Supporting Information

Efficiently enantioselective synthesis of pyrazolines and isoxazolines enabled by iridium-catalyzed intramolecular allylic substitution reaction

Fang Hu, Hua Zhang, Yun-Peng Chu, and Xin-Ping Hui*
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
E-mail: huixp@lzu.edu.cn

Contents

1. General information 2
2. General procedure for synthesis of substrates $\mathbf{1 a}-\mathbf{1 s}$ and $\mathbf{3 a}-\mathbf{3 p}$ 2
3. General procedure for enantioselective synthesis of $1 H$-pyrazolines $\mathbf{2 a - 2 q}$, tetrahydro- pyridazine $\mathbf{2 r}$ and $1 H$-1,2-diazepine $\mathbf{2 s}$ enabled by iridium-catalyzed intramolecular allylic substitution reaction 4
4. General procedure for enantioselective synthesis of dihydroisoxazoles $\mathbf{4 a}-\mathbf{4 n}$, dihydro- 4 H - 1,2-oxazine $\mathbf{4 0}$, tetrahydro-1,2-oxazepine $\mathbf{4 p}$ enabled by iridium-catalyzed intramolecular allylic substitution reaction 12
5. Synthetic transformation of products 18
6. Scale-up synthesis of compound $\mathbf{2 a}$ 21
7. References 22
8. NMR spectra of compounds $\mathbf{2 a - 2 s}, \mathbf{4 a - 4 p}$ and $\mathbf{5 - 8}$ 23
9. HPLC spectra of compounds $\mathbf{2 a}-\mathbf{2 s}, \mathbf{4 a - 4 p}$ and 5-6 63

1. General information

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVANCE III 400 spectrometer using tetramethylsilane as internal reference, and chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz , respectively. Optical rotation was measured by the Perkin Elmer 341 polarimeter. The HRMS analysis was obtained on a Bruker Apex II FT-ICR mass spectrometer with ESI ionization method. The ee value determination was carried out using HPLC with chiral Chirapak column on Agilent 1260 with a UVdetector. Melting points were taken on an XT-4 melting point apparatus and were uncorrected. Dichloromethane and acetonitrile were freshly distilled from phosphorous pentoxide. Toluene and THF were freshly distilled from a deep-blue solution of sodium-benzophenone under argon. Phosphoramidite ligand $\mathbf{L}_{\mathbf{1}}-\mathbf{L}_{\mathbf{2}},[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ and n-propylamine were purchased from commercial suppliers and used directly. All syntheses and manipulations were carried out under a dry argon atmosphere. Flash column chromatography was carried out utilizing 200-300 mesh silica gel.

2. General procedure for synthesis of substrates $\mathbf{1 a}-\mathbf{1 s}$ and 3a-3p

2.1 General procedure for synthesis of $\boldsymbol{\beta}, \boldsymbol{\gamma}$-allyl carbonate hydrazones $1 \mathbf{1 a}-1 \mathbf{r}$

To a solution of aldehyde (20.0 mmol) in THF $(30 \mathrm{~mL})$ was added 3-bromoprop-1-ene ($40.0 \mathrm{mmol}, 3.46$ $\mathrm{mL}, 2.0$ equiv.) and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. Then, zinc dust ($40.0 \mathrm{mmol}, 2.6 \mathrm{~g}, 2.0$ equiv.) was slowly added to the solution at $0^{\circ} \mathrm{C}$ and the resulting suspension was stirred overnight at room temperature. Upon completion of the reaction (monitored by TLC), the reaction mixture was filtered and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in reduced pressure. The 1-substituted but-3-en-1-ol S1 was directly used in next step without further purification. ${ }^{[1]}$

Under argon atmosphere, 1-substituted but-3-en-1-ol S1 $(8.0 \mathrm{mmol})$ and (Z)-but-2-ene-1,4-diyl diethyl dicarbonate ($12 \mathrm{mmol}, 2.79 \mathrm{~g}, 1.5$ equiv.) were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at room temperature. The solution of Grubbs catalyst $2^{\text {nd }}$ generation ($0.16 \mathrm{mmol}, 136 \mathrm{mg}, 2 \mathrm{~mol} \%$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added and the mixture was refluxed overnight. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=9 / 1$) to afford product S2 in 40-65\% yields. ${ }^{[2]}$

Compound $\mathbf{S 2}(5 \mathrm{mmol})$ was dissolved in diethyl ether at $0^{\circ} \mathrm{C}$ and Jones reagent $(10 \mathrm{mmol}, 4.0 \mathrm{~mL}, 2.5$ M , 2 equiv.) was added dropwise at $0^{\circ} \mathrm{C}$. Then, the mixture was warmed to room temperature and stirred for another 2.5 h . After completion of the reaction (monitored by TLC), the ether layer was separated and the aqueous layer was extracted with ethyl acetate $(20 \mathrm{~mL} \times 3)$. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in reduced pressure. The crude product was directly used in next step without further purification. ${ }^{[1]}$

To a solution of β, γ-unsaturated ketone (4 mmol) in $\mathrm{MeOH}(16 \mathrm{~mL})$, p-toluenesulfonyl hydrazide (4.8 $\mathrm{mmol}, 0.894 \mathrm{~g}, 1.2$ equiv.) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ until the reaction was completed (monitored by TLC). The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel to afford compounds $\mathbf{1 a}-10$ in $24-43 \%$ yield.

The substrates $\mathbf{1 p}, \mathbf{1 r}$ and $\mathbf{1 s}$ were synthesized using the similar methods.

