Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Efficient and eco-friendly oxidative cleavage C-C bonds of 1,2-diols

to ketones: electrochemistry vs thermochemistry

Rui Wang,‡ Pengchao Sun,‡ Weiwei Jin,* Yonghong Zhang, Bin Wang, Yu Xia, Fei Xue, Ablimit Abdukader and Chenjiang Liu*

Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China E-mail: wwjin0722@163.com; pxylcj@126.com

Table of Contents

1. Materials and methods	S2
2. Experimental procedures	S3
3. Mechanistic studies	S8
4. Analytical data	S11
5. References	S14
6. Copies of NMR spectra	S15

1. Materials and methods

General. ¹H, ¹³C NMR spectra were recorded on a Varian Inova-400 (400 and 100 MHz, respectively) spectrometer. ¹H and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 ppm or CDCl₃ (δ (¹H), 7.26 ppm; δ (¹³C), 77.16 ppm). Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are reported in Hertz (Hz). The following abbreviations are used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. The melting point was recorded on BÜCHI (M-560) and uncorrected. Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel 60 F254 plates and viewed by UV light (254 nm). Column chromatographic purification was performed on IKA ElectraSyn 2.0 pro. H₂ detection experiment was conducted on a ES20B-H₂ gas detector (Shenzhen Eyesky Technology Co., Ltd). Continuous-flow reaction was performed in the microfluidic electrolysis cell and its components were purchased from Hangzhou Saiao Electrochemical Technology Co. Ltd., China.

Materials. All chemical reagents were purchased from commercial sources and used as received unless otherwise indicated. 1,2-Diols are known compounds and synthesized according to the reported method^[1].

2. Experimental procedures

2.1 General procedure for synthesis of 1,2-diols

(taking 1,1,2,2-tetrakis(4-bromophenyl)ethane-1,2-diol as an example)

Under atmosphere, bis(4-bromophenyl)methanone (0.5 mmol, 1.0 equiv.) and Zn powder (1 mmol, 2.0 equiv.) were slurried in 1.2 mL saturated aqueous NH₄Cl and 2 mL THF. The mixture was stirred at 50 °C for 5 h, until Zn powder disappeared. The reaction was then quenched by the hydrochloric acid solution (1 M). After cooling to ambient temperature, the resulting mixture was extracted with ethyl acetate. The combined organic layer dried over anhydrous Na₂SO₄. After filtration and concentration, the pure product 1,1,2,2-tetrakis(4-bromophenyl)ethane-1,2-diol was obtained by flash column chromatography on silica gel (eluent: petroleum ether (60-90 °C)/EtOAc= 10:1, v/v).

2.2 Optimization of electroxidative cleavage C–C **bonds of 1,2-diols Table S1** Screening of constant current^a

^a Reaction conditions: 1a (0.2 mmol), HPyBF₄ (20 mol%), MeCN (4.0 mL), carbon plate anode

(immersed surface area $8 \times 5 \text{ mm}^2$), nickel plate cathode (immersed surface area $8 \times 5 \text{ mm}^2$), the distance between the electrodes (5 mm), constant current, 3 h, room temperature, under air, undivided cell, reactions were performed using ElectraSyn 2.0. ^{*b*} Isolated yields. HPyBF₄: *N*-Hexylpyridinium tetrafluoroborate. n.r.: no reaction.

Table S2 Screening of electrodes^a

OH OH	DH anor	de cathode undivided cell PyBF ₄ , MeCN, , air, 4 mA, 3 h	° C
1a			2a
Entry	Anode	Cathode	Yield (%) ^b
1	С	Ni	87
2	С	С	n.r.
3	С	Pt	90
4	RVC	Ni	85
5	Ni	Ni	n.r.

^{*a*} Reaction conditions: **1a** (0.2 mmol), HPyBF₄ (20 mol%), MeCN (4.0 mL), anode (immersed surface area 8×5 mm²), cathode (immersed surface area 8×5 mm²), the distance between the electrodes (5 mm), constant current = 4 mA, 3 h, room temperature, under air, undivided cell, reactions were performed using ElectraSyn 2.0. ^{*b*} Isolated yields.

Table S3 Screening of electrolytes^a

^{*a*} Reaction conditions: **1a** (0.2 mmol), electrolyte (20 mol%), MeCN (4.0 mL), carbon plate anode (immersed surface area 8×5 mm²), nickel plate cathode (immersed surface area 8×5 mm²), the distance between the electrodes (5 mm), constant current = 4 mA, 3 h, room temperature, under air, undivided cell, reactions were performed using ElectraSyn 2.0. ^{*b*} Isolated yields.

