Supplementary Information

Dearomative [4 + 3] Cycloaddition of Furans with Vinyl-*N*-Triftosylhydrazones by Silver Catalysis: Stereoselective Access to Oxa-Bridged Seven-Membered Bicycles

Zhaohong Liu,^{a§} Yong Yang,^{a§} Xinyu Jiang,^{a§} Qingmin Song,^a Giuseppe Zanoni,^b Shaopeng Liu,^a and Xihe Bi*^{a,c}

^aDepartment of Chemistry, Northeast Normal University, Changchun 130024, China. ^bDepartment of Chemistry, Universi-ty of Pavia, Viale Taramelli 12, 27100, Pavia, Italy. ^cState Key Laboratory of Elemento-Organic Chemistry, Nankai Uni-versity, Tianjin 300071, China

Table of Contents

1.	General Information	S2
	1.1 Equipment and Methods	S2
	1.2 Solvents and Furan	S2
2.	Experimental Procedures and Characterization Data	S3
	2.1 Silver-Catalyzed Intermolecular [4 + 3] Reactions	S3
	2.2 Silver-Catalyzed Intramolecular [4 + 3] Reactions	S29
	2.3 Gram-Scale Experiments.	S31
	2.4 Late-Stage Modification of Pharmaceutical Molecules	S31
3.	The Synthesis of Substrates.	S33
4	X-Ray Crystal of Compound 2	S39
5	Mechanistic Studies	S40
	5.1 Control Experiments	S40
	5.2 DFT Caculations	S42
6.	References	S75
7.	NMR Spectra of Products	S77

1. General Information

1.1 Equipment and Methods

The products were purified by column chromatography over silica gel. NMR spectra were recorded on a Brüker Advance 600 (¹H: 600 MHz, ¹³C:151 MHz) and Brüker Advance 500 (¹H: 500 MHz, ¹³C: 126 MHz) at ambient temperature. Data were reported as chemical shifts in ppm relative to TMS (0.00 ppm) for ¹H and CDCl₃ (77.0 ppm) for ¹³C. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, qi = quintet, m = multiplet, br = broad. Thin layer chromatographic (TLC) analysis was performed with glass-backed silica gel plates, visualizing with UV light (254 nm) and/or staining with aqueous KMnO₄ stain. High-resolution mass spectra (HRMS) were recorded on Magnetic Sector High Resolution Gas Chromatography-Mass Spectra and Q Exactive Focus (Thermal) by using ESI method.

1.2 Solvents and Furan

Trichlormethane (CHCl₃) was dried and degassed at reflux over CaH₂ in a 250 mL round bottom flask for 3 hours under argon atmosphere, distilled, then stored under argon atmosphere and was used directly. Superdry benzotrifluoride (PhCF₃, 99.5%, water \leq 10 ppm, with molecular sieve) was purchased from J&K Scientific. Furan was dried and distilled before use. Furans with different substituents were commercially purchased from Tansoole or Energy Chemical and was purified by column chromatography or distilled before use.

2. Experimental Procedures and Characterization Data

2.1 Silver-Catalyzed Intermolecular [4 + 3] Reactions

General procedure A: To an oven-dried screw-cap reaction tube was charged with vinyl-*N*-triftosylhydrazone (0.3 mmol), NaH (24.0 mg, 60 wt% dispersion in mineral oil, 0.6 mmol, 2.0 equiv) and dry CHCl₃ (3.0 mL) inside a glove box with argon atmosphere. Then, furan (0.6 mmol, 2.0 equiv) and Tp^{(CF3)2}Ag (24.0 mg, 10 mol%) were added. The tube was sealed and stirred at 60 °C for 5-24 h in the dark. When the reaction was completed, the reaction mixture was cooled to room temperature, and filtered through a short pad of silica gel with CH₂Cl₂ as an eluent. After removal of the solvent under vacuum, the residue was purified by flash chromatography on silica gel (using petroleum ether / EtOAc as eluent) to obtain the desired products.

General procedure B: To an oven-dried screw-cap reaction tube was charged with vinyl-*N*-triftosylhydrazone (0.3 mmol), NaH (24.0 mg, 60 wt% dispersion in mineral oil, 0.6 mmol, 2.0 equiv) and dry CHCl₃ (3.0 mL) inside a glove box with argon atmosphere. Then, furan (0.6 mmol, 2.0 equiv) and Tp^{(CF3)2}Ag (48.0 mg, 20 mol%) were added. The tube was sealed and stirred at 60 °C for 12 h in the dark. When the reaction was completed, the reaction mixture was cooled to room temperature, and filtered through a short pad of silica gel with CH₂Cl₂ as an eluent. After removal of the solvent under vacuum, the residue was purified by flash chromatography on silica gel (using petroleum ether / EtOAc as eluent) to obtain the desired products.

(2) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from (*E*)-3-(benzo[*d*][1,3]dioxol-5-yl)acrylaldehyde (120.0 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded **2** (62.3 mg, 91% yield) as a yellow solid, m.p. 89-90 °C. ¹H NMR (500 MHz, CDCl₃) δ 6.73 (d, *J* = 8.5 Hz, 1H), 6.64-6.60 (m, 3H), 6.33-6.29 (m, 1H), 5.93 (s, 2H), 5.53 (dd, *J* = 6.0 Hz, 2.0 Hz, 1H), 5.49 (dt, *J* = 10.0 Hz, 2.0 Hz, 1H), 5.06-5.03 (m, 1H), 4.69 (d, *J* = 4.0 Hz, 1H), 3.97-3.94 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 147.7, 146.4, 139.4, 132.0, 131.0, 127.9, 127.0, 121.0, 108.23, 108.16, 100.9, 83.3, 76.2, 42.9. HRMS (ESI) *m/z* calculated C₁₄H₁₃O₃

 $[M+H]^+$ 229.0865, found 229.0861. The structure and configuration of 2 was unambiguously established by the X-ray crystallographic analysis.

(4) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and 2-methylfuran (49.2 mg, 0.6 mmol) afforded **4** (49.3 mg, 83% yield) as a yellow oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.28-7.22 (m, 3H), 7.14-7.12 (m, 2H), 6.56 (dd, J = 6.0 Hz, 1.5 Hz, 1H), 6.34 (ddd, J = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.59 (dd, J = 9.5 Hz, 2.5 Hz, 1H), 5.39 (d, J = 6.0 Hz, 1H), 4.76 (d, J = 4.0 Hz, 1H), 3.67-3.64 (m, 1H), 1.47 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 138.1, 137.4, 131.3, 131.1, 130.4, 128.9, 128.1, 127.0, 87.3, 77.3, 50.5, 23.0. **HRMS** (ESI) *m/z* calculated C₁₄H₁₅O [M+H]⁺ 199.1123, found 199.1127. The relative configuration of **4** was confirmed by NOE, see Figure S10.

(5) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and 2-pentylfuran (82.9 mg, 0.6 mmol) afforded **5** (57.2 mg, 75% yield) as a colourless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.27-7.20 (m, 3H), 7.12 (d, *J* = 6.5 Hz, 2H), 6.54 (dd, *J* = 5.5 Hz, 1.5 Hz, 1H), 6.32 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.56 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 5.38 (d, *J* = 5.5 Hz, 1H), 4.76 (d, *J* = 4.0 Hz, 1H), 3.72-3.69 (m, 1H), 1.78-1.74 (m, 2H), 1.60-1.52 (m, 1H), 1.33-1.22 (m, 5H), 0.87 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 138.0, 137.6, 131.1, 130.6, 130.3, 129.0, 128.0, 126.9, 90.1, 76.8, 49.0, 35.5, 32.3, 22.7, 22.6, 14.0. HRMS (ESI) *m/z* calculated C₁₈H₂₃O [M+H]⁺ 255.1749, found 255.1752.

(6) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and 2-phenylfuran (86.4 mg, 0.6 mmol) afforded **6** (59.3 mg, 76% yield) as a yellow oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.32-7.26 (m, 3H), 7.21-7.12 (m, 5H), 6.77 (d, *J* = 7.0 Hz, 2H), 6.71 (dd, *J* = 6.0, 2.0 Hz, 1H), 6.44 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.88 (d, *J* = 6.0 Hz, 1H), 5.72 (dd, *J* = 9.5 Hz, 2.0 Hz, 1H), 4.94 (d, *J* = 4.0 Hz, 1H), 3.87-3.85 (m, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 141.2, 138.7, 136.3, 131.1, 131.0, 129.2, 128.4,

128.0, 127.8, 127.5, 127.0, 126.0, 91.5, 77.4, 51.8. **HRMS** (ESI) *m/z* calculated C₁₉H₁₇O [M+H]⁺ 261.1279, found 261.1278.

(7) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and 2,2'-bifuran (80.4 mg, 0.6 mmol) afforded 7 (51.0 mg, 68% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.52-7.48 (m, 1H), 7.18-7.14 (m, 3H), 6.93-6.90 (m, 2H), 6.74 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.40 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 6.36-6.33 (m, 1H), 6.28 (d, *J* = 3.0 Hz, 1H), 5.73 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 5.63 (d, *J* = 6.0 Hz, 1H), 4.92 (d, *J* = 4.0 Hz, 1H), 4.48-4.44 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 152.9, 142.5, 139.8, 136.3, 130.8, 130.4, 128.6, 127.9, 127.1, 127.0, 110.3, 108.8, 86.9, 78.2, 46.6. HRMS (ESI) *m/z* calculated C₁₇H₁₅O₂ [M+H]⁺ 251.1067, found 251.1065.

(8) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and 2-bromofuran (87.6 mg, 0.6 mmol) afforded 8 (65.2 mg, 83% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.31–7.28 (m, 3H), 7.26–7.24 (m, 2H), 6.60 (dd, J = 6.0 Hz, 1.5 Hz, 1H), 6.35 (ddd, J = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.74 (d, J = 6.0 Hz, 1H), 5.64 (dd, J = 9.5 Hz, 2.5 Hz, 1H), 4.96 (d, J = 4.0 Hz, 1H), 4.37–4.35 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 138.2, 134.7, 131.9, 130.5, 130.2, 129.4, 128.2, 127.8, 100.4, 80.1, 55.1. HRMS (ESI) *m/z* calculated C₁₃H₁₂OBr [M+H]⁺ 263.0072, found 263.0069.

(9) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and tributyl(furan-2-yl)stannane (214.8 mg, 0.6 mmol) afforded **9** (86.8 mg, 61% yield) as a yellow oil. ¹H **NMR** (500 MHz, CDCl₃) δ 7.25 (t, *J* = 7.0 Hz, 2H), 7.20 (t, *J* = 7.0 Hz, 1H), 7.12 (d, *J* = 7.0 Hz, 2H), 6.56 (d, *J* = 6.0 Hz, 1H), 6.31-6.26 (m, 1H), 5.66 (d, *J* = 6.0 Hz, 1H), 5.43-5.36 (m, 1H), 4.57 (d, *J* = 3.0 Hz, 1H), 4.17-4.11 (m, 1H), 1.43-1.28 (m, 6H), 1.27-1.19 (m, 6H), 0.90-0.76 (m, 15H); ¹³C **NMR** (126 MHz, CDCl₃) δ 138.0,

136.5 (d, $J_{Sn}{}^{I3}{}_{C}$ = 37.2 Hz), 132.1, 131.1, 128.8, 128.21, 128.20, 127.0, 90.4, 76.2, 48.7(d, $J_{Sn}{}^{I3}{}_{C}$ = 20.0 Hz), 28.9 (d, $J_{Sn}{}^{I3}{}_{C}$ = 19.9 Hz), 27.4 (d, $J_{Sn}{}^{I3}{}_{C}$ = 57.2 Hz), 13.6, 9.2.

(10) Prepared according to General Procedure B using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol), methyl furan-2-carboxylate (75.6 mg, 0.6 mmol) and Tp^{(CF3)2}Ag (48.0 mg, 20 mol%) afforded 10 (51.0 mg, 68% yield) as a yellow solid, m.p. 94-96 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.28-7.24 (m, 3H), 7.10-7.16 (m, 2H), 6.70 (dd, *J* = 6.0 Hz, 2.0 Hz, 1H), 6.35 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.69 (d, *J* = 6.0 Hz, 1H), 5.59 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 4.87 (d, *J* = 4.0 Hz, 1H), 4.20-4.17 (m, 1H), 3.77 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.9, 139.6, 135.5, 130.4, 129.3, 128.7, 128.2, 127.5, 126.6, 90.9, 77.5, 52.3, 46.1. HRMS (ESI) *m/z* calculated C₁₅H₁₅O₃ [M+H]⁺ 243.1021, found 243.1022.

(11) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and furan-2-ylmethyl acetate (84 mg, 0.6 mmol) afforded **11** (69.1 mg, 90% yield) as a colorless oil. ¹H **NMR** (500 MHz, CDCl₃) δ 7.29-7.23 (m, 3H), 7.12-7.08 (m, 2H), 6.67 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.35 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.60 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 5.39 (d, *J* = 6.0 Hz, 1H), 4.85 (d, *J* = 4.0 Hz, 1H), 4.34-4.29 (m, 2H), 3.99-3.96 (m, 1H), 2.13 (s, 3H); ¹³C **NMR** (126 MHz, CDCl₃) δ 170.9, 139.8, 136.2, 130.8, 130.0, 128.8, 128.4, 127.3, 127.0, 88.6, 77.7, 65.1, 44.5, 20.9. **HRMS** (ESI) *m/z* calculated C₁₆H₁₇O₃ [M+H]⁺ 257.1178, found 257.1183.

(12) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and 2-((benzyloxy)methyl)furan (112.8 mg, 0.6 mmol) afforded 12 (70.2 mg, 77% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, *J* = 7.0 Hz, 2H), 7.35 (t, *J* = 7.0 Hz, 2H), 7.29 (t, *J* = 7.0 Hz, 1H), 7.22-7.18 (m, 3H), 7.09-7.06 (m, 2H), 6.63 (dd, *J* = 5.5 Hz, 2.0 Hz, 1H), 6.32 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.59 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 5.32 (d, *J* = 5.5 Hz, 1H), 4.84 (d, *J* = 4.5 Hz, 1H), 4.75 (d, *J* = 12.0 Hz, 1H), 4.58 (d,

J = 12.0 Hz, 1H), 4.19-4.16 (m, 1H), 3.74 (d, J = 11.0 Hz, 1H), 3.58 (d, J = 11.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 139.3, 138.1, 137.0, 130.7, 130.3, 128.9, 128.3, 128.1, 128.0, 127.7, 127.6, 126.9, 90.2, 77.8, 73.6, 70.9, 43.5. HRMS (ESI) m/z calculated C₂₁H₂₁O₂ [M+H]⁺ 305.1542, found 305.1539.

(13) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and *tert*-butyl(furan-2yl-methoxy)dimethylsilane (127.2 mg, 0.6 mmol) afforded 13 (78.8 mg, 80% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.26 (m, 2H), 7.25-7.23 (m, 1H), 7.22-7.20 (m, 2H), 6.63 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.34 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.63 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 5.33 (d, *J* = 6.0 Hz, 1H), 4.84 (d, *J* = 4.0 Hz, 1H), 4.25-4.22 (m, 1H), 3.87 (d, *J* = 11.5 Hz, 1H), 3.78 (d, *J* = 11.5 Hz, 1H), 0.97 (s, 9H), 0.14 (s, 3H), 0.12 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 139.2, 137.4, 130.8, 130.7, 129.0, 128.0, 127.9, 126.8, 91.0, 77.7, 64.8, 43.0, 26.0, 18.4, -5.2, -5.4. HRMS (ESI) *m/z* calculated C₂₀H₂₉O₂Si [M+H]⁺ 329.1937, found 329.1939.

(14) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and 1,2-di(furan-2-yl)ethane-1,2-dione (114 mg, 0.6 mmol) afforded 14 (47.8 mg, 52% yield) as a yellow solid, m.p. 130-132 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.74-7.71 (m, 1H), 7.28-7.24 (m, 4H), 7.17-7.14 (m, 2H), 6.72 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.59 (dd, *J* = 3.5 Hz, 1.5 Hz, 1H), 6.35 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.81 (d, *J* = 5.5 Hz, 1H), 5.61 (dd, *J* = 9.5, 2.5 Hz, 1H), 4.86 (d, *J* = 3.5 Hz, 1H), 4.54-4.52 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 197.0, 180.4, 149.4, 149.0, 139.5, 134.9, 130.2, 129.5, 129.2, 128.2, 127.6, 126.1, 123.0, 112.9, 93.5, 77.6, 45.2. HRMS (ESI) *m/z* calculated C₁₉H₁₅O₄ [M+H]⁺ 307.0970, found 307.0974.

(15) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and 2-((allyloxy)methyl)furan (82.9 mg, 0.6 mmol) afforded 15 (47.3 mg, 62% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.28-7.20 (m, 3H), 7.17-7.15 (m, 2H), 6.63 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.32 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 6.01– 5.93 (m, 1H), 5.59 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 5.35 (d, *J* = 6.0 Hz, 1H), 5.31 (dd, *J* = 17.5 Hz, 1.5 Hz, 1H), 5.19 (dd, *J* = 10.5 Hz, 1.0 Hz, 1H), 4.83 (d, *J* = 4.0 Hz, 1H), 4.18-4.13 (m, 2H), 4.10-4.05 (m, 1H), 3.72 (d, *J* = 11.0 Hz, 1H), 3.57 (d, *J* = 11.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 139.4, 137.1, 134.7, 130.7, 130.3, 129.0, 128.2, 127.7, 127.0, 117.2, 90.2, 77.7, 72.6, 71.0, 43.7. HRMS (ESI) *m/z* calculated C₁₇H₁₉O₂ [M+H]⁺ 255.1380, found 255.1347.

(16) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and (*E*)-2-(4-phenylbut-1-en-1-yl)furan (118.9 mg, 0.6 mmol) afforded 16 (41.5 mg, 44% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.27-7.20 (m, 5H), 7.17-7.13 (m, 3H), 7.09-7.06 (m, 2H), 6.58 (dd, *J* = 6.0 Hz, 2.0 Hz, 1H), 6.33 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.63-5.60 (m, 2H), 5.56 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 5.49 (d, *J* = 6.0 Hz, 1H), 4.81 (d, *J* = 4.0 Hz, 1H), 3.74-3.72 (m, 1H), 2.63 (t, *J* = 7.5 Hz, 2H), 2.58-2.50 (m, 1H), 2.44-2.37 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 141.9, 137.8, 136.9, 134.1, 131.0, 130.4, 130.2, 129.09, 129.07, 128.5, 128.2, 128.0, 127.0, 125.7, 89.1, 76.8, 49.8, 35.9, 30.3. HRMS (ESI) m/z calculated C₂₃H₂₁O [M-H]⁻ 313.1598, found 313.1601.

(17) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and 2-(hex-1-yn-1-yl)furan (88.9 mg, 0.6 mmol) afforded **17** (56.3 mg, 71% yield) as a yellow oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.29-7.22 (m, 5H), 6.60 (dd, J = 6.0 Hz, 2.0 Hz, 1H), 6.32 (ddd, J = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.61 (dd, J = 9.5 Hz, 2.5 Hz, 1H), 5.38 (d, J = 6.0 Hz, 1H), 4.80 (d, J = 4.0 Hz, 1H), 4.00-3.98 (m, 1H), 2.30-2.22 (m, 2H), 1.55-1.49 (m, 2H), 1.45-1.37 (m, 2H), 0.91 (t, J = 7.0 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 138.5, 136.0, 130.9, 129.3, 129.2, 129.0, 127.9, 127.2, 87.9, 83.1, 78.8, 76.9, 49.6, 30.4, 21.9, 18.4, 13.5. **HRMS** (ESI) *m/z* calculated C₁₉H₂₁O [M+H]⁺ 265.1581, found 265.1581.

(18) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and ethyl 3-(furan-2-yl)propanoate (100.9 mg, 0.6 mmol) afforded 18 (51.1 mg, 60% yield) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.27-7.21 (m, 3H), 7.14-7.12 (m, 2H), 6.57 (dd, *J* = 6.0 Hz, 1.8 Hz, 1H), 6.32 (ddd, *J* = 9.6 Hz, 4.2 Hz, 2.4 Hz, 1H), 5.57 (dd, *J* = 9.6 Hz, 2.4 Hz, 1H), 5.35 (d, *J* = 6.0 Hz, 1H), 4.76 (d, *J* = 4.2 Hz, 1H), 4.12-4.06 (m, 2H), 3.69-3.67 (m, 1H), 2.54-2.49 (m, 1H), 2.27-2.22 (m, 1H), 2.18-2.12 (m, 2H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.9, 139.1, 136.9, 131.0, 130.4, 129.1, 129.0, 128.2, 127.1, 89.3, 77.2, 60.2, 49.5, 30.4, 28.4, 14.2. HRMS (ESI) *m/z* calculated C₁₈H₂₁O₃ [M+H]⁺ 285.1485, found 285.1484.

(19) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and 2,3-dimethylfuran (57.7 mg, 0.6 mmol) afforded 19 (41.3 mg, 65% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.29-7.22 (m, 3H), 7.13-7.10 (m, 2H), 6.36 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 6.16-6.12 (m, 1H), 5.62 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 4.62 (d, *J* = 4.0 Hz, 1H), 3.66-3.62 (m, 1H), 1.45 (s, 3H), 1.04 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 139.9, 139.1, 132.1, 131.9, 129.3, 128.4, 128.0, 127.0, 88.1, 75.5, 50.2, 21.8, 13.8. HRMS (ESI) *m/z* calculated C₁₅H₁₅O [M-H]⁻ 211.1128, found 211.1336.

(20) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and methyl 2-methylfuran-3-carboxylate (84 mg, 0.6 mmol) afforded 20 (58.4 mg, 76% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 2.0 Hz, 1H), 7.25-7.21 (m, 3H), 7.08-7.05 (m, 2H), 6.32 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.75 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 4.80-4.77 (m, 1H), 3.71-3.69 (m, 1H), 3.22 (s, 3H), 1.69 (s, 3H); ¹³C

(21) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and methyl- 2,5-dimethylfuran (57.7 mg, 0.6 mmol) afforded 21 (55.3 mg, 87% yield) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.27-7.21 (m, 3H), 7.12-7.10 (m, 2H), 6.34 (d, *J* = 6.0 Hz, 1H), 6.21 (dd, *J* = 9.6 Hz, 2.4 Hz, 1H), 5.58 (dd, *J* = 9.6 Hz, 2.4 Hz, 1H), 5.31 (d, *J* = 6.0 Hz, 1H), 3.58 (t, *J* = 2.4 Hz, 1H), 1.47 (s, 3H), 1.44 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 141.6, 137.4, 135.2, 131.0, 130.1, 128.9, 128.1, 126.9, 87.8, 82.5, 49.9, 23.3, 21.6. HRMS (ESI) *m/z* calculated C₁₅H₁₇O [M+H]⁺ 213.1279, found 213.1281.

