Tandem trifluoromethylthiolation and cyclization of N-aryl-3-butenamides with AgSCF₃: divergent access to CF₃S-substituted 3,4-dihydroquinolin-2-ones and azaspiro[4,5]dienones

Liang Wang,^a Lin Xie,^a Zeguo Fang,^a Qian Zhang^a and Dong Li^{*a}

^aHubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China

Supporting Information

Contents

Detailed Data for Optimization of Reaction Conditions	S2-S3
Experimental Section	S3
Instrumentation and Chemicals	S3
Preparation of Substrates	S3–S4
Experimental Procedures	S4
Characterization Data	S4-S10
Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	S10-S52

Detailed Data for Optimization of Reaction Conditions

		+ AgSCF ₃ oxidant solvent, T ° (1.5 equiv)	c of	N	+ SCF ₃		SCF ₃
	1a		23	а		3a	1
	Ovident		Additivo	т	Timo	yield	yield
Entry	(1.5 equiv)	Solvent	(1.5 equiv)	1 (°C)	(h)	$2a^{b}$	3a ^b
	(1.5 equiv)		(1.5 equiv)	(C)	(11)	(%)	(%)
1	$K_2S_2O_8$	EtOAc	_	60	12	_	_
2	$K_2S_2O_8$	CH_2Cl_2	-	60	12	_	_
3	$K_2S_2O_8$	H_2O	_	60	12	14	_
4	$K_2S_2O_8$	MeCN	-	60	12	10	21
5	$K_2S_2O_8$	HFIP	_	60	12	_	_
6	$K_2S_2O_8$	PhCl	_	60	12	_	_
7	$K_2S_2O_8$	1,4-dioxane	—	60	12	_	_
8	$K_2S_2O_8$	DMF	_	60	12	_	_
9	$K_2S_2O_8$	THF	—	60	12	_	_
10	$K_2S_2O_8$	DCE	—	60	12	_	_
11	$K_2S_2O_8$	EtOH	—	60	12	_	_
12	$K_2S_2O_8$	$EtOAc:H_2O(1:1)$	—	60	12	—	-
13	$K_2S_2O_8$	CH ₂ Cl ₂ :H ₂ O(1:1)	_	60	12	27	10
14	$K_2S_2O_8$	MeCN:H ₂ O(1:1)	_	60	12	30	11
15	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	—	60	12	40	7
16	$K_2S_2O_8$	MeCN:H ₂ O(3:1)	_	60	12	22	13
17	$K_2S_2O_8$	HFIP: $H_2O(1:1)$	_	60	12	_	_
18	$K_2S_2O_8$	PhCl:H ₂ O(1:1)	_	60	12	_	_
19	$K_2S_2O_8$	1,4-dioxane:H ₂ O(1:1)	_	60	12	_	_
20	$K_2S_2O_8$	DMF:H ₂ O(1:1)	_	60	12	_	_
21	$K_2S_2O_8$	THF:H ₂ O(1:1)	_	60	12	_	_
22	$K_2S_2O_8$	DCE:H ₂ O(1:1)	_	60	12	20	3
23	$K_2S_2O_8$	EtOH:H ₂ O(1:1)	_	60	12	_	_
24	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	—	25	12	_	_
25	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	_	80	12	46	7
26	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	_	100	12	45	5
27	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	—	80	2	33	6
28	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	—	80	3	31	8
29	$K_2S_2O_8$	$MeCN:H_2O(1:3)$	_	80	4	35	5
30	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	_	80	5	34	9
31	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	_	80	8	39	11
32	$Na_2S_2O_8$	MeCN:H ₂ O(1:3)	-	80	12	37	6
33	(NH ₄) ₂ S ₂ O ₈	MeCN:H ₂ O(1:3)	_	80	12	42	7
34	PhI(OAc) ₂	MeCN:H ₂ O(1:3)	-	80	12	_	_
35	TBHP	MeCN:H ₂ O(1:3)	-	80	12	_	_

36	mCPBA	MeCN:H ₂ O(1:3)	_	80	12	_	_
37 ^c	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	_	80	12	43	6
38 ^d	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	_	80	12	45	4
39 ^e	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	_	80	12	37	7
$40^{\rm f}$	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	_	80	12	47	9
41 ^g	K ₂ S ₂ O ₈ /TBHP	MeCN:H ₂ O(1:3)	_	80	12	61	—
38	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	NaHCO ₃	80	12	32	9
39	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	PhCOOH	80	12	31	6
40	$K_2S_2O_8$	$MeCN:H_2O(1:3)$	$B(OH)_3$	80	12	34	7
41	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	BF ₃ Et ₂ O	80	12	36	6
42	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	CH ₃ COONa	80	12	35	7
43	$K_2S_2O_8$	$MeCN:H_2O(1:3)$	NaOH	80	12	32	5
44	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	K_2CO_3	80	12	33	3
45	$K_2S_2O_8$	MeCN:H ₂ O(1:3)	K_2HPO_4	80	12	43	5
46 ^h	$K_2S_2O_8$	$MeCN:H_2O(1:3)$	HMPA	80	12	40	11
$47^{\rm h}$	$K_2S_2O_8$	MeCN	HMPA	80	12	27	20
48^{i}	K ₂ S ₂ O ₈ /TBHP	$MeCN:H_2O(1:3)$	_	80	12	61	—
49 ⁱ	$K_2S_2O_8$	MeCN	HMPA	80	12	17	52

^a Reaction conditions: **1a** (0.2 mmol), AgSCF₃ (1.5 equiv), oxidant (1.5 equiv) in solvent (2.0 mL). ^b Isolated yield. ^c 2 equiv K₂S₂O₈. ^d 3 equiv K₂S₂O₈. ^e 2 equiv AgSCF₃. ^f 3 equiv AgSCF₃. ^g 3 equiv TBHP. ^h 0.5 equiv HMPA. ⁱ under N₂.