2.2 General procedure for synthesis of β, γ-allyl carbonate oximes 3a-3p

1-Aryl-but-3-en-1-ol S1 (20 mmol) was dissolved in diethyl ether at $0^{\circ} \mathrm{C}$ and Jones reagent (40 mmol , $16.0 \mathrm{~mL}, 2.5 \mathrm{M}, 2$ equiv.) was added dropwise at $0^{\circ} \mathrm{C}$. The resulting mixture was warmed to room temperature and stirred for another 4 h . After completion of the reaction (monitored by TLC), the ether layer was separated and the aqueous layer was extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic phase was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduce pressure. The crude β, γ-unsaturated ketone was directly used in next step without further purification. ${ }^{[1]}$

To a solution of hydroxylamine hydrochloride ($50 \mathrm{mmol}, 3.48 \mathrm{~g}, 5$ equiv.) and sodium acetate (70 mmol , $5.74 \mathrm{~g}, 7$ equiv.) in ethanol (50 mL) was added β, γ-unsaturated ketone (10 mmol) in ethanol (8 mL). The reaction mixture was stirred overnight at room temperature and concentrated under reduced pressure. Then, the mixture was extracted with ethyl acetate $(30 \mathrm{~mL} \times 3)$ and the combined organic phase was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=9 / 1$) to afford β, γ-unsaturated oxime $\mathbf{S 3}$ in $50-70 \%$ yield. ${ }^{[3]}$

Under argon atmosphere, β, γ-unsaturated oxime $\mathbf{S 3}(4.0 \mathrm{mmol})$ and (Z)-but-2-ene-1,4-diyl diethyl dicarbonate ($6 \mathrm{mmol}, 1.40 \mathrm{~g}, 1.5$ equiv.) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. To the solution was added the solution of Grubbs catalyst $2^{\text {nd }}$ generation ($0.08 \mathrm{mmol}, 68 \mathrm{mg}, 2 \mathrm{~mol} \%$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The mixture was refluxed overnight and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=9 / 1$) to afford the products $\mathbf{3 a}-\mathbf{3 n}$ in $20-45 \%$ yield.

The substrates $\mathbf{3 o}-\mathbf{3 p}$ were synthesized using the similar methods.

3. General procedure for enantioselective synthesis of $\mathbf{1 H}$-pyrazolines $\mathbf{2 a - 2 q}$, tetrahydropyridazine 2 r and $\mathbf{1 H}$-1,2-diazepine 2 s enabled by iridium-catalyzed intramolecular allylic substitution reactions

A flame dried Schlenk tube was cooled to room temperature and filled with argon. To this flask were added $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(0.004 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, phosphoramidite ligand $\mathbf{L}_{2}(0.008 \mathrm{mmol}, 8 \mathrm{~mol} \%)$, n-propylamine $(0.5 \mathrm{~mL})$ and THF $(0.5 \mathrm{~mL})$. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 0.5 h and the volatile solvent was removed in vacuo to afford a pale-yellow solid. Then, $\mathrm{K}_{2} \mathrm{CO}_{3}(0.05 \mathrm{mmol}, 0.5$ equiv.) and a solution substrate $1(0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added. The reaction mixture was stirred for another 20 h . Upon completion of the reaction (monitored by TLC), the reaction mixture was filtrated with celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the product 2 .

(R)-3-phenyl-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2a)

white solid, mp $107.2-107.8^{\circ} \mathrm{C}, 32.0 \mathrm{mg}, 98 \%$ yield, $[\alpha]_{\mathrm{D}}^{26}+24.6\left(\mathrm{c} 0.57, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{dd}, J=7.6,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.12-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{dd}$, $J=16.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=17.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.04$, $144.21,136.45,132.46,130.79,130.56,129.50,128.76,128.62,126.85,117.73,64.63,40.22,21.59$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 327.1162$, Found: 327.1165. HPLC (Chiralpak IG column, n-hexane $/ i$ - $\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=26.642 \mathrm{~min}, \mathrm{t}_{\text {minor }}=33.923$ $\min , 96 \%$ ee).

(R)-3-(4-fluorophenyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2b)

white solid, mp $161.7-162.9{ }^{\circ} \mathrm{C}, 32.0 \mathrm{mg}$, 93% yield, $[\alpha]_{\mathrm{D}}^{26}+20.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{dd}, J=8.8,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.09-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.18$ $(\mathrm{dd}, J=16.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=16.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $165.35,162.85,156.06,144.30,136.31,132.39,128.90,128.82,128.73,127.08,127.05,117.84,115.92$, 115.70, 64.69, 40.26, 21.61. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 345.1068$, Found: 345.1072. HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\left.\mathrm{t}_{\text {major }}=23.365 \mathrm{~min}, \mathrm{t}_{\text {minor }}=29.963 \mathrm{~min}, 97 \% \mathrm{ee}\right)$.

(R)-3-(4-chlorophenyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2c)

colorless oil, $32.5 \mathrm{mg}, 90 \%$ yield, $[\alpha]_{\mathrm{D}}^{26}-10.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.58(\mathrm{dd}, J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.11-6.02(\mathrm{~m}, 1 \mathrm{H})$, 5.37 (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=16.8,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.93(\mathrm{dd}, J=16.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.89,144.29,136.58,136.19$, $132.38,129.49,129.23,128.88,128.67,128.01,117.87,64.71,40.05,21.56$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 361.0772$, Found: 361.0777. HPLC (Chiralpak IG column, n-hexane $/ i$ - $\mathrm{PrOH}=$ $70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\left.\mathrm{t}_{\text {major }}=27.728 \mathrm{~min}, \mathrm{t}_{\text {minor }}=33.757 \mathrm{~min}, 93 \% \mathrm{ee}\right)$.
(R)-3-(4-bromophenyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2d)

white solid, mp $149.8-150.9{ }^{\circ} \mathrm{C}, 34.8 \mathrm{mg}, 86 \%$ yield, $[\alpha]_{\mathrm{D}}^{26}-55.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~s}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.10-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=$ $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=17.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=$ $16.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.01,144.35,136.22,132.41,131.89$, $129.70,129.54,128.71,128.25,125.00,117.94,64.78,40.04,21.62$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 405.0267$, Found: 405.0272. HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=$ $70 / 30$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention time: $\left.\mathrm{t}_{\text {major }}=28.883 \mathrm{~min}, \mathrm{t}_{\text {minor }}=33.922 \mathrm{~min}, 90 \% \mathrm{ee}\right)$.
(R)-3-(p-tolyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2e)

colorless oil, 31.3 mg , 92% yield, $[\alpha]_{\mathrm{D}}^{26}-33.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.10-6.01(\mathrm{~m}, 1 \mathrm{H})$, $5.34(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=16.8,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.92(\mathrm{dd}, J=16.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.22,144.16$, $140.99,136.54,132.33,129.48,129.33,128.76,128.00,126.83,117.64,64.55,40.26,21.59,21.48$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 341.1318$, Found: 341.1323. HPLC (Chiralpak IG column, n-hexane $/ i$ - $\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=30.452 \mathrm{~min}, \mathrm{t}_{\text {minor }}=35.454$ $\min , 97 \%$ ee).