22

(22) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and methyl 2,5-diphenylfuran (132.1 mg, 0.6 mmol) afforded 22 (83.7 mg, 83% yield) as a white solid, m.p. 141-142 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.59-7.56 (m, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.34-7.27 (m, 4H), 7.25-7.16 (m, 5H), 6.84-6.82 (m, 2H), 6.77 (d, *J* = 6.0 Hz, 1H), 6.71 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 5.93 (d, *J* = 6.0 Hz, 1H), 5.83 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 3.90 (t, *J* = 3.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 141.9, 141.4, 140.2, 136.4, 134.2, 131.4, 129.3, 128.5, 128.3, 127.94, 127.86, 127.83, 127.4, 127.1, 126.1, 126.0, 92.2, 86.5, 51.3. HRMS (ESI) *m/z* calculated C₂₅H₂₁O [M+H]⁺ 337.1592, found 337.1595.

(23) Prepared according to General Procedure B using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol), methyl-1-(2,5-dimethylfuran-3-yl)ethan-1-one (82.9 mg, 0.6 mmol) and Tp^{(CF3)2}Ag (48.0 mg, 20 mol%) afforded 23 (41.9 mg, 55% yield) as a yellow solid,

m.p. 114-116 °C. ¹**H** NMR (500 MHz, CDCl₃) δ 7.24-7.21 (m, 3H), 7.09 (s, 1H), 7.01-6.98 (m, 2H), 6.20 (dd, J = 9.5 Hz, 2.5 Hz, 1H), 5.75 (dd, J = 9.5 Hz, 2.5 Hz, 1H), 3.63 (t, J = 2.5 Hz, 1H), 2.00 (s, 3H), 1.71 (s, 3H), 1.50 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 192.7, 151.5, 141.6, 137.1, 132.6, 131.7, 128.5, 128.1, 127.3, 88.7, 80.0, 49.7, 26.9, 23.0, 21.3. **HRMS** (ESI) *m/z* calculated C₁₇H₁₉O₂ [M+H]⁺ 253.1234, found 253.1234. The relative configuration of **23** was confirmed by NOE, see Figure S49.

(24) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 24 (46.9 mg, 85% yield) as a yellow solid, m.p. 72-74 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.29 (t, *J* = 7.5 Hz, 2H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.15-7.13 (m, 2H), 6.64 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.34 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.57 (dt, *J* = 9.5 Hz, 4.0 Hz, 1H), 5.49 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.10 (dt, *J* = 6.0 Hz, 1.5 Hz, 1H), 4.71 (d, *J* = 4.0 Hz, 1H), 4.06-4.03 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 139.4, 137.2, 131.9, 128.4, 128.0, 127.8, 127.0, 83.3, 76.3, 43.3. HRMS (ESI) *m/z* calculated C₁₃H₁₃O [M+H]⁺ 185.0966, found 185.0967.

25

(25) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-3-(*p*-tolyl)acrylaldehyde (110.4 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 25 (47.5 mg, 80% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.09 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 6.62 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.31 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.54 (dt, *J* = 10.0 Hz, 2.0 Hz, 1H), 5.50 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.07 (dt, *J* = 6.0 Hz, 2.0 Hz 1H), 4.69 (d, *J* = 4.0 Hz, 1H), 4.02-3.98 (m, 1H), 2.32 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 139.3, 136.5, 134.1, 131.8, 129.1, 128.0, 127.9, 127.0, 83.3, 76.2, 42.9, 21.0. HRMS (ESI) *m*/z calculated C₁₄H₁₅O [M+H]⁺ 199.1123, found 199.1123.

26

(26) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-3-(4-methoxyphenyl)acrylaldehyde (115.2 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 26 (47.5 mg, 74% yield) as a yellow solid, m.p. 77-79 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.05 (d, *J* = 8.4 Hz, 2H), 6.82 (d, *J* = 8.4 Hz, 2H), 6.63 (dd, *J* = 6.0 Hz, 1.2 Hz, 1H), 6.31 (ddd, *J* = 9.6 Hz, 4.2 Hz, 2.4 Hz, 1H), 5.53 (dt, *J* = 9.6 Hz, 2.4 Hz, 1H), 5.50 (dd, *J* = 6.0 Hz, 1.8 Hz, 1H), 5.06 (dt, *J* = 6.0 Hz, 1.8 Hz, 1H), 4.69 (d, *J* = 4.2 Hz, 1H), 4.02-3.96 (m, 1H), 3.79 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 158.6, 139.3, 131.8, 129.1, 129.0, 128.1, 127.0, 113.8, 83.3, 76.2, 55.2, 42.5. HRMS (ESI) *m/z* calculated C₁₄H₁₅O₂ [M+H]⁺ 215.1072, found 215.1071.

(27) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from (*E*)-3-(4-fluorophenyl)acrylaldehyde (111.6 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 27 (47.9 mg, 79% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.11-7.08 (m, 2H), 6.99-6.95 (m, 2H), 6.64 (dd, *J* = 6.0 Hz, 2.0 Hz, 1H), 6.34 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.52 (dt, *J* = 9.5 Hz, 2.0 Hz, 1H), 5.47 (dd, *J* = 6.0 Hz, 2.0 Hz, 1H), 5.06 (dt, *J* = 6.0 Hz, 2.0 Hz, 1H), 4.71 (d, *J* = 4.0 Hz, 1H), 4.03-4.00 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 161.9 (d, *J* = 245.1 Hz), 139.6, 132.9 (d, *J* = 3.1 Hz), 132.1, 129.4 (d, *J* = 8.0 Hz), 127.5, 126.7, 115.2 (d, *J* = 21.6 Hz), 83.1, 76.2, 42.5. ¹⁹F NMR (565 MHz, CDCl₃) δ (-115.74)-(-115.82) (m).HRMS (ESI) *m/z* calculated C₁₃H₁₂OF [M+H]⁺ 203.0872, found 203.0873.

(28) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-3-(4-chlorophenyl)acrylaldehyde (116.4 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 28 (53.6 mg, 82% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.25 (d, *J* = 8.5 Hz, 2H), 7.07 (d, *J* = 8.5 Hz, 2H), 6.64 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.35 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.51 (dt, *J* = 9.5 Hz, 2.0 Hz, 1H), 5.47 (dd, *J* = 6.0 Hz, 2.0 Hz, 1H), 5.06 (dt, *J* = 6.0 Hz, 2.0 Hz, 1H), 4.71 (d, *J* = 4.0 Hz, 1H), 4.02-3.99 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 139.6, 135.7, 132.7, 132.3, 129.3, 128.6, 127.2, 126.7, 83.0, 76.2, 42.6. HRMS (ESI) *m/z* calculated C₁₃H₁₂OCl [M+H] 219.0577, found 219.0577.

S12

(29) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (E)-4-(3-oxoprop-1-en-1-yl)benzonitrile (113.7 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 29 (48.9 mg, 78% yield) as a colorless oil.¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, *J* = 8.5 Hz, 2H), 7.25 (d, *J* = 8.5 Hz, 2H), 6.67 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.40 (ddd, *J* = 10.0 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.52 (dt, *J* = 10.0 Hz, 2.0 Hz, 1H), 5.43 (dd, *J* = 6.0 Hz, 2.0 Hz, 1H), 5.09 (dt, *J* = 6.0 Hz, 1.8 Hz 1H), 4.75 (d, *J* = 4.0 Hz, 1H), 4.11-4.08 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 142.9, 140.1, 132.9, 132.3, 128.8, 126.24, 126.21, 118.8, 110.9, 82.7, 76.3, 43.2. HRMS (ESI) *m/z* calculated C₁₄H₁₀NO [M-H]⁻ 208.0768, found 208.0764.

30

(30) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from ethyl (*E*)-4-(3-oxoprop-en-1-yl)benzoate (127.8 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 30 (63.8 mg, 83% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.5 Hz, 2H), 7.21 (d, *J* = 8.5 Hz, 2H), 6.64 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.38 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.0 Hz, 1H), 5.56 (dt, *J* = 9.5, 2.0 Hz, 1H), 5.43 (dd, *J* = 6.0, 1.5 Hz, 1H), 5.10 (dt, *J* = 6.0 Hz, 2.0 Hz, 1H), 4.73 (d, *J* = 4.0 Hz, 1H), 4.37 (q, *J* = 7.0 Hz, 2H), 4.12-4.08 (m, 1H), 1.39 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.4, 142.5, 139.6, 132.3, 129.7, 129.3, 127.9, 126.9, 126.6, 82.9, 76.3, 60.9, 43.2, 14.3. HRMS (ESI) *m/z* calculated C₁₆H₁₇O₃ [M+H]⁺ 257.1172, found 257.1146.

(31) Procedure: To an oven-dried screw-cap reaction tube was charged with vinyl-*N*-triftosylhydrazone derived from (*E*)-3-(3-(trifluoromethyl)phenyl)acrylaldehyde (126.6 mg, 0.3 mmol), NaH (24.0 mg, 60 wt% dispersion in mineral oil, 0.6 mmol, 2.0 equiv) and dry CHCl₃ (3.0 mL) inside a glove box with argon atmosphere. Then, furan (41.0 mg, 0.6 mmol) and $Tp^{(CF3)2}Ag$ (24.0 mg, 10 mol%) were added. The tube was sealed and stirred at 80 °C for 24 h in the dark. When the reaction was completed, the reaction mixture was cooled to room temperature, and filtered through a short pad of silica gel with CH_2Cl_2 as an eluent. After removal of the solvent under vacuum, the residue was purified by flash chromatography on silica gel (using petroleum)

ether / EtOAc as eluent) to obtain product **31** (62.0 mg, 82% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 8.0 Hz, 1H), 7.41 (t, J = 8.0 Hz, 1H), 7.38 (s, 1H), 7.33 (d, J = 8.0 Hz, 1H), 6.67 (dd, J = 6.0 Hz, 1.0 Hz, 1H), 6.39 (ddd, J = 9.5 Hz, 4.0 Hz, 2.0 Hz, 1H), 5.54 (dt, J = 9.5 Hz, 2.0 Hz, 1H), 5.46 (dd, J = 6.0, 1.5 Hz, 1H), 5.10 (dt, J = 6.0 Hz, 2.0 Hz 1H), 4.74 (d, J = 4.0 Hz, 1H), 4.12-4.08 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 139.9, 138.3, 132.7, 131.5, 130.8 (q, J = 30.2 Hz), 128.9, 126.7, 126.3, 124.7 (q, J = 3.8 Hz), 124.1 (q, J = 273.4 Hz), 123.84 (q, J = 3.8 Hz), 82.8, 76.3, 43.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.57. HRMS (ESI) *m/z* calculated C₁₄H₁₂OF₃ [M+H]⁺ 253.0840, found 253.0845.

(32) **Procedure:** To an oven-dried screw-cap reaction tube was charged with vinyl-*N*-triftosylhydrazone derived from (*E*)-3-(2-nitrophenyl)acrylaldehyde (119.7 mg, 0.3 mmol), NaH (24.0 mg, 60 wt% dispersion in mineral oil, 0.6 mmol, 2.0 equiv) and dry PhCF₃ (3.0 mL) inside a glove box with argon atmosphere. Then, furan (41.0 mg, 0.6 mmol) and Tp^{(CF3)2}Ag (24.0 mg, 10 mol%) were added. The tube was sealed and stirred at 60 °C for 24 h in the dark. When the reaction was completed, the reaction mixture was cooled to room temperature, and filtered through a short pad of silica gel with CH₂Cl₂ as an eluent. After removal of the solvent under vacuum, the residue was purified by flash chromatography on silica gel (using petroleum ether / EtOAc as eluent) to obtain product **32** (46.7 mg, 68% yield) as a yellow solid, m.p. 102-104 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.0 Hz, 1H), 7.52 (t, *J* = 8.0 Hz, 1H), 7.39 (td, *J* = 8.0 Hz, 1.0 Hz, 1H), 7.24 (dd, *J* = 8.0 Hz, 1.0 Hz, 1H), 6.67 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.39 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.54 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.46-5.41 (m, 2H), 4.76 (d, *J* = 4.0 Hz, 1H), 4.54-4.50 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 149.9, 139.1, 132.9, 132.2, 131.8, 130.4, 127.9, 127.3, 126.8, 124.3, 81.6, 76.0, 38.5. HRMS (ESI) *m*/z calculated C₁₃H₁₂NO₃ [M+H]⁺ 230.0817, found 230.0818.

(33) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-3-(2-iodophenyl)acrylaldehyde (119.7 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 33 (74.4 mg, 80% yield) as a white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, *J* = 8.0 Hz, 1.0 Hz, 1H), 7.24 (td, *J* = 8.0 Hz, 1.0 Hz, 1H), 6.98 (dd, *J* = 7.5 Hz, 1.5 Hz, 1H), 6.91 (td, *J* = 7.5 Hz, 1.5 Hz, 1H), 6.61 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.35 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.50

(dt, J = 9.5 Hz, 2.0 Hz, 1H), 5.44 (dd, J = 6.0 Hz, 2.0 Hz, 1H), 5.30 (dt, J = 6.0 Hz, 2.0 Hz, 1H), 4.73 (d, J = 4.0 Hz, 1H), 4.37-4.34 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 139.5, 139.3, 138.9, 131.7, 128.8, 128.6, 128.4, 127.8, 126.7, 101.2, 80.3, 76.1, 46.9. HRMS (ESI) *m/z* calculated C₁₃H₁₂OI [M+H]⁺ 310.9933, found 310.9933.

(34) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-3-(2-bromo-4-chlorophenyl)acrylaldehyde (139.8 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 34 (67.5 mg, 76% yield) as a white solid, m.p. 98-100 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 2.0 Hz, 1H), 7.19 (dd, *J* = 8.5 Hz, 2.0 Hz, 1H), 6.95 (d, *J* = 8.5 Hz, 1H), 6.62 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.38 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.47-5.41 (m, 2H), 5.28 (dt, *J* = 6.0 Hz, 2.0 Hz 1H), 4.73 (d, *J* = 4.0 Hz, 1H), 4.46-4.43 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 139.2, 135.0, 133.4, 132.5, 132.2, 129.9, 127.8, 127.0, 126.7, 125.0, 80.1, 76.1, 41.7. HRMS (ESI) *m/z* calculated C₁₃H₁₁OClBr [M+H]⁺ 296.9682, found 296.9689.

(35) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from (*E*)-3-(naphthalen-2-yl)acrylaldehyde (121.2 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded **35** (59.0 mg, 84% yield) as a yellow solid, m.p. 107-109 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.81-7.75 (m, 3H), 7.58 (s, 1H), 7.47-7.41 (m, 2H), 7.25 (dd, *J* = 8.5 Hz, 2.0 Hz, 1H), 6.65 (dd, *J* = 6.0 Hz, 2.0 Hz, 1H), 6.39 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.66 (dt, *J* = 9.5 Hz, 2.5 Hz, 1H), 5.47 (dd, *J* = 6.0 Hz, 2.0 Hz, 1H), 5.18 (dt, *J* = 6.0 Hz, 2.0 Hz, 1H), 4.77 (d, *J* = 4.0 Hz, 1H), 4.22-4.19 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 139.4, 134.7, 133.4, 132.5, 132.2, 128.0, 127.7, 127.56, 127.55, 126.9, 126.4, 126.0, 125.6, 83.3, 76.3, 43.3; HRMS (ESI) *m/z* calculated C₁₇H₁₅O [M+H]⁺ 235.1123, found 235.1118.

(36) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-3-(3-(4-fluorophenyl)-1-isopropyl-1-hindol-2-yl)acrylaldehyde (158.7 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 36 (101.1 mg, 81% yield) as a yellow solid, m.p. 161-163 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 8.5 Hz, 1H), 7.37-7.32 (m, 3H), 7.16 (t, *J* = 7.5 Hz, 1H), 7.10 (t, *J* = 8.5 Hz, 2H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.62 (d, *J* = 5.5 Hz, 1H), 6.06-6.04 (m, 1H), 6.95 (d, *J* = 5.5 Hz, 1H), 5.60 (d, *J* = 9.5 Hz, 1H), 5.04 (d, *J* = 5.5 Hz, 1H), 4.70-4.62 (m, 2H), 4.52-4.50 (m, 1H), 1.72 (d, *J* = 7.0 Hz, 3H), 1.59 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.1 (d, *J* = 244.1 Hz), 138.4, 134.4, 132.3 (d, *J* = 7.8 Hz), 131.9, 131.2 (d, *J* = 3.4 Hz), 129.3, 128.8, 126.5, 126.4, 121.5, 119.6, 119.5, 116.2, 115.2 (d, *J* = 21.0 Hz), 112.3, 83.2, 76.3, 47.7, 36.6, 22.4, 22.1. ¹⁹F NMR (565 MHz, CDCl₃) δ (-116.08)-(-116.13) (m, 1F). HRMS (ESI) *m/z* calculated C₂₄H₂₃NOF [M+H]⁺ 360.1764, found 360.1761.

37

(37) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from (*E*)-3-(thiophen-2-yl)acrylaldehyde (108.0 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded **37** (41.0 mg, 72% yield) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.25 (dd, *J* = 5.4 Hz, 3.0 Hz, 1H), 7.00-6.98 (m, 1H), 6.91 (d, *J* = 5.4 Hz, 1H), 6.64 (dd, *J* = 6.0 Hz, 1.2 Hz, 1H), 6.30 (ddd, *J* = 9.6 Hz, 3.6 Hz, 2.4 Hz, 1H), 5.54-5.52 (m, 2H), 5.12 (dt, *J* = 6.0 Hz, 1.8 Hz, 1H), 4.68 (d, *J* = 3.6 Hz, 1H), 4.15-4.12 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 139.8, 138.0, 131.9, 127.5, 127.33, 127.25, 125.6, 121.3, 82.6, 76.2, 38.8. HRMS (ESI) *m/z* calculated C₁₁H₁₁OS [M+H]⁺ 191.0531, found 191.0532.

(38) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-3-(furan-2-yl)acrylaldehyde (103.2 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 38 (40.7 mg, 78% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, *J* = 1.0 Hz, 1H), 6.66 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.33 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 6.28 (dd, *J* = 3.0 Hz, 2.0

Hz, 1H), 6.02 (d, J = 3.0 Hz, 1H), 5.63 (dd, J = 6.0 Hz, 1.5 Hz, 1H), 5.50 (dt, J = 9.5 Hz, 2.0 Hz, 1H), 5.25 (dt, J = 6.0 Hz, 2.0 Hz, 1H), 4.69 (d, J = 3.5 Hz, 1H), 4.13-4.10 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 152.0, 141.5, 140.0, 132.8, 127.2, 124.7, 110.1, 105.7, 81.3, 76.2, 36.9. HRMS (ESI) *m/z* calculated C₁₁H₁₁O₂ [M+H]⁺ 175.0759, found 175.0762.

(39) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from ferrocene cinnamaldehyde (138.6 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded **39** (39.4 mg, 45% yield) as a red oil. ¹H NMR (500 MHz, CDCl₃) δ 6.57 (dd, *J* = 6.0 Hz, 1.0 Hz, 1H), 6.28 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.72 (dt, *J* = 6.0 Hz, 2.0 Hz, 1H), 5.48 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 4.94 (dt, *J* = 6.0 Hz, 1.8Hz, 1H), 4.62 (d, *J* = 4.0 Hz, 1H), 4.14-4.10 (m, 7H), 4.03-4.00 (m, 1H), 3.88-3.86 (m, 1H), 3.76-3.72 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 139.5, 132.1, 128.1, 127.3, 84.8, 83.2, 76.2, 68.4, 67.7, 67.6, 67.4, 66.6, 37.5. HRMS (ESI) *m/z* calculated C₁₇H₁₇OFe [M+H]⁺ 293.0629, found 293.0625.

(40) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (2*E*,4*E*)-5-phenylpenta-2,4-dienal (114.0 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 40 (51.0 mg, 81% yield) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d, *J* = 7.2 Hz, 2H), 7.30 (t, *J* = 7.2 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 6.67 (dd, *J* = 6.0 Hz, 1.2 Hz, 1H), 6.51 (d, *J* = 16.2 Hz, 1H), 6.25 (ddd, *J* = 9.6 Hz, 4.2 Hz, 2.4 Hz, 1H), 5.96-5.90 (m, 2H), 5.39 (dt, *J* = 9.6 Hz, 2.4 Hz, 1H), 5.03 (dt, *J* = 6.0 Hz, 1.8 Hz, 1H), 4.67 (d, *J* = 2.4 Hz, 1H), 3.57-3.52 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 140.3, 137.0, 132.3, 131.9, 128.5, 127.5, 127.0, 126.9, 126.1, 125.6, 82.1, 76.1, 41.4. HRMS (ESI) *m/z* calculated C₁₅H₁₅O [M+H]⁺ 211.1123, found 211.1123.

(41) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (2*E*,4*E*)-deca-2,4-dienal (112.2 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 41 (44.7

mg, 73% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 6.62 (dd, J = 6.0 Hz, 1.5 Hz, 1H), 6.16 (ddd, J = 10.0 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.88 (dd, J = 6.0 Hz, 1.5 Hz, 1H), 5.57 (dt, J = 15.5 Hz, 6.5 Hz, 1H), 5.29 (dt, J = 10.0 Hz, 2.0 Hz, 1H), 5.13 (dd, J = 15.5 Hz, 9.0 Hz, 1H), 4.92 (dt, J = 6.0 Hz, 1.8 Hz, 1H), 4.61 (d, J = 4.0 Hz, 1H), 3.34-3.29 (m, 1H), 1.98 (q, J = 7.0 Hz, 2H), 1.37-1.23 (m, 6H), 0.89 (q, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 140.0, 133.7, 131.3, 127.8, 127.0, 125.2, 82.2, 76.0, 41.1, 32.5, 31.3, 28.9, 22.5, 14.0. HRMS (ESI) *m/z* calculated C₁₄H₁₉O [M-H]⁻ 203.1441, found 203.1436.