Experimental Section

Instrumentation and chemicals.

¹H NMR, ¹³C NMR, ¹⁹F NMR spectra were recorded on a Bruker DPX-400 spectrometer with CDCl₃ as the solvent and TMS as an internal standard, operating at 400 MHz for ¹H NMR, 100 MHz for ¹³C NMR and 376 MHz for ¹⁹F NMR. Melting points were measured by SGW X-4A microscopic apparatus. HRMS was measured by Q Exactive Hybrid Quadrupole-Orbitrap LC/MS spectrometer.

Ethyl acetate and hexane for column chromatography were obtained from commercial sources and used without further purification. Other solvents were purified according to the standard methods. AgSCF₃ were prepared according to the reported literatures¹. Other chemicals were obtained from commercial sources and used as received unless otherwise noted.

Preparation of Substrates:

The substrates **1** were synthesized according to the literature². Into a 250 mL round-bottom flask equipped with a magnetic stir-bar was added solution of *N*-methylaniline **S1** (1.0 g, 1 equiv) in DCM (60 mL) and triethylamine (2 equiv). The mixture was stirred at 0 °C. Then 3-butenoyl chloride **S2** (1.5 equiv) was added under nitrogen atmosphere. The resulting solution was allowed to warm up to room temperature and stirred for 6 hours, followed by the addition of H₂O (50 mL) to quench excess acyl chloride. The aqueous layer was further extracted by ethyl acetate

 $(2\times50 \text{ mL})$ and the combined organic phases were dried over Na₂SO₄. The solvent was removed by rotary evaporation and the crude product was purified by column chromatography.

Experimental procedures

General procedure for the the synthesis of azaspiro[4,5]dienones (2).

To a 4 mL round-bottomed flask was charged with *N*-aryl-3-butenamides (**1**, 0.2 mmol), AgSCF₃ (0.3 mmol), K₂S₂O₈ (0.3 mmol), TBHP (0.6 mmol), MeCN (0.5 mL) and H₂O (1.5 mL). The resulting mixture was stirred at 80 °C for 12 h. After the reaction was complete, the mixture was added into H₂O (25 mL) and extracted with ethyl acetate (10 mL) three times. The combined organic layer was dried over anhydrous Na₂SO₄ and filtered. After removal of the solvent *in vacuo*, the residue was purified by column chromatography (ethyl acetate/hexane) to afford the pure product **2**.

General procedure for the the synthesis of 3,4-dihydroquinolin-2-ones (3).

To a 4 mL round-bottomed flask was charged with *N*-aryl-3-butenamides (**1**, 0.2 mmol), AgSCF₃ (0.3 mmol), K₂S₂O₈ (0.3 mmol), HMPA (0.1 mmol), and MeCN (2 mL) under N₂ atmosphere. The resulting mixture was stirred at 80 °C for 12 h. After the reaction was complete, the mixture was added into H₂O (25 mL) and extracted with ethyl acetate (10 mL) three times. The combined organic layer was dried over anhydrous Na₂SO₄ and filtered. After removal of the solvent *in vacuo*, the residue was purified by column chromatography (ethyl acetate/hexane) to afford the pure product **3**.

Characterization Data

1-Methyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2a)

Yellow oil, 35.5 mg, 61% yield; ¹H NMR (400 MHz, CDCl₃): δ 6.69–6.63 (m, 2H), 6.51–6.45 (m, 2H), 2.90–2.72 (m, 4H), 2.66 (s, 3H), 2.39–2.32 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 182.8, 171.6, 147.2, 142.9, 132.4, 131.8, 129.3 (q, J = 304.9 Hz), 63.7, 41.4, 34.1, 28.4 (q, J = 2.1 Hz), 25.6. ¹⁹F NMR (376 MHz, CDCl₃): δ –41.1 (s). HRMS-ESI(m/z): calcd for C₁₂H₁₃F₃NO₂S (M+H)⁺: 292.0614, found 292.0613.

1,7-Dimethyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2b)

Yellow oil, 38.4 mg, 63% yield; ¹H NMR (400 MHz, CDCl₃): δ 6.65–6.59 (m, 1H), 6.50–6.44 (m, 1H), 6.42–6.39 (m, 1H), 2.87–2.66 (m, 4H), 2.64 (s, 3H), 2.40–2.30 (m, 1H), 1.97 (dd, $J_1 = 2.6$ Hz, $J_2 = 1.5$ Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 183.6, 183.6, 171.6, 171.6, 147.1, 142.6, 142.2, 139.6, 139.0, 137.8, 132.1, 131.6, 129.3 (q, J = 304.8 Hz), 129.3 (q, J = 304.8 Hz), 64.0, 64.0, 41.5, 41.2, 34.2, 34.1, 28.4 (q, J = 2.1 Hz), 25.5, 25.5, 15.0, 14.9. ¹⁹F NMR (376 MHz, CDCl₃): δ –41.2 (s), –41.2 (s). HRMS-ESI(m/z): calcd for C₁₃H₁₅F₃NO₂S (M+H)⁺: 306.0770, found 306.0773.