(R)-3-(4-methoxyphenyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2f)

white solid, mp $147.1-148.6{ }^{\circ} \mathrm{C}, 19.9 \mathrm{mg}, 56 \%$ yield, $[\alpha]_{\mathrm{D}}^{26}-56.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=9.2 \mathrm{~Hz}$,
$2 \mathrm{H}), 6.12-6.04(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 3.17(\mathrm{dd}, J=16.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=16.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.52,156.88,144.11,136.60,132.36,129.45,128.79,128.49,123.41,117.58,114.03,64.48$, 55.39, 40.31, 21.59. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 357.1267$, Found: 357.1274. HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=$ $\left.46.998 \mathrm{~min}, \mathrm{t}_{\text {minor }}=66.760 \mathrm{~min}, 98 \% \mathrm{ee}\right)$.

(R)-3-(1,1'-biphenyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2g)

white solid, mp $158.6-159.4{ }^{\circ} \mathrm{C}, 35.4 \mathrm{mg}$, 88% yield, $[\alpha]_{\mathrm{D}}^{26}-111.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39-$ $7.35(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.14-6.05(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=16.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=16.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.76,144.22,143.30,140.03,136.46,132.46,129.65,129.52,128.93,128.77$, 127.94, 127.33, 127.26, 127.05, 117.76, 64.68, 40.23, 21.61. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 403.1475$, Found: 403.1480. HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=49.871 \mathrm{~min}, \mathrm{t}_{\text {minor }}=59.985 \mathrm{~min}, 95 \%$ ee $)$.

(R)-3-(m-tolyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2h)

white solid, mp $163.5-164.8^{\circ} \mathrm{C}, 32.0 \mathrm{mg}$, 94% yield, $[\alpha]_{\mathrm{D}}^{26}-26.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 4 \mathrm{H}), 6.12-6.03$ $(\mathrm{m}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=16.8,10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=16.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.25$, $144.17,138.40,136.51,132.44,131.40,130.69,129.49,128.74,128.50,127.39,124.07,117.64,64.53,40.28$, 21.58, 21.31. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 341.1318$, Found: 341.1325. HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=21.884 \mathrm{~min}$, $\left.\mathrm{t}_{\text {minor }}=28.315 \mathrm{~min}, 97 \% \mathrm{ee}\right)$.

(R)-1-tosyl-3-(trifluoromethyl)-5-vinyl-4,5-dihydro-1H-pyrazole (2i)

colorless oil, $38.2 \mathrm{mg}, 97 \%$ yield, $[\alpha]_{\mathrm{D}}^{26}+17.0\left(\mathrm{c} \mathrm{1.0}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.79(\mathrm{~m}$, $4 \mathrm{H}), 7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.11-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~d}$, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=16.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}$, $J=16.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.63,144.49,136.07,132.37,131.64$, $131.37,131.05,129.88,129.61,129.26,128.68,127.01,126.98,125.06,123.56,123.52,122.35,118.08$, 64.87, 40.04, 21.60. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 395.1036$, Found: 395.1041. HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=92 / 8$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=38.514 \mathrm{~min}, \mathrm{t}_{\text {minor }}=41.838 \mathrm{~min}, 95 \%$ ee $)$.

(R)-3-(3-chlorophenyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2j)

colorless oil, $34.2 \mathrm{mg}, 95 \%$ yield, $[\alpha]_{\mathrm{D}}^{26}-7.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.11-6.02(\mathrm{~m}$, $1 \mathrm{H}), 5.37(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=16.8,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.94(\mathrm{dd}, J=16.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.72,144.40,136.16$, $134.77,132.54,132.42,130.49,129.92,129.59,128.70,126.78,124.90,117.98,64.75,40.06,21.62$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 361.0772$, Found: 361.0776. HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=19.910 \mathrm{~min}, \mathrm{t}_{\text {minor }}=24.079$ $\min , 97 \%$ ee).

(R)-3-(2-chlorophenyl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2k)

colorless oil, $18.4 \mathrm{mg}, 51 \%$ yield, $[\alpha]_{\mathrm{D}}^{26}+83.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.03-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=17.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.19(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=17.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=17.2,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.21,144.37,136.08,132.80,132.39,131.08,130.55$, $130.54,130.26,129.51,128.85,126.91,117.97,65.48,43.17,21.63$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 361.0772$, Found: 361.0778. HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=$ $70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {minor }}=21.507 \mathrm{~min}, \mathrm{t}_{\text {major }}=26.629 \mathrm{~min}, 89 \%$ ee $)$.

(R)-3-(naphthaien-2-yl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2l)

white solid, mp $124.6-125.3^{\circ} \mathrm{C}, 35.3 \mathrm{mg}, 94 \%$ yield, $[\alpha]_{\mathrm{D}}^{26}+5.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.98(\mathrm{dd}, J=8.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 6 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.16-$ $6.07(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=16.8$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.15,144.25$, $136.48,134.25,132.82,132.43,129.52,128.77,128.46,128.45,128.38,127.84,127.40,127.34,126.76$, 123.53, 117.78, 64.76, 40.18, 21.59. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 377.1318$, Found: 377.1322. HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=33.806 \mathrm{~min}, \mathrm{t}_{\text {minor }}=40.933 \mathrm{~min}, 99 \%$ ee $)$.

(R)-tert-butyl-3-(1-tosyl-5-vinyl-4,5-dihydro-1 H-pyrazol-3-yl)-1H-indole-1-carboxylate (2m)

colorless oil, $46.0 \mathrm{mg}, 99 \%$ yield, $[\alpha]_{\mathrm{D}}^{27}-37.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38-8.36(\mathrm{~m}$, $1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.15-6.06(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dd}$, $J=16.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=16.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.80,149.17,144.16,136.48,135.68,132.26,129.44,128.76,127.50,127.08,125.57,123.98$, $123.04,117.75,115.01,113.27,84.86,63.67,41.02,28.13,21.57$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 466.1795$, Found: 466.1798. HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {minor }}=23.247 \mathrm{~min}, \mathrm{t}_{\text {major }}=29.962 \mathrm{~min}, 97 \%$ ee $)$.