(42) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from ethyl (2*E*,4*E*)-3-methyl-6-oxohexa-2,4-dienoate (117.0 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 42 (47.5 mg, 72% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 6.61 (d, *J* = 5.5 Hz, 1H), 6.26 (ddd, *J* = 9.5 Hz, 3.5 Hz, 2.0 Hz, 1H), 5.73 (d, *J* = 5.5 Hz, 1H), 5.62 (s, 1H), 5.37 (d, *J* = 10.0 Hz, 1H), 5.14 (d, *J* = 5.5 Hz, 1H), 4.67 (d, *J* = 3.5 Hz, 1H), 4.18-4.11 (m, 2H), 3.49-3.45 (m, 1H), 2.18 (s, 3H), 1.28 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.6, 154.5, 139.5, 132.0, 126.4, 126.1, 116.4, 81.1, 76.4, 59.7, 46.4, 18.6, 14.2. HRMS (ESI) *m/z* calculated C₁₃H₁₇O₃ [M+H]⁺ 221.1178, found 221.1178.

(43) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from ethyl (*E*)-4-oxobut-2-enoate (105.0 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 43 (29.2 mg, 54% yield) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 6.69 (dd, *J* = 6.0 Hz, 1.8 Hz, 1H), 6.27 (ddd, *J* = 9.6 Hz, 4.2 Hz, 2.4 Hz, 1H), 5.92 (dd, *J* = 6.0 Hz, 1.8 Hz, 1H), 5.59 (dt, *J* = 9.6 Hz, 2.4 Hz, 1H), 5.30 (dt, *J* = 6.0 Hz, 1.8 Hz, 1H), 4.67 (d, *J* = 4.2 Hz, 1H), 4.20-4.10 (m, 2H), 3.73-3.70 (m, 1H), 1.27 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.7, 141.0, 132.9, 126.8, 122.1, 79.4, 76.4, 60.7, 42.2, 14.1. HRMS (ESI) *m/z* calculated C₁₀H₁₃O₃ [M+H]⁺ 181.0859, found 181.0645.

(44) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-hept-2-enal (100.2 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 44 (37.4 mg, 76% yield) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 6.62 (dd, *J* = 6.0 Hz, 1.8 Hz, 1H), 6.11 (ddd, *J* = 9.6 Hz, 3.6 Hz, 1.8 Hz, 1H), 5.89 (dd, *J* = 6.0 Hz, 1.8 Hz, 1H), 5.30 (dt, *J* = 9.6 Hz, 1.8 Hz, 1H), 4.96 (dt, *J* = 6.0 Hz, 1.8 Hz, 1H), 4.58 (d, *J* = 3.6 Hz, 1H), 2.66-2.61 (m, 1H), 1.36-1.28 (m, 4H), 1.25-1.20 (m, 1H), 1.16-1.10 (m, 1H), 0.91 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 140.2, 131.1, 128.4, 126.3, 81.9, 76.4, 37.3, 29.7, 28.0, 22.8, 13.9. HRMS (ESI) *m/z* calculated C₁₁H₁₇O [M+H]⁺ 165.1279, found 165.1281.

(45) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-oct-2-enal (104.4 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 45 (39.0 mg, 73% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 6.62 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.11 (ddd, *J* = 10.0 Hz, 4.0 Hz, 2.0 Hz, 1H), 5.88 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.30 (dt, *J* = 10.0 Hz, 2.0 Hz, 1H), 4.96 (dt, *J* = 6.0 Hz, 1.8 Hz, 1H), 4.58 (d, *J* = 4.0 Hz, 1H), 2.67-2.61 (m, 1H), 1.38-1.25 (m, 6H), 1.23-1.18 (m, 1H), 1.16-1.08 (m, 1H), 0.89 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 140.2, 131.0, 128.4, 126.2, 81.9, 76.4, 37.3, 31.9, 28.3, 27.2, 22.5, 14.0. HRMS (ESI) *m/z* calculated C₁₂H₁₇O [M-H]⁻ 177.1285, found 177.1277.

(46) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from (*E*)-5-phenylpent-2-enal (114.6 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 46 (54.1 mg, 85% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.29 (t, *J* = 7.5 Hz, 2H), 7.21-7.16 (m, 3H), 6.64 (dd, *J* = 6.0 H, 1.5 Hz, 1H), 6.14 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.0 Hz, 1H), 5.90 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.35 (dt, *J* = 9.5 Hz, 2.0 Hz, 1H), 4.99 (dt, *J* = 6.0 Hz, 1.8 Hz, 1H), 4.60 (d, *J* = 4.0 Hz, 1H), 2.72-2.62 (m, 3H), 1.60-1.52 (m, 1H), 1.50-1.42 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 141.7, 140.5, 131.4, 128.4, 128.3, 127.9, 126.1, 126.0, 81.7, 76.4, 36.8, 33.8, 30.2. HRMS (ESI) *m/z* calculated C₁₅H₁₇O [M+H]⁺ 213.1274, found 213.1272.

(47) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from (*E*)-4-oxobut-2-en-1-yl acetatel (105.0 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 47 (33.5 mg, 62% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 6.67 (dd, *J* = 6.0 Hz, 2.0 Hz, 1H), 6.25 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.0 Hz, 1H), 5.92 (dd, *J* = 6.0 Hz, 2.0 Hz, 1H), 5.26 (dt, *J* = 9.5 Hz, 2.5 Hz, 1H), 5.04 (dt, *J* = 6.0 Hz, 2.0 Hz, 1H), 4.65 (d, *J* = 4.0 Hz, 1H), 3.94 (dd, *J* = 11.0 Hz, 7.0 Hz, 1H), 3.85 (dd, *J* = 11.0 Hz, 9.5 Hz, 1H), 3.08-3.02 (m, 1H), 2.08 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.9, 141.0, 133.6, 125.9, 123.6, 80.0, 76.3, 62.4, 36.5, 20.8. HRMS (ESI) *m/z* calculated C₁₀H₁₃O₃ [M+H]⁺ 181.0859, found 181.1082.

(48) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-4-(benzyloxy)but-2-enal (119.4 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 48 (57.5 mg, 84% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.28 (m, 5H), 6.60 (dd, *J* = 6.0, 1.5 Hz, 1H), 6.19 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.0 Hz, 1H), 5.83 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.24 (dt, *J* = 9.5 Hz, 2.0 Hz, 1H), 5.10 (dt, *J* = 6.0 Hz, 1.8 Hz, 1H), 4.62 (d, *J* = 4.0 Hz, 1H), 4.53 (d, *J* = 12.0 Hz, 1H), 4.45 (d, *J* = 12.0 Hz, 1H), 3.30 (dd, *J* = 9.0 Hz, 6.5 Hz, 1H), 3.22 (t, *J* = 9.0 Hz, 1H), 3.11-3.05 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 140.3, 138.1, 132.9, 128.4, 127.72, 127.67, 126.3, 124.5, 80.5, 76.4, 73.1, 68.4, 37.6. HRMS (ESI) *m/z* calculated C₁₅H₁₅O₂ [M-H]⁻ 227.1078, found 227.1050.

(49) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-4-((tertbutyldimethylsilyl)oxy)but-2-enal (126.6 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 49 (53.0 mg, 70% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 6.61 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.18 (ddd, *J* = 10.0 Hz, 3.5 Hz, 2.0 Hz, 1H), 5.91 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.23 (dt, *J* = 10.0 Hz, 1.5 Hz, 1H), 5.07 (d, *J* = 6.0 Hz, 1H), 4.61 (d, *J* = 3.5 Hz, 1H), 3.45 (dd, *J* = 10.0 Hz, 6.5 Hz, 1H), 3.35 (t, *J* = 10.0 Hz, 1H), 2.95-2.88 (m, 1H), 0.89 (s, 9H), 0.05 (s, 3H), 0.04 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 140.3, 132.8, 126.5, 124.6, 80.6, 76.5, 61.5, 40.0, 25.8, 18.2, -5.5, -5.6. HRMS (ESI) *m/z* calculated C₁₄H₂₃O₂Si [M-H]⁻ 251.1473, found 251.1474.

(50) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*Z*)-2-bromo-3-phenylacrylaldehyde (129.6 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 50 (66.0 mg, 84% yield) as a white solid, m.p. 91-93 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.27 (m, 3H), 7.09-7.07 (m, 2H), 6.79 (dd, *J* = 4.5 Hz, 1.5 Hz, 1H), 6.63 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.64 (dd, *J* = 6.0 Hz, 2.0 Hz, 1H), 5.07 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 4.83 (d, *J* = 4.5 Hz, 1H), 4.16 (d, *J* = 6.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 138.7, 134.6, 134.3, 128.9, 128.4, 127.8, 127.5, 124.4, 83.2, 77.8, 52.2. HRMS (ESI) *m/z* calculated C₁₃H₁₂OBr [M+H]⁺ 263.0072, found 263.0079.

(51) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*Z*)2-chloro-3-phenylacrylaldehyde (116.4 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 51 (52.3 mg, 80% yield) as a white solid, m.p. 95-97 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.27 (m, 3H), 7.10-7.07 (m, 2H), 6.61 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.53 (dd, *J* = 4.5 Hz, 1.5 Hz, 1H), 5.62 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.06 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 4.88 (d, *J* = 4.5 Hz, 1H), 4.10 (d, *J* = 6.0 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 138.7, 134.1, 132.9, 130.3, 128.9, 128.4, 127.6, 127.4, 82.8, 76.97, 51.0. HRMS (ESI) *m/z* calculated C₁₃H₁₂OCl [M+H]⁺ 219.0577, found 219.0580.

(52) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)2-methyl-3-phenylacrylaldehyde (110.4 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 52 (39.8 mg, 67% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (t, *J* = 7.0 Hz, 2H), 7.23 (t, *J* = 7.0 Hz, 1H), 7.03 (d, *J* = 7.0 Hz, 2H), 6.57 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.11-6.06 (m, 1H), 5.58 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 4.93 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 4.75 (d, *J* = 4.0 Hz, 1H), 3.74 (d, *J* = 6.0 Hz, 1H), 1.47 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 138.7, 136.1,

134.2, 129.2, 128.2, 126.83, 126.76, 126.6, 82.2, 76.8, 48.2, 20.9. **HRMS** (ESI) m/z calculated C₁₄H₁₅O [M+H]⁺ 199.1123, found 199.1121.

(53) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-2-ethylhex-2-enal (104.4 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 53 (32.1 mg, 60% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 6.57 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.91 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.86-5.83 (m, 1H), 4.96 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 4.60 (d, *J* = 4.0 Hz, 1H), 2.62-2.58 (m, 1H), 1.97-1.84 (m, 2H), 1.53-1.42 (m, 2H), 1.38-1.30 (m, 1H), 1.13-1.04 (m, 1H), 0.98-0.93 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 140.4, 140.2, 126.5, 123.5, 80.5, 76.6, 39.0, 28.7, 26.5, 20.5, 14.3, 11.7.

(54) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (126.6 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 54 (57.5 mg, 76% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.25 (m, 3H), 7.10-7.08 (m, 2H), 6.65 (dd, J = 6.0 Hz, 1.0 Hz, 1H), 6.18-6.15 (m, 1H), 5.58 (dd, J = 6.0 Hz, 1.5 Hz, 1H), 5.14 (dt, J = 6.0 Hz, 1.5 Hz, 1H), 4.92 (s, 1H), 4.07-4.01 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 138.9, 135.3, 134.8 (q, J = 31.5 Hz), 129.9 (q, J = 6.3 Hz), 128.8, 128.3, 127.9, 127.6, 121.7 (q, J = 252.0 Hz), 82.5, 74.4, 41.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -68.34. HRMS (ESI) *m/z* calculated C₁₄H₁₂OF₃ [M+H]⁺ 253.0840, found 253.0845.

(55) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-4-(4-bromophenyl)-1,1,1-trifluorobut-3-en-2-one (150.0 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 55 (69.3 mg, 70% yield) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ

7.44 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 8.4 Hz, 2H), 6.67 (dd, J = 6.0 Hz, 1.8 Hz, 1H), 6.12-6.09 (m, 1H), 5.57 (dd, J = 6.0 Hz, 1.8 Hz, 1H), 5.11 (dt, J = 6.0 Hz, 1.8 Hz, 1H), 4.92 (s, 1H), 4.02-3.99 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 139.2, 135.2 (q, J = 31.3 Hz), 134.3, 131.9, 129.6, 129.2 (q, J = 6.3 Hz), 128.0, 122.6 (q, J = 268.8 Hz), 121.5, 82.2, 74.4, 40.5. ¹⁹F NMR (565 MHz, CDCl₃) δ -68.41. HRMS (ESI) *m/z* calculated C₁₄H₉BrF₃O [M-H]⁻ 328.9794, found 328.9791.

(56) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-(4-nitrophenyl)but-3-en-2-one (140.1 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 56 (47.2 mg, 53% yield) as a yellow oil. ¹HNMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.0 Hz, 1H), 7.56 (td, *J* = 7.5 Hz, 1.0 Hz, 1H), 7.47-7.43 (m, 1H), 7.06 (dd, *J* = 7.5 Hz, 1.0 Hz, 1H), 6.69 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.05-6.03 (m, 1H), 5.64 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.54-5.51 (m, 1H), 5.00-4.96 (m, 1H), 4.62-4.58 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 149.7, 138.8, 135.1 (q, *J* = 31.5 Hz), 133.4, 130.2, 130.1, 129.2 (q, *J* = 6.3 Hz), 128.6, 128.2, 124.9, 122.5 (q, *J* = 272.2 Hz), 81.0, 74.3, 36.6. ¹⁹F NMR (565 MHz, CDCl₃) δ -68.46. HRMS (ESI) *m/z* calculated C₁₄H₉F₃NO₃ [M-H]⁻ 296.0540, found 296.0540.

(57) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from (*E*)-1,1,1trifluoro-4-(ptolyl)but-3-en-2-one (130.8 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded **57** (55.9 mg, 70% yield) as a colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.12 (d, *J* = 7.5 Hz, 2H), 6.98 (d, *J* = 7.5 Hz, 2H), 6.65 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.6-6.13 (m, 1H), 5.59 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.12 (dt, *J* = 6.0 Hz, 1.5 Hz, 1H), 4.93-4.90 (m, 1H), 4.02-3.98 (m, 1H), 2.33 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 138.8, 137.3, 134.7 (q, *J* = 31.1 Hz), 132.2, 130.2 (q, *J* = 6.5 Hz), 129.4, 128.4, 127.8, 122.8 (q, *J* = 270.3 Hz), 82.6, 74.4, 40.7, 21.0. ¹⁹**F NMR** (565 MHz, CDCl₃) δ -68.32. **HRMS** (ESI) *m*/*z* calculated C₁₅H₁₄F₃O [M+H]⁺ 267.0991, found 267.0988.

(58) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (E)-1,1,1-trifluoro-4-(4-methoxyphenyl)but-3-en-2-one (135.6 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 58 (62.6 mg, 74% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.22 (m, 1H), 6.87 (t, *J* = 8.0 Hz, 2H), 6.82 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.60 (dd, *J* = 6.0, 1.0 Hz, 1H), 6.12 (s, 1H), 5.52 (dd, *J* = 6.0, 1.5 Hz, 1H), 5.29 (d, *J* = 5.5 Hz, 1H), 4.91 (s, 1H), 4.51 – 4.46 (m, 1H), 3.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 157.2, 138.1, 134.7 (q, *J* = 31.5 Hz), 130.5 (q, *J* = 6.0 Hz), 128.8, 128.6, 127.8, 123.6, 120.7, 122.8 (q, *J* = 268.5 Hz), 110.2, 80.4, 74.2, 55.4, 34.5. ¹⁹F NMR (565 MHz, CDCl₃) δ -68.26.HRMS (ESI) *m/z* calculated C₁₅H₁₂F₃O₂ [M-H]⁻ 281.0795, found 281.0795.

(59) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)1,1,1-trifluoronon-3-en-2-one (124.8 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 59 (40.6 mg, 55% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 6.62 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.95 (dd, *J* = 6.0 Hz, 2.0 Hz, 1H), 5.89-5.86 (m, 1H), 5.01-4.98 (m, 1H), 4.80 (s, 1H), 2.70-2.61 (m, 1H), 1.43-1.36 (m, 2H), 1.31-1.15 (m, 6H), 0.90 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 139.7, 133.8 (q, *J* = 30.2 Hz), 130.5 (q, *J* = 6.0 Hz), 127.4, 122.8 (q, *J* = 270.3 Hz), 81.1, 74.5, 35.2, 31.8, 27.6, 27.0, 22.4, 14.0. ¹⁹F NMR (565 MHz, CDCl₃) δ -68.29. HRMS (ESI) *m/z* calculated C₁₃H₁₆F₃O [M-H]⁻ 245.1159, found 245.1157.

(60) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from methyl (*E*)-2-oxo-4-phenylbut-3-enoate (123.6 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 60 (66.8 mg, 92% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.25 (m, 3H), 7.11-7.08 (m, 2H), 6.75-6.73 (m, 1H), 6.66 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.53 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.22 (s, 1H), 5.12 (dt, *J* = 6.0 Hz, 1.5 Hz, 1H), 4.10 (dd, *J* = 6.0 Hz, 2.0 Hz, 1H), 3.79

(s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.2, 139.4, 139.0, 136.2, 135.7, 128.6, 128.1, 127.7, 127.4, 82.4, 75.9, 51.8, 42.9. **HRMS** (ESI) *m*/*z* calculated C₁₅H₁₃O₃ [M-H]⁻ 241.0870, found 241.0869.

(61) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from ethyl (*E*)-2-oxo-4-phenylbut-3-enoate (127.8 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 61 (72.2 mg, 94% yield) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.30 (t, *J* = 7.8 Hz, 2H), 7.27-7.25 (m, 1H), 7.11-7.08 (m, 2H), 6.74-6.72 (m, 1H), 6.66 (dd, *J* = 6.0 Hz, 1.8 Hz, 1H), 5.53 (dd, *J* = 6.0, 1.8 Hz, 1H), 5.23-5.21 (m, 1H), 5.12 (dt, *J* = 6.0 Hz, 1.8 Hz, 1H), 4.29-4.20 (m, 2H), 4.09 (dd, *J* = 6.0 Hz, 2.4 Hz, 1H), 1.32 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.8, 139.5, 138.7, 136.4, 135.8, 128.6, 128.1, 127.6, 127.3, 82.4, 75.9, 60.6, 42.9, 14.2. HRMS (ESI) *m/z* calculated C₁₆H₁₅O₃ [M-H]⁻ 255.1027, found 255.1025.

(62) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from acrylaldehyde (83.4 mg, 0.3 mmol) and 2,5-diphenylfuran (132.1 mg, 0.6 mmol) afforded 62 (56.2 mg, 72% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.61-7.58 (m, 2H), 7.56-7.54 (m, 2H), 7.43-7.37 (m, 4H), 7.35-7.27 (m, 2H), 6.59 (d, *J* = 5.5 Hz, 1H), 6.52 (dt, *J* = 9.5 Hz, 2.0 Hz, 1H), 5.96 (d, *J* = 5.5 Hz, 1H), 5.73 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.0 Hz, 1H), 2.80 (dt, *J* = 18.0 Hz, 2.5 Hz, 1H), 2.36 (ddd, *J* = 18 Hz, 4.0 Hz, 2.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 143.2, 140.43, 140.35, 135.0, 130.6, 128.4, 128.3, 127.7, 127.4, 126.0, 125.1, 124.9, 86.9, 86.4, 33.2. HRMS (ESI) *m/z* calculated C₁₉H₁₅O [M-H]⁻ 259.1128, found 259.1127.

(63) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cyclohex-1-ene-1-carbaldehyde (99.6 mg, 0.3 mmol) and furan (41 mg, 0.6 mmol) afforded 63

(31.6 mg, 65% yield) as a white oil. ¹**H NMR** (600 MHz, CDCl₃) δ 6.59 (dd, J = 6.0 Hz, 1.5 Hz, 1H), 5.93 (dd, J = 6.0 Hz, 1.5 Hz, 1H), 5.78-5.75 (m, 1H), 4.78 (dd, J = 6.0 Hz, 1.5 Hz, 1H), 4.63-4.60 (m, 1H), 2.51-2.45 (m, 1H), 2.14-2.08 (m, 1H), 1.97-1.89 (m, 1H), 1.77-1.69 (m, 2H), 1.64-1.60 (m, 1H), 1.33-1.24 (m, 1H), 1.19-1.09 (m, 1H), 1.02-0.94 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 140.0, 138.1, 126.5, 121.9, 81.2, 76.6, 40.2, 34.4, 27.3, 25.6, 25.5. **HRMS** (ESI) *m/z* calculated C₁₁H₁₅O [M+H]⁺ 163.1123, found 163.1119.

64

(64) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from 3,4-dihydronaphthalene-2-carbaldehyde (114.0 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 64 (31.6 mg, 78% yield) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, *J* = 7.2 Hz, 1H), 7.17 (t, *J* = 7.2 Hz, 1H), 7.11 (t, *J* = 7.2 Hz, 1H), 7.04 (d, *J* = 7.2 Hz, 1H), 6.55 (dd, *J* = 6.0 Hz, 1.8 Hz, 1H), 6.00-5.98 (m, 1H), 5.62 (dd, *J* = 6.0 Hz, 1.8 Hz, 1H), 5.57 (dd, *J* = 6.0 Hz, 1.8 Hz, 1H), 4.71 (d, *J* = 4.2 Hz, 1H), 4.09 (d, *J* = 5.4 Hz, 1H), 2.85-2.81 (m, 1H), 2.77-2.71 (m, 1H), 2.34-2.31 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 140.8, 137.5, 135.1, 134.0, 129.2, 126.9, 126.0, 125.9, 123.8, 81.6, 76.7, 40.6, 31.8, 31.3. HRMS (ESI) *m/z* calculated C₁₅H₁₅O [M+H]⁺ 211.1117, found 211.1187.

(65) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cyclohept-1-ene-1-carbaldehyde (103.8 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 65 (28.0 mg, 53% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 6.56 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.86 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 5.83-5.80 (m, 1H), 4.85 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 4.60 (d, *J* = 4.0 Hz, 1H), 2.75-2.70 (m, 1H), 2.22-2.15 (m, 1H), 2.12-2.07 (m, 1H), 1.67-1.60 (m, 1H), 1.56-1.51 (m, 2H), 1.50-1.41 (m, 3H), 1.40-1.35 (m, 1H), 1.34-1.27 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 140.6, 140.1, 125.7, 123.6, 82.7, 76.4, 41.5, 36.0, 31.0, 28.0, 27.9, 26.3. HRMS (ESI) *m/z* calculated C₁₂H₁₇O [M+H]⁺ 177.1274, found 177.1273.

