (d, J = 10.4 Hz, 1H), 5.20 – 5.13 (m, 1H), 3.51 (dd, J = 16.4, 10.8 Hz, 1H), 3.14 (dd, J = 16.4, 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.13, 142.81, 140.17, 136.10, 128.92, 128.44, 127.83, 127.37, 127.15, 127.06, 118.00, 82.12, 40.55. HRMS (ESI): Exact Mass Calcd. for C₁₇H₁₆NO (M+H)⁺: 250.1226, Found: 250.1230. HPLC (Chiralpak IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, retention time: t_{major} = 19.111 min, t_{minor} = 25.833 min, 91% ee).

(R)-3-(3-(trifluoromethyl)phenyl)-5-vinyl-4,5-dihydroisoxazole (4h)

white solid, mp 71.8 – 72.6 °C, 23.1 mg, 96% yield, $[\alpha]_{D}^{25}$ –148.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.87 (m, 2H), 7.66 (d, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 6.01 – 5.93 (m, 1H), 5.43 (d, *J* = 17.2 Hz, 1H), 5.29 (d, *J* = 10.4 Hz, 1H), 5.25 – 5.19 (m, 1H), 3.52 (dd, *J* = 16.4, 10.8 Hz, 1H), 3.15 (dd, *J* = 16.4, 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 155.30, 135.70, 131.45, 131.12, 130.49, 129.71, 129.29, 126.59, 126.55, 123.45, 123.41, 123.38, 118.28, 82.51, 40.17. HRMS (ESI): Exact Mass Calcd. for C₁₂H₁₁F₃NO (M+H)⁺: 242.0787, Found: 242.0792. HPLC (Chiralpak IC column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, retention time: t_{major} = 10.586 min, t_{minor} = 12.380 min, 86% ee).

(R)-3-(3-chlorophenyl)-5-vinyl-4,5-dihydroisoxazole (4i)

white solid, mp 69.6 – 71.1 °C, 19.7 mg, 95% yield, $[\alpha]_D^{25}$ –183.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 1.6 Hz, 1H), 7.56 – 7.54 (m, 1H), 7.39 – 7.31 (m, 2H), 6.00 – 5.91 (m, 1H), 5.41 (d, J = 17.2 Hz, 1H), 5.28 (d, J = 10.0 Hz, 1H), 5.21 – 5.15 (m, 1H), 3.47 (dd, J = 16.4, 10.8 Hz, 1H), 3.09 (dd, J = 16.4, 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 155.34, 135.79, 134.76, 131.35, 130.03, 129.99, 126.71, 124.72, 118.19, 82.35, 40.24. HRMS (ESI): Exact Mass Calcd. for C₁₁H₁₁ClNO (M+H)⁺: 208.0524, Found: 208.0527. HPLC (Chiralpak OD–H column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, retention time: t_{major} = 12.181 min, t_{minor} = 13.877 min, 89% ee).

(R)-3-(m-tolyl)-5-vinyl-4,5-dihydroisoxazole (4j)

colorless oil, 18.5 mg, 99% yield, $[\alpha]_{p}^{26}$ –131.7 (c 0.6, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.31 – 7.21 (m, 2H), 6.01 – 5.92 (m, 1H), 5.40 (d, *J* = 17.2 Hz, 1H), 5.26 (d, *J* = 10.4 Hz, 1H), 5.18 – 5.12 (m, 1H), 3.49 (dd, *J* = 16.4, 10.4 Hz, 1H), 3.12 (dd, *J* = 16.4, 8.4 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.47, 138.43, 136.16, 130.88, 129.46, 128.59, 127.25, 123.87, 117.85, 81.94, 40.60, 21.34. HRMS (ESI): Exact Mass Calcd. for C₁₂H₁₄NO (M+H)⁺: 188.1070, Found: 188.1073. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, retention time: t_{minor} = 19.703 min, t_{major} = 21.050 min, 95% ee).