(R)-3-(furan-2-yl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2n)

colorless oil, $25.9 \mathrm{mg}, 82 \%$ yield, $[\alpha]_{\mathrm{D}}^{27}+70.0\left(\mathrm{c} 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=3.6$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.25(\mathrm{~m}, 1 \mathrm{H})$, $3.18(\mathrm{dd}, J=16.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=17.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 148.85,146.41,144.68,144.25,136.12,132.38,129.53,128.79,117.89,112.44,111.97,64.08,40.07$, 21.62. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: 317.0954, Found: 317.0960. HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=20.299 \mathrm{~min}$, $\left.\mathrm{t}_{\text {minor }}=45.552 \mathrm{~min}, 94 \% \mathrm{ee}\right)$.

(R)-3-(thiophen-2-yl)-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2o)

white solid, mp $145.1-146.9{ }^{\circ} \mathrm{C}, 32.2 \mathrm{mg}, 97 \%$ yield, $[\alpha]_{\mathrm{D}}^{27}-65.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=5.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{dd}, J=3.6$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=4.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.33-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=16.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=16.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.69,144.25,136.23,134.33,132.25,129.49,129.32,128.93,128.84$, $127.44,117.85,64.70,40.93,21.60$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}: 333.0726$, Found: 333.0732. HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\left.\mathrm{t}_{\text {major }}=29.916 \mathrm{~min}, \mathrm{t}_{\text {minor }}=35.600 \mathrm{~min}, 98 \% \mathrm{ee}\right)$.

(R)-5-methyl-3-phenyl-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2p)

white solid, mp $120.1-120.8^{\circ} \mathrm{C}, 31.9 \mathrm{mg}$, 94% yield, $[\alpha]_{\mathrm{D}}^{27}+19.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.04$ (dd, $J=17.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.05(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.45,143.50,139.66$, $137.03,131.23,130.17,129.14,128.59,128.37,126.53,114.76,71.49,47.98,23.65,21.57$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 341.1318$, Found: 341.1325. HPLC (Chiralpak AD-H column, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=25.521 \mathrm{~min}, \mathrm{t}_{\text {minor }}=30.528 \mathrm{~min}$, 30% ee).

(R)-3-cyclohexyl-1-tosyl-5-vinyl-4,5-dihydro-1H-pyrazole (2q)

colorless oil, $30.6 \mathrm{mg}, 92 \%$ yield, $[\alpha]_{\mathrm{D}}^{26}+242.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.03-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H}), 1.71-1.68$ $(\mathrm{m}, 5 \mathrm{H}), 1.24-1.17(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.32,144.04,136.71,131.96,129.26,128.87$, $117.20,63.75,40.67,39.22,30.29,29.91,25.78,25.64,25.57,21.61$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 333.1631$, Found: 333.1629 . HPLC (Chiralpak AD-H column, n-hexane $/ i$ - $\mathrm{PrOH}=$ $90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\left.\mathrm{t}_{\text {minor }}=12.270 \mathrm{~min}, \mathrm{t}_{\text {major }}=14.196 \mathrm{~min}, 97 \% \mathrm{ee}\right)$.

(R)-3-phenyl-1-tosyl-6-vinyl-1,4,5,6-tetrahydropyridazine (2r)

colorless oil, $30.9 \mathrm{mg}, 91 \%$ yield, $[\alpha]_{\mathrm{D}}^{27}+150.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.66-5.57(\mathrm{~m}$, $1 \mathrm{H}), 5.19-5.18(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.03-5.00(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 4 \mathrm{H})$, $2.06-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.45,143.58,136.95,135.92$, $134.30,129.21,129.14,128.41,128.32,125.24,117.77,53.99,23.27,21.57,18.55$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: 341.1318, Found: 341.1326. HPLC (Chiralpak IG column, $n-$ hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {minor }}=23.508 \mathrm{~min}, \mathrm{t}_{\text {major }}=27.270 \mathrm{~min}, 96 \%$ ee).

(R)-3-phenyl-1-tosyl-7-vinyl-4,5,6,7-tetrahydro-1H-1,2-diazepine (2s)

white solid, $\mathrm{mp} 125.2-126.9^{\circ} \mathrm{C}, 35.0 \mathrm{mg}, 99 \%$ yield, $[\alpha]_{\mathrm{D}}^{27}+678.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.28-5.20(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-$ $3.03(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.40(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.71,143.77,137.29,134.44,133.64,130.15,129.41,129.09,128.41$, 127.20, 117.13, 60.53, 33.96, 30.73, 21.63, 15.74. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: 355.1475, Found: 355.1482. HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\left.\mathrm{t}_{\text {minor }}=15.596 \mathrm{~min}, \mathrm{t}_{\text {major }}=24.030 \mathrm{~min}, 92 \% \mathrm{ee}\right)$.

4. General procedure for enantioselective synthesis of dihydroisoxazoles 4a-4n, dihydro-4H-1,2-oxazine 4o, tetrahydro-1,2-oxazepine 4 p enabled by iridium-catalyzed intramolecular allylic substitution reactions

A flame dried Schlenk tube was cooled to room temperature and filled with argon. To this flask were added $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(0.004 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, phosphoramidite ligand $\mathbf{L}_{2}(0.008 \mathrm{mmol}, 8 \mathrm{~mol} \%)$, n-propylamine $(0.5 \mathrm{~mL})$ and THF $(0.5 \mathrm{~mL})$. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 0.5 h and the volatile solvents were removed in vacuo to afford a pale-yellow solid. Then, $\mathrm{K}_{2} \mathrm{CO}_{3}(0.05 \mathrm{mmol}, 0.5$ equiv.) and a solution of allylic carbonate $3(0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added. The reaction mixture was stirred for another 20 h . Upon completion of the reaction (monitored by TLC), the reaction mixture was filtrated with celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the product 4.