S26

(66) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from (*E*)-cyclooct-1-ene-1-carbaldehyde (108.0 mg, 0.3 mmol) and furan (41.0 mg, 0.6 mmol) afforded 66 (34.2 mg, 60% yield) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 6.60 (dd, *J* = 6.0, 1.8 Hz, 1H), 5.91 (dd, *J* = 6.0 Hz, 1.8 Hz, 1H), 5.84-5.82 (m, 1H), 4.85 (dd, *J* = 5.4 Hz, 1.8 Hz, 1H), 4.59-4.57 (m, 1H), 2.78-2.75 (m, 1H), 2.28-2.22 (m, 1H), 1.94-1.89 (m, 1H), 1.79-1.74 (m, 1H), 1.68-1.53 (m, 4H), 1.50-1.40 (m, 3H), 1.37-1.30 (m, 2H).; ¹³C NMR (126 MHz, CDCl₃) δ 141.0, 139.8, 127.1, 124.8, 82.7, 76.6, 41.1, 33.3, 30.2, 27.3, 25.7, 25.6, 23.8. HRMS (ESI) *m/z* calculated C₁₃H₁₇O [M-H]⁻ 189.1285, found 189.1278.

(67) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and 4,5,6,7-tetrahydrobenzofuran (73.3 mg, 0.6 mmol) afforded 67 (37.1 mg, 52% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl3) δ 7.29-7.22 (m, 3H), 7.13 (d, *J* = 7.0 Hz, 2H), 6.31 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 6.22-6.19 (m, 1H), 5.54 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 4.65-4.62 (m, 1H), 3.78-3.74 (m, 1H), 2.31-2.23 (m, 2H), 1.78 (td, *J* = 13.5 Hz, 5.0 Hz, 1H), 1.52-1.45 (m, 1H), 1.44-1.37 (m, 1H), 1.33-1.25 (m, 1H), 1.16-1.05 (m, 1H), 0.71-0.66 (m, 1H); ¹³C NMR (126 MHz, CDCl3) δ 142.0, 140.1, 131.4, 130.6, 129.7, 129.3, 128.1, 127.2, 86.0, 75.8, 51.8, 38.7, 28.2, 25.8, 23.1. HRMS (ESI) m/z calculated C₁₇H₁₇O [M-H]⁻ 237.1285, found 237.1282.

(68) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and tertbutyldimethyl((4,5,6,7-tetrahydrobenzofuran-4-yl)oxy)silane (151.3 mg, 0.6 mmol) afforded 68 (58.9 mg, 54% yield) as a yellow oil. Another stereoisomer cannot be separated in analytical purity by column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.25-7.18 (m, 5H), 6.64 (d, *J* = 2.0 Hz, 1H), 6.27-6.22 (m, 1H), 5.58 (dd, *J* = 9.5 Hz, 2.0 Hz, 1H), 4.63-4.60 (m, 1H), 4.36 (t, *J* = 6.0 Hz, 1H), 3.85-3.81 (m, 1H), 2.23 (dt, *J* = 13.5 Hz, 6.5 Hz, 1H), 1.85 (q, *J* = 7.0 Hz, 1H), 1.37-1.31 (m, 1H), 1.20-1.14 (m, 2H), 0.89 (s, 9H), 0.63-0.56 (m, 1H), 0.05 (s, 3H), -0.07 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 143.6, 139.4, 138.4, 130.7, 130.4, 129.8, 127.8, 126.7, 88.6, 75.9, 66.5, 52.6, 35.8, 32.8, 26.1, 18.5, 18.1, -4.3, -4.6. HRMS (ESI) *m/z* calculated C₂₃H₃₃O₂Si [M+H]⁺ 369.2250, found 369.2251.

(69) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and 6,7-dihydrobenzofuran-4(5*H*)-one (81.6 mg, 0.6 mmol) afforded 69 (37.1 mg, 49% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, *J* = 2.0 Hz, 1H), 7.25-7.21 (m, 3H), 7.12-7.09 (m, 2H), 6.27 (ddd, *J* = 9.5 Hz, 4.5 Hz, 2.5 Hz, 1H), 5.70 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 4.84-4.81 (m, 1H), 3.84-3.80 (m, 1H), 2.22-2.12 (m, 2H), 1.99 (ddd, *J* = 17.0 Hz, 6.5 Hz, 4.0 Hz, 1H), 1.62-1.55 (m, 1H), 1.38-1.30 (m, 1H), 1.13-1.05 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 197.3, 144.6, 140.1, 136.5, 132.5, 129.2, 128.7, 127.9, 127.8, 87.6, 76.3, 51.1, 38.9, 33.2, 18.9. HRMS (ESI) *m/z* calculated C₁₇H₁₇O₂ [M+H]⁺ 253.1229, found 253.1228.

(70) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and 4,5-dihydronaphtho[2,1-*b*]furan (102.1 mg, 0.6 mmol) afforded 70 (37.1 mg, 49% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.43 (dd, *J* = 8.0 Hz, 1.0 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 7.00-6.98 (m, 2H), 6.96-6.88 (m, 4H), 6.84 (d, *J* = 2.5 Hz, 1H), 6.68 (d, *J* = 7.5 Hz, 1H), 6.34 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.56 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 4.90-4.87 (m, 1H), 3.89-3.86 (m, 1H), 2.60-2.54 (m, 1H), 2.40-2.35 (m, 1H), 2.30-2.17 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 139.2, 138.6, 136.3, 131.0, 130.9, 130.1, 129.4, 129.1, 128.0, 127.4, 127.3, 126.9, 125.8, 124.3, 86.1, 77.2, 51.9, 34.2, 27.6.

2.2 Silver-catalyzed Intramolecular [4 + 3] Reactions

Synthesis of compound **71**: To an oven-dried screwcap reaction tube were added vinyl-*N*-triftosylhydrazone (138.6 mg, 0.3 mmol), NaH (24.0 mg, 60 wt% dispersion in mineral oil, 0.6 mmol, 2.0 equiv) and dry CHCl₃ (8.0 mL) inside a glove box with nitrogen atmosphere. Then, $Tp^{(CF3)2}Ag$ (24.0 mg, 10 mol%) were added and the vial was sealed. After transferred out of the glove box, the reaction heated at 60 °C in the dark for additional 12 h. When the reaction was completed, the reaction was allowed to cool to room temperature, and filtered through a short pad of silica gel with CH₂Cl₂ as an eluent. After removal of the solvent under vacuum, the residue was purified by flash chromatography on silica gel (using petroleum ether / EtOAc as eluent) to obtain **71** (51.1 mg, 76% yield) as a colorless oil. (**71**) ¹**H NMR** (500 MHz, CDCl₃) δ 7.16-7.08 (m, 4H), 6.46 (ddd, *J* = 9.5 Hz, 4.5 Hz, 2.5 Hz, 1H), 6.36 (d, *J* = 5.5 Hz, 2.0 Hz, 1H), 5.79 (dd, *J* = 9.5 Hz, 3.0 Hz, 1H), 5.30 (d, *J* = 5.5 Hz, 1H), 4.74 (d, *J* = 4.5 Hz, 1H), 4.03-4.00 (m, 1H), 2.97 (t, *J* = 13.0 Hz, 1H), 2.80 (dd, *J* = 14.0 Hz, 6.5 Hz, 1H), 2.24-2.10 (m, 3H), 1.52-1.42 (m, 1H); ¹³C **NMR** (151 MHz, CDCl₃) δ 143.5, 136.5, 136.1, 131.9, 129.9, 129.7, 128.6, 126.8, 126.3, 126.2, 86.8, 76.0, 45.1, 41.1, 35.2, 26.1. **HRMS** (ESI) *m/z* calculated C₁₆H₁₅O [M-H]⁻ 223.1128, found 223.1126.

Synthesis of compound **72**: To an oven-dried screwcap reaction tube were added vinyl-*N*-triftosylhydrazone (139.2 mg, 0.3 mmol), NaH (24.0 mg, 60 wt% dispersion in mineral oil, 0.6 mmol, 2.0 equiv) and dry CHCl₃ (8.0 mL) inside a glove box with nitrogen atmosphere. Then, Tp^{(CF3)2}Ag (24.0 mg, 10 mol%) were added and the vial was sealed. After transferred out of the glove box, the reaction heated at 60 °C in the dark for additional 12 h. When the reaction was completed, the reaction was allowed to cool to room temperature, and filtered through a short pad of silica gel with CH₂Cl₂ as an eluent. After removal of the solvent under vacuum, the residue was purified by flash chromatography on silica gel (using petroleum ether / EtOAc as eluent) to obtain **72** (48.8 mg, 72% yield) as a colorless oil. (**72**) ¹**H NMR** (500 MHz, CDCl₃) δ 7.25-7.22 (m, 1H), 7.21-7.17 (m, 3H), 6.50 (ddd, *J* = 9.5 Hz, 4.5 Hz, 2.5 Hz, 1H), 6.42 (dd, *J* = 6.0 Hz, 1.0 Hz, 1H), 5.88 (dd, *J* = 9.5 Hz, 3.0 Hz, 1H), 5.46 (d, *J* = 6.0 Hz, 1H), 4.78-4.76 (m, 1H), 4.75 (d, *J* = 2.5 Hz, 2H), 4.18-4.15 (m, 2H), 4.06 (d, *J* = 11.5 Hz, 1H); ¹³C **NMR** (151 MHz, CDCl₃) δ 139.5, 137.3,

136.8, 132.7, 129.4, 128.9, 128.5, 127.8, 126.8, 125.8, 84.8, 79.8, 76.5, 74.4, 44.6. **HRMS** (ESI) *m/z* calculated C₁₅H₁₃O₂ [M-H]⁻ 225.0921, found 225.0920.

Synthesis of compound **73**: To an oven-dried screwcap reaction tube were added vinyl-*N*-triftosylhydrazone (151.8 mg, 0.3 mmol), NaH (24.0 mg, 60 wt% dispersion in mineral oil, 0.6 mmol, 2.0 equiv) and dry CHCl₃ (8.0 mL) inside a glove box with nitrogen atmosphere. Then, $Tp^{(CF3)2}Ag$ (24.0 mg, 10 mol%) were added and the vial was sealed. After transferred out of the glove box, the reaction heated at 60 °C in the dark for additional 12 h. When the reaction was completed, the reaction was allowed to cool to room temperature, and filtered through a short pad of silica gel with CH₂Cl₂ as an eluent. After removal of the solvent under vacuum, the residue was purified by flash chromatography on silica gel (using petroleum ether / EtOAc as eluent) to obtain **73** (48.2 mg, 60% yield) as a colorless oil. (**73**) ¹**H NMR** (500 MHz, CDCl₃) δ 7.21-7.15 (m, 2H), 7.13-7.08 (m, 1H), 7.02 (d, *J* = 8.0 Hz, 1H), 6.70 (dd, *J* = 6.0, 2.0 Hz, 1H), 6.22-6.17 (m, 1H), 5.69 (d, *J* = 5.5 Hz, 1H), 5.43 (dd, *J* = 9.5, 2.0 Hz, 1H), 4.81 (d, *J* = 3.5 Hz, 1H), 4.72 (d, *J* = 13.0 Hz, 1H), 4.46 (s, 1H), 4.28 (d, *J* = 12.5 Hz, 1H), 3.39 (td, *J* = 13.0, 5.0 Hz, 1H), 2.93-2.87 (m, 1H), 2.86-2.80 (m, 1H), 2.47 (td, *J* = 12.5, 5.0 Hz, 1H); ¹³C **NMR** (126 MHz, CDCl₃) δ 173.1, 139.8, 138.3, 135.8, 131.8, 130.6, 129.4, 129.2, 128.5, 127.6, 126.8, 91.5, 78.0, 67.1, 40.1, 36.9, 29.9. **HRMS** (ESI) *m/z* calculated C₁₇H₁₇O₃ [M+H]⁺ 267.1027, found 267.1027.

Synthesis of compound **74:** To an ovendried screwcap reaction tube equipped with a Tefloncoated magnetic stir bar were added vinyl-*N*-triftosylhydrazone (0.3 mmol, 156 mg), NaH (24.0 mg, 60 wt% dispersion in mineral oil, 0.6 mmol, 2.0 equiv) and dry CHCl₃ (8.0 mL) inside a glove box with nitrogen atmosphere. Then, $Tp^{(CF3)2}Ag$ (24.0 mg, 10 mol%) were added and the vial was sealed. After transferred out of the glove box, the reaction heated at 60 °C in the dark for additional 12 h. When the reaction was completed, the reaction was allowed to cool to room temperature, and filtered through a short pad of silica gel with CH₂Cl₂ as an eluent. After removal

of the solvent under vacuum, the residue was purified by flash chromatography on silica gel (using petroleum ether / EtOAc as eluent) to obtain **74** (57.5 mg, 68% yield) as a colorless oil. (**74**) ¹**H NMR** (500 MHz, CDCl₃) δ 7.22-7.19 (m, 2H), 7.18-7.16 (m, 1H), 7.15-7.10 (m, 1H), 6.66 (dd, *J* = 6.0 Hz, 2.0 Hz, 1H), 6.14 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.89 (d, *J* = 6.0 Hz, 1H), 5.32 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 5.15-5.04 (m, 1H), 4.80-4.75 (m, 1H), 3.94-3.80 (m, 2H), 3.40-3.32 (m, 1H), 2.82-2.75 (m, 1H), 2.51 (dt, *J* = 14.5 Hz, 2.0 Hz, 1H), 2.45 (ddd, *J* = 16.0 Hz, 6.5 Hz, 2.0 Hz, 1H), 2.35 (td, *J* = 14.5 Hz, 2.0 Hz, 1H), 1.89-1.78 (m, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 173.1, 138.4, 138.3, 137.6, 132.1, 132.0, 130.7, 128.8, 128.3, 127.4, 126.7, 89.7, 77.9, 65.2, 41.9, 32.0, 31.6, 29.0. **HRMS** (ESI) *m/z* calculated C₁₈H₁₇O₃ [M-H]⁻ 281.1183, found 281.1183.

2.3 Gram-Scale Experiments

To an ovendried screwcap reaction tube equipped with a Tefloncoated magnetic stir bar were added vinyl-*N*-triftosylhydrazone (2.16 g, 5 mmol), NaH (400.0 mg, 60 wt% dispersion in mineral oil, 0.6 mmol, 2.0 equiv) and dry CHCl₃ (50.0 mL) inside a glove box with nitrogen atmosphere. Then, furan (1.40 g, 10.0 mmol, 2.0 equiv) and Tp^{(CF3)2}Ag (400.0 mg, 10 mol%) were added and the vial was sealed. After transferred out of the glove box, the reaction heated at 60 °C in the dark for additional 12 h. When the reaction was completed, the reaction was allowed to cool to room temperature, and filtered through a short pad of silica gel with CH₂Cl₂ as an eluent. After removal of the solvent under vacuum, the residue was purified by flash chromatography on silica gel (using petroleum ether / EtOAc as eluent) to obtain **50** (1.05 g, 80% yield) as a white solid.

2.4 Late-Stage Modification of Pharmaceutical Molecules

(76) Prepared according to General Procedure A using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and furan (from Aspirin, 156 mg, 0.6 mmol) afforded 76 (65.4 mg, 58% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, *J* = 8.0 Hz, 1.5 Hz, 1H), 7.56 (td, *J* = 8.0 Hz, 1.5 Hz, 1H), 7.30 (td, *J* = 8.0 Hz, 1.0 Hz, 1H), 7.28-7.21 (m, 3H), 7.13-7.08 (m, 3H), 6.69 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.36 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.61

(dd, J = 9.5 Hz, 2.5 Hz, 1H), 5.44 (d, J = 6.0 Hz, 1H), 4.86 (d, J = 4.0 Hz, 1H), 4.53 (d, J = 12.0 Hz, 1H), 4.46 (d, J = 12.0 Hz, 1H), 4.05-4.02 (m, 1H), 2.37 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.8, 164.2, 150.8, 140.0, 136.2, 134.0, 132.0, 130.8, 130.1, 128.9, 128.4, 127.3, 127.0, 126.0, 123.8, 123.0, 88.7, 77.7, 65.7, 44.7, 21.1. HRMS (ESI) *m/z* calculated C₂₃H₁₉O₅ [M-H]⁻ 375.1238, found 375.1238.

(77) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and furan (from Indometacin, 262.2 mg, 0.6 mmol) afforded 77 (104.6 mg, 63% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 8.5 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.20-7.12 (m, 3H), 7.02 (d, *J* = 2.5 Hz, 1H), 6.89-6.86 (m, 2H), 6.84 (d, *J* = 9.0 Hz, 1H), 6.66 (dd, *J* = 9.0 Hz, 2.5 Hz, 1H), 6.62 (dd, *J* = 9.0 Hz, 2.5 Hz, 1H), 6.32 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.50 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 5.30 (d, *J* = 6.0 Hz, 1H), 4.81 (d, *J* = 4.0 Hz, 1H), 4.31 (ABq, *J* = 12.5 Hz, 2H), 3.84 (s, 3H), 3.82-3.80 (m, 1H), 3.75 (ABq, *J* = 15.5 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.6, 168.2, 156.1, 139.9, 139.2, 136.1, 136.0, 133.8, 131.2, 130.7, 130.5, 129.9, 129.1, 128.7, 128.3, 127.3, 126.7, 114.9, 112.5, 112.0, 101.2, 88.7, 77.7, 65.4, 55.7, 44.2, 30.3, 13.3. HRMS (ESI) *m/z* calculated C₃₃H₂₇ClNO₅ [M-H]⁻ 552.1583, found 552.1591.

(78) Prepared according to **General Procedure A** using vinyl-*N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and furan (from Fenbufen, 200.5 mg, 0.6 mmol) afforded 78 (74.3 mg, 55% yield) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 8.5 Hz, 2H), 7.69 (d, *J* = 8.5 Hz, 2H), 7.64-7.62 (m, 2H), 7.48 (t, *J* = 8.0 Hz, 2H), 7.42-7.38 (m, 1H), 7.29-7.23 (m, 3H), 7.16-7.11 (m, 2H), 6.64 (dd, *J* = 6.0 Hz, 1.5 Hz, 1H), 6.34 (ddd, *J* = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.59 (dd, *J* = 9.5 Hz, 2.5 Hz, 1H), 5.39 (d, *J* = 6.0 Hz, 1.5 Hz, 1H), 4.84 (d, *J* = 4.0 Hz, 1H), 4.36 (ABq, *J* = 17.0 Hz, 2H), 4.02-3.98 (m, 1H), 3.41-3.32 (m, 2H), 2.95-2.81 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 197.5, 172.8, 145.9, 139.84, 138.76, 136.2, 135.3, 130.7, 130.1, 128.9, 128.6, 128.4, 128.2, 127.3, 127.24, 127.22, 127.0, 88.7, 77.7, 65.2, 44.5, 33.4, 28.2. HRMS (ESI) *m/z* calculated C₃₀H₂₅O₄ [M-H]⁻ 449.1758, found 449.1761.

3. The Synthesis of Substrates.

General procedures for synthesis of vinyl-N-sulfonylhydrazones

Vinyl-*N*-sulfonylhydrazones were prepared according to literature procedure⁶. To a stirred solution of ArSO₂NHNH₂ (2.0 mmol, 1.0 equiv) in methanol (2 mL) were added carbonyl compounds (2.2 mmol, 1.1 equiv) and the mixture was stirred for 1-12 h at room temperature. If the hydrazone precipitated, the mixture was filtered and the resulting solid was washed with ice cold diethyl ether and dried under reduced pressure to give pure Vinyl-*N*-sulfonylhydrazones. If not, the solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel to obtain the vinyl-*N*-sulfonylhydrazones. The yields were around 80% in general.

To a stirred solution of TfsNHNH₂ (2.2 mmol, 1.1 equiv) in ethyl acetate (2 mL) were added carbonyl compounds (2.2 mmol, 1.1 equiv) and boron trifluoride etherate. The mixture was stirred for 5 h at 40 °C. When the ketones were consumed, the solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel to obtain the vinyl-N-sulfonylhydrazones.

General Procedures for synthesis of vinyl-N-triftosylhydrazones

Cyclic cinnamaldehyde **S-65'**^{7,8}: A two necked-flask was equipped with a thermometer, addition funnel and then flushed with argon. The flask was charged with cycloheptanone (676.2 mg, 6 mmol) and chloromethyl phenyl sulfoxide (1.1 g, 6.3 mmol). The solids were dissolved in a mixture of *tert*-butanol and Et₂O (2:1). The clear solution was cooled to 10 °C. The addition funnel was charged with potassium-tert-butoxide (706.9 mg, 6.3 mmol) dissolved in tert-butanol (0.63 mol L⁻¹). The resulting suspension was slowly added to the reaction mixture ensuring that the inside temperature did not rise above 15 °C. The solution turned turbid and after a while yellow. After addition was complete the cooling bath was removed and the solution stirred at room temperature overnight. The orange coloured reaction was poured into distilled water and the aqueous phase was back-extracted with Et₂O. The combined organic layers were dried over Na₂SO₄, filtered and concentrated to yield a light yellow oil. The crude oil was transferred into a roundbottomed flask and dissolved in p-xylene (0.89 mol L⁻¹). The flask was heated at reflux for

1.5 h, during which time the reaction mixture turned dark brown. The solution was cooled to rt and the solvent was evaporated in vacuo. The resulting dark brown crude oil was purified by flash column chromatography on silica gel (PE/Et₂O) to obtain **S-65'** (305.3 mg, 41%) as a dark orange oil.

vinyl-*N*-sulfonylhydrazone **S-65**: To a stirred solution of TfsNHNH₂ (2.0 mmol, 1.0 equiv) in MeOH was added **S-65'**. The mixture was stirred for 2 h at room temperature and purified by flash chromatography on silica gel to give vinyl-*N*-sulfonylhydrazone **S-65** as a white solid.

(S-65) White solid; ¹H NMR (500 MHz, DMSO) δ 11.58 (s, 1H), 8.02 (d, *J* = 7.5 Hz, 1H), 8.00-7.96 (m, 1H), 7.89 (dt, *J* = 7.9, 3.9 Hz, 1H), 7.84 (t, *J* = 7.6 Hz, 1H), 7.57 (s, 1H), 6.17 (t, *J* = 6.7 Hz, 1H), 2.30-2.25 (m, 2H), 2.22 (dd, *J* = 11.0 Hz, 6.5 Hz, 2H), 1.66 (dt, *J* = 11.7, 6.0 Hz, 2H), 1.45-1.38 (m, 2H), 1.34-1.27 (m, 2H); ¹³C NMR (126 MHz, DMSO) δ 151.8, 142.7, 141.5, 138.5, 133.8, 133.6, 131.7, 128.8 (q, *J* = 6.3 Hz), 126.9 (q, *J* = 32.5 Hz), 123.2 (q, *J* = 272.5 Hz), 31.9, 28.9, 26.5, 26.1, 25.4.