(R)-3-(3-methoxyphenyl)-5-vinyl-4,5-dihydroisoxazole (4k)

colorless oil, 17.5 mg, 86% yield, $[\alpha]_{D}^{26}$ –155.4 (c 0.65, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 2H), 7.17 (d, *J* = 7.6 Hz, 1H), 6.96 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.01 – 5.92 (m, 1H), 5.41 (d, *J* = 17.2 Hz, 1H), 5.27 (d, *J* = 10.0 Hz, 1H), 5.19 – 5.13 (m, 1H), 3.84 (s, 3H), 3.49 (dd, *J* = 16.4, 10.8 Hz, 1H), 3.11 (dd, *J* = 16.4, 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.72, 156.36, 136.06, 130.82, 129.71, 119.36, 117.98, 116.47, 111.25, 82.11, 55.37, 40.58. HRMS (ESI): Exact Mass Calcd. for C₁₂H₁₄NO₂ (M+H)⁺: 204.1019, Found: 204.1021. HPLC (Chiralpak AD–H column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, retention time: t_{major} = 17.718 min, t_{minor} = 19.856 min, 91% ee).

(R)-3-(naphthalen-2-yl)-5-vinyl-4,5-dihydroisoxazole (4l)

white solid, mp 93.3 – 95.1 °C, 19.6 mg, 88% yield, $[\alpha]_{D}^{26}$ –161.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.95 (m, 1H), 7.88 – 7.82 (m, 4H), 7.51 – 7.49 (m, 2H), 6.03 – 5.95 (m, 1H), 5.43 (d, *J* = 16.8 Hz, 1H), 5.28 (d, *J* = 10.0 Hz, 1H), 5.23 – 5.17 (m, 1H), 3.60 (dd, *J* = 16.4, 10.8 Hz, 1H), 3.24 (dd, *J* = 16.4, 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.54, 136.11, 134.04, 133.00, 128.55, 128.36, 127.86, 127.18, 127.12, 126.88, 126.69, 123.58, 118.04, 82.24, 40.49. HRMS (ESI): Exact Mass Calcd. for C₁₅H₁₄NO (M+H)⁺: 224.1070, Found: 224.1072. HPLC (Chiralpak AD–H column, *n*-hexane/*i*-PrOH = 95/5, flow rate = 1.0 mL/min, retention time: t_{major} = 14.438 min, t_{minor} = 16.774 min, 91% ee).

tert-butyl (*R*)-3-(5-vinyl-4,5-dihydroisoxazol-3-yl)-1*H*-indole-1-carboxylate (4m)

white solid, mp 95.1 – 95.9 °C, 23.7 mg, 76% yield, $[\alpha]_D^{26}$ –86.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.25 – 8.23 (m, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.70 (s, 1H), 7.40 – 7.30 (m, 2H), 6.01 – 5.93 (m, 1H), 5.42 (d, *J* = 16.8 Hz, 1H), 5.27 (d, *J* = 10.0 Hz, 1H), 5.15 – 5.08 (m, 1H), 3.52 (dd, *J* = 16.0, 10.4 Hz, 1H), 3.15 (dd, *J* = 16.0, 8.4 Hz, 1H), 1.69 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 151.82, 149.37, 136.11, 135.69, 127.11, 126.55, 125.50, 123.76, 123.10, 117.95, 115.00, 111.89, 84.70, 80.84, 41.47, 28.17. HRMS (ESI): Exact Mass Calcd. for C₁₈H₂₁N₂O₃ (M+H)⁺: 313.1547, Found: 313.1549. HPLC (Chiralpak AD–H column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, retention time: t_{major} = 14.169 min, t_{minor} = 16.564 min, 85% ee).