Table S4 Screening of solvents^a

^{*a*} Reaction conditions: **1a** (0.2 mmol), HPyBF₄ (20 mol%), solvent (4.0 mL), carbon plate anode (immersed surface area 8×5 mm²), nickel plate cathode (immersed surface area 8×5 mm²), the distance between the electrodes (5 mm), constant current = 4 mA, 3 h, room temperature, under air, undivided cell, reactions were performed using ElectraSyn 2.0. ^{*b*} Isolated yields. DMA: *N*,*N*-Dimethylacetamide. DMF: *N*,*N*-Dimethylformamide.

2.3 General procedure for electroxidative cleavage C–C bonds of 1,2-diols (taking **1a** as an example)

Under atmosphere, a mixture of benzopinacol **1a** (73 mg, 0.2 mmol), HPyBF₄ (100 mg, 20 mol%), and EtOH (4.0 mL) were added in an oven-dried undivided bottle (10 mL). The bottle was equipped with carbon plate as the anode and nickel plate as the cathode. The resulting mixture was stirred and electrolyzed at a constant current mode with a constant current 4 mA at ambient temperature for 3 h. When the reaction was finished, the resulting mixture was the reaction mixture was diluted with ethyl acetate and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc = 100:1, v/v) to afford the desired product **2a** as light yellow oily liquid (71 mg, 97% yield).

2.4 Optimization of thermoxidative cleavage C-C bonds of 1,2-diols

Table S5 Screening of solvents^a

^{*a*} Reaction conditions: **1a** (0.2 mmol), 100 °C, 5 h, solvent (1.0 mL), under air. ^{*b*} Isolated yields. NMP: 1-Methyl-2-pyrrolidinone. DMSO: Dimethyl sulfoxide. THF: Tetrahydrofuran.

Table S6 Screening of reaction time^a

^a Reaction conditions: 1a (0.2 mmol), 100 °C, time, DMSO (1.0 mL), under air. ^b Isolated yields.

Table S7 Screening of temperature^a

Entry	Temperature (°C)	Yield (%) ^b
1	100	97
2	80	41

^{*a*} Reaction conditions: **1a** (0.2 mmol), temperature, 5 h, DMSO (1.0 mL), under air. ^{*b*} Isolated yields.

2.5 General procedure for thermoxidative cleavage C–C bonds of 1,2-diols

(taking **1a** as an example)

Under atmosphere, benzopinacol **1a** (73 mg, 0.2 mmol), and DMSO (1.0 mL) were added to a 10 mL reaction tube equipped with magneton. Then the reaction mixture was stirred in an oil bath at 100 °C for 5 h. After cooling to ambient temperature, the resulting mixture was extracted with ethyl acetate (3×10 mL). The combined organic layer washed with saturated sodium chloride solution (10 mL) and dried over anhydrous Na₂SO₄, filtered, and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc= 100:1, v/v) to afford the desired product **2a** as light yellow oily liquid (71 mg, 97% yield).

3. Mechanistic studies

	OH OH 1a	C Ni undivided cell HPyBF ₄ , EtOH, rt, air, 4 mA, 3 h radical scavenger	0 () 2a
Frature	Dadiaalaa	·····	Isolated yield of
Entry	Kadical se	cavenger (equiv.)	2a (%)
1	No rad	ical scavenger	97
2	TEMPO (4.0)		5
3	BHT (4.0)		4

3.1 Radical trapping experiments of electroxidative cleavage C–C bonds of 1,2diols

Under atmosphere, a mixture of benzopinacol **1a** (73 mg, 0.2 mmol), radical scavenger TEMPO or BHT (0.8 mmol), HPyBF₄ (100 mg, 20 mol%), and EtOH (4.0 mL) were added in an oven-dried undivided bottle (10 mL). The bottle was equipped with carbon plate as the anode and nickel plate as the cathode. The resulting mixture was stirred and electrolyzed at a constant current mode with a constant current 4 mA at ambient temperature for 3 h. When the reaction was finished, the resulting mixture was the reaction mixture was diluted with ethyl acetate and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc = 100:1, v/v) to afford the desired product **2a** in 5% and 4% yield, respectively.

3.2 Radical trapping experiments of thermoxidative cleavage C–C bonds of 1,2diols

	OH OH DMSO (1 mL) radical scavenger	° C
	1a	2a
Enters		Isolated yield of
Entry	Radical scavenger (equiv.)	2a (%)
1	No radical scavenger	97
2	TEMPO (4.0)	96
3	BHT (4.0)	97

Under atmosphere, benzopinacol **1a** (73 mg, 0.2 mmol), radical scavenger TEMPO or BHT (0.8 mmol), and DMSO (1.0 mL) were added to a 10 mL reaction tube equipped with magneton. Then the reaction mixture was stirred in an oil bath at 100 °C for 5 h. After cooling to ambient temperature, the resulting mixture was extracted with ethyl acetate (3×10 mL). The combined organic layer washed with saturated sodium chloride solution (10 mL) and dried over anhydrous Na₂SO₄, filtered, and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc= 100:1, v/v) to afford the desired product **2a** in 96% and 97% yield, respectively.