(S-66) White solid; ¹H NMR (500 MHz, DMSO) δ 11.53 (s, 1H), 8.02 (d, J = 7.5 Hz, 1H), 7.98 (dd, J = 7.5, 0.5 Hz, 1H), 7.90-7.81 (m, 2H), 7.57 (s, 1H), 6.00 (t, J = 8.5 Hz, 1H), 2.29-2.24 (m, 2H), 2.24-2.16 (m, 2H), 1.50-1.43 (m, 2H), 1.37-1.31 (m, 2H), 1.29-1.18 (m, 4H); ¹³C NMR (126 MHz, DMSO) δ 151.0, 140.3, 138.5, 138.2, 133.8, 133.5, 131.8, 128.7 (q, J = 6.3 Hz), 126.9 (q, J = 32.5 Hz), 123.2 (q, J = 272.5 Hz), 29.7, 28.4, 27.0, 26.6, 25.9, 23.1.

Synthesis of substrate S-71 for product 71

Synthesis of compound S-71²: To a 100 mL sample vial was added alkyl iodide (1.18 g, 5 mmol), indium (1.15 g, 10 mmol), CuCl (0.99 g, 10 mmol), and analytical grade THF (20 mL) sequentially. The reaction was stirred vigorously at room temperature for 24 h. After reaction, it was stood for around 10 minutes. Then the upper clear solution was carefully separated from the

bottom black precipitate by syringe. The residual black precipitate was washed with 20 mL THF and the THF layer was carefully separated by syringe. The combined organic layers were concentrated under vacuo. Then the residue was dissolved in 15 mL DMA and transferred to another 100 mL sample vial. Aryl halide (903.0 mg, 3.5 mmol), LiCl (423.9 mg, 10 mmol), and PdCl₂(PPh₃)₂ (175.5 mg, 0.25 mmol, 0.05 equiv) was added to the sample vial sequentially. The reaction mixture was stirred at 100 °C for 24 h. After reaction, it was directly purified by silica gel column chromatography using EtOAc/hexane as eluant to afford the desired product **S-71** (722.4 mg) as a yellow oil. (**S-71**) ¹**H NMR** (500 MHz, CDCl₃) δ 9.66 (d, *J* = 7.5 Hz, 1H), 7.68 (d, *J* = 16.0 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.36 (td, *J* = 7.5 Hz, 15 Hz, 1H), 7.33 (dd, *J* = 2.0 Hz, 1.0 Hz, 1H), 7.29-7.23 (m, 2H), 6.66 (dd, *J* = 15.5 Hz, 7.5 Hz, 1H), 6.31 (dd, J = 3.0, 2.0 Hz, 1H), 6.04 (dd, *J* = 3.0 Hz, 0.5 Hz, 1H), 2.83-2.79 (m, 2H), 2.70 (t, *J* = 7.0 Hz, 2H), 1.98-1.90 (m, 2H); ¹³C **NMR** (126 MHz, CDCl₃) δ 193.8, 155.3, 149.9, 142.0, 141.0, 132.3, 131.0, 130.3, 129.7, 126.9, 126.8, 110.2, 105.4, 32.3, 29.9, 27.4.

Synthesis of substrate S-72 for product 72

Synthesis of compound S-72'³: A solution of *n*-BuLi (6 mL, 15 mmol, 2.5 M) was added dropwise to a solution of 2-(((2-bromobenzyl)oxy)methyl)furan (2.66 g, 10 mmol) in THF (40 mL) at -78 °C under a N₂ atmosphere. The reaction mixture was stirred at -78 °C for 1 h. DMF (3.66 g, 50 mmol) was added dropwise to the resulting mixture. The reaction was stirred at room temperature overnight and quenched by saturated NH₄Cl solution (40 mL). The reaction was extracted by EtOAc (40 mL × 3) and dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the residue was purified by flash column chromatography to afford S-72' (1.51 g, 70%).

Synthesis of compound **S**-72⁴: To a flask equipped with a stir bar and a condenser was added **S**-72' (1.62 g, 7.5 mmol), (triphenylphosphoranylidene) acetaldehyde (1.52 g, 5.0 mmol), and toluene (20 mL). The reaction mixture was refluxed overnight. After evaporation of the solvent under reduced pressure, the residue was purified by flash column chromatography to afford **S**-72 (665.8 mg, 55%) as a yellow oil. (**S**-72) ¹**H NMR** (500 MHz, CDCl₃) δ 9.66 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 16.0 Hz, 1H), 7.65 (d, *J* = 7.0 Hz, 1H), 7.45 (dd, *J* = 1.5, 1.0 Hz, 1H), 7.41 – 7.38 (m, 3H), 6.66 (dd, *J* = 16.0, 8.0 Hz, 1H), 6.40 – 6.36 (m, 2H), 4.65 (s, 2H), 4.53 (s, 2H); ¹³**C NMR** (126 MHz, CDCl₃) δ 194.1, 151.3, 149.9, 143.0, 136.8, 133.6, 130.8, 130.5, 130.0, 128.8, 127.0, 110.4, 109.9, 69.8, 63.9.

Synthesis of substrate S-74 for product 74

Synthesis of compound S-74'¹: To an oven-dried flask 2-(2-bromophenyl)ethan-1-ol (1.60 g, 8 mmol) and dry dichloromethane (50 mL) were charged under nitrogen atmosphere. To the above solution, 3-(furan-2-yl)propanoic acid (1.12 g, 8 mmol) was added and the reaction mixture cooled to 0 °C. To this cooled reaction mixture, DCC (1.98 g, 9.6 mmol) and a catalytic amount of DMAP (48.8 mg, 0.4 mmol) were added. Initially, the reaction mixture was homogeneous. The white solid separates out from the reaction mixture after 2 h duration. Progress of the reaction was monitored using TLC. After completion of the reaction mixture was filtered and concentrated in vacuo. The residue was subjected to column chromatography (hexane/EtOAc) to give S-74' (2.20 g, 85% yield) as a yellow oil.

Synthesis of compound S-74⁵: To a stirred solution of S-74' (1.61 g, 5 mmol) in 50 mL of DMF were added acrolein diethyl acetal (2.3 mL, 15 mmol), n-Bu₄NOAc (3.10 g, 10 mmol), K₂CO₃ (1.10 g, 7.5 mmol), KCl (372.8 mg, 5 mmol), and Pd(OAc)₂ (33.7 mg, 0.15 mmol). The mixture was stirred for 12 h at 90 °C. After cooling, 2 M HCl was slowly added and the reaction mixture was stirred at room temperature for 10 min. Then, it was diluted with ether and washed with water. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by chromatography to obtain S-74 (834.7 mg, 50% yield) as a yellow oil.

Synthesis of substrate S-76 for product 76

Synthesis of compound **S-76**¹: To an oven-dried flask acetylsalicylic acid (322.2 mg, 1.79 mmol) in dichloromethane (25 mL) was charged under nitrogen atmosphere. To the above solution, furan-2-ylmethanl (175.4 mg, 1.79 mmol) was added and the reaction mixture cooled to 0 °C. To this cooled reaction mixture, DCC (443.6 mg, 2.15 mmol) and a catalytic amount of DMAP (10.9 mg, 0.09 mmol) were added. Initially, the reaction mixture was homogeneous. The white solid separates out from the reaction mixture after 2 h duration. Progress of the reaction was monitored using TLC. After completion of the reaction mixture was filtered and concentrated in vacuo. The residue was subjected to column chromatography (hexane/EtOAc) to furnish the corresponding ester **S-76** as a yellow oil. (395.6 mg, 85% yield).
(S-76) ¹H NMR (500 MHz, CDCl₃) δ 8.04 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 7.57-7.52 (m, 1H), 7.45 (dd, J = 1.5 Hz, 0.5 Hz, 1H), 7.29 (t, J = 7.5 Hz, 1H), 7.08 (dd, J = 8.5 Hz, 1.0 Hz, 1H), 6.47 (d, J = 3.5 Hz, 1H), 6.38 (dd, J = 3.0, 2.0 Hz, 1H), 5.25 (s, 2H), 2.19 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.6, 164.2, 150.5, 149.0, 143.3, 134.0, 132.0, 126.0, 123.8, 122.9, 111.1, 110.6, 58.6, 20.6.

Synthesis of substrate S-77 for product 77

Synthesis of compound S-77¹: To an oven-dried flask indometacin (639.2 mg, 1.79 mmol,) in (25 mL) was charged under nitrogen atmosphere. To the above solution, furan-2-ylmethanl (175.4 mg, 1.79 mmol) was added and the reaction mixture cooled to 0 °C. To this cooled reaction mixture, DCC (443.6 mg, 2.15 mmol) and a catalytic amount of DMAP (10.9 mg, 0.09 mmol) were added. Initially, the reaction mixture was homogeneous. The white solid separates out from the reaction mixture after 2 h duration. Progress of the reaction was monitored using TLC. After completion of the reaction mixture was filtered and concentrated in vacuo. The residue was subjected to column chromatography (hexane/EtOAc) to furnish the corresponding ester S-77 as a yellow solid. (380.3 mg, 87% yield).

(S-77) ¹H NMR (500 MHz, CDCl₃) δ 7.67-7.63 (m, 2H), 7.48-7.44 (m, 2H), 7.41 (dd, J = 1.5, 0.5 Hz, 1H), 6.93 (d, J = 2.5 Hz, 1H), 6.88 (d, J = 9.0 Hz, 1H), 6.66 (dd, J = 9.0 Hz, 2.5 Hz, 1H), 6.39 (d, J = 3.5 Hz, 1H), 6.36 (dd, J = 3.5 Hz, 2.0 Hz, 1H), 5.09 (s, 2H), 3.80 (s, 3H), 3.69 (s, 2H), 2.35 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.4, 168.2, 156.0, 149.2, 143.3, 139.2, 135.9, 133.8, 131.1, 130.7, 130.5, 129.1, 114.9, 112.3, 111.8, 110.8, 110.6, 101.1, 58.5, 55.6, 30.1, 13.3.

Synthesis of substrate S-78 for product 78

Synthesis of compound S-78¹: To an oven-dried flask fenbufen (454.8 mg, 1.79 mmol) in dry dichloromethane (25 mL) was charged under inert atmosphere. To the above solution, furan-2-

ylmethanl (175.4 mg, 1.79 mmol) was added and the reaction mixture cooled to 0 °C. To this cooled reaction mixture, DCC (443.6 mg, 2.15 mmol) and a catalytic amount of DMAP (10.9 mg ,0.9 mmol) were added. Initially, the reaction mixture was homogeneous. The white solid separates out from the reaction mixture after 2 h duration. Progress of the reaction was monitored using TLC. After completion of the reaction mixture was filtered and concentrated in vacuo. The residue was subjected to column chromatography (hexane/EtOAc) to furnish the corresponding ester S-78 (508.4 mg, 85% yield) as a white solid.

(S-78) ¹H NMR (500 MHz, CDCl₃) δ 8.07-8.03 (m, 2H), 7.71-7.67 (m, 2H), 7.65-7.61 (m, 2H), 7.50-7.45 (m, 2H), 7.43-7.38 (m, 1H), 6.42 (d, *J* = 3.5 Hz, 1H), 6.37 (dd, *J* = 3.0 Hz, 1.5 Hz, 1H), 5.11 (s, 2H), 3.35 (t, *J* = 6.5 Hz, 2H), 2.82 (t, *J* = 6.5 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 197.5, 172.6, 149.4, 145.9, 143.3, 139.8, 135.2, 128.9, 128.6, 128.2, 127.2, 110.7, 110.6, 58.3, 33.3, 28.2, 111.8, 110.8, 110.6, 101.1, 58.5, 55.6, 30.1, 13.3.

4. X-Ray Crystal Data of Compound 2

Single-crystal X-ray diffraction data for the reported complex was recorded at a temperature of 293(2) K on a Oxford Diffraction Gemini R Ultra diffractometer, using a ω scan technique with Mo-K α radiation ($\lambda = 0.71073$ Å). Non-hydrogen atoms were refined with anisotropic temperature parameters, and hydrogen atoms of the ligands were refined as rigid groups. The single crystals of compound **2** suitable for X-ray diffraction analysis were obtained by evaporation of a solution of **2** in PE / ethyl acetate. CCDC 2089005 for compound **2** contains the crystal structure information of this compound and can be obtained free of charge via <u>http://www.ccdc.cam.ac.uk.</u>

X-Ray structure of 2 CCDC: 2089005

Empirical formula	C ₁₄ H ₁₂ O ₃
Formula weight	228.24
Temperature	293(2)
Wavelengt	0.71073 Å
Space group	P-1
Unit cell dimensions	a = 5.6312 (6) Å
	b = 9.3841 (11) Å
	c = 11.0292 (13) Å
	alpha = 74.196 (10) deg.
	beta = 78.153 (10) deg
	gamma = 80.784 (11) deg.
Volume	545.41 (11)
Ζ	2
Calculated density	1.390 Mg/m3
Absorption coefficient	0.098 mm ⁻¹
F(000)	240.0
Crystal size	0.21 x 0.19 x 0.24 mm ³
Theta range for data collection	MoKα (λ = 0.71073)
Reflections collected	3904
Completeness to theta = 25.242 deg	99.4%
Data / restraints / parameters	2489 [$R_{int} = 0.0207, R_{sigma} = 0.0389$]
Goodness-of-fit on F ²	1.055
Final R indices [I>2sigma(I)]	$R_1 = 0.0517, wR_2 = 0.1065$
R indices (all data)	$R_1 = 0.0813, wR_2 = 0.1302$
Largest diff. peak and hole	0.17/-0.23

5. Mechanistic Studies

5.1 Control Experiments

We tried to capture the furanocyclopropane intermediate by shortening the reaction time or performing the reaction at low temperature, but all failed. Selected experiments are shown in below.

Prepared according to General Procedure **A** using vinyl-*N*-triftosylhydrazone **79** (183.6 mg, 0.6 mmol) and furan (81.0 mg, 1.2 mmol) afforded **80** (46.6 mg, 57% yield) as a colorless oil. **(80)** ¹**H NMR** (500 MHz, CDCl₃) δ 6.28 (d, *J* = 2.5 Hz, 1H), 5.11 (t, *J* = 2.5 Hz, 1H), 4.75-4.72 (m, 1H), 4.62 (t, *J* = 5.5 Hz, 1H), 2.42-2.38 (m, 1H), 1.75 (s, 3H), 1.71 (s, 3H), 1.31-1.25 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 146.1, 135.8, 115.1, 101.7, 65.1, 26.5, 25.7, 18.7, 11.3. HRMS (ESI) m/z calcd for C₉H₁₃O [M+H]⁺ 137.0966, Found: 137.0972.

To an oven-dried screwcap reaction tube equipped with a tefloncoated magnetic stir bar were added **80** (40.8 mg, 0.3 mmol), and dry xylene (2.0 mL) inside a glove box with nitrogen atmosphere. After transferred out of the glove box, the reaction heated at 160 °C in the dark for additional 12 h. When the reaction was completed, the reaction was allowed to cool to room temperature, and filtered through a short pad of silica gel with CH_2Cl_2 as an eluent. After removal of the solvent under vacuum, the residue was purified by flash chromatography on silica gel (using petroleum ether / EtOAc as eluent) to obtain **81** (36.8 mg, 90% yield) as a colorless oil. **(81)** ¹**H NMR** (600 MHz, CDCl₃) δ 9.57 (d, J = 8.4 Hz, 1H), 7.19 (dd, J = 15.0 Hz, 11.4 Hz, 1H), 6.93 (dd, J = 14.4 Hz, 11.4 Hz, 1H), 6.36 (dd, J = 15.0 Hz, 11.4 Hz, 1H), 6.15 (dd, J = 15.0 Hz, 8.4 Hz, 1H), 6.03 (d, J = 11.4 Hz, 1H), 1.91 (s, 3H), 1.90 (s, 3H); ¹³C **NMR** (126 MHz, CDCl₃) δ 193.6, 153.0, 144.2, 139.5, 130.1, 127.4, 125.2, 26.6, 18.9. **HRMS** (ESI) m/z calculated C₉H₁₃O [M+H]⁺ 257.0961, found 257.0949.

Prepared according to **General Procedure A** using *N*-triftosylhydrazone derived from cinnamaldehyde (106.2 mg, 0.3 mmol) and 3-phenylfuran (86.4 mg, 0.6 mmol) afforded **83 + 83'** (62.4 mg, 80% yield).

(83) Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.35 (m, 4H), 7.31-7.24 (m, 4H), 7.16-7.13 (m, 2H), 6.55 (ddd, J = 10.0 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.79 (d, J = 2.0 Hz, 1H), 5.67 (dt, J = 10.0 Hz, 2.0 Hz, 1H), 5.22 (dt, J = 6.0 Hz, 2.0 Hz, 1H), 5.11 (d, J = 4.0 Hz, 1H), 4.15-4.10 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 153.5, 137.5, 132.2, 131.9, 128.7, 128.5, 128.4, 128.2, 128.1, 127.0, 125.9, 120.9, 84.6, 77.1, 43.4. HRMS (ESI) *m/z* calculated C₁₉H₁₅O [M-H]⁻ 259.1128, found 259.1130. The relative configuration of **83** was confirmed by NOE, see Figure S169.

(83') White oil. ¹H NMR (500 MHz, CDCl₃) δ 6.99-6.89 (m, 9H), 6.80-6.75 (m, 2H), 6.40 (ddd, J = 9.5 Hz, 4.0 Hz, 2.5 Hz, 1H), 5.67 (dt, J = 9.5 Hz, 2.0 Hz, 1H), 5.52 (dd, J = 6.0 Hz, 1.5 Hz, 1H), 4.86-4.82 (m, 1H), 4.24-4.21 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 140.1, 138.3, 133.4, 132.1, 131.6, 128.7, 128.1, 127.7, 127.6, 126.8, 126.7, 125.7, 83.6, 77.2, 44.3. HRMS (ESI) *m/z* calculated C₁₉H₁₅O [M-H]⁻ 259.1128, found 259.1128.

5.2 DFT Caculations

All quantum mechanical calculations were performed using the Gaussian 16 suite of program⁹ with the B3LYP functional^{10,11} and GD3BJ empirical dispersion.¹² The Ag atom was represented with the Stuttgart-Dresden relativistic effective core potential associated with their adapted basis set.^{13,14} All the other atoms H, B, C, N, O and F atoms were described with the standard 6-31G(d,p)¹⁵⁻¹⁸ basis set. Frequency calculations at the same level were used to confirm the presence of local minima (no imaginary frequencies) and transition states (one imaginary frequency). Geometry optimizations were carried out without any symmetry constrained in solvent (chloroform) using the SMD solvation model.¹⁹ Intrinsic reaction coordinate (IRC)^{20,21} were traced from the various transition structures to obtain the connected intermediates. Three-dimensional diagrams of the computed species were generated using CYLview visualization software.²² The Reduced density gradient surface was generated for the transition states using Multiwfn.²³ The isosurface was visualized using VMD, with the surface contour set at 0.5 and the color range fixed from -0.035 to 0.02.²⁴

5.2.1 Frontier molecular orbital theory analysis of the endo- and exo-TS

It can be seen that the frontier MO's of reacting partners are properly matched with each other, this primary orbital overlap will lead directly to the formation of both sigma bonds. The *endo*-transition state **TS2-4** was suggested to be favored owing to a stabilizing secondary (transient) orbital interaction in the paticipating $HOMO_{furan}$ -LUMO_{carbene} frontier molecular orbitals to produce the *endo*-cycloadducts.

As for another *endo*-transition state **TS2-4'**, there exists the same secondary (transient) orbital interactions. However, owing to the stabilizing C-H··· π interactions (2.94 Å, within the typical distance range for C-H··· π interactions)²⁵ between the 2-methyl and phenyl groups in **TS2-4**, the distance between the two reacting fragments is longer than that in **TS2-4'**, thus resulting in a weaker secondary orbital interactions in **TS2-4'**. Moreover, the steric effect between the methyl group and the bulkyl Tp^{(CF3)2} ligand in **TS2-4'** would also account for this regioselectivity.

Figure S2. The frontier MO's of reacting partners and stabilizing secondary orbital interactions in the paticipating HOMO_{furan}-LUMO_{carbene} orbitals of **TS2-4** and **TS2-4**".

5.2.3 Carbene formation process

Figure S3. The silver carbene formation process

5.2.4 Three plausible concerted [4+3]-cycloaddtion pathways

Figure S4. Three plausible Ag-catalyzed concerted [4+3]-cycloaddition pathways which are *endo*-face attack (methyl and phenyl groups on the same (blueviolet) or different sides (blue)) and *exo*-face attack (black) on 2-methyl furan respectively.