(R)-3-phenyl-5-vinyl-4,5-dihydroisoxazole (4a)

white solid, $\mathrm{mp} 43.6-44.5^{\circ} \mathrm{C}, 15.7 \mathrm{mg}, 91 \%$ yield, $[\alpha]_{\mathrm{D}}^{24}-110.0\left(\mathrm{c} 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.68-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.40(\mathrm{~m}, 3 \mathrm{H}), 6.01-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.20-5.13(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=16.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=16.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.36,136.10,130.08,129.57,128.71,126.68,117.93,82.03,40.53$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 174.0913$, Found: 174.0916. HPLC (Chiralpak IC column, $n-$ hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=28.121 \mathrm{~min}, \mathrm{t}_{\text {minor }}=30.563 \mathrm{~min}, 92 \%$ ee).

(R)-3-(4-fluorophenyl)-5-vinyl-4,5-dihydroisoxazole (4b)

white solid, mp $67.0-67.7^{\circ} \mathrm{C}, 18.9 \mathrm{mg}, 99 \%$ yield, $[\alpha]_{\mathrm{D}}^{25}-119.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{dd}, J=8.8,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.00-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ $(\mathrm{d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.13(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=16.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=16.4,8.4 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.00,162.51,155.39,135.97,128.65,128.56,125.87,125.84,118.04$, 115.97, 115.75, 82.14, 40.58. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{FNO}(\mathrm{M}+\mathrm{H})^{+}: 192.0819$, Found: 192.0821. HPLC (Chiralpak IC column, n-hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\left.\mathrm{t}_{\text {major }}=19.721 \mathrm{~min}, \mathrm{t}_{\text {minor }}=22.818 \mathrm{~min}, 76 \% \mathrm{ee}\right)$.

(R)-3-(4-chlorophenyl)-5-vinyl-4,5-dihydroisoxazole (4c)

white solid, mp $84.5-85.4^{\circ} \mathrm{C}, 19.3 \mathrm{mg}, 93 \%$ yield, $[\alpha]_{\mathrm{D}}^{25}-130.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.60(\mathrm{dd}, J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.00-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.14(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=16.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=16.4,8.4$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.45,136.04,135.87,129.00,128.09,127.89,118.13,82.29$, 40.35. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClNO}(\mathrm{M}+\mathrm{H})^{+}: 208.0524$, Found: 208.0526. HPLC (Chiralpak IC column, n-hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=20.322 \mathrm{~min}$, $\left.t_{\text {minor }}=22.814 \mathrm{~min}, 91 \% \mathrm{ee}\right)$.

(R)-3-(4-bromophenyl)-5-vinyl-4,5-dihydroisoxazole (4d)

white solid, $\mathrm{mp} 100.1-101.2{ }^{\circ} \mathrm{C}, 22.9 \mathrm{mg}, 91 \%$ yield, $[\alpha]_{\mathrm{D}}^{22}-86.0\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~s}, 4 \mathrm{H}), 6.00-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.14$ $(\mathrm{m}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=16.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=16.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.56, 135.85, 131.96, 128.52, 128.11, 124.35, 118.19, 82.34, 40.28. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrNO}(\mathrm{M}+\mathrm{H})^{+}: 252.0019$, Found: 252.0022 . HPLC (Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\left.\mathrm{t}_{\text {major }}=22.617 \mathrm{~min}, \mathrm{t}_{\text {minor }}=25.395 \mathrm{~min}, 93 \% \mathrm{ee}\right)$.

(R)-3-(p-tolyl)-5-vinyl-4,5-dihydroisoxazole (4e)

white solid, mp $68.2-70.1^{\circ} \mathrm{C}, 17.2 \mathrm{mg}, 92 \%$ yield, $[\alpha]_{\mathrm{D}}^{25}-171.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.01-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.11(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=16.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=16.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.33,140.31,136.21,129.41,126.75,126.63,117.83,81.87,40.66$, 21.43. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$: 188.1070, Found: 188.1073. HPLC (Chiralpak AD-H column, n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=15.941$ $\left.\mathrm{min}, \mathrm{t}_{\text {minor }}=17.777 \mathrm{~min}, 94 \% \mathrm{ee}\right)$.

(R)-3-(4-methoxyphenyl)-5-vinyl-4,5-dihydroisoxazole (4f)

white solid, mp $77.4-77.8^{\circ} \mathrm{C}, 20.1 \mathrm{mg}, 99 \%$ yield, $[\alpha]_{\mathrm{D}}^{25}-166.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.99-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.08(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{dd}, J=16.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=16.4,8.4$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 161.06, 155.95, 136.25, 128.20, 122.14, 117.80, 114.13, 81.78, 55.35, 40.79. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 204.1019$, Found: 204.1022. HPLC (Chiralpak OD-H column, n-hexane $/ i-\operatorname{PrOH}=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {minor }}=19.754$ $\left.\mathrm{min}, \mathrm{t}_{\text {major }}=22.778 \mathrm{~min}, 94 \% \mathrm{ee}\right)$.

(R)-3-([1,1'-biphenyl]-4-yl)-5-vinyl-4,5-dihydroisoxazole (4g)

white solid, mp $130.1-130.9^{\circ} \mathrm{C}, 22.7 \mathrm{mg}, 91 \%$ yield, $[\alpha]_{\mathrm{D}}^{25}-158.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 6.01-$ $5.93(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.13(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=16.4$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=16.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.13,142.81,140.17,136.10$, 128.92, 128.44, 127.83, 127.37, 127.15, 127.06, 118.00, 82.12, 40.55. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 250.1226$, Found: 250.1230 . HPLC (Chiralpak IC column, n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\left.\mathrm{t}_{\text {major }}=19.111 \mathrm{~min}, \mathrm{t}_{\text {minor }}=25.833 \mathrm{~min}, 91 \% \mathrm{ee}\right)$.

(R)-3-(3-(trifluoromethyl)phenyl)-5-vinyl-4,5-dihydroisoxazole (4h)

white solid, mp $71.8-72.6^{\circ} \mathrm{C}, 23.1 \mathrm{mg}, 96 \%$ yield, $[\alpha]_{\mathrm{D}}^{25}-148.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.89-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=$ $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.19(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=16.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=$ $16.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.30, 135.70, 131.45, 131.12, 130.49, 129.71, 129.29, $126.59,126.55,123.45,123.41,123.38,118.28,82.51,40.17$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 242.0787$, Found: 242.0792. HPLC (Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=10.586 \mathrm{~min}, \mathrm{t}_{\text {minor }}=12.380 \mathrm{~min}, 86 \%$ ee $)$.