1,6-Dimethyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2c)

Yellow oil, 42.7 mg, 70% yield; ¹H NMR (400 MHz, CDCl₃): δ 6.65–6.61 (m, 1H), 6.48–6.37 (m, 1H), 6.36–6.31 (m, 1H), 2.88–2.68 (m, 4H), 2.64 (s, 1H), 2.55 (s, 2H), 2.41–2.32 (m, 1H), 1.95 (d, J = 1.2 Hz, 2H), 1.86 (d, J = 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 184.2, 183.8, 173.0, 172.8, 155.6, 154.9, 149.8, 144.6, 133.0, 132.3, 132.1, 131.3, 130.4 (q, J = 304.9 Hz), 130.3 (q, J = 304.9 Hz), 67.5, 67.3, 41.7, 40.2, 35.3, 35.2, 29.7 (q, J = 2.1 Hz), 28.8 (q, J = 1.3 Hz), 140.4 (q, J = 304.9 Hz), 130.3 (q, J = 304.9 Hz), 67.5, 67.3, 41.7, 40.2, 35.3, 35.2, 29.7 (q, J = 2.1 Hz), 28.8 (q, J = 304.9 Hz), 130.3 (q, J = 304.9 Hz), 67.5, 67.3, 41.7, 40.2, 35.3, 35.2, 29.7 (q, J = 2.1 Hz), 28.8 (q, J = 304.9 Hz), 130.3 (q, J = 304.9 Hz), 67.5, 67.3, 41.7, 40.2, 35.3, 35.2, 29.7 (q, J = 2.1 Hz), 28.8 (q, J = 304.9 Hz), 67.5, 67.3, 41.7, 40.2, 35.3, 35.2, 29.7 (q, J = 2.1 Hz), 28.8 (q, J = 304.9 Hz), 67.5, 67.3, 41.7, 40.2, 35.3, 35.2, 29.7 (q, J = 2.1 Hz), 28.8 (q, J = 304.9 Hz), 67.5, 67.3, 41.7, 40.2, 35.3, 35.2, 29.7 (q, J = 2.1 Hz), 28.8 (q, J = 304.9 Hz), 67.5, 67.3, 41.7, 40.2, 35.3, 35.2, 29.7 (q, J = 2.1 Hz), 28.8 (q, J = 304.9 Hz), 67.5, 67.3, 41.7, 40.2, 35.3, 35.2, 29.7 (q, J = 2.1 Hz), 28.8 (q, J = 304.9 Hz), 67.5, 67.3, 41.7, 40.2, 35.3, 35.2, 29.7 (q, J = 2.1 Hz), 28.8 (q, J = 304.9 Hz), 67.5, 67.3, 41.7, 40.2, 35.3, 35.2, 29.7 (q, J = 2.1 Hz), 28.8 (q, J = 304.9 Hz), 67.5, 67.3, 41.7, 40.2, 35.3, 35.2, 29.7 (q, J = 2.1 Hz), 28.8 (q, J = 304.9 Hz), 67.5, 67.3, 41.7, 40.2, 35.3, 35.2, 29.7 (q, J = 2.1 Hz), 28.8 (q, J = 304.9 Hz), 67.5, 67.3, 41.7, 40.2, 35.3, 35.2, 29.7 (q, J = 2.1 Hz), 28.8 (q, J = 304.9 Hz), 67.5, 67.3, 41.7, 40.2, 35.3, 35.2, 29.7 (q, J = 2.1 Hz), 28.8 (q, J = 304.9 Hz), 45.8 (q, J = 304.9

J = 2.1 Hz), 20.4, 18.0. ¹⁹F NMR (376 MHz, CDCl₃): δ -41.0 (s), -41.2 (s). HRMS-ESI(m/z): calcd for C₁₃H₁₅F₃NO₂S (M+H)⁺: 306.0770, found 306.0765.

7-Fluoro-1-methyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2d)

Colorless oil, 40.8 mg, 66% yield; ¹H NMR (400 MHz, CDCl₃): δ 6.70–6.64 (m, 1H), 6.49–6.42 (m, 1H), 6.22–6.16 (m, 1H), 2.82–2.79 (m, 1H), 2.76–2.70 (m, 2H), 2.62 (s, 3H), 2.37–2.27 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 175.9 (d, J = 22.4 Hz), 175.9 (d, J = 22.4 Hz), 171.2, 154.2 (d, J = 270.4 Hz), 154.2 (d, J = 270.2 Hz), 148.4 (d, J = 2.5 Hz), 144.0 (d, J = 2.5 Hz), 130.8 (d, J = 53.5 Hz), 130.8 (d, J = 53.6 Hz), 129.3 (q, J = 305.0 Hz), 129.2 (q, J = 304.9 Hz), 123.1 (d, J = 13.2 Hz), 118.5 (d, J = 11.3 Hz), 65.6 (d, J = 7.5 Hz), 65.5 (d, J = 7.5 Hz), 41.8 (d, J = 1.3 Hz), 41.3 (d, J = 1.3 Hz), 34.0, 33.9, 28.5 (q, J = 2.1 Hz), 28.3 (q, J = 2.3 Hz), 25.5, 25.5. ¹⁹F NMR (376 MHz, CDCl₃): δ –41.1 (s), –41.1 (s), –121.1~ –121.2 (m), –122.4~ –122.5 (m). HRMS-ESI(m/z): calcd for C₁₂H₁₂F₄NO₂S (M+H)⁺: 310.0519, found 310.0515.