5.2.5 Concerted cyclopropanation and cope rearrangement pathway:

5.2.6 Cartesian coordinates of all optimized geometries

AgTp^{(CF3)2}

Zero-point correction= Thermal correction to Energy= 0.228373 (Hartree/Particle) 0.265075

Thermal correction to Enthalpy=	0.266019
Thermal correction to Gibbs Free Energy=	0.150718
Sum of electronic and zero-point Energies=	-2871.492086
Sum of electronic and thermal Energies=	-2871.455384
Sum of electronic and thermal Enthalpies=	-2871.454440
Sum of electronic and thermal Free Energies=	-2871.569741

Ag	-2.18464300	0.11213300	-0.02642200
Ν	-0.49901200	1.63225500	-0.79370000
Ν	0.77093800	1.37753700	-0.43000800
Ν	-0.63364400	-0.11225500	1.73957000
Ν	0.65152100	-0.35814700	1.41666600
Ν	-0.66694800	-1.42150400	-1.01292900
Ν	0.63781000	-1.08645700	-1.00848300
В	1.20806300	-0.04961400	-0.00115400
С	-0.58236000	2.94157900	-1.02838900
С	0.65431300	3.57144400	-0.82213600
С	1.49046200	2.53383100	-0.44112200
С	-0.80789500	-0.53265800	2.99279900
С	0.37869800	-1.06854300	3.51460100
С	1.28386400	-0.93766100	2.47407100
С	-0.84281400	-2.28524100	-2.01384800
С	0.36289000	-2.53257900	-2.68575500
С	1.28183100	-1.74487400	-2.01061800
Н	2.38680100	-0.11631300	0.01419800
С	2.74168000	-1.58989800	-2.29792600
С	-2.20555500	-2.82903300	-2.28113500
С	2.71750000	-1.36529300	2.45174300
С	-2.16581400	-0.48103500	3.60858000
С	2.93862000	2.61101000	-0.07601000
С	-1.90744700	3.53408900	-1.36906100
Н	0.54456500	-3.18116300	-3.52671600
Н	0.55776400	-1.48206600	4.49339700
Н	0.90914400	4.61211400	-0.93726800
F	3.06692400	-2.31371800	-3.38834900
F	3.51309400	-2.01307900	-1.27875500
F	3.06687800	-0.30323200	-2.54504700
F	-2.70473800	-3.50066800	-1.22028900
F	-2.19612400	-3.66163000	-3.33536100
F	-3.09603200	-1.83359900	-2.55197700
F	-1.77867200	4.78780000	-1.83204500
F	-2.56846700	2.80340400	-2.29628200
F	-2.72532500	3.58489100	-0.27998100
F	3.71506400	1.87956700	-0.89751100

F	3.35566300	3.89166300	-0.14654900
F	3.15765400	2.17536800	1.18280000
F	3.56171600	-0.33092600	2.28001500
F	3.02882500	-1.96027200	3.62139900
F	2.95615300	-2.25191800	1.46225500
F	-2.83113600	0.65270400	3.27297200
F	-2.09344700	-0.54097100	4.94978500

Int1

Zero-point correction	on=		0.147889 (Hartree	Particle)
Thermal correction	to Energy=		0.157583	
Thermal correction	to Enthalpy=		0.158527	
Thermal correction	to Gibbs Free Ene	rgy=	0.111279	
Sum of electronic a	and zero-point Ener	rgies=	-457.099739	
Sum of electronic a	and thermal Energie	es=	-457.090046	
Sum of electronic a	and thermal Enthal	pies=	-457.089101	
Sum of electronic a	and thermal Free Er	nergies=	-457.136350	
С	-2.88398500	1.27267500	-0.13153600	
С	-1.49187900	1.27253200	-0.16434200	
С	-0.76413400	0.07882100	-0.00999700	
С	-1.48023100	-1.11587200	0.19292900	
С	-2.87017800	-1.11413900	0.22395500	
С	-3.58025100	0.07908800	0.06181700	
Н	-3.42530200	2.20535600	-0.25874200	
Н	-0.95302000	2.19957700	-0.33454400	
Н	-0.94626200	-2.04894300	0.33902300	
Н	-3.40414900	-2.04631500	0.38260800	
Н	-4.66547200	0.07670500	0.09058900	
С	0.69409600	0.13364400	-0.07958600	
С	1.51899300	-0.92297100	-0.23729800	
Н	1.12370600	1.13279900	-0.05787400	
Н	1.12525700	-1.92726900	-0.34861900	
С	2.98564900	-0.87398500	-0.36554800	
Н	3.58480500	-1.77643100	-0.29878900	
Ν	3.64634800	0.19675700	0.08034800	
Ν	4.18107400	1.13549400	0.42593600	

adduct

Zero-point correction=	0.378091 (Hartree/Particle)
Thermal correction to Energy=	0.425984
Thermal correction to Enthalpy=	0.426929

Thermal correction to Gibbs Free Energy=	0.287437
Sum of electronic and zero-point Energies=	-3328.629516
Sum of electronic and thermal Energies=	-3328.581623
Sum of electronic and thermal Enthalpies=	-3328.580679
Sum of electronic and thermal Free Energies=	-3328.720170

Ag	0.86495800	0.99789300	-0.25331700
Ν	-1.40624700	1.76047100	-0.28397500
Ν	-2.36960000	0.82273100	-0.33417600
Ν	-0.11788500	-0.77385700	-1.46558600
Ν	-1.21789600	-1.35364100	-0.94577400
Ν	-0.02071300	-0.27760700	1.54037200
Ν	-1.32360800	-0.61324800	1.47344400
В	-2.08963000	-0.63524900	0.12153000
С	-1.91888500	2.87459400	-0.80578600
С	-3.24893000	2.67877800	-1.20736600
С	-3.49572100	1.35315900	-0.88676100
С	0.43086900	-1.65719100	-2.30001700
С	-0.31334300	-2.84555600	-2.33732000
С	-1.35634600	-2.60791400	-1.45707600
С	0.32240200	-0.30732400	2.82885900
С	-0.76681800	-0.67087800	3.63371100
С	-1.79773100	-0.85558800	2.72605300
Н	-3.11062800	-1.21374400	0.25197200
С	-3.21459700	-1.23896600	3.01455500
С	1.71838600	0.03891600	3.22326900
С	-2.46071700	-3.54279100	-1.07622100
С	1.72775100	-1.33967900	-2.96565700
С	-4.75624600	0.57780400	-1.10199600
С	-1.04325100	4.07105200	-0.96305500
Н	-0.80457800	-0.78545800	4.70437800
Н	-0.13036000	-3.73709700	-2.91418900
Н	-3.93038200	3.38489600	-1.65257300
F	-3.39242700	-1.34180300	4.34741700
F	-3.54896700	-2.42086000	2.46301600
F	-4.08438800	-0.31574900	2.55253100
F	2.62833800	-0.78338200	2.65627100
F	1.87394800	-0.02231300	4.55621700
F	2.05039500	1.30034300	2.82859700
F	-1.76161700	5.16983200	-1.24476500
F	-0.31004100	4.31468900	0.14763500
F	-0.14545800	3.90191900	-1.97447000
F	-5.28662000	0.12933400	0.05139800
F	-5.67475000	1.36383600	-1.69988900

F	-4.55099300	-0.49366900	-1.89709400
F	-3.67514100	-3.07266900	-1.41720000
F	-2.28683100	-4.72479200	-1.70204400
F	-2.47583700	-3.77867700	0.25279200
F	1.78995500	-0.04328500	-3.36080800
F	1.92144400	-2.11524500	-4.04669400
F	2.77733900	-1.53331600	-2.13127100
С	6.46673900	-2.09465500	1.21253000
С	5.61355600	-0.99631300	1.28150700
С	5.20716900	-0.32089900	0.11658300
С	5.69723000	-0.77597200	-1.12197000
С	6.54783700	-1.87364000	-1.18914000
С	6.93745000	-2.53950800	-0.02333400
Н	6.76275900	-2.60440000	2.12446900
Н	5.23307500	-0.66428000	2.24262000
Н	5.42066000	-0.26087200	-2.03590000
Н	6.91575200	-2.20863400	-2.15436800
Н	7.60490800	-3.39382000	-0.07980200
С	4.28976600	0.80866600	0.24595500
С	3.58714500	1.37623600	-0.75701600
Н	4.13366400	1.16739800	1.26098700
Н	3.64980300	0.99290500	-1.76952100
С	2.61731300	2.47760300	-0.62917600
Н	2.24103500	2.99779600	-1.50420100
Ν	2.66927000	3.27475500	0.44025600
Ν	2.70498400	3.91086200	1.37870300

TS1

Zero-point correction	=		0.376137 (Hartree/Particle)
Thermal correction to	Energy=		0.424173
Thermal correction to	Enthalpy=		0.425117
Thermal correction to	Gibbs Free Ene	ergy=	0.284754
Sum of electronic and	l zero-point Ener	rgies=	-3328.610883
Sum of electronic and	l thermal Energie	es=	-3328.562848
Sum of electronic and	l thermal Enthal	pies=	-3328.561903
Sum of electronic and	l thermal Free Ei	nergies=	-3328.702266
Ag	0.89830400	0.92118800	-0.24717800
Ν	-1.38110000	1.79793300	-0.05402500
Ν	-2.41354300	0.94905400	-0.20274200
Ν	-0.29342800	-0.65608200	-1.55260300
Ν	-1.43442100	-1.20986100	-1.10042000
Ν	-0.10697300	-0.54697700	1.42873500

Ν	-1.43472800	-0.76078900	1.37965900
В	-2.23516700	-0.56644700	0.06275200
С	-1.82300100	3.00619700	-0.40491600
С	-3.17164400	2.96174500	-0.79106100
С	-3.50897500	1.62577300	-0.64619200
С	0.19440300	-1.47636600	-2.48401500
С	-0.63388600	-2.59558700	-2.65452400
С	-1.66177900	-2.38449200	-1.74979200
С	0.27292900	-0.78592800	2.68551100
С	-0.81689800	-1.16180700	3.48467200
С	-1.88956300	-1.13003800	2.60797400
Н	-3.29186400	-1.08618500	0.15483000
С	-3.32438300	-1.43202200	2.90140600
С	1.70978500	-0.65749600	3.05610400
С	-2.83171100	-3.27311300	-1.47076500
С	1.50994400	-1.17430700	-3.12111900
С	-4.82648700	0.97614000	-0.92180800
С	-0.88030200	4.16102100	-0.40494000
Н	-0.82875800	-1.42068900	4.53049700
Н	-0.51259800	-3.42585200	-3.33044100
Н	-3.80687900	3.76895300	-1.11656100
F	-3.47404000	-1.68110100	4.21900400
F	-3.77043400	-2.50971800	2.22781300
F	-4.12842000	-0.39532500	2.58403200
F	2.49284900	-1.48363800	2.31159800
F	1.90885400	-0.96124300	4.34917300
F	2.18550500	0.59684800	2.84986200
F	-1.53749100	5.32307300	-0.56820500
F	-0.16991300	4.23806300	0.74478500
F	0.03330300	4.06719800	-1.40752200
F	-5.36846900	0.42484900	0.18145300
F	-5.69613600	1.89447000	-1.39155700
F	-4.71810400	0.00054800	-1.84877300
F	-4.00890500	-2.67618700	-1.73591600
F	-2.75089600	-4.38080600	-2.23700100
F	-2.86061300	-3.66849400	-0.17976000
F	1.60417600	0.11618500	-3.51062200
F	1.71000500	-1.95365100	-4.20075500
F	2.53837500	-1.39525100	-2.26420000
С	6.79653700	-2.28460000	0.86199800
С	5.61918700	-1.54403700	0.80310700
С	5.51915300	-0.41839800	-0.03578400
С	6.63073000	-0.06153400	-0.82369200
С	7.80207000	-0.80636300	-0.76807500

С	7.88999400	-1.91863500	0.07617300
Н	6.86025500	-3.14739400	1.51751200
Н	4.76738400	-1.82036900	1.41616600
Н	6.56969600	0.79207300	-1.49054400
Н	8.65010000	-0.52505200	-1.38465800
Н	8.80756900	-2.49754000	0.11641300
С	4.26459900	0.32055000	-0.04792500
С	4.00325900	1.50524800	-0.64761500
Н	3.44651000	-0.14133900	0.49946000
Н	4.78371400	2.03160900	-1.19478600
С	2.66240700	2.08917500	-0.58427300
Н	2.50416100	2.90225800	-1.29403700
Ν	2.70310100	3.12392700	0.81902300
Ν	2.65554900	3.42519200	1.88899900

Int2

Zero-point correction=	0.368773 (Hartree/Particle)
Thermal correction to Energy=	0.414396
Thermal correction to Enthalpy=	0.415340
Thermal correction to Gibbs Free Energy=	0.280827
Sum of electronic and zero-point Energies=	-3219.116597
Sum of electronic and thermal Energies=	-3219.070975
Sum of electronic and thermal Enthalpies=	-3219.070031
Sum of electronic and thermal Free Energies=	-3219.204544

Ag	-1.00776300	0.98305200	0.17606200	
Ν	1.16872000	1.75285200	-0.65703800	
Ν	2.28132100	1.03789400	-0.41708200	
Ν	0.44591900	0.01360500	1.73639000	
Ν	1.58767200	-0.60744800	1.38387800	
Ν	-0.10186900	-1.03235900	-0.96255700	
Ν	1.23294600	-1.18435700	-1.03887900	
В	2.18300600	-0.45845000	-0.04339300	
С	1.56056500	2.99591400	-0.93548600	
С	2.95849200	3.11017000	-0.88051200	
С	3.37963900	1.83394400	-0.54496500	
С	0.16040400	-0.37101900	2.98133900	
С	1.12648200	-1.26471800	3.46540000	
С	2.01790700	-1.38876400	2.41198800	
С	-0.62979700	-1.81567700	-1.90540700	
С	0.36673900	-2.49536100	-2.62115600	
С	1.54360700	-2.05873000	-2.03571100	
Н	3.25445700	-0.95352100	-0.08091800	

С	2.94304700	-2.42490500	-2.41319900
С	-2.10796300	-1.89120000	-2.06579400
С	3.24193900	-2.24577800	2.34900400
С	-1.08958200	0.10766700	3.64332500
С	4.77932400	1.36245400	-0.31737800
С	0.54106600	4.04904700	-1.21420900
Н	0.25567200	-3.19077200	-3.43651500
Н	1.17582300	-1.74396800	4.42899500
Н	3.57054800	3.97866000	-1.05943000
F	2.92188800	-3.23234000	-3.49482600
F	3.59004100	-3.07879400	-1.42918300
F	3.67380200	-1.33559500	-2.72623600
F	-2.71218100	-2.27713200	-0.90333300
F	-2.44968200	-2.78347700	-3.01162200
F	-2.66108600	-0.70396600	-2.39937200
F	1.12700000	5.17184700	-1.67348800
F	-0.36700900	3.64615900	-2.13049500
F	-0.15874400	4.38327500	-0.10052600
F	5.14731000	0.39480300	-1.17899700
F	5.63585800	2.39409900	-0.46998100
F	4.94368100	0.87376100	0.93074100
F	4.36579000	-1.52953100	2.15994700
F	3.37733000	-2.92461300	3.50757800
F	3.16612400	-3.15150600	1.35029500
F	-1.21134700	1.45052100	3.59807900
F	-1.11606700	-0.27112500	4.93612900
F	-2.19697600	-0.40357600	3.04767200
С	-7.13741200	-2.05699500	-0.40828900
С	-5.88209400	-1.47247400	-0.29166800
С	-5.75436400	-0.07837100	-0.10225300
С	-6.92482200	0.71111800	-0.02942600
С	-8.17483500	0.12111400	-0.13927600
С	-8.28357700	-1.26244100	-0.33007400
Н	-7.22564300	-3.12778200	-0.55935400
Н	-4.98468000	-2.07642300	-0.36492400
Н	-6.84596100	1.78138900	0.12441800
Н	-9.06978600	0.73150900	-0.07666000
Н	-9.26502200	-1.71844100	-0.41725800
С	-4.42994200	0.47494700	0.00425900
С	-4.06576200	1.80606700	0.06028600
Н	-3.60891800	-0.23660800	0.02711400
Н	-4.83946000	2.57377400	0.02777800
С	-2.70471500	2.14887500	0.11759900
Н	-2.55779200	3.23507800	0.11402700

Int3-B2

Zero-point correction=	0.467984 (Hartree/Particle)
Thermal correction to Energy=	0.520694
Thermal correction to Enthalpy=	0.521638
Thermal correction to Gibbs Free Energy=	0.369985
Sum of electronic and zero-point Energies=	-3488.400452
Sum of electronic and thermal Energies=	-3488.347742
Sum of electronic and thermal Enthalpies=	-3488.346797
Sum of electronic and thermal Free Energies=	-3488.498451

Ag	0.68674600	0.53844200	-0.47495600
Ν	-0.90682500	-0.96847800	-1.51905700
Ν	-2.09172900	-1.25346200	-0.95012800
Ν	-0.47526300	-0.55011100	1.42445400
Ν	-1.82172000	-0.55362700	1.45766300
Ν	-1.42308300	1.79603300	-0.22961100
Ν	-2.59302900	1.13196100	-0.25030100
В	-2.66921000	-0.35473600	0.17156500
С	-0.64405000	-1.95391100	-2.37859900
С	-1.67099300	-2.91060100	-2.38046500
С	-2.57576600	-2.42354100	-1.45179400
С	-0.06659800	-0.75735100	2.67892300
С	-1.15206300	-0.88992700	3.55698000
С	-2.25581200	-0.75016100	2.73247800
С	-1.68064900	3.03497000	-0.65241400
С	-3.04055500	3.19695700	-0.95894300
С	-3.58699700	1.95370900	-0.68708300
Н	-3.79148500	-0.65634000	0.38394700
С	-5.01127800	1.52568900	-0.83148500
С	-0.57353100	4.02607900	-0.76928600
С	-3.69845000	-0.78266400	3.12571100
С	1.38568400	-0.81207900	2.99658300
С	-3.86111200	-3.04831800	-1.01433400
С	0.64784000	-1.97675000	-3.12522300
Н	-3.55082500	4.07721000	-1.31343100
Н	-1.14164800	-1.06354700	4.62019800
Н	-1.75072100	-3.81086500	-2.96702100
F	-5.73948500	2.53753200	-1.34842900
F	-5.56806900	1.18233000	0.34673400
F	-5.13450500	0.46620300	-1.65927900
F	0.17395400	4.08847900	0.35376400
F	-1.05713800	5.25875300	-1.01819100

F	0.28100500	3.71805800	-1.78191600
F	0.61024200	-2.89346900	-4.11314700
F	0.94590600	-0.78103900	-3.67714800
F	1.68781300	-2.30140200	-2.31554800
F	-4.92885900	-2.26615000	-1.26134200
F	-4.04507400	-4.21290100	-1.67177300
F	-3.85840100	-3.32173300	0.30839400
F	-4.36009200	-1.82176300	2.58184200
F	-3.79684900	-0.89350500	4.46759000
F	-4.34270700	0.34479900	2.75823800
F	2.04821200	-1.68327000	2.18418500
F	1.59178400	-1.20870900	4.26517200
F	1.99472900	0.38700300	2.84054100
С	4.61662900	1.41120200	1.65348800
С	4.24683700	3.10330600	0.28881100
0	3.68756800	2.33056600	1.27007300
С	5.77602000	1.59618200	0.95393700
С	5.53513500	2.68850100	0.06692700
Н	6.22398300	3.12123400	-0.64403900
Н	6.67697900	1.00762400	1.04394800
С	2.48323700	1.05309300	-1.37904100
С	3.71196300	0.38487700	-1.34872600
С	3.92005700	-0.60606400	-0.40718900
Н	3.08824300	-0.79321700	0.26641000
С	5.08188700	-1.44684300	-0.23902400
С	5.09616400	-2.36017300	0.83566900
С	6.19904400	-1.39040100	-1.09927100
С	6.19488800	-3.18501200	1.04932200
Н	4.24016200	-2.40082900	1.50106400
С	7.29241700	-2.21759400	-0.88403900
Н	6.20163400	-0.69854700	-1.93386000
С	7.29445300	-3.11497900	0.19092700
Н	6.19638300	-3.88193900	1.88116100
Н	8.14685700	-2.16998300	-1.55159200
Н	8.15275900	-3.75919000	0.35521100
Н	4.52255700	0.65922400	-2.02214300
Н	2.46873300	1.84724400	-2.13469700
С	3.43037000	4.22495200	-0.24473200
Н	3.20109000	4.95034400	0.54400500
Н	3.98779800	4.73901900	-1.03110900
Н	2.48040700	3.87990400	-0.65469600
Н	4.30625900	0.72695800	2.42415800

Int3-B1

Zero-point correctio	n=		0.468380 (Hartree/Particle)
Thermal correction to Energy=		0.520832	
Thermal correction to Enthalpy=		0.521776	
Thermal correction	to Gibbs Free Ene	ergy=	0.372387
Sum of electronic ar	nd zero-point Ener	rgies=	-3488.405185
Sum of electronic ar	nd thermal Energi	es=	-3488.352733
Sum of electronic ar	nd thermal Enthalj	pies=	-3488.351789
Sum of electronic ar	nd thermal Free E	nergies=	-3488.501178
Ag	0.64151100	0.57455600	-0.57116400
Ν	-1.05197100	-0.75793800	-1.66299100
Ν	-2.18862300	-1.11285800	-1.03740800
Ν	-0.40959700	-0.76063000	1.27227900
Ν	-1.74809800	-0.71051600	1.41038500
Ν	-1.42803700	1.82887500	-0.01812200
Ν	-2.60392800	1.17515000	-0.03446100
В	-2.67452900	-0.34963500	0.21899900
С	-0.85888000	-1.64148400	-2.64350300
С	-1.88316300	-2.60063600	-2.66889200
С	-2.71103100	-2.22509100	-1.62383100
С	0.07718000	-1.13208900	2.45946000
С	-0.94761100	-1.32096200	3.39858100
С	-2.09940900	-1.03738900	2.68397300
С	-1.70091000	3.10551100	-0.29811000
С	-3.07516100	3.30223200	-0.50211000
С	-3.61503900	2.03937300	-0.32473500
Н	-3.78572100	-0.66272400	0.47006300
С	-5.04977800	1.63330900	-0.42547100
С	-0.60083000	4.10720300	-0.37058900
С	-3.51081200	-1.06020900	3.17714400
С	1.54139500	-1.32284900	2.64446700
С	-3.95974600	-2.90038200	-1.15676400
С	0.36970100	-1.56870900	-3.48798100
Н	-3.59757900	4.21539100	-0.73448100
Н	-0.86917900	-1.62081300	4.43039000
Н	-2.00948000	-3.43214500	-3.34234500
F	-5.79721800	2.69653300	-0.78961800
F	-5.53761900	1.17218900	0.74282600
F	-5.23389000	0.66632700	-1.34935900
F	0.15061400	4.11670600	0.76020100
F	-1.09014200	5.34819300	-0.54723400
F	0.25848000	3.85962900	-1.39103900
F	0.25406000	-2.37115200	-4.56549100