(R)-3-(thiophen-2-yl)-5-vinyl-4,5-dihydroisoxazole (4n)

colorless oil, 16.1 mg, 90% yield, $[\alpha]_{D}^{26}$ –129.3 (c 0.75, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.37 (m, 1H), 7.18 (d, *J* = 2.8 Hz, 1H), 7.05 (dd, *J* = 4.0, 4.8 Hz, 1H), 5.99 – 5.90 (m, 1H), 5.39 (d, *J* = 17.2 Hz, 1H), 5.26 (d, *J* = 10.0 Hz, 1H), 5.14 (q, *J* = 8.4 Hz, 1H), 3.49 (dd, *J* = 16.4, 10.8 Hz, 1H), 3.12 (dd, *J* = 16.4, 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 152.13, 135.78, 132.07, 128.28, 128.25, 127.28, 118.18, 82.24, 41.32. HRMS (ESI): Exact Mass Calcd. for C₉H₁₀NOS (M+H)⁺: 180.0478, Found: 180.0481. HPLC (Chiralpak AD–H column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, retention time: t_{major} = 13.642 min, t_{minor} = 15.135 min, 95% ee).

(R)-3-phenyl-6-vinyl-5,6-dihydro-4H-1,2-oxazine (40)

colorless oil, 18.1 mg, 97% yield, $[\alpha]_{D}^{26}$ –237.7 (c 0.85, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.66 (m, 2H), 7.37 – 7.35 (m, 3H), 5.97 – 5.89 (m, 1H), 5.41 (d, *J* = 17.6 Hz, 1H), 5.27 (d, *J* = 10.4 Hz, 1H), 4.35 – 4.30 (m, 1H), 2.69 – 2.58 (m, 2H), 2.18 – 2.11 (m, 1H), 1.96 – 1.86 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 154.27, 135.89, 129.45, 128.45, 125.33, 117.72, 75.35, 24.09, 21.08. HRMS (ESI): Exact Mass Calcd. for

 $C_{12}H_{14}NO (M+H)^+$: 188.1070, Found: 188.1073. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 92/8, flow rate = 1.0 mL/min, retention time: $t_{major} = 15.152 \text{ min}, t_{minor} = 16.377 \text{ min}, 90\%$ ee).

(R)-3-phenyl-7-vinyl-4,5,6,7-tetrahydro-1,2-oxazepine (4p)

colorless oil, 18.7 mg, 93% yield, $[\alpha]_{D}^{26}$ –57.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 6.4 Hz, 2H), 7.44 – 7.39 (m, 3H), 6.05 – 5.97 (m, 1H), 5.36 (d, *J* = 17.6 Hz, 1H), 5.19 (d, *J* = 10.4 Hz, 1H), 4.24 – 4.20 (m, 1H), 3.23 – 3.16 (m, 1H), 2.81 – 2.77 (m, 1H), 2.09 – 1.97 (m, 2H), 1.94 – 1.84 (m, 1H), 1.63 – 1.57 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.72, 138.07, 135.44, 130.35, 128.58, 126.92, 115.34, 80.30, 35.39, 29.44, 21.86. HRMS (ESI): Exact Mass Calcd. for C₁₃H₁₆NO (M+H)⁺: 202.1226, Found: 202.1230. HPLC (Chiralpak OD–H column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, retention time: t_{minor} = 12.350 min, t_{major} = 18.285 min, 94% ee).

5. Synthetic transformation of products

Under argon atmosphere, a solution of compound 4d (50.4 mg, 0.2 mmol) and but-3-en-1-ylbenzene (79.2 mg, 0.6 mmol, 3.0 equiv.) in dry DCM (2 mL) was treated with Grubbs 2^{nd} catalyst (5.1 mg, 3 mol %). The reaction mixture was refluxed for 24 h. After cooling to room temperature, DCM was evaporated under reduced pressure and the residue was purified by flash column chromatography on silica gel (PE/EtOAc = 19/1) to afford product 5 (61.2 mg).