6-Fluoro-1-methyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2e)

Colorless oil, 35.6 mg, 64% yield; ¹H NMR (400 MHz, CDCl₃): δ 6.59–6.53 (m, 2H), 6.48–6.41 (m, 2H), 6.21–6.15 (m, 2H), 3.12–3.03 (m, 1H), 2.95–2.76 (m, 7H), 2.68 (s, 3H), 2.66 (s, 3H), 2.43–2.35 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 184.4 (d, J = 15.5 Hz), 184.1 (d, J = 15.5 Hz), 172.2, 171.2, 170.9 (d, J = 287.7 Hz), 170.3 (d, J = 288.7 Hz), 143.6 (d, J = 25.7 Hz), 139.3 (d, J = 3.6 Hz), 131.3 (d, J = 62.6 Hz), 131.2 (d, J = 62.6 Hz), 129.3 (q, J = 305.0 Hz), 112.4 (d, J = 8.9 Hz), 112.3 (d, J = 10.2 Hz), 65.9 (d, J = 21.2 Hz), 64.6 (d, J = 21.4 Hz), 40.8 (d, J = 2.3 Hz), 38.0, 34.2 (d, J = 1.8 Hz), 33.8, 28.6 (q, J = 2.3 Hz), 28.3 (q, J = 1.7 Hz), 25.5, 25.2. ¹⁹F NMR (376 MHz, CDCl₃): δ –41.0 (s), –41.1 (s), –93.8~ –93.9 (m), –97.7~ –97.8 (m). HRMS-ESI(m/z): calcd for C₁₂H₁₂F₄NO₂S (M+H)⁺: 310.0519, found 310.0515.

7-Chloro-1-methyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2f)

Yellow oil, 36.4 mg, 56% yield; ¹H NMR (400 MHz, CDCl₃): δ 6.86 (d, J = 2.6 Hz, 1H), 6.74–6.68 (m, 1H), 6.60– 6.55 (m, 1H), 2.93–2.76 (m, 4H), 2.68 (s, 3H), 2.42–2.33 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 177.0, 177.0, 172.2, 172.2, 148.7, 144.4, 144.1, 140.1, 136.4, 136.2, 132.1, 131.6, 130.2 (q, J = 305.0 Hz), 130.2 (q, J = 305.0Hz), 66.8, 66.6, 42.5, 42.4, 35.0, 34.9, 29.4 (q, J = 2.3 Hz), 29.3 (q, J = 2.2 Hz), 26.7, 26.7. ¹⁹F NMR (376 MHz, CDCl₃): δ –41.0 (s), –41.1 (s). HRMS-ESI(m/z): calcd for C₁₂H₁₂ClF₃NO₂S (M+H)⁺: 326.0224, found 326.0227.

6-Chloro-1-methyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2g)

Yellow oil, 46.8 mg, 72% yield; ¹H NMR (400 MHz, CDCl₃): δ 6.73–6.68 (m, 4H), 6.55–6.43 (m, 2H), 3.17–3.07 (m, 1H), 2.95–2.73 (m, 7H), 2.67 (s, 3H), 2.62 (s, 3H), 2.41–2.33 (m, 1H), 2.12–2.08 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 181.5, 181.2, 172.3, 171.2, 153.0, 151.9, 147.8, 142.9, 131.9, 131.7, 131.3, 130.0, 129.3 (q, *J* = 305.1 Hz), 129.2 (q, *J* = 305.0 Hz), 67.7, 67.4, 40.7, 39.7, 34.1, 33.9, 28.7 (q, *J* = 2.3 Hz), 27.7 (q, *J* = 2.0 Hz), 25.7, 25.2. ¹⁹F NMR (376 MHz, CDCl₃): δ –41.0 (s), –41.1 (s). HRMS-ESI(m/z): calcd for C₁₂H₁₂ClF₃NO₂S (M+H)⁺: 326.0224, found 326.0228.

7-Bromo-1-methyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2h)

Yellow oil, 47.2 mg, 64% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.14–7.11 (m, 1H), 6.75–6.69 (m, 1H), 6.63–6.58 (m,

1H), 2.93–2.74 (m, 4H), 2.70 (s, 3H), 2.42–2.33 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 176.9, 176.9, 172.2, 172.1, 148.6, 148.5, 144.6, 144.3, 132.7, 131.1, 130.2 (q, *J* = 305.2 Hz), 130.2 (q, *J* = 305.0Hz), 128.2, 128.2, 67.4, 67.3, 42.4, 42.2, 35.0, 34.9, 29.5 (q, *J* = 2.2 Hz), 29.3 (q, *J* = 2.2 Hz), 26.8, 26.8. ¹⁹F NMR (376 MHz, CDCl₃): δ –41.0 (s), -41.0 (s). HRMS-ESI(m/z): calcd for C₁₂H₁₂BrF₃NO₂S (M+H)⁺: 369.9719, found 369.9722.

6-Bromo-1-methyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2i)

Yellow oil, 51.7 mg, 70% yield; ¹H NMR (400 MHz, CDCl₃): δ 6.98–6.92 (m, 2H), 6.80–6.75 (m, 2H), 6.57–6.46 (m, 2H), 3.17–3.07 (m, 1H), 3.00–2.72 (m, 7H), 2.67 (s, 3H), 2.63 (s, 3H), 2.42–2.34 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 180.7, 180.5, 172.1, 171.2, 148.5, 147.3, 144.6, 143.1, 136.2, 136.0, 131.2, 129.7, 129.3 (q, *J* = 305.1 Hz), 129.2 (q, *J* = 305.1Hz), 68.0, 67.8, 40.8, 40.7, 34.0, 33.9, 28.7 (q, *J* = 2.1 Hz), 27.6 (q, *J* = 2.2 Hz), 25.8, 25.3. ¹⁹F NMR (376 MHz, CDCl₃): δ –41.0 (s), –41.1 (s). HRMS-ESI(m/z): calcd for C₁₂H₁₂BrF₃NO₂S (M+H)⁺: 369.9719, found 369.9716.