F	0.61858700	-0.31572700	-3.92562700
F	1.47118500	-1.96807500	-2.80462600
F	-5.04335000	-2.10596400	-1.24726300
F	-4.19111400	-3.99656900	-1.90956500
F	-3.85986200	-3.30094500	0.12950100
F	-4.25145700	-2.01434000	2.58137800
F	-3.52091300	-1.30562700	4.50463700
F	-4.13205100	0.12061200	2.97259900
F	2.04987200	-2.20883300	1.74296600
F	1.81911300	-1.79447100	3.87373400
F	2.24343300	-0.17692900	2.47852800
С	4.87625600	1.80553500	1.25045000
С	3.24219000	2.99325600	0.36541900
0	3.54872400	2.10709000	1.35284600
С	5.42978800	2.53438200	0.22548600
С	4.37968100	3.30894800	-0.33999300
Н	4.44060700	3.99576000	-1.17158600
Н	6.46377100	2.49997400	-0.08520400
Н	2.23284800	3.36490100	0.35578800
С	2.43269000	1.18719100	-1.44599600
С	3.67267700	0.51742600	-1.47977400
С	3.94721400	-0.46758100	-0.56226300
Н	3.13584400	-0.72487300	0.11233200
С	5.18073200	-1.20424300	-0.38733600
С	5.21523000	-2.23026600	0.57892600
С	6.35493200	-0.92180900	-1.11717700
С	6.38164300	-2.95543200	0.80380800
Н	4.31672300	-2.44727600	1.14615700
С	7.51677200	-1.64556300	-0.88818900
Н	6.35299200	-0.12493600	-1.85240800
С	7.53410900	-2.66473200	0.07248800
Н	6.39319900	-3.74402600	1.54935800
Н	8.41526000	-1.41889300	-1.45354400
Н	8.44639000	-3.22619500	0.24906300
Н	4.45170900	0.82435700	-2.17684200
Н	2.38906600	2.00391000	-2.17385300
С	5.43620500	0.87423600	2.26367900
Н	5.64988700	1.39527200	3.20461100
Н	4.72701900	0.07317700	2.48012400
Н	6.36456400	0.43280100	1.89563300

Int3-C

Zero-point correction=

0.470037 (Hartree/Particle)

S55

Thermal correction to Energy=	0.515101
Thermal correction to Enthalpy=	0.516045
Thermal correction to Gibbs Free Energy=	0.386191
Sum of electronic and zero-point Energies=	-3488.398893
Sum of electronic and thermal Energies=	-3488.353829
Sum of electronic and thermal Enthalpies=	-3488.352885
Sum of electronic and thermal Free Energies=	-3488.482738

Ag	-0.68970700	0.32605000	-0.60398500
Ν	1.01887000	-1.30842700	-1.28002500
Ν	2.30603400	-1.12318700	-0.98634600
Ν	1.42309700	1.67671700	-0.63403900
Ν	2.54059300	1.22557100	-0.06518100
Ν	0.54222600	-0.27583400	1.52923700
Ν	1.81650500	-0.66761200	1.44185600
В	2.73201800	-0.28118600	0.24429000
С	0.98117100	-2.03243600	-2.39003100
С	2.26882100	-2.33966500	-2.84770000
С	3.08213400	-1.73323400	-1.91213800
С	1.54322300	2.99463200	-0.71172300
С	2.76360000	3.43465600	-0.18266300
С	3.36604100	2.26060900	0.21955000
С	0.06332700	-0.82126700	2.64196500
С	1.02682400	-1.58834800	3.30528900
С	2.13362500	-1.45804800	2.49285300
Н	3.86739400	-0.49836900	0.51664600
С	3.48184600	-2.07990800	2.67439200
С	-1.35025400	-0.58202400	3.04109400
С	4.69222500	2.08579400	0.88679100
С	0.40608500	3.80240600	-1.23694100
С	4.57537800	-1.69903000	-1.86600300
С	-0.34108900	-2.33967100	-3.01051900
Н	0.93831800	-2.14455000	4.22393100
Н	3.15073400	4.43774100	-0.10856200
Н	2.56442700	-2.91269700	-3.71128000
F	3.45851000	-2.88192100	3.74670200
F	4.44199500	-1.17167800	2.86559500
F	3.83020500	-2.82065600	1.61547000
F	-2.22191700	-1.02946500	2.10895300
F	-1.62151000	0.72060300	3.21094000
F	-1.63713600	-1.21127500	4.18363700
F	-0.23666000	-3.35381400	-3.87637500
F	-1.25909200	-2.66670200	-2.08996200
F	-0.83028500	-1.28460800	-3.68469300

F	5.06643100	-2.32979300	-0.79534000
F	5.07159600	-2.29652700	-2.95613200
F	5.03676800	-0.44217200	-1.83867600
F	5.54741300	1.37534600	0.14686700
F	5.24192100	3.28629000	1.10885400
F	4.57009500	1.46551900	2.06769800
F	-0.18464900	3.22472100	-2.29127700
F	0.81030700	5.02329100	-1.59885600
F	-0.55781300	3.96369600	-0.30482600
С	-6.63789000	-2.51810900	1.33614500
С	-5.44862100	-1.89572100	0.97921500
С	-5.33130900	-1.23879800	-0.25629600
С	-6.42407000	-1.23987200	-1.13900500
С	-7.60698300	-1.87299700	-0.78449600
С	-7.71781200	-2.50564700	0.45459500
Н	-6.72327600	-3.01702100	2.29546400
Н	-4.59864300	-1.89484200	1.65635300
Н	-6.33730200	-0.75524100	-2.10629700
Н	-8.44559400	-1.87694400	-1.47249700
Н	-8.64617000	-2.99580500	0.72926800
С	-4.07908500	-0.56690900	-0.55590600
С	-3.81200700	0.31836500	-1.56988600
Н	-3.24650400	-0.78540300	0.11158000
Н	-4.61482300	0.63426600	-2.23660500
С	-2.52338500	0.88506300	-1.63075100
Н	-2.45746800	1.65889700	-2.40634300
С	-5.10605200	1.95884400	0.76515200
С	-3.41578400	3.01172300	-0.14235400
0	-4.74719200	2.76588600	-0.26155600
С	-4.01866700	1.70456100	1.55705800
С	-2.92255000	2.39949300	0.97426700
Н	-1.89991600	2.43009800	1.31887400
Н	-4.01053700	1.09779100	2.44961000
Н	-2.97960200	3.67605000	-0.87087300
С	-6.54191000	1.58865900	0.85021900
Н	-7.14556400	2.43864400	1.18262300
Н	-6.91454000	1.26934800	-0.12712800
Н	-6.67512800	0.76551600	1.55475700

TS2-4′

Zero-point correction=	0.469285 (Hartree/Particle)
Thermal correction to Energy=	0.519765
Thermal correction to Enthalpy=	0.520709

Thermal correction to Gibbs Free Energy=	0.376808
Sum of electronic and zero-point Energies=	-3488.384050
Sum of electronic and thermal Energies=	-3488.333569
Sum of electronic and thermal Enthalpies=	-3488.332625
Sum of electronic and thermal Free Energies=	-3488.476527

Ag	-0.71669300	-0.61591100	-0.17764200
Ν	0.58658100	1.39918700	-0.91983800
Ν	1.80764200	1.58662500	-0.38697700
Ν	0.69800000	-0.27083400	1.63105100
Ν	2.02623900	-0.11073300	1.46552900
Ν	1.58908700	-1.69787900	-0.86278200
Ν	2.56101200	-0.76899600	-0.91298900
В	2.63306400	0.37999700	0.12166600
С	0.09096600	2.61255200	-1.17061200
С	0.99758500	3.61990200	-0.80183400
С	2.08286600	2.91809500	-0.30497900
С	0.51191200	-0.66043400	2.89513400
С	1.73254200	-0.77266800	3.57483300
С	2.67214000	-0.41344800	2.62265700
С	1.77697200	-2.49241700	-1.91970200
С	2.88310100	-2.08347700	-2.68287400
С	3.35434000	-0.97395300	-2.00130400
Н	3.75716700	0.70930900	0.29152700
С	4.52586900	-0.11232700	-2.33872400
С	0.84656700	-3.62750300	-2.17339500
С	4.15891500	-0.36720500	2.78397700
С	-0.85359800	-0.98195600	3.40041300
С	3.34786900	3.47181400	0.26421200
С	-1.30290000	2.76793700	-1.67825800
Н	3.28671000	-2.52688500	-3.57825000
Н	1.90904900	-1.06192700	4.59753000
Н	0.88934200	4.68835700	-0.88995500
F	5.05898500	-0.50384600	-3.51487200
F	5.49853500	-0.17937800	-1.40732700
F	4.17676500	1.18767200	-2.45835800
F	0.58844400	-4.33869400	-1.05228300
F	1.35468200	-4.47145600	-3.09299200
F	-0.36261600	-3.21251200	-2.64279700
F	-1.50011500	4.01298500	-2.15919800
F	-1.60086000	1.88923600	-2.65395700
F	-2.21678000	2.57872600	-0.68711300
F	4.44223200	3.07827600	-0.41433300
F	3.30887900	4.82106900	0.23106000

F	3.51867300	3.10075500	1.55288300
F	4.65323300	0.88117400	2.69291200
F	4.49320200	-0.85006200	3.99997500
F	4.78567700	-1.12059500	1.85645700
F	-1.78514600	-0.10797700	2.95607200
F	-0.88036900	-0.96566400	4.74747600
F	-1.25617400	-2.21777500	3.01031500
С	-4.72348800	-1.10749300	0.97946900
С	-3.41790900	-2.72961800	0.22074100
0	-3.53972300	-1.87028300	1.22212800
С	-5.56365500	-2.02081700	0.17706500
С	-4.72994900	-2.93222300	-0.37474100
Н	-4.94704600	-3.68514400	-1.11961900
Н	-6.60809800	-1.85543800	-0.04413100
С	-2.46579200	-1.06710700	-1.27959700
С	-3.63547000	-0.36805300	-1.19699700
С	-4.17228900	0.16745600	0.07565900
Н	-3.35869700	0.53372300	0.70248400
С	-5.26131300	1.20355800	-0.03478600
С	-5.16073900	2.38709000	0.70517200
С	-6.38091700	1.01438100	-0.85473300
С	-6.15542200	3.36136000	0.62767500
Н	-4.28896000	2.54949600	1.33227000
С	-7.37702100	1.98695500	-0.93448700
Н	-6.47291800	0.10742400	-1.44591300
С	-7.26768600	3.16314100	-0.19110700
Н	-6.05830100	4.27675500	1.20325300
Н	-8.23667700	1.82708100	-1.57826800
Н	-8.04244500	3.92103600	-0.25287800
Н	-4.30863200	-0.28569400	-2.05484400
Н	-2.31892700	-1.53872100	-2.25609600
С	-2.28169800	-3.68510200	0.22454900
Н	-2.61697500	-4.61699300	0.70178700
Н	-1.96551300	-3.91326700	-0.79231400
Н	-1.43964200	-3.27420300	0.77572400
Н	-5.10836500	-0.71441600	1.91772400

TS2-4

Zero-point correction=	0.468387 (Hartree/Particle)
Thermal correction to Energy=	0.519930
Thermal correction to Enthalpy=	0.520874
Thermal correction to Gibbs Free Energy=	0.373704
Sum of electronic and zero-point Energies=	-3488.403546

Sum of electronic and thermal Energies=	-3488.352002
Sum of electronic and thermal Enthalpies=	-3488.351058
Sum of electronic and thermal Free Energies=	-3488.498229

Ag	0.66108800	0.62862400	-0.43834100
N	-0.95773500	-0.69978600	-1.66216000
Ν	-2.09149000	-1.12018300	-1.07226700
Ν	-0.41366600	-0.75310700	1.31739600
Ν	-1.75790700	-0.74573100	1.39987200
Ν	-1.48150600	1.82788500	0.03862500
Ν	-2.62831900	1.13119100	-0.04820700
В	-2.65064100	-0.39975700	0.17812300
С	-0.69854500	-1.55539900	-2.65193400
С	-1.67446400	-2.56202000	-2.72011900
С	-2.54527200	-2.24529800	-1.69066200
С	0.03554400	-1.11244200	2.52347100
С	-1.02108700	-1.33701700	3.41824200
С	-2.15066300	-1.08823700	2.65686600
С	-1.78517200	3.09439500	-0.25397800
С	-3.15185400	3.24120300	-0.53799300
С	-3.65312300	1.95808600	-0.39489200
Н	-3.75777900	-0.75829000	0.38250300
С	-5.06301400	1.49735200	-0.57581100
С	-0.71418100	4.12811800	-0.27785800
С	-3.58009500	-1.16101400	3.08986200
С	1.49615600	-1.25333100	2.77500000
С	-3.77275200	-2.98530200	-1.26809900
С	0.54741900	-1.40871400	-3.46043300
Н	-3.69446300	4.13512500	-0.79762600
Н	-0.97606100	-1.63848100	4.45157500
Н	-1.74389200	-3.38633300	-3.41051600
F	-5.83084900	2.53240900	-0.97707700
F	-5.59511600	1.01135300	0.56284600
F	-5.15864100	0.52851000	-1.51117700
F	0.03213200	4.11423100	0.85726600
F	-1.23263200	5.36178900	-0.41339800
F	0.16084700	3.94130200	-1.30027400
F	0.48747100	-2.17268900	-4.57040400
F	0.76179700	-0.13159100	-3.84371900
F	1.64411900	-1.79530300	-2.76383500
F	-4.89093500	-2.24344400	-1.38402100
F	-3.92829800	-4.08337300	-2.03746800
F	-3.69239400	-3.39413400	0.01716100
F	-4.26142000	-2.13804300	2.46141400

F	-3.63765300	-1.41118900	4.41532500
F	-4.23294900	-0.00157300	2.86195300
F	2.08128200	-2.10273600	1.88956300
F	1.73044900	-1.73129300	4.01126300
F	2.16209400	-0.07691000	2.66240800
С	4.77264400	1.90662800	1.21269100
С	3.03175200	2.84998400	0.23450900
0	3.43624300	2.08448800	1.30329400
С	5.27926900	2.67508600	0.17549800
С	4.18163800	3.31593000	-0.41994200
Н	4.18722300	3.98579800	-1.26759300
Н	6.31643000	2.72428200	-0.12138500
Н	2.05640000	3.29441200	0.32475800
С	2.48903700	1.37613100	-1.23247500
С	3.65985600	0.56144700	-1.35525100
С	3.97804000	-0.36974400	-0.40928200
Н	3.24678400	-0.52877200	0.37704100
С	5.17351700	-1.19680800	-0.34064500
С	5.23635000	-2.20499700	0.64099600
С	6.28328000	-1.01808400	-1.19081800
С	6.36140800	-3.01701700	0.75889500
Н	4.38728600	-2.34772200	1.30103800
С	7.40443400	-1.83018600	-1.07114200
Н	6.26753600	-0.23198600	-1.93821300
С	7.44838200	-2.83340900	-0.09667100
Н	6.38998500	-3.79266000	1.51790000
Н	8.25141000	-1.68092000	-1.73389900
Н	8.32778200	-3.46335800	-0.00472100
Н	4.35752900	0.73376200	-2.17602100
Н	2.40098300	2.09472100	-2.05203500
С	5.41096900	1.04415100	2.23958600
Н	5.78332200	1.64647500	3.07657100
Н	4.68345400	0.33015700	2.62820200
Н	6.25196400	0.49664200	1.80856600

TS2-4''

Zero-point correction=	0.471763 (Hartree/Particle)
Thermal correction to Energy=	0.514742
Thermal correction to Enthalpy=	0.515687
Thermal correction to Gibbs Free Energy=	0.393562
Sum of electronic and zero-point Energies=	-3488.364304
Sum of electronic and thermal Energies=	-3488.321325
Sum of electronic and thermal Enthalpies=	-3488.320380

-3488.442504

Ag	-0.68970700	0.32605000	-0.60398500
Ν	1.01887000	-1.30842700	-1.28002500
Ν	2.30603400	-1.12318700	-0.98634600
Ν	1.42309700	1.67671700	-0.63403900
Ν	2.54059300	1.22557100	-0.06518100
Ν	0.54222600	-0.27583400	1.52923700
Ν	1.81650500	-0.66761200	1.44185600
В	2.73201800	-0.28118600	0.24429000
С	0.98117100	-2.03243600	-2.39003100
С	2.26882100	-2.33966500	-2.84770000
С	3.08213400	-1.73323400	-1.91213800
С	1.54322300	2.99463200	-0.71172300
С	2.76360000	3.43465600	-0.18266300
С	3.36604100	2.26060900	0.21955000
С	0.06332700	-0.82126700	2.64196500
С	1.02682400	-1.58834800	3.30528900
С	2.13362500	-1.45804800	2.49285300
Н	3.86739400	-0.49836900	0.51664600
С	3.48184600	-2.07990800	2.67439200
С	-1.35025400	-0.58202400	3.04109400
С	4.69222500	2.08579400	0.88679100
С	0.40608500	3.80240600	-1.23694100
С	4.57537800	-1.69903000	-1.86600300
С	-0.34108900	-2.33967100	-3.01051900
Н	0.93831800	-2.14455000	4.22393100
Н	3.15073400	4.43774100	-0.10856200
Н	2.56442700	-2.91269700	-3.71128000
F	3.45851000	-2.88192100	3.74670200
F	4.44199500	-1.17167800	2.86559500
F	3.83020500	-2.82065600	1.61547000
F	-2.22191700	-1.02946500	2.10895300
F	-1.62151000	0.72060300	3.21094000
F	-1.63713600	-1.21127500	4.18363700
F	-0.23666000	-3.35381400	-3.87637500
F	-1.25909200	-2.66670200	-2.08996200
F	-0.83028500	-1.28460800	-3.68469300
F	5.06643100	-2.32979300	-0.79534000
F	5.07159600	-2.29652700	-2.95613200
F	5.03676800	-0.44217200	-1.83867600
F	5.54741300	1.37534600	0.14686700
F	5.24192100	3.28629000	1.10885400
F	4.57009500	1.46551900	2.06769800

F	-0.18464900	3.22472100	-2.29127700
F	0.81030700	5.02329100	-1.59885600
F	-0.55781300	3.96369600	-0.30482600
С	-6.63789000	-2.51810900	1.33614500
С	-5.44862100	-1.89572100	0.97921500
С	-5.33130900	-1.23879800	-0.25629600
С	-6.42407000	-1.23987200	-1.13900500
С	-7.60698300	-1.87299700	-0.78449600
С	-7.71781200	-2.50564700	0.45459500
Н	-6.72327600	-3.01702100	2.29546400
Н	-4.59864300	-1.89484200	1.65635300
Н	-6.33730200	-0.75524100	-2.10629700
Н	-8.44559400	-1.87694400	-1.47249700
Н	-8.64617000	-2.99580500	0.72926800
С	-4.07908500	-0.56690900	-0.55590600
С	-3.81200700	0.31836500	-1.56988600
Н	-3.24650400	-0.78540300	0.11158000
Н	-4.61482300	0.63426600	-2.23660500
С	-2.52338500	0.88506300	-1.63075100
Н	-2.45746800	1.65889700	-2.40634300
С	-5.10605200	1.95884400	0.76515200
С	-3.41578400	3.01172300	-0.14235400
0	-4.74719200	2.76588600	-0.26155600
С	-4.01866700	1.70456100	1.55705800
С	-2.92255000	2.39949300	0.97426700
Н	-1.89991600	2.43009800	1.31887400
Н	-4.01053700	1.09779100	2.44961000
Н	-2.97960200	3.67605000	-0.87087300
С	-6.54191000	1.58865900	0.85021900
Н	-7.14556400	2.43864400	1.18262300
Н	-6.91454000	1.26934800	-0.12712800
Н	-6.67512800	0.76551600	1.55475700

4′

Zero-point correction=	0.242596 (Hartree/Particle)
Thermal correction to Energy=	0.254365
Thermal correction to Enthalpy=	0.255309
Thermal correction to Gibbs Free Energy=	0.204783
Sum of electronic and zero-point Energies=	-616.921482
Sum of electronic and thermal Energies=	-616.909713
Sum of electronic and thermal Enthalpies=	-616.908769
Sum of electronic and thermal Free Energies=	-616.959295

С	0.81153100	-0.84824000	-0.83227200
С	2.65363000	0.13931100	0.01954400
0	2.16362100	-1.12115300	-0.45427900
С	0.90984500	0.53394300	-1.45161400
С	2.00110600	1.12266200	-0.96099200
Н	2.34848100	2.13554000	-1.12595600
Н	0.16626200	0.96218200	-2.11077700
С	1.97146500	0.41378500	1.35910300
С	0.70654200	-0.06900100	1.55612500
С	-0.03204900	-0.86440100	0.48289900
Н	-0.08461900	-1.91239300	0.79102400
С	-1.44619300	-0.36345000	0.27959000
С	-2.48108300	-1.27292900	0.03641600
С	-1.74098400	1.00616200	0.28815200
С	-3.78205500	-0.82774100	-0.19566200
Н	-2.26436200	-2.33792900	0.03818000
С	-3.04139300	1.45458100	0.05978000
Н	-0.94543100	1.72274300	0.47063600
С	-4.06609300	0.53852300	-0.18376400
Н	-4.57427400	-1.54765100	-0.37799000
Н	-3.25471700	2.51932500	0.07325100
Н	-5.07935100	0.88698700	-0.35888200
Н	0.11064400	0.29153000	2.38955800
Н	2.38694700	1.17225600	2.01510200
С	4.16699700	0.10711500	0.06303900
Н	4.55933400	-0.06859000	-0.94124200
Н	4.56159900	1.05238300	0.44397400
Н	4.50492600	-0.69896500	0.71843400
Н	0.46800900	-1.63011000	-1.51313700

4

Zero-point correction=		0.242749 (Hartree/Particle)	
Thermal correction to Energy=			0.254420
Thermal correction to Enthalpy=			0.255364
Thermal correction to G	ibbs Free Ener	rgy=	0.205299
Sum of electronic and ze	ero-point Ener	gies=	-616.921940
Sum of electronic and thermal Energies=			-616.910269
Sum of electronic and thermal Enthalpies=			-616.909325
Sum of electronic and thermal Free Energies=		-616.959390	
С	1.18396800	0.90583700	0.24322200
С	2.90776600	-0.53363100	-0.03315500
0	2.53643500	0.82660800	-0.26038300

С	1.24702400	0.00311300	1.46712000	
С	2.27464800	-0.83311200	1.32355500	
Н	2.57393400	-1.64546500	1.97461200	
Н	0.52010000	0.02752000	2.26854900	
Н	3.98999300	-0.62720300	-0.08894500	
С	2.17511600	-1.39164800	-1.05685400	
С	0.92803500	-0.97688300	-1.44292700	
С	0.27874600	0.28371700	-0.87893700	
Н	0.23658300	1.03513600	-1.66673500	
С	-1.14616200	0.01906000	-0.43811700	
С	-2.15458300	0.93511400	-0.76033700	
С	-1.48203400	-1.11910800	0.30735200	
С	-3.46711000	0.72904100	-0.33488000	
Н	-1.90622700	1.80628000	-1.35991500	
С	-2.79336300	-1.32825900	0.73195500	
Н	-0.70942900	-1.84042100	0.55634800	
С	-3.78941300	-0.40246700	0.41521200	
Н	-4.23785000	1.44823800	-0.59549900	
Н	-3.03856400	-2.21552100	1.30819900	
Н	-4.81098100	-0.56642700	0.74441100	
Н	0.27629700	-1.65074600	-1.98986500	
Н	2.51715600	-2.40215900	-1.26163900	
С	0.84168400	2.35514700	0.52531200	
Н	1.51440800	2.75631400	1.28721700	
Н	0.94606200	2.94854500	-0.38605300	
Н	-0.18887900	2.43752300	0.88125000	