(*R*,*E*)-3-(4-bromophenyl)-5-(4-phenylbut-1-en-1-yl)-4,5-dihydroisoxazole (5). white solid, mp 67.7 – 68.8 °C, 86% yield, $[\alpha]_{\rm D}^{23}$ –83.0 (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 4H), 7.29 – 7.25 (m, 3H), 7.20 – 7.15 (m, 2H), 5.90 – 5.83 (m, 1H), 5.59 (dd, *J* = 15.2, 7.6 Hz, 1H), 5.11 (dd, *J* = 18.0, 8.8 Hz, 1H), 3.39 (dd, *J* = 16.4, 10.4 Hz, 1H), 2.99 (dd, *J* = 16.4, 8.8 Hz, 1H), 2.72 (t, *J* = 7.2 Hz, 2H), 2.43 – 2.39 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 155.70, 141.40, 134.64, 131.93, 128.69, 128.45, 128.41, 128.36, 128.08, 125.96, 124.24, 82.41, 40.37, 35.24, 33.91. HRMS (ESI): Exact Mass Calcd. for C₁₉H₁₉BrNO (M+H)⁺: 356.0645, Found: 356.0646. HPLC (Chiralpak OD–H column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, retention time: t_{major} = 37.630 min, t_{minor} = 44.594 min, 89% ee).

5.2 Epoxidation of compound 2a

To a solution of compound 2a (49.0 mg, 0.15 mmol) in CH₂Cl₂ (2 mL), *m*-CPBA (70%, 147.9 mg, 0.6 mmol, 4.0 equiv.) was added at 0 °C. The reaction mixture was stirred for 24 h at room temperature. Upon completion of the reaction (monitored by TLC), the reaction was quenched with saturated aqueous Na₂SO₃. The organic phase was separated, washed with saturated aqueous NaHCO₃, brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (9/1) to afford the product **6** (85% yield, 3:2 dr).

major **6**, white solid, mp 136.5 – 138.6 °C, 26.2 mg, 51% yield, $[\alpha]_D^{27}$ +6.0 (c 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.41 – 7.37 (m, 3H), 7.27 (d, J = 8.0 Hz, 2H), 3.76 – 3.70 (m, 1H), 3.43 – 3.40 (m, 1H), 3.19 – 3.05 (m, 2H), 2.99 (t, J = 4.4 Hz, 1H), 2.79 (dd, J = 4.4, 2.4 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.85, 144.55, 132.07, 130.78, 130.49, 129.65, 128.67, 128.62, 126.97, 63.17, 53.32, 47.71, 36.54, 21.60. HRMS (ESI): Exact Mass Calcd. for C₁₈H₁₉N₂O₃S (M+H)⁺: 343.1111, Found: 343.1117. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 37.774 min, t_{minor} = 41.754 min, 96% ee).

minor **6**, white solid, mp 88.4 – 90.1 °C, 17.4 mg, 34% yield, $[\alpha]_{D}^{27}$ +2.0 (c 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 6.8 Hz, 2H), 7.42 – 7.36 (m, 3H), 7.28 (d, J = 8.0 Hz, 2H), 4.28 – 4.22 (m, 1H), 3.47 (dd, J = 6.4, 4.0 Hz, 1H), 3.03 (d, J = 10.0 Hz, 2H), 2.97 – 2.95 (m, 1H), 2.91 (t, J = 4.4 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.97, 144.48, 132.17, 130.78, 130.46, 129.62, 128.65, 128.01, 126.97, 60.66, 52.35, 44.80, 35.47, 21.60. HRMS (ESI): Exact Mass Calcd. for C₁₈H₁₉N₂O₃S (M+H)⁺: 343.1111, Found: 343.1117. HPLC (Chiralpak IG column, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, retention time: t_{major} = 25.022 min, t_{minor} = 35.241 min, 96% ee).

5.3 Synthesis of β -amino alcohol 7 and 6-vinyl-1,3-oxazinan-2-one (8)

Under argon atmosphere, compound **4a** (34.6 mg, 0.2 mmol) was dissolved in dry Et₂O (8.0 mL). Lithium aluminium hydride (22.8 mg, 0.6 mmol, 3.0 equiv.) was added to the above solution. The reaction mixture was refluxed for 36 h. After cooling to room temperature, the reaction was quenched with aqueous NH₄Cl (20 mL), and then extracted with CH₂Cl₂ (10 mL×3). The combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated. The crude product was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (7:1) to afford the product **7** (8:1 dr).