0 min, 0 ppm 12 min, 35 ppm 50 min, 463 ppm 70 min, 899 ppm

Figure S1 H₂ detection experiment by a H₂ detector at different reaction time

In order to demonstrate the release of H_2 during this electrochemical oxidative cleavage C—C bonds of 1,2-diols procedure, the model reaction of benzopinacol (1a) was monitored by a H_2 detector under standard conditions. Just as shown in Figure S1, as the reaction proceeded, the H_2 was observed clearly and the concentration increased gradually.

3.4 Cyclic voltammetry experiments

Cyclic voltammograms were recorded with a CHI660E electrochemical workstation at room temperature in EtOH. A glassy carbon-disk (R = 5.5 mm, h = 10 mm) was used as the working electrode. The Pt disk (R = 5.5 mm, h = 10 mm) and Ag/AgCl (R = 5.0 mm, h = 10 mm) was used as counter and reference electrode, respectively. The scan rate was 100 mV/s.

4. Analytical data

benzophenone (**2a**)^[2]: Known compound. Light yellow oily liquid. ¹H NMR (CDCl₃, 400 MHz) δ 7.49-7.51 (t, 4H, *J* = 7.8 Hz), 7.58-7.61 (t, 2H, *J* = 7.4 Hz), 7.80-7.82 (d, 4H, *J* = 7.7 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 196.8, 137.8, 132.5, 130.2, 128.4.

bis(4-fluorophenyl)methanone (**2b**)^[2]: Known compound. White solid. m.p.: 106.2-108.0 °C. ¹**H NMR** (CDCl₃, 400 MHz) δ 7.84-7.79 (m, 4H), 7.20-7.14 (m, 4H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 193.9, 166.8, 164.3, 133.8 (d, *J* = 3.0 Hz), 132.6 (d, *J* = 8.0 Hz), 115.7 (d, *J* = 22 Hz).

bis(4-chlorophenyl)methanone (**2c**)^[2]: Known compound. White solid. m.p.: 145.9-147.3 °C. ¹**H NMR** (CDCl₃, 400 MHz) δ 7.72 (d, 4H, *J* = 8.4 Hz), 7.47 (d, 4H, *J* = 8.4 Hz); ¹³**C NMR** (CDCl₃, 100 MHz) δ 194.3, 139.3, 135.7, 131.4, 128.9.

bis(4-bromophenyl)methanone (2d)^[3]: Known compound. White solid. m.p.: 162.4-166.1 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.64 (s, 8H); ¹³C NMR (CDCl₃, 100 MHz) δ 194.6, 136.0, 131.9, 131.5, 127.9.

bis(4-methoxyphenyl)methanone (2e)^[2]: Known compound. White solid. m.p.:

147.1-149.0 °C. ¹**H** NMR (CDCl₃, 400 MHz) δ 7.79 (d, 4H, *J* = 8.1 Hz), 6.96 (d, 4H, *J* = 8.9 Hz), 3.88 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 194.6, 162.9, 132.3, 130.8, 113.6, 55.6.

di-*p*-tolylmethanone (2f)^[2]: Known compound. White solid. m.p.: 91.5-93.2 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.70 (d, 4H, *J* = 8.2 Hz), 7.27 (d, 4H, *J* = 7.8 Hz), 2.44 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 196.4, 143.0, 135.3, 130.3, 129.0, 21.7.

(4-chlorophenyl)(phenyl)methanone (2h)^[4]: Known compound. White solid. m.p.: 76.1-77.2 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.77 (t, 4H, J = 7.0 Hz), 7.60 (t, 1H, J = 7.4 Hz), 7.51-7.45 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ 195.6, 139.0, 137.4, 136.0, 132.8, 131.6, 130.0, 128.8, 128.5.

phenyl(4-(trifluoromethyl)phenyl)methanone (2i)^[5]: Known compound. White solid. m.p.: 117.4-117.9 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.91-7.88 (m, 2H), 7.82-7.75 (m, 4H), 7.66-7.61 (m, 1H), 7.54-7.49 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 195.7, 140.9, 136.9, 134.0, 133.7, 133.2, 130.3 (d, *J* = 3.4 Hz), 128.6, 125.6-125.4 (m), 125.2, 122.5.

phenyl(*p*-tolyl)methanone (2j)^[4]: Known compound. Yellow solid. m.p.: 51.652.8 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.79 (d, 2H, *J* = 7.6 Hz), 7.73 (d, 2H, *J* = 8.2 Hz), 7.57 (t, 1H, *J* = 7.4 Hz), 7.48 (t, 2H, *J* = 7.7 Hz), 7.29 (d, 2H, *J* = 8.4 Hz), 2.45 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 196.5, 143.3, 138.1, 135.0, 132.2, 130.4, 130.0,

129.1, 128.3, 21.7.