(R)-3-(3-chlorophenyl)-5-vinyl-4,5-dihydroisoxazole (4i)

white solid, mp $69.6-71.1^{\circ} \mathrm{C}, 19.7 \mathrm{mg}, 95 \%$ yield, $[\alpha]_{\mathrm{D}}^{25}-183.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.64(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.00-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.15(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=16.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=16.4$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.34,135.79,134.76,131.35,130.03,129.99,126.71,124.72$, 118.19, 82.35, 40.24. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClNO}(\mathrm{M}+\mathrm{H})^{+}: 208.0524$, Found: 208.0527 HPLC (Chiralpak OD-H column, n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=$ $\left.12.181 \mathrm{~min}, \mathrm{t}_{\text {minor }}=13.877 \mathrm{~min}, 89 \% \mathrm{ee}\right)$.
(R)-3-(m-tolyl)-5-vinyl-4,5-dihydroisoxazole (4j)

colorless oil, $18.5 \mathrm{mg}, 99 \%$ yield, $[\alpha]_{\mathrm{D}}^{26}-131.7\left(\mathrm{c} 0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~s}, 1 \mathrm{H})$, $7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.01-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.12(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=16.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=16.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.47,138.43,136.16,130.88,129.46,128.59,127.25,123.87,117.85$, 81.94, 40.60, 21.34. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$: 188.1070, Found: 188.1073 . HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {minor }}=19.703$ $\left.\mathrm{min}, \mathrm{t}_{\text {major }}=21.050 \mathrm{~min}, 95 \% \mathrm{ee}\right)$.

(R)-3-(3-methoxyphenyl)-5-vinyl-4,5-dihydroisoxazole (4k)

colorless oil, $17.5 \mathrm{mg}, 86 \%$ yield, $[\alpha]_{\mathrm{D}}^{26}-155.4\left(\mathrm{c} 0.65, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.26$ $(\mathrm{m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.13(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J=16.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}$, $J=16.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.72,156.36,136.06,130.82,129.71,119.36,117.98$, 116.47, 111.25, 82.11, 55.37, 40.58. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 204.1019$, Found: 204.1021. HPLC (Chiralpak AD-H column, n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\left.\mathrm{t}_{\text {major }}=17.718 \mathrm{~min}, \mathrm{t}_{\text {minor }}=19.856 \mathrm{~min}, 91 \% \mathrm{ee}\right)$.

(R)-3-(naphthalen-2-yl)-5-vinyl-4,5-dihydroisoxazole (4l)

white solid, mp $93.3-95.1^{\circ} \mathrm{C}, 19.6 \mathrm{mg}, 88 \%$ yield, $[\alpha]_{\mathrm{D}}^{26}-161.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 6.03-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.17(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=16.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=16.4,8.4$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.54,136.11,134.04,133.00,128.55,128.36,127.86,127.18$, 127.12, 126.88, 126.69, 123.58, 118.04, 82.24, 40.49. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}$ $(\mathrm{M}+\mathrm{H})^{+}: 224.1070$, Found: 224.1072. HPLC (Chiralpak AD-H column, n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\left.\mathrm{t}_{\text {major }}=14.438 \mathrm{~min}, \mathrm{t}_{\text {minor }}=16.774 \mathrm{~min}, 91 \% \mathrm{ee}\right)$.

tert-butyl (R)-3-(5-vinyl-4,5-dihydroisoxazol-3-yl)-1H-indole-1-carboxylate (4m)

white solid, $\mathrm{mp} 95.1-95.9^{\circ} \mathrm{C}, 23.7 \mathrm{mg}, 76 \%$ yield, $[\alpha]_{\mathrm{D}}^{26}-86.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.25-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.01-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.42$ (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.27(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.08(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=16.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15$ (dd, $J=16.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.82,149.37,136.11,135.69$, 127.11, 126.55, 125.50, 123.76, 123.10, 117.95, 115.00, 111.89, 84.70, 80.84, 41.47, 28.17. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 313.1547$, Found: 313.1549. HPLC (Chiralpak AD-H column, n-hexane $/$ - $-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=14.169 \mathrm{~min}, \mathrm{t}_{\text {minor }}=16.564 \mathrm{~min}, 85 \%$ ee).
(R)-3-(thiophen-2-yl)-5-vinyl-4,5-dihydroisoxazole (4n)

colorless oil, $16.1 \mathrm{mg}, 90 \%$ yield, $[\alpha]_{\mathrm{D}}^{26}-129.3\left(\mathrm{c} 0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.37$ (m, 1H), 7.18 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.05 (dd, $J=4.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{q}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=16.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=16.4$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.13,135.78,132.07,128.28,128.25,127.28,118.18,82.24$, 41.32. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NOS}(\mathrm{M}+\mathrm{H})^{+}: 180.0478$, Found: 180.0481. HPLC (Chiralpak AD-H column, n-hexane $/ i$ - $\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=13.642$ $\left.\min , \mathrm{t}_{\text {minor }}=15.135 \mathrm{~min}, 95 \% \mathrm{ee}\right)$.

(R)-3-phenyl-6-vinyl-5,6-dihydro-4H-1,2-oxazine (40)

colorless oil, $18.1 \mathrm{mg}, 97 \%$ yield, $[\alpha]_{D}^{26}-237.7\left(\mathrm{c} 0.85, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.66$ $(\mathrm{m}, 2 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 3 \mathrm{H}), 5.97-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ $-4.30(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 154.27,135.89,129.45,128.45,125.33,117.72,75.35,24.09,21.08$. HRMS (ESI): Exact Mass Calcd. for
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 188.1070$, Found: 188.1073. HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=92 / 8$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\left.\mathrm{t}_{\text {major }}=15.152 \mathrm{~min}, \mathrm{t}_{\text {minor }}=16.377 \mathrm{~min}, 90 \% \mathrm{ee}\right)$.