1-methyl-7-(trifluoromethyl)-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2j)

Yellow oil, 25.1 mg, 35% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.18–7.13 (m, 2H), 6.75–6.70 (m, 1H), 6.60–6.54 (m, 1H), 2.93–2.77 (m, 4H), 2.69 (s, 3H), 2.47–2.36 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 177.2 (q, J = 2.1 Hz), 171.1, 148.0 (q, J = 5.2 Hz), 146.8, 143.9 (q, J = 4.9 Hz), 142.5, 132.4, 131.7 (q, J = 0.9 Hz), 129.1 (q, J = 305.2 Hz), 129.1 (q, J = 305.1 Hz), 119.6 (q, J = 272.9 Hz), 119.5 (q, J = 272.9 Hz), 63.3, 63.3, 41.7, 40.9, 33.9, 33.8, 28.6 (q, J = 2.3 Hz), 28.6 (q, J = 2.4 Hz), 25.8. ¹⁹F NMR (376 MHz, CDCl₃): δ –41.0 (s), –41.1 (s), –65.9 (s), –66.2 (s). HRMS-ESI(m/z): calcd for C₁₃H₁₂F₆NO₂S (M+H)⁺: 360.0488, found 360.0485.

1'-Methyl-3'-(((trifluoromethyl)thio)methyl)-4H-spiro[naphthalene-1,2'-pyrrolidine]-4,5'-dione (2k)

Colorless oil, 46.4 mg, 68% yield; ¹H NMR (400 MHz, CDCl₃): δ 8.27–8.18 (m, 2H), 7.73–7.62 (m, 2H), 7.60–7.52 (m, 2H), 7.45 (dd, $J_1 = 7.9$ Hz, $J_2 = 0.6$ Hz, 1H), 7.12 (dd, $J_1 = 7.9$ Hz, $J_2 = 0.7$ Hz, 1H), 6.87 (d, J = 10.2 Hz, 1H), 6.77–6.69 (m, 2H), 6.63 (d, J = 10.2 Hz, 1H), 2.98–2.73 (m, 6H), 2.65 (s, 3H), 2.50 (s, 3H), 2.48–2.41 (m, 3H), 2.05–1.99 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 183.0, 182.7, 173.1, 172.9, 149.9, 144.3, 141.5, 138.5, 134.1, 133.5, 133.5, 132.4, 132.1, 131.4, 130.2 (q, J = 304.9 Hz), 130.1 (q, J = 304.8Hz), 129.6, 129.3, 128.3, 127.3, 126.3, 125.3, 66.5, 66.2, 47.1, 42.9, 35.6, 35.0, 29.6 (q, J = 2.2 Hz), 29.4 (q, J = 2.2 Hz), 26.9, 26.6. ¹⁹F NMR (376 MHz, CDCl₃): δ -41.1 (s), -41.4 (s). HRMS-ESI(m/z): calcd for C₁₆H₁₅F₃NO₂S (M+H)⁺: 342.0770, found 342.0768.

1-benzyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (21)

Yellow oil, 37.4 mg, 51% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.25–7.22 (m, 2H), 7.17–7.13 (m, 2H), 6.52–6.44 (m, 2H), 4.45 (AB, *J* = 15.0 Hz, 1H), 4.17 (AB, *J* = 14.9 Hz, 1H), 2.94–2.87 (m, 1H), 2.85–2.77 (m, 1H), 2.74–2.63 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 183.0, 171.5, 147.2, 143.2, 136.2, 131.2, 130.9, 145.5, 129.2 (q, *J* = 304.9 Hz), 127.6, 127.0, 64.9, 52.4, 44.0, 41.7, 34.0, 28.2 (q, *J* = 2.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ –41.1 (s). HRMS-ESI(m/z): calcd for C₁₈H₁₇F₃NO₂S (M+H)⁺: 368.0927, found 368.0930.

1-Methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3a)

Colorless oil, 28.1 mg, 51% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.33 (t, *J* = 7.8 Hz, 1H), 7.22 (d, *J* = 7.4 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.03 (d, *J* = 8.2 Hz, 1H), 3.37 (s, 3H), 3.23–3.16 (m, 1H), 3.12–3.05 (m, 1H), 3.00–2.93 (m, 1H), 3.00–2.9

1H), 2.87–2.85 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 167.1, 138.6, 129.8 (q, J = 304.6 Hz), 127.7, 127.2, 125.1, 122.2, 114.2, 35.2, 34.5, 32.2 (q, J = 1.7 Hz), 28.4. ¹⁹F NMR (376 MHz, CDCl₃): δ –40.9 (s). HRMS-ESI(m/z): calcd for C₁₂H₁₃F₃NOS (M+H)⁺: 276.0664, found 276.0661.

1-Methyl-6-(trifluoromethyl)-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3b)

Yellow oil, 37.7 mg, 55% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.59 (dd, $J_1 = 8.5$ Hz, $J_2 = 1.3$ Hz 1H), 7.46 (d, J = 1.6 Hz, 1H), 7.11 (d, J = 8.5 Hz, 1H), 3.39 (s, 3H), 3.27–3.21 (m, 1H), 3.12–3.06 (m, 1H), 3.01–2.94 (m, 1H), 2.92–2.87 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 166.9, 141.5, 138.6 (q, J = 304.8 Hz), 125.5, 124.1 (q, J = 16.0 Hz), 121.5, 114.2, 35.2, 34.1, 32.9 (q, J = 1.8 Hz), 28.6. ¹⁹F NMR (376 MHz, CDCl₃): δ –40.9 (s), –62.1 (s). HRMS-ESI(m/z): calcd for C₁₃H₁₂F₆NOS (M+H)⁺: 344.0538, found 344.0536.