(3R,5S)-5-amino-5-phenylpent-1-en-3-ol (7). white solid, mp 295.3 – 297.1 °C, 22.7 mg, 64% yield, [α] $_{D}^{26}$ –135.4 (c 0.33, CH₂Cl₂). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.48 – 7.30 (m, 5H), 6.62 (br s, 2H), 5.83 – 5.75 (m, 1H), 5.13 – 5.08 (m, 1H), 4.98 – 4.95 (m, 1H), 4.23 (dd, *J* = 8.0, 6.4 Hz, 1H), 3.76 – 3.71 (m, 1H), 3.34 (br s, 1H), 1.93 – 1.77 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 142.43, 140.87, 129.01, 128.44, 127.73, 113.79, 68.93, 53.45, 43.09. HRMS (ESI): Exact Mass Calcd. for C₁₁H₁₆NO (M+H)⁺: 178.1226, Found: 178.1230. HPLC (Chiralpak OD–H column, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, retention time: t_{minor} = 11.600 min, t_{major} = 13.077 min, 94% ee).

An oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was charged with compound 7 (17.7 mg, 0.1 mmol) in anhydrous THF (2 mL), followed by the addition of 1,1'-carbonyldiimidazole (CDI) (32.4 mg, 0.2 mmol). The reaction was refluxed for 6 h under argon. Upon completion of the reaction (monitored by TLC), the solvent was removed under reduced pressure. The residue was dissolved in EtOAc, and washed with sat. aqueous NH₄Cl and brine. The organic phase was dried over anhydrous Na₂SO₄, concentrated and purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 1:1) to afford the product **8** (92% yield, 7:1 dr). The (4*S*,6*R*)-**8** was obtained in 76% yield by recrystallization from dichloromethane.

(4*S*,6*R*)-4-phenyl-6-vinyl-1,3-oxazinan-2-one (8). White solid, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.33 (m, 5H), 5.95 – 5.86 (m, 1H), 5.44 (d, *J* = 17.2 Hz, 1H), 5.35 (br s, 1H), 5.28 (d, *J* = 10.8 Hz, 1H), 4.91 – 4.87 (m, 1H), 4.64 (dd, *J* = 11.6, 4.4, 1H), 2.27 – 2.22 (m, 1H), 1.89 – 1.80 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 153.68, 140.51, 134.83, 129.20, 128.74, 126.09, 117.68, 77.32, 55.59, 36.91. HRMS (ESI): Exact Mass Calcd. for C₁₂H₁₄NO₂ (M+H)⁺: 204.1019, Found: 204.1021.

Identification code	hufang-hxp_0302_auto
Empirical formula	$C_{12}H_{13}NO_2$
Formula weight	203.23
Temperature/K	274.64(16)
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	9.2864(3)
b/Å	10.8028(3)
c/Å	11.5140(4)
$\alpha /^{\circ}$	90
β/°	109.190(4)
$\gamma^{/\circ}$	90
Volume/Å ³	1090.89(6)
Z	4
$\rho_{calc}g/cm^3$	1.237
μ/mm ⁻¹	0.685
F(000)	432.0
Crystal size/mm ³	$0.15\times0.12\times0.08$
Radiation	Cu Ka ($\lambda = 1.54184$)
2θ range for data collection/°	11.546 to 153.276
Index ranges	$-11 \le h \le 11, -13 \le k \le 11, -14 \le l \le 14$
Reflections collected	6938
Independent reflections	2192 [$R_{int} = 0.0386, R_{sigma} = 0.0363$]
Data/restraints/parameters	2192/1/136
Goodness-of-fit on F ²	1.091
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0666, wR_2 = 0.1928$
Final R indexes [all data]	$R_1 = 0.0747, wR_2 = 0.2035$
Largest diff. peak/hole / e Å ⁻³	0.42/-0.28

Table 1. Crystal data and structure refinement for compound 8.