(4-ethylphenyl)(phenyl)methanone (2k)^[5]: Known compound. Light yellow oily liquid. ¹H NMR (CDCl₃, 400 MHz) δ 7.81-7.74 (m, 4H), 7.58 (t, 1H, *J* = 7.4 Hz), 7.48 (t, 2H, *J* = 7.8 Hz), 7.31 (d, 2H, *J* = 8.0 Hz), 2.74 (q, 2H, *J* = 7.6 Hz), 1.29 (t, 3H, *J* = 7.6 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 196.7, 149.6, 138.1, 135.2, 132.3, 130.5, 130.1, 128.3, 128.0, 29.1, 15.4.

(4-(*tert***-butyl)phenyl)(phenyl)methanone** (**21**)^[5]: Known compound. Yellow oily liquid. ¹H NMR (CDCl₃, 400 MHz) δ 7.82-7.76 (m, 4H), 7.60-7.56 (m, 1H), 7.52-7.46 (m, 4H), 1.37 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 196.6, 156.3, 138.0, 135.0, 132.3, 130.3, 130.1, 128.3, 125.4, 35.2, 31.3.

di(naphthalen-2-yl)methanone (**2n**)^[6]: Known compound. White soild. m.p.: 162.7-166.2 °C. ¹**H NMR** (CDCl₃, 400 MHz) δ 8.33 (s, 2H), 8.03-7.92 (m, 8H), 7.66-7.55 (m, 4H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 196.9, 135.4, 135.3, 132.4, 132.0, 129.6, 128.5, 128.4, 128.0, 127.0, 126.0.

acetophenone (20)^[7]: Known compound. Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.86-7.84 (m, 2H), 7.46-7.42 (m, 1H), 7.36-7.32 (m, 2H), 2.47 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 197.7, 136.8, 132.9, 128.3, 128.0, 26.3.

5. References

- [1] R. Hekmatshoar, I. Yavari, Y. Beheshtiha, M. Heravi, *Monatsh Chem.* 2001, 132, 689-691.
- [2] M. Rao, V. Venkatesh, P. Dasgupta, *Tetrahedron Lett.* 2010, 51, 4975-4980.
- [3] K. Kobayashi, Y. Nishimura; F. Gao, K. Gotoh, Y. Nishihara, K. Takagiet, J. Org. Chem. 2011, 76, 1949-1952.
- [4] J. Zhang, Z. Wang, Y. Wang, C. Wan, X. Zheng, Z. Wang, Green Chem.
 2009, 11, 1973-1978.
- [5] A. Biju, F. Glorius, Angew. Chem. Int. Ed. 2010, 49, 9761-9764.
- [6] T. Hsieh, V. Dong, Tetrahedron 2009, 65, 3062-3068.
- [7] J. Xiao, A. Gonzalez-de-Castro, J. Am. Chem. Soc. 2015, 137, 8206-8218.

6. Copies of NMR spectra

¹H NMR of product 2a in CDCl₃ (400 MHz)

¹H NMR of product 2b in CDCl₃ (400 MHz)

¹H NMR of product 2c in CDCl₃ (400 MHz)

¹H NMR of product 2d in CDCl₃ (400 MHz)

¹H NMR of product 2e in CDCl₃ (400 MHz)

¹H NMR of product 2f in CDCl₃ (400 MHz)

¹H NMR of product 2h in CDCl₃ (400 MHz)

7696 7696 7665 7631	7424	6258 6226 6194	6091 6040 5994	5888 5855 5822	5112 5076 4917	4810 4751 4706	4537 4537 4479 2600
NUN	202	アアア	LLL.	111	777	P P P	NNNN

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

¹H NMR of product 2i in CDCl₃ (400 MHz)

9079 9060 8860 8842 8192 8192 8177 8160 8160 7983	7949 7673 7673 7471 7471 7471 6550 6550	6484 6337 6337 65379 6115 6115 5104 5502 5502 5502 5502 5502 5502 5502 55	
~~~~~~~			1



## ¹H NMR of product 2j in CDCl₃ (400 MHz)



## ¹H NMR of product 2k in CDCl₃ (400 MHz)



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

## ¹H NMR of product 2l in CDCl₃ (400 MHz)



## ¹H NMR of product 2n in CDCl₃ (400 MHz)

3323 0248 0209 0034	9996 9942 9728	9545 9386 9213	6556 6529 6384	6352 6182 6147	5918 5884	5745 5715 5684 5684	5511 2600
ထိုထိုထိုထို	NNN	P. P. P.	P. P. P.	555	55	<u> </u>	177



## ¹H NMR of product 20 in CDCl₃ (400 MHz)