6-Fluoro-1-methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3c)

Colorless oil, 33.4 mg, 57% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.05–6.93 (m, 3H), 3.35 (s, 3H), 3.19–3.12 (m, 1H), 3.09–3.03 (m, 1H), 3.00–2.93 (m, 1H), 2.84 (d, *J* = 4.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 157.4 (d, *J* = 242.5 Hz), 134.9 (d, *J* = 2.7 Hz), 129.7 (q, *J* = 304.7 Hz), 127.0 (d, *J* = 7.2 Hz), 115.4 (d, *J* = 8.0 Hz), 114.3 (d, *J* = 23.1 Hz), 114.0 (d, *J* = 22.2 Hz), 35.2, 34.3, 31.9 (q, *J* = 1.6 Hz), 28.6. ¹⁹F NMR (376 MHz, CDCl₃): δ –40.9 (s), –119.5~ –119.7 (m). HRMS-ESI(m/z): calcd for C₁₂H₁₂F₄NO₂S (M+H)⁺: 294.0570, found 294.0574.

6-Chloro-1-methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3d)

Yellow oil, 34 mg, 55% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.29 (dd, $J_1 = 8.7$ Hz, $J_2 = 2.4$ Hz 1H), 7.19 (d, J = 2.4 Hz, 1H), 6.95 (d, J = 8.7 Hz, 1H), 3.34 (s, 3H), 3.19–3.13 (m, 1H), 3.10–3.03 (m, 1H), 2.97–2.91 (m, 1H), 2.96–2.83 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 137.3, 129.7 (q, J = 304.7 Hz), 127.5, 127.4, 127.2, 126.8, 125.1, 35.1, 34.2, 31.9 (q, J = 1.8 Hz), 28.5. ¹⁹F NMR (376 MHz, CDCl₃): δ –40.8 (s). HRMS-ESI(m/z): calcd for C₁₂H₁₂ClF₃NOS (M+H)⁺: 310.0275, found 310.0271.

6-Bromo-1-methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3e)

Yellow oil, 36.7 mg, 52% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.43 (dd, $J_1 = 8.7$ Hz, $J_2 = 2.3$ Hz 1H), 7.33 (d, J = 2.3 Hz, 1H), 6.89 (d, J = 8.6 Hz, 1H), 3.33 (s, 3H), 3.19–3.12 (m, 1H), 3.10–3.04 (m, 1H), 2.97–2.88 (m, 1H), 2.86–2.82 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 137.8, 130.6 (q, J = 304.7 Hz), 130.5, 130.0, 127.1, 115.8, 114.8, 35.1, 34.2, 32.0 (q, J = 1.8 Hz), 28.5. ¹⁹F NMR (376 MHz, CDCl₃): δ –40.8 (s). HRMS-ESI(m/z): calcd for C₁₂H₁₂F₃BrNOS (M+H)⁺: 353.9770, found 353.9765.

1-Methyl-2-oxo-4-(((trifluoromethyl)thio)methyl)-1,2,3,4-tetrahydroquinoline-6-carbonitrile (3f)

Colorless oil, 31.8 mg, 53% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.57 (dd, J_1 = 8.5 Hz, J_2 = 1.9 Hz, 1H), 7.45 (d, J = 1.9 Hz, 1H), 7.04 (d, J = 8.5 Hz, 1H), 3.32 (s, 3H), 3.22–3.15 (m, 1H), 3.02–2.89 (m, 2H), 2.85–2.82 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 142.3, 132.1, 130.9, 129.6 (q, J = 304.9 Hz), 125.9, 117.4, 114.7, 105.4, 35.0, 34.1, 31.8 (q, J = 1.9 Hz), 28.6. ¹⁹F NMR (376 MHz, CDCl₃): δ –40.8 (s). HRMS-ESI(m/z): calcd for C₁₃H₁₂F₃N₂OS (M+H)⁺: 301.0617, found 301.0613.

1,6-Dimethyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3g)

Colorless oil, 28.9 mg, 50% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.12 (dd, J_1 = 8.2 Hz, J_2 = 1.4 Hz, 1H), 7.01 (d, J = 1.6 Hz, 1H), 6.91 (d, J = 8.2 Hz, 1H), 3.34 (s, 3H), 3.15–3.12 (m, 1H), 3.11–3.05 (m, 1H), 2.96–2.91 (m, 1H), 2.85–2.81 (m, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 136.2, 129.9 (q, J = 304.5 Hz), 128.1, 127.8, 127.1, 125.0, 114.1, 35.3, 34.5, 32.2 (q, J = 1.8 Hz), 28.4, 19.6. ¹⁹F NMR (376 MHz, CDCl₃): δ –40.9 (s). HRMS-ESI(m/z): calcd for C₁₃H₁₅F₃NOS (M+H)⁺: 290.0821, found 290.0825.

5-Fluoro-1-methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3h)

Yellow oil, 21.5 mg, 37% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.17 (dd, $J_1 = 8.2$ Hz, $J_2 = 6.1$ Hz, 1H), 6.80–6.73 (m, 2H), 3.34 (s, 3H), 3.22–3.15 (m, 1H), 3.07–3.01 (m, 1H), 2.98–2.92 (m, 1H), 2.87–2.85 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 166.9, 161.8 (d, J = 244.2 Hz), 140.1 (d, J = 10.1 Hz), 129.8 (q, J = 304.7 Hz), 128.5 (d, J = 9.5 Hz), 120.6 (d, J = 3.2 Hz), 108.4 (d, J = 21.3 Hz), 102.2 (d, J = 26.7 Hz), 34.7, 34.5, 32.3 (q, J = 1.5 Hz), 28.5. ¹⁹F NMR (376 MHz, CDCl₃): δ –40.9 (s), –111.8~ –112.0 (m). HRMS-ESI(m/z): calcd for C₁₂H₁₂F₄NOS (M+H)⁺: 294.0570, found 294.0566.