6. Scale-up synthesis of compound 2a

A flame dried Schlenk tube was cooled to room temperature and filled with argon. To this flask were added [Ir(COD)Cl]₂ (0.04 mmol, 4 mol %), phosphoramidite ligand L₂ (0.08 mmol, 8 mol %), *n*-propylamine (1.0

mL) and THF (1.0 mL). The reaction mixture was heated at 50 °C for 0.5 h and the volatile solvent was removed *in vacuo* to afford a pale-yellow solid. Then, K_2CO_3 (0. 5 mmol, 0.5 equiv.), a solution of **1a** (1.0 mmol) in CH₂Cl₂ (20 mL) were added and the reaction mixture was stirred for 48 h. Upon completion of the reaction (monitored by TLC), the reaction mixture was filtrated with celite and washed with CH₂Cl₂. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the product **2a** (93% yield, 93% ee).

7. References

- [1] Guo, Y.-Q.; Zhao, M.-N.; Ren, Z.-H.; Guan, Z.-H. Org. Lett. 2018, 20, 3337–3340.
- [2] Wang, L.; Li, P.; Menche, D. Angew. Chem. Int. Ed. 2010, 49, 9270-9273.
- [3] Wang, L.; Zhang, K.; Wang, Y.; Li, W.; Chen, M.; Zhang, J. Angew. Chem. Int. Ed. 2020, 59, 4421– 4427.

8. NMR spectra of compounds 2a-2s, 4a-4p and 5-8

¹H NMR spectrum of compound **2a** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **2b** (CDCl₃, 100 MHz)

90 80 70 60 50 40 30 20 10

0 ppm

130 120 110 100

140

210 200

190 180 170 160 150

¹H NMR spectrum of compound **2f** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **2i** (CDCl₃, 400 MHz)

32

¹H NMR spectrum of compound **20** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **2r** (CDCl₃, 400 MHz)

0 ppm

¹H NMR spectrum of compound **2s** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4a** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4b** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4c** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4d** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4f** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4g** (CDCl₃, 400 MHz)

90

80

70

60 50 40 30 20 10

0 ppm

210 200 190 180 170 160 150 140 130 120 110 100

¹H NMR spectrum of compound **4h** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4i** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4j** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4I** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **4m** (CDCl₃, 400 MHz)

30 20 10

0 ppm

210 200 190

¹H NMR spectrum of compound **4n** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **40** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **40** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **4p** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **5** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **6** (minor) (CDCl₃, 400 MHz)

¹H NMR spectrum of compound 7 (DMSO-*d*₆, 400 MHz)

¹H NMR spectrum of compound **8** (CDCl₃, 400 MHz)

9. HPLC spectra for compounds 2a-2s, 4a-4p and 5-6

Peak	Processed channel	Retention time (min)	Peak area (mAU*s)	Peak height (mAU)	Peak area (%)
1	PDA 254 nm	26.967	1.60612e4	299.27985	49.9391
2	PDA 254 nm	34.066	1.61004e4	234.97787	50.0609

1006.04779

15.00314

2.0863

33.923

2

5335.42188

92.39308

49.9082

29.812

2

5310.28223

80.60548

49.5557

34.782

2

4417.71924

64.60667

49.9702

34.181

2

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 254 nm	48.706	2224.79419	20.70044	50.1387
2	PDA 254 nm	56.662	2212.48779	18.31616	49.8613

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 254 nm	49.871	1.99476e4	161.25204	97.2849
2	PDA 254 nm	59.985	556.72223	4.10839	2.7151

Peak	FIOCESSEU	Retention	reak alea	reak neight	r cak alca
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 254 nm	21.884	2.88562e4	627.56708	98.4812
2	PDA 254 nm	28.315	445.03397	7.46473	1.5188

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 254 nm	19.910	1.80977e4	468.50916	98.4584
2	PDA 254 nm	24.079	283.35599	6.34157	1.5416

Peak	TIOCESSEU	Retention	I cak alca	I cak neight	I cak area
гсак	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 254 nm	21.289	1.94571e4	485.52396	50.1488
2	PDA 254 nm	26.456	1.93416e4	375.70361	49.8512

6894.23584

118.05122

35.1859

30.528

2

PDA 254 nm

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 254 nm	23.508	515.29761	11.50023	2.1125
2	PDA 254 nm	27.270	2.38773e4	462.84125	97.8875