(R)-3-phenyl-7-vinyl-4,5,6,7-tetrahydro-1,2-oxazepine (4p)

colorless oil, $18.7 \mathrm{mg}, 93 \%$ yield, $[\alpha]_{\mathrm{D}}^{26}-57.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 3 \mathrm{H}), 6.05-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24$ $-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.63-$ $1.57(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.72,138.07,135.44,130.35,128.58,126.92,115.34,80.30$, 35.39, 29.44, 21.86. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 202.1226$, Found: 202.1230. HPLC (Chiralpak OD-H column, n-hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {minor }}=$ $12.350 \mathrm{~min}, \mathrm{t}_{\text {major }}=18.285 \mathrm{~min}, 94 \%$ ee $)$.

5. Synthetic transformation of products

5.1 Olefin metathesis of compound 4d

Under argon atmosphere, a solution of compound $\mathbf{4 d}(50.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and but-3-en-1-ylbenzene (79.2 $\mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv.) in dry DCM (2 mL) was treated with Grubbs $2^{\text {nd }}$ catalyst ($5.1 \mathrm{mg}, 3 \mathrm{~mol} \%$). The reaction mixture was refluxed for 24 h . After cooling to room temperature, DCM was evaporated under reduced pressure and the residue was purified by flash column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc}=$ $19 / 1)$ to afford product $5(61.2 \mathrm{mg})$.
(R,E)-3-(4-bromophenyl)-5-(4-phenylbut-1-en-1-yl)-4,5-dihydroisoxazole (5). white solid, mp 67.7 $68.8^{\circ} \mathrm{C}, 86 \%$ yield, $[\alpha]_{\mathrm{D}}^{23}-83.0\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~s}, 4 \mathrm{H}), 7.29-7.25(\mathrm{~m}$, 3H), $7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 5.90-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=15.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=18.0,8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.39$ (dd, $J=16.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=16.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.43-2.39$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.70,141.40,134.64,131.93,128.69,128.45,128.41,128.36$, 128.08, 125.96, 124.24, 82.41, 40.37, 35.24, 33.91. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrNO}$ $(\mathrm{M}+\mathrm{H})^{+}: 356.0645$, Found: 356.0646 . HPLC (Chiralpak OD-H column, n-hexane $/ i$ - $\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\left.\mathrm{t}_{\text {major }}=37.630 \mathrm{~min}, \mathrm{t}_{\text {minor }}=44.594 \mathrm{~min}, 89 \% \mathrm{ee}\right)$.

5.2 Epoxidation of compound 2a

To a solution of compound $\mathbf{2 a}(49.0 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}), m-\mathrm{CPBA}(70 \%, 147.9 \mathrm{mg}, 0.6$ mmol, 4.0 equiv.) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 24 h at room temperature. Upon completion of the reaction (monitored by TLC), the reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The organic phase was separated, washed with saturated aqueous NaHCO_{3}, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (9/1) to afford the product 6 (85% yield, $3: 2 \mathrm{dr}$). major 6, white solid, mp $136.5-138.6^{\circ} \mathrm{C}, 26.2 \mathrm{mg}, 51 \%$ yield, $[\alpha]_{\mathrm{D}}^{27}+6.0\left(\mathrm{c} 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=$ $4.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.85,144.55,132.07,130.78,130.49,129.65$, $128.67,128.62,126.97,63.17,53.32,47.71,36.54,21.60$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+}: 343.1111$, Found: 343.1117. HPLC $($ Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=$ $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\left.\mathrm{t}_{\text {major }}=37.774 \mathrm{~min}, \mathrm{t}_{\text {minor }}=41.754 \mathrm{~min}, 96 \% \mathrm{ee}\right)$.
minor 6, white solid, mp $88.4-90.1^{\circ} \mathrm{C}$, $17.4 \mathrm{mg}, 34 \%$ yield, $[\alpha]_{\mathrm{D}}^{27}+2.0\left(\mathrm{c} 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.28-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=6.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.97-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.91$ $(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.97,144.48,132.17,130.78,130.46$, 129.62, 128.65, 128.01, 126.97, 60.66, 52.35, 44.80, 35.47, 21.60. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 343.1111$, Found: 343.1117 . HPLC (Chiralpak IG column, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\mathrm{t}_{\text {major }}=25.022 \mathrm{~min}, \mathrm{t}_{\text {minor }}=35.241 \mathrm{~min}, 96 \%$ ee $)$.

5.3 Synthesis of $\boldsymbol{\beta}$-amino alcohol 7 and 6-vinyl-1,3-oxazinan-2-one (8)

Under argon atmosphere, compound $\mathbf{4 a}(34.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(8.0 \mathrm{~mL})$. Lithium aluminium hydride ($22.8 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv.) was added to the above solution. The reaction mixture was refluxed for 36 h . After cooling to room temperature, the reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(20 \mathrm{~mL})$, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (7:1) to afford the product 7 (8:1 dr).
(3R,5S)-5-amino-5-phenylpent-1-en-3-ol (7). white solid, mp $295.3-297.1^{\circ} \mathrm{C}, 22.7 \mathrm{mg}, 64 \%$ yield, $[\alpha]$ ${ }_{\mathrm{D}}^{26}-135.4\left(\mathrm{c} 0.33, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.48-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.62(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.83-$ $5.75(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=8.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.71(\mathrm{~m}, 1 \mathrm{H})$, 3.34 (br s, 1H), $1.93-1.77(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 142.43,140.87,129.01,128.44$, $127.73,113.79,68.93,53.45,43.09$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 178.1226$, Found: 178.1230. HPLC (Chiralpak OD-H column, n-hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $\left.\mathrm{t}_{\text {minor }}=11.600 \mathrm{~min}, \mathrm{t}_{\text {major }}=13.077 \mathrm{~min}, 94 \% \mathrm{ee}\right)$.

An oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was charged with compound 7 $(17.7 \mathrm{mg}, 0.1 \mathrm{mmol})$ in anhydrous THF (2 mL), followed by the addition of $1,1^{\prime}$ '-carbonyldiimidazole (CDI) $(32.4 \mathrm{mg}, 0.2 \mathrm{mmol})$. The reaction was refluxed for 6 h under argon. Upon completion of the reaction (monitored by TLC), the solvent was removed under reduced pressure. The residue was dissolved in EtOAc, and washed with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=1: 1$) to afford the product $\mathbf{8}$ (92% yield, $7: 1 \mathrm{dr}$). The ($4 S, 6 R$)-8 was obtained in 76% yield by recrystallization from dichloromethane.
(4S,6R)-4-phenyl-6-vinyl-1,3-oxazinan-2-one (8). White solid, 76% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.33(\mathrm{~m}, 5 \mathrm{H}), 5.95-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.91-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=11.6,4.4,1 \mathrm{H}), 2.27-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.68,140.51,134.83,129.20,128.74,126.09,117.68,77.32,55.59,36.91$. HRMS (ESI): Exact Mass Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}:$204.1019, Found: 204.1021.

Table 1. Crystal data and structure refinement for compound 8.

Identification code	hufang-hxp_0302_auto
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}$
Formula weight	203.23
Temperature/K	274.64(16)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
a/Å	9.2864(3)
b / \AA	10.8028(3)
c / \AA	11.5140(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	109.190(4)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	1090.89(6)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.237
μ / mm^{-1}	0.685
F(000)	432.0
Crystal size/mm ${ }^{3}$	$0.15 \times 0.12 \times 0.08$
Radiation	$\mathrm{CuK} \mathrm{K}(\lambda=1.54184)$
2θ range for data collection/ ${ }^{\circ}$	11.546 to 153.276
Index ranges	$-11 \leq \mathrm{h} \leq 11,-13 \leq \mathrm{k} \leq 11,-14 \leq 1 \leq 14$
Reflections collected	6938
Independent reflections	$2192\left[\mathrm{R}_{\text {int }}=0.0386, \mathrm{R}_{\text {sigma }}=0.0363\right]$
Data/restraints/parameters	2192/1/136
Goodness-of-fit on F^{2}	1.091
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0666, \mathrm{wR}_{2}=0.1928$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0747, \mathrm{wR}_{2}=0.2035$
Largest diff. peak/hole / e \AA^{-3}	0.42/-0.28

6. Scale-up synthesis of compound 2a

A flame dried Schlenk tube was cooled to room temperature and filled with argon. To this flask were added $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(0.04 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, phosphoramidite ligand $\mathbf{L}_{2}(0.08 \mathrm{mmol}, 8 \mathrm{~mol} \%), n$-propylamine (1.0
$\mathrm{mL})$ and THF (1.0 mL). The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 0.5 h and the volatile solvent was removed in vacuo to afford a pale-yellow solid. Then, $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{mmol}, 0.5$ equiv.), a solution of $1 \mathbf{1 a}$ (1.0 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added and the reaction mixture was stirred for 48 h . Upon completion of the reaction (monitored by TLC), the reaction mixture was filtrated with celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the product $\mathbf{2 a}$ (93% yield, 93% ee).

7. References

[1] Guo, Y.-Q.; Zhao, M.-N.; Ren, Z.-H.; Guan, Z.-H. Org. Lett. 2018, 20, 3337-3340.
[2] Wang, L.; Li, P.; Menche, D. Angew. Chem. Int. Ed. 2010, 49, 9270-9273.
[3] Wang, L.; Zhang, K.; Wang, Y.; Li, W.; Chen, M.; Zhang, J. Angew. Chem. Int. Ed. 2020, 59, 44214427.

8. NMR spectra of compounds $2 \mathrm{a}-2 \mathrm{~s}, 4 \mathrm{a}-4 \mathrm{p}$ and $5-8$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 a}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 b}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 c}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 d}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 e}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 f}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 g}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 h}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 h}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 i}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 i}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 j}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2} \mathbf{j}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 k}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 k}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 1}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $21\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 m}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 n}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 n}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 o}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 o}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 p}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 p}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 q}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 q}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

$\stackrel{n}{0}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 r}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 r}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 s}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 s}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

도․

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 a}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 b}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 c}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 d}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$
0 7060
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 e}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 f}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 g}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 h}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 h}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 i}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 j}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 k}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

	¢
	V/V

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 k}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 l}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 1}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 m}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 m}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 n}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 n}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 o}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 o}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 p}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 p}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $5\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $5\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 6 (major) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 6 (major) $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 6 (minor) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 6 (minor) $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

$\begin{array}{lllll}210 & 200 & 190 & 180 & 170 \\ 160\end{array}$
$\begin{array}{lll}150 & 140 & 130\end{array}$
$\begin{array}{ll}120 & 110 \quad 100\end{array}$
$90 \quad 80$
$60 \quad 50$
40
${ }^{1} \mathrm{H}$ NMR spectrum of compound $7\left(\mathrm{DMSO}-d_{6}, 400 \mathrm{MHz}\right)$

$\mathrm{NH}_{2} \mathrm{OH}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 7 (DMSO- $d_{6}, 100 \mathrm{MHz}$)

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

9. HPLC spectra for compounds $2 a-2 s, 4 a-4 p$ and 5-6

Peak	Processed channel	Retention time (min)	Peak area $\left(\mathrm{mAU}^{*}\right)$	Peak height (mAU)	Peak area $(\%)$
1	PDA 254 nm	22.747	2.01724 e 4	665.94897	49.8013
2	PDA 254 nm	25.431	2.03334 e 4	621.40747	50.1987

Peak	Processed channel	Retention time (min)	Peak area $\left(\mathrm{mAU}^{*}\right)$	Peak height (mAU)	Peak area $(\%)$
1	PDA 254 nm	22.617	4.30791 e 4	1345.97412	96.6043
2	PDA 254 nm	25.395	1514.24365	44.72794	3.3957

Peak	Processed channel	Retention time (min)	Peak area $\left(\mathrm{mAU}^{*}\right)$	Peak height (mAU)	Peak area $(\%)$
1	PDA 254 nm	19.111	2.88379 e 4	1082.38330	95.4989
2	PDA 254 nm	25.833	1359.19348	38.61534	4.5011

Peak	Processed channel	Retention time (min)	Peak area $\left(\mathrm{mAU}^{*}\right)$	Peak height (mAU)	Peak area $(\%)$
1	PDA 254 nm	37.630	3.66823 e 4	386.96817	94.6748
2	PDA 254 nm	44.594	2063.28394	21.97522	5.3252