7-Fluoro-1-methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3h')

Yellow oil, 15.4 mg, 26% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.29 (dd, J_1 = 8.3 Hz, J_2 = 2.0 Hz 1H), 6.87–6.80 (m, 2H), 3.62–3.56 (m, 1H), 3.37 (s, 3H), 3.13–3.07 (m, 1H), 3.01 (dd, J_1 = 16.7 Hz, J_2 = 1.6 Hz, 1H), 2.87–2.73 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 158.8 (d, J = 244.1 Hz), 140.3 (d, J = 6.3 Hz), 129.7 (q, J = 304.7 Hz), 128.7 (d, J = 9.7 Hz), 112.7 (d, J = 20.9 Hz), 108.4 (d, J = 3.1 Hz), 102.2 (d, J = 22.0 Hz), 33.2, 31.4 (q, J = 1.7 Hz), 28.7, 28.2 (d, J = 2.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ –41.0 (s), –118.1~ –118.2 (m). HRMS-ESI(m/z): calcd for C₁₂H₁₂F₄NOS (M+H)⁺: 294.0570, found 294.0567.

5-Chloro-1-methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3i)

Yellow oil, 21.1 mg, 34% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.15 (d, J = 8.0 Hz, 1H), 7.05 (dd, J_1 = 10.0 Hz, J_2 = 2.0 Hz 1H), 7.02 (d, J = 1.9 Hz, 1H), 3.35 (s, 3H), 3.22–3.15 (m, 1H), 3.07–2.92 (m, 2H), 2.87–2.84 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 166.8, 139.7, 133.5, 129.7 (q, J = 304.7 Hz), 128.3, 123.4, 121.9, 114.6, 34.8, 34.4, 32.1 (q, J = 1.8 Hz), 28.5. ¹⁹F NMR (376 MHz, CDCl₃): δ –40.8 (s). HRMS-ESI(m/z): calcd for C₁₂H₁₂F₃CINOS (M+H)⁺: 310.0275, found 310.0271.

7-Chloro-1-methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3i')

Yellow oil, 14.1 mg, 23% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.26 (t, J = 8.1 Hz, 1H), 7.14 (dd, J_1 = 8.1 Hz, J_2 = 0.9 Hz 1H), 6.90 (d, J = 8.1 Hz, 1H), 3.72–3.65 (m, 1H), 3.36 (s, 3H), 3.24–3.18 (m, 1H), 3.10 (dd, J_1 = 16.7 Hz, J_2 = 1.6 Hz 1H), 2.77–2.67 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 140.2, 132.6, 129.7 (q, J = 304.8 Hz), 128.3, 123.3, 112.9, 32.6, 32.1, 30.1 (q, J = 1.8 Hz), 28.7. ¹⁹F NMR (376 MHz, CDCl₃): δ –40.6 (s). HRMS-ESI(m/z): calcd for C₁₂H₁₂F₃CINOS (M+H)⁺: 310.0275, found 310.0273.

5-Bromo-1-methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3j)

Yellow oil, 23.1 mg, 33% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.21 (dd, J_1 = 8.0 Hz, J_2 = 1.8 Hz, 1H), 7.16 (d, J = 1.8 Hz, 1H), 7.08 (d, J = 8.0 Hz, 1H), 3.34 (s, 3H), 3.20–3.13 (m, 1H), 3.06–2.92 (m, 2H), 2.86–2.84 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 166.8, 139.9, 129.7 (q, J = 304.7 Hz), 128.6, 124.9, 123.9, 121.4, 117.4, 34.9, 34.3, 32.0

(q, J = 1.8 Hz), 28.5. ¹⁹F NMR (376 MHz, CDCl₃): δ –40.8 (s). HRMS-ESI(m/z): calcd for C₁₂H₁₂F₃BrNOS (M+H)⁺: 353.9770, found 353.9768.

7-Bromo-1-methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-on (3j')

Yellow oil, 16.4 mg, 23% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (dd, $J_1 = 8.0$ Hz, $J_2 = 0.9$ Hz, 1H), 7.16 (t, J = 8.1 Hz, 1H), 6.98 (d, J = 8.1 Hz, 1H), 3.69–3.62 (m, 1H), 3.35 (s, 3H), 3.27–3.21 (m, 1H), 3.11 (dd, $J_1 = 16.7$ Hz, $J_2 = 1.7$ Hz 1H), 2.78–2.64 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 140.2, 129.7 (q, J = 304.9 Hz), 128.6, 126.6, 125.0, 122.9, 113.6, 34.7, 32.6, 30.0 (q, J = 1.8 Hz), 28.8. ¹⁹F NMR (376 MHz, CDCl₃): δ –40.4 (s). HRMS-ESI(m/z): calcd for C₁₂H₁₂F₃BrNOS (M+H)⁺: 353.9770, found 353.9771.

7-(((Trifluoromethyl)thio)methyl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-5-one (3k)

Yellow oil, 31.3 mg, 52% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.08–7.02 (m, 2H), 6.97 (t, J = 7.4 Hz, 1H), 4.20–4.13 (m, 1H), 3.64–3.57 (m, 1H), 3.21–3.14 (m, 1H), 3.11–3.04 (m, 1H), 2.98–2.91 (m, 1H), 2.85 (d, J = 4.6 Hz, 2H), 2.82–2.74 (m, 2H), 1.98–1.92 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 167.3, 135.1, 130.9 (q, J = 304.5 Hz), 129.1, 126.2, 125.9, 125.5, 122.8, 40.9, 36.2, 35.3, 33.4 (q, J = 1.7 Hz), 27.3, 21.3. ¹⁹F NMR (376 MHz, CDCl₃): δ –40.9 (s). HRMS-ESI(m/z): calcd for C₁₄H₁₅F₃NOS (M+H)⁺: 302.0821, found 302.0818.