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 254 nm	15.518	2.32929e4	769.38062	49.8565
2	PDA 254 nm	24.034	2.34271e4	483.71106	50.1435

Peak	Processed channel	Retention time (min)	Peak area (mAU*s)	Peak height (mAU)	Peak area (%)
1	PDA 254 nm	19.173	3.73125e4	1318.24670	50.1081
2	PDA 254 nm	21.969	3.71515e4	1218.15845	49.8919

Peak	Processed	Retention	Peak area	Peak height	Peak area
Peak	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 254 nm	19.732	4.99934e4	1541.91064	49.9507
2	PDA 254 nm	22.003	5.00921e4	1439.00488	50.0493

Peak	Processed	Retention	Peak area	Peak height	Peak area
Геак	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 254 nm	22.747	2.01724e4	665.94897	49.8013
2	PDA 254 nm	25.431	2.03334e4	621.40747	50.1987

Peak	Processed	Retention	Peak area	Peak height	Peak area
Реак	channel	time (min) (mAU*s) (mAU	(mAU)	(%)	
1	PDA 254 nm	22.617	4.30791e4	1345.97412	96.6043
2	PDA 254 nm	25.395	1514.24365	44.72794	3.3957

Peak	Processed	Retention	Peak area	Peak height	Peak area
Реак	channel	time (min)	(mAU*s) (mAU) (%	(%)	
1	PDA 254 nm	19.289	2.41663e4	671.07513	49.9955
2	PDA 254 nm	22.931	2.41707e4	585.51563	50.0045

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 254 nm	19.172	8072.64502	294.77164	57.7978
2	PDA 254 nm	25.715	5894.39160	175.55519	42.2022

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 254 nm	19.111	2.88379e4	1082.38330	95.4989
2	PDA 254 nm	25.833	1359.19348	38.61534	4.5011

eak	1100000000	recention	i cuit ui cu	I can noight	i cuit ui cu
Сак	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 254. nm	12.181	2.79276e4	1108.96167	94.5672
2	PDA 254 nm	13.877	1604.41321	56.15255	5.4328

Deals	Processed	Retention	Peak area	Peak height	Peak area
Peak	channel	time (min)	(mAU*s)	(mAU) 551.24860	(%)
1	PDA 254. nm	17.809	2.04057e4	551.24860	50.0101
2	PDA 254 nm	19.910	2.03975e4	504.31970	49.9899

5.23329e4

1535.21460

51.2531

2

2

PDA 254 nm

PDA 254 nm

16.754

	VWD1A,	Wavelength=254 nm (HF)	HF-20200617.D)				
mAU -					14 14 18		
1500 -	- - - -						
1000 -	-						
500 -						16.774	
	0	2.5	5 75	10	12.5 15	17.5	•••
Γ	Peak	Processed	Retention	Peak area	Peak height	Peak area	
	Реак	channel	time (min)	(mAU*s)	(mAU)	(%)	

0	2
ч	•
	-

3261.49048

99.86243

4.3157

16.774

Peak	Processed	Retention	Peak area	Peak height	Peak area
гсак	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 254. nm	13.422	1.36113e4	450.63660	49.9075
2	PDA 254 nm	14.900	1.36617e4	415.72729	50.0925

Peak	Tiocessea	Recention	i can aica	I ouk noight	i cak area
i cak	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 254 nm	39.046	2.32221e4	262.10471	50.6208
2	PDA 254 nm	44.282	2.26525e4	233.82022	49.3792

Peak	TIOCESSEU	Retention	I Cak alca	I Cak neight	I Cak alca
гсак	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 280.16 nm	38.353	9200.17578	117.25249	50.2860
2	PDA 280.16 nm	42.154	9095.52148	111.29817	49.7140

Peak	Processed	Retention	Peak area	Peak height	Peak area
гсак	channel	time (min)	(mAU*s)	(mAU)	(%)
1	PDA 280.16 nm	24.902	7120.41455	134.75426	50.1862
2	PDA 280.16 nm	34.897	7067.57031	95.82932	49.8138