1-Methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydro-1,8-naphthyridin-2(1H)-one (3l)

Colorless oil, 37.0 mg, 67% yield; ¹H NMR (400 MHz, CDCl₃): δ 8.32 (dd, $J_1 = 4.6$ Hz, $J_2 = 1.8$ Hz, 1H), 7.54–7.51 (m, 1H), 7.00 (dd, $J_1 = 7.4$ Hz, $J_2 = 5.0$ Hz 1H), 3.47 (s, 3H), 3.23–3.16 (m, 1H), 3.03 (s, 1H), 3.01 (d, J = 1.9 Hz, 1H), 2.90 (d, J = 2.6 Hz, 1H), 2.89 (d, J = 1.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 167.6, 150.5, 146.4, 135.3, 129.7 (q, J = 304.8 Hz), 119.7, 117.4, 34.4, 33.9, 32.1 (q, J = 1.9 Hz), 27.0. ¹⁹F NMR (376 MHz, CDCl₃): δ –40.8 (s). HRMS-ESI(m/z): calcd for C₁₁H₁₂F₃N₂OS (M+H)⁺: 277.0617, found 277.0619.

1-benzyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3m)

Colorless oil, 29.5 mg, 42% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.29 (m, 2H), 7.25–7.20 (m, 4H), 7.20–7.16 (m, 1H), 7.04 (dt, $J_1 = 7.5$ Hz, $J_2 = 1.0$ Hz, 1H), 6.96 (d, J = 8.2 Hz, 1H), 5.35 (AB, J = 16.1 Hz, 1H), 5.03 (AB, J = 16.1 Hz, 1H), 3.29–3.22 (m, 1H), 3.14–3.08 (m, 1H), 3.04–2.99 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 137.8, 135.6, 129.8 (q, J = 303.4 Hz), 127.8, 127.7, 127.4, 126.3, 125.5, 125.3, 122.3, 115.1, 45.0, 35.4, 34.6, 32.2 (q, J = 1.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ –40.9 (s). HRMS-ESI(m/z): calcd for C₁₈H₁₇F₃NOS (M+H)⁺: 352.0978, found 352.0980.

References:

[1] Teverovskiy, G.; Surry, D. S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 7312.

[2] Kilaru, P.; Acharya, S, P.; Zhao, P. Chem. Commun. 2018, 54, 924.

Copies of ¹H and ¹³C NMR spectra

1-Methyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2a)

¹H NMR (400 MHz, CDCl₃)

1,7-Dimethyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2b) ¹H NMR (400 MHz, CDCl₃)

1,6-Dimethyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2c) ¹H NMR (400 MHz, CDCl₃)

7-Fluoro-1-methyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2d) ¹H NMR (400 MHz, CDCl₃)

6-Fluoro-1-methyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2e) ¹H NMR (400 MHz, CDCl₃)

7-Chloro-1-methyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2f) ¹H NMR (400 MHz, CDCl₃)

6-Chloro-1-methyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2g) ¹H NMR (400 MHz, CDCl₃)

7-Bromo-1-methyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2h) ¹H NMR (400 MHz, CDCl₃)

6-Bromo-1-methyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2i) ¹H NMR (400 MHz, CDCl₃)

1-methyl-7-(trifluoromethyl)-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2j) ¹H NMR (400 MHz, CDCl₃)

1'-Methyl-3'-(((trifluoromethyl)thio)methyl)-4H-spiro[naphthalene-1,2'-pyrrolidine]-4,5'-dione (2k) ¹H NMR (400 MHz, CDCl₃)

1-benzyl-4-(((trifluoromethyl)thio)methyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (2l) ¹H NMR (400 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCl₃)

1-Methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3a)

¹H NMR (400 MHz, CDCl₃)

1-Methyl-6-(trifluoromethyl)-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3b) ¹H NMR (400 MHz, CDCl₃)

6-Fluoro-1-methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3c) ¹H NMR (400 MHz, CDCl₃)

6-Chloro-1-methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3d)

¹H NMR (400 MHz, CDCl₃)

6-Bromo-1-methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3e) ¹H NMR (400 MHz, CDCl₃)

1-Methyl-2-oxo-4-(((trifluoromethyl)thio)methyl)-1,2,3,4-tetrahydroquinoline-6-carbonitrile (3f) ¹H NMR (400 MHz, CDCl₃)

1,6-Dimethyl-4-(((trifluoromethyl)thio)methyl)-**3,4-dihydroquinolin-2**(1H)-one (3g) ¹H NMR (400 MHz, CDCl₃)

5-Fluoro-1-methyl-4-(((trifluoromethyl)thio)methyl)-**3,4-**dihydroquinolin-**2**(**1H**)-one (**3h**) ¹H NMR (400 MHz, CDCl₃)

5-Chloro-1-methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3i) ¹H NMR (400 MHz, CDCl₃)

7-Chloro-1-methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3i') $^1\rm H$ NMR (400 MHz, CDCl_3)

5-Bromo-1-methyl-4-(((trifluoromethyl)thio)methyl)-3,4-dihydroquinolin-2(1H)-one (3j) ¹H NMR (400 MHz, CDCl₃)

7-Bromo-1-methyl-4-(((trifluoromethyl)thio)methyl)-**3**,**4**-dihydroquinolin-2(1H)-on (**3**j') ¹H NMR (400 MHz, CDCl₃)

7-(((Trifluoromethyl)thio)methyl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-5-one (3k) ¹H NMR (400 MHz, CDCl₃)

1-Methyl-4-(((trifluoromethyl)thio)methyl)-**3,4-**dihydro-**1,8-**naphthyridin-**2**(**1H**)-one (**3**) ¹H NMR (400 MHz, CDCl₃)

1-benzyl-4-(((trifluoromethyl)thio)methyl)-3, 4-dihydroquinolin-2(1H)-one~(3m)

¹H NMR (400 MHz, CDCl₃)