4′′

=		0.243111 (Hartree/Particle)
Energy=		0.254843
Enthalpy=		0.255787
Gibbs Free Ene	ergy=	0.204943
zero-point Ener	rgies=	-616.923286
thermal Energi	es=	-616.911555
thermal Enthal	pies=	-616.910611
thermal Free E	nergies=	-616.961454
-3.49813800	0.59010400	0.66056400
-2.17043100	0.71115300	1.06450400
-1.16397400	-0.01332000	0.42576100
-1.50561100	-0.86650800	-0.62895100
-2.83057700	-0.98441300	-1.03536300
-3.83065700	-0.25817100	-0.39088000
	= Energy= Enthalpy= Gibbs Free Energi zero-point Energi thermal Energi thermal Enthaly thermal Free E -3.49813800 -2.17043100 -1.16397400 -1.50561100 -2.83057700 -3.83065700	Energy= Enthalpy= Gibbs Free Energy= zero-point Energies= thermal Energies= thermal Enthalpies= thermal Free Energies= -3.49813800 0.59010400 -2.17043100 0.71115300 -1.16397400 -0.01332000 -1.50561100 -0.86650800 -2.83057700 -0.98441300 -3.83065700 -0.25817100

Н	-4.27074900	1.15831100	1.16851600
Н	-1.91191000	1.37595400	1.88500500
Н	-0.72078300	-1.42006200	-1.13580000
Н	-3.08429500	-1.64671500	-1.85693500
Н	-4.86419600	-0.35518700	-0.70694000
С	0.28396700	0.14167600	0.85657500
С	0.84816600	-1.23220200	1.18800600
Н	0.29764800	0.76246700	1.76047100
Н	0.28329100	-1.83224100	1.89790700
С	1.90037700	-1.75759200	0.52447000
Н	2.21408300	-2.78770300	0.67517800
С	1.16533500	0.84451400	-0.22517500
С	2.56378000	-0.88426500	-0.53798400
0	1.53228300	-0.15110500	-1.18480600
С	2.51468700	1.22083200	0.37879200
С	3.36456300	0.21960300	0.15882200
Н	4.40690600	0.14147400	0.44457600
Н	2.69716800	2.14223400	0.91725500
Н	3.11268600	-1.46748800	-1.27780500
С	0.47155000	1.98871100	-0.93403000
Н	1.17335200	2.47248100	-1.61672600
Н	-0.38516300	1.62134100	-1.50165600
Н	0.11547400	2.72324500	-0.20525300

Int3-D_{cp}

В

С

Zero-point correction	=		0.469020 (Hartree/Particle)
Thermal correction to Energy=			0.514618
Thermal correction to	• Enthalpy=		0.515562
Thermal correction to	Gibbs Free Ene	rgy=	0.383412
Sum of electronic and	l zero-point Ener	gies=	-3488.401249
Sum of electronic and	d thermal Energie	es=	-3488.355652
Sum of electronic and	d thermal Enthalg	pies=	-3488.354707
Sum of electronic and	d thermal Free Er	nergies=	-3488.486857
Ag	0.62917200	0.56581300	-0.53519700
Ν	-1.06709800	-0.75986100	-1.65429200
Ν	-2.19666900	-1.11268000	-1.03259700
Ν	-0.42875200	-0.73263600	1.27518000
Ν	-1.75923500	-0.68402900	1.41919200
Ν	-1.44069400	1.82909800	-0.05510900
Ν	-2.61760300	1.18427200	-0.05221800

-2.68741700

-0.88209200

0.21765900

-2.63044900

-0.33840200

-1.63761100

С	-1.90252900	-2.59399500	-2.66534800
С	-2.72213800	-2.21441100	-1.62107900
С	0.05551100	-1.11795900	2.45192300
С	-0.95534900	-1.31597300	3.39013900
С	-2.10900300	-1.01821300	2.68156300
С	-1.70176300	3.10218800	-0.34029000
С	-3.07485200	3.30814400	-0.52716200
С	-3.61784000	2.05506400	-0.33837000
Н	-3.80513600	-0.65107700	0.47517600
С	-5.06229800	1.66882300	-0.40180300
С	-0.59001100	4.09222500	-0.42951300
С	-3.51491300	-1.05820200	3.18734800
С	1.52432400	-1.32570300	2.61811600
С	-3.97285100	-2.90250900	-1.16086200
С	0.34904800	-1.56940300	-3.47878100
Н	-3.59256200	4.22421200	-0.76224500
Н	-0.88160500	-1.62341400	4.41936400
Н	-2.03388400	-3.41733900	-3.34415200
F	-5.78394900	2.71551700	-0.83153400
F	-5.54506000	1.32270200	0.80473300
F	-5.28627800	0.65060400	-1.24063400
F	0.16853000	4.09588000	0.68581000
F	-1.07288900	5.33116300	-0.59957000
F	0.23755400	3.83290200	-1.46012600
F	0.22371100	-2.33853800	-4.56470000
F	0.61741200	-0.31608100	-3.89050900
F	1.43481700	-2.00053400	-2.80652100
F	-5.05864600	-2.12841500	-1.27038300
F	-4.17714100	-3.99565000	-1.90680000
F	-3.87881700	-3.29683200	0.11886700
F	-4.22196600	-2.06064600	2.64084300
F	-3.50589200	-1.23994200	4.51094700
F	-4.17019100	0.08763700	2.93355700
F	2.00611300	-2.20949900	1.72337200
F	1.80084000	-1.80352100	3.84224000
F	2.22930900	-0.19854400	2.44647200
С	4.98259000	1.79007400	1.26543600
С	3.36079800	3.03651900	0.48256600
0	3.67410500	2.11623300	1.42295900
С	5.51652400	2.52712000	0.23740800
С	4.45987300	3.33987100	-0.26019900
Н	4.50662800	4.05032500	-1.07583300
Н	6.53536100	2.48041100	-0.10463800
Н	2.34567400	3.40624400	0.50284400

С	2.41531400	1.16562100	-1.42782000
С	3.66361400	0.51433900	-1.48423700
С	3.92969100	-0.49392400	-0.59419800
Н	3.11367000	-0.77549200	0.06859100
С	5.17010900	-1.22458100	-0.41830000
С	5.19812300	-2.26447200	0.52505700
С	6.35034700	-0.91368300	-1.12514500
С	6.36558600	-2.98335400	0.74996100
Н	4.29357300	-2.49633200	1.08033100
С	7.50916100	-1.63488500	-0.89613400
Н	6.35225000	-0.10327600	-1.84576500
С	7.52111200	-2.67109500	0.04091400
Н	6.37101300	-3.78624300	1.48003900
Н	8.40975800	-1.39403700	-1.44727700
Н	8.43371000	-3.23407000	0.21470500
Н	4.43920400	0.85501800	-2.16195200
Н	2.38159400	2.01855500	-2.11334400
С	5.55340800	0.81195300	2.22855500
Н	5.79549800	1.28871700	3.18032600
Н	4.83892600	0.01422500	2.42095700
Н	6.46575900	0.37770300	1.81372200

TS3_{cp}

Zero-point correction=		0.468967 (Hartree/Particle)	
Thermal correction to Energy=		0.513047		
Thermal correction to	Enthalpy=		0.513991	
Thermal correction to	Gibbs Free Ener	gy=	0.388564	
Sum of electronic and zero-point Energies=			-3488.397352	
Sum of electronic and thermal Energies=		-3488.353272		
Sum of electronic and thermal Enthalpies=		-3488.352328		
Sum of electronic and	thermal Free En	ergies=	-3488.477756	
Ag	-0.62692800	0.55008700	0.45784400	

8			
Ν	1.12398800	-0.56134200	1.75514100
Ν	2.16497900	-1.05613600	1.07869400
Ν	0.40551700	-0.90891100	-1.22531000
Ν	1.73641100	-0.82488200	-1.38531900
Ν	1.47013300	1.81697300	-0.24100200
Ν	2.61271600	1.14167400	-0.06602700
В	2.66039400	-0.39663100	-0.21549400
С	0.93682900	-1.35539500	2.80159100
С	1.85084700	-2.41220100	2.82087900
С	2.62925000	-2.18006100	1.69866600

С	-0.08536700	-1.33859000	-2.37934300
С	0.92081900	-1.51350100	-3.33042100
С	2.06305300	-1.17489100	-2.65090200
С	1.76098100	3.09577100	-0.02747200
С	3.11347400	3.27161400	0.29729400
С	3.61493000	1.99017700	0.25390200
Н	3.77026300	-0.74747800	-0.45097400
С	5.00889500	1.53326500	0.59934800
С	0.68620600	4.12100600	-0.11519500
С	3.46521000	-1.12118600	-3.18437600
С	-1.55224500	-1.56335000	-2.55191400
С	3.74574900	-3.00798100	1.15341800
С	-0.20700900	-1.11427900	3.73462600
Н	3.63903500	4.18454700	0.51859200
Н	0.83522200	-1.84031600	-4.35324100
Н	1.95806800	-3.21342700	3.53180600
F	5.77439000	2.61547100	0.84181100
F	5.60770500	0.83180800	-0.39552500
F	5.00890100	0.74978200	1.70585900
F	-0.03774200	3.99591100	-1.23780200
F	1.20279400	5.35915400	-0.09542800
F	-0.18544100	4.04115300	0.91606400
F	-0.03924900	-1.78829700	4.88670800
F	-0.35760800	0.18312500	4.02995000
F	-1.38912500	-1.52252200	3.20610900
F	4.91056700	-2.35698900	1.10100500
F	3.92270600	-4.09030500	1.92325900
F	3.46599500	-3.43118100	-0.09341200
F	4.31918400	-1.93533300	-2.53513300
F	3.46125300	-1.47547600	-4.48144900
F	3.97072200	0.13736100	-3.10652500
F	-2.04043800	-2.36022400	-1.57798700
F	-1.81680700	-2.15064000	-3.71903600
F	-2.26015700	-0.41385000	-2.49390400
С	-4.82005800	1.88157200	-1.14452900
С	-3.01091500	2.78232000	-0.29302500
0	-3.49098900	1.99346500	-1.30302900
С	-5.23644600	2.69032000	-0.10789700
С	-4.08555100	3.29221400	0.42198200
Н	-4.01000900	3.99141400	1.24216400
Н	-6.26167500	2.78991500	0.23986900
Н	-2.00626700	3.13615100	-0.41535600
С	-2.45123000	1.27941500	1.27554700
С	-3.65708200	0.53311700	1.41940700

С	-3.99982700	-0.40996800	0.49650600
Н	-3.24599100	-0.62083000	-0.27073900
С	-5.23942600	-1.17566900	0.39358200
С	-5.30385700	-2.22768400	-0.51272200
С	-6.38605100	-0.85099000	1.13762000
С	-6.47309400	-2.96167300	-0.68066100
Н	-4.41655800	-2.48672600	-1.08909100
С	-7.56809000	-1.57838600	0.96750100
Н	-6.37604600	-0.01058500	1.82803800
С	-7.61452500	-2.62914000	0.06425400
Н	-6.50283500	-3.78425800	-1.38620000
Н	-8.45509800	-1.30936800	1.53520500
Н	-8.52947600	-3.20225000	-0.06713400
Н	-4.36515000	0.76977000	2.21288000
Н	-2.35167200	2.04254300	2.05505000
С	-5.54518600	1.02591500	-2.11445400
Н	-5.78086200	1.59779500	-3.02389800
Н	-4.94078100	0.16574800	-2.39001400
Н	-6.48539600	0.67596100	-1.67749800

Int4_{cp}

Zero-point correction=	0.473233 (Hartree/Particle)
Thermal correction to Energy=	0.517576
Thermal correction to Enthalpy=	0.518520
Thermal correction to Gibbs Free Energy=	0.391676
Sum of electronic and zero-point Energies=	-3488.440932
Sum of electronic and thermal Energies=	-3488.396589
Sum of electronic and thermal Enthalpies=	-3488.395645
Sum of electronic and thermal Free Energies=	-3488.522489

Ag	-0.86468600	0.54757500	-0.27523600
Ν	0.87879800	0.37118300	2.05770300
Ν	1.46106600	-0.58627600	1.32116100
Ν	0.51090900	-0.90324900	-1.44898500
Ν	1.81935000	-0.90085400	-1.16667400
Ν	1.00207700	1.87910800	-0.42360300
Ν	2.18357700	1.35294300	-0.07592200
В	2.34818100	-0.17942500	0.10560500
С	0.26406700	-0.25143500	3.05594700
С	0.44314000	-1.63646600	2.99549100
С	1.21156800	-1.80752800	1.86523400
С	0.36714900	-1.51048900	-2.62082000
С	1.60037000	-1.92582500	-3.12670700

С	2.49852900	-1.51369300	-2.16391100
С	1.13546600	3.19831600	-0.37748100
С	2.42501500	3.56139000	0.01516100
С	3.05507300	2.34787500	0.20267700
Н	3.49381600	-0.45543700	0.27050300
С	4.46033000	2.11762500	0.66875900
С	-0.04595200	4.07009200	-0.64601400
С	3.99180800	-1.62963900	-2.21650900
С	-0.98135100	-1.60082400	-3.25717900
С	1.64792600	-3.10102900	1.26356700
С	-0.49475700	0.55005600	4.06002600
Н	2.83845900	4.54778800	0.14298000
Н	1.81068700	-2.43905700	-4.05003200
Н	0.05008800	-2.39694900	3.64813800
F	5.04926400	3.29923200	0.90469800
F	5.19824400	1.46852600	-0.23900100
F	4.49523100	1.40879400	1.80486400
F	-0.75470600	3.64364700	-1.70653700
F	0.32900100	5.33207000	-0.87490600
F	-0.89584900	4.08300600	0.40244400
F	0.29462400	1.38087600	4.75144200
F	-1.44353500	1.31657900	3.47693500
F	-1.11422200	-0.25156700	4.94053000
F	2.95032100	-3.10473900	0.95120400
F	1.42343700	-4.10512200	2.12235100
F	0.97443300	-3.39279800	0.13202900
F	4.49834400	-2.31528800	-1.18834200
F	4.34592700	-2.26368800	-3.34457300
F	4.57201300	-0.42142700	-2.22825300
F	-1.85941500	-2.29671900	-2.50425000
F	-0.90443300	-2.20469200	-4.44673700
F	-1.51702800	-0.38327400	-3.44037300
С	-5.31229300	0.20097600	-1.74509400
С	-3.97326200	2.00252100	-1.80978600
0	-4.22888700	0.74564400	-2.38962800
С	-5.82902200	1.00992700	-0.81057200
С	-5.02346500	2.24918000	-0.75092000
Н	-5.48785700	3.21355400	-0.57562600
Н	-6.69189700	0.79013900	-0.19947800
Н	-3.61491700	2.72712300	-2.53107800
С	-3.52731600	2.09819200	-0.37599800
С	-3.01182000	1.01623100	0.48992500
С	-2.93573900	-0.32161300	0.18523500
Н	-3.16437200	-0.64686000	-0.82523700

-2.75353700	-1.40515900	1.18273300
-2.17793700	-2.61839400	0.78448500
-3.18566200	-1.26638100	2.50551900
-2.03449500	-3.66461500	1.68654400
-1.82590000	-2.73070300	-0.23470300
-3.04183700	-2.31477700	3.40817900
-3.65597300	-0.34346200	2.82759200
-2.47138100	-3.51756200	3.00116000
-1.56977500	-4.59050600	1.36460500
-3.38192400	-2.19052000	4.43083400
-2.36627200	-4.33682000	3.70558700
-2.84641700	1.31115500	1.52540300
-3.07143700	3.06044000	-0.16675400
-5.67651100	-1.16872200	-2.19259600
-5.87346400	-1.17571400	-3.26880300
-4.85761600	-1.87079900	-2.00457300
-6.56474500	-1.51751900	-1.66408100
	$\begin{array}{r} -2.75353700\\ -2.17793700\\ -3.18566200\\ -2.03449500\\ -1.82590000\\ -3.04183700\\ -3.65597300\\ -2.47138100\\ -1.56977500\\ -3.38192400\\ -2.36627200\\ -2.84641700\\ -3.07143700\\ -5.67651100\\ -5.87346400\\ -4.85761600\\ -6.56474500\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

TS4_{cope}

Zero-point correction=	0.469684 (Hartree/Particle)
Thermal correction to Energy=	0.520734
Thermal correction to Enthalpy=	0.521678
Thermal correction to Gibbs Free Energy=	0.376301
Sum of electronic and zero-point Energies=	-3488.419959
Sum of electronic and thermal Energies=	-3488.368909
Sum of electronic and thermal Enthalpies=	-3488.367965
Sum of electronic and thermal Free Energies=	-3488.513342

Ag	-0.77056300	-0.51287400	-0.36374000
Ν	0.66947100	1.11047900	-1.38632600
Ν	1.83563700	1.37139600	-0.76406600
Ν	0.37496200	0.25404700	1.58975100
Ν	1.72040800	0.31073300	1.53962700
Ν	1.31886900	-1.80377000	-0.46891000
Ν	2.44803200	-1.06909300	-0.44892800
В	2.48957200	0.34343400	0.19310000
С	0.37623800	2.18488700	-2.12084700
С	1.35851100	3.17673900	-1.98270100
С	2.27168300	2.61494400	-1.10622800
С	0.04166900	0.17901700	2.88004900
С	1.17910300	0.18624300	3.69944400
С	2.22998200	0.26923400	2.80095800
С	1.62035100	-2.94825900	-1.08664900
С	2.96481300	-2.97437700	-1.48530700
---	-------------	-------------	-------------
С	3.45599600	-1.75212900	-1.05790100
Н	3.61207600	0.65202000	0.39082300
С	4.84286200	-1.21741600	-1.22256400
С	0.57199700	-3.98598300	-1.29512600
С	3.69376600	0.28670800	3.10832800
С	-1.39317700	0.10091000	3.27654700
С	3.52670900	3.23178000	-0.57572900
С	-0.90422800	2.24471000	-2.88297000
Н	3.50117500	-3.75776900	-1.99472500
Н	1.23373800	0.14047600	4.77441300
Н	1.40498200	4.14720700	-2.44856200
F	5.58164000	-2.09148700	-1.93727300
F	5.46560000	-1.02366300	-0.04454400
F	4.84748800	-0.03947500	-1.88200100
F	-0.13181000	-4.22828100	-0.16299500
F	1.11553500	-5.14638700	-1.70237600
F	-0.33659500	-3.61532800	-2.23612300
F	-0.84641900	3.17984400	-3.84960500
F	-1.20355200	1.05824300	-3.46526800
F	-1.95011400	2.55476200	-2.08090400
F	4.63255500	2.56211800	-0.95220400
F	3.63743000	4.49561900	-1.03472400
F	3.52430300	3.28274800	0.77339000
F	4.29120800	1.42659000	2.71317200
F	3.87601500	0.16837900	4.43996200
F	4.34124700	-0.73768300	2.51285600
F	-2.08677000	1.19526800	2.88522100
F	-1.51710700	-0.00859100	4.61220800
F	-2.01488500	-0.96670600	2.71646900
С	-5.02990200	-2.19192200	0.67523300
С	-3.13126800	-2.90617900	-0.31468800
0	-3.73682700	-2.54579900	0.93370000
С	-5.39611500	-2.51290200	-0.61232800
С	-4.26818300	-3.04808500	-1.25782900
Н	-4.21191800	-3.50897100	-2.23165900
Н	-6.37262200	-2.34051900	-1.04083000
Н	-2.39681300	-3.69179400	-0.16557100
С	-2.69655000	-1.73550900	-1.18406400
С	-3.16861200	-0.38934500	-1.09217500
С	-3.76791600	0.20062300	0.00635100
Н	-3.62927800	-0.24985100	0.97620600
С	-4.44260600	1.48805300	-0.00065000
С	-4.70232000	2.12956700	1.22788700

С	-4.88431300	2.11841700	-1.18197400
С	-5.35733900	3.35659700	1.27282800
Н	-4.35489300	1.66606500	2.14545100
С	-5.53149100	3.34760400	-1.13439100
Н	-4.73263100	1.63193400	-2.13962200
С	-5.77294200	3.97453500	0.09183900
Н	-5.53933000	3.83483800	2.23080800
Н	-5.86086700	3.81646300	-2.05705700
Н	-6.28438000	4.93159500	0.12488000
Н	-3.13816300	0.17315400	-2.02234400
Н	-2.23727500	-2.04834600	-2.11373900
С	-5.82672100	-1.70891600	1.83054100
Н	-6.84398200	-1.47244800	1.51449000
Н	-5.86522500	-2.48240100	2.60675100
Н	-5.38489700	-0.81488000	2.28028400

6. References

- Z. Wei, J. Tan, X. Cui, M. Zhou, Y. Huang, N. Zang, Z. Chen and W. Wei, Design, synthesis and bioactive evaluation of oxime derivatives of dehydrocholic acid as anti-hepatitis B virus agents, *Molecules* 2020, 25, 3359.
- Z. L. Shen, K. K. Goh, Y. S. Yang, Y. C. Lai, C. H. A. Wong, H. L. Cheong and T. P. Loh, Direct synthesis of water-tolerant alkyl indium reagents and their application in palladiumcatalyzed couplings with aryl halides, *Angew. Chem. Int. Ed.* 2011, **123**, 531-534.
- **3.** B. Yu, S. Zou and H. Huang, Palladium-catalyzed ring-closing reaction for the synthesis of saturated N-H eterocycles with aminodienes and N,O-Acetals, *J. Org. Chem.* **2021**, **86**, 7849-7863.
- **4.** Le, P. Q.; Nguyen, T. S.; May, J. A. A general method for the enantioselective synthesis of αchiral heterocycles. *Org. Lett.* 2012, **14**, 6104-6107.
- G. Battistuzzi, S. Cacchi, and G. Fabrizi, An efficient palladium-catalyzed synthesis of cinnamaldehydes from acrolein diethyl acetal and aryl iodides and bromides, *Org. Lett.* 2003, 5, 777-780.
- **6.** Z. Liu, K. Raveendra Babu, F. Wang, Y. Yang, and X. Bi, Influence of sulfonyl substituents on the decomposition of *N*-sulfonylhydrazones at room temperature, *Org. Chem. Front.* 2019, **6**, 121-124.
- DesMarteau, D. D.; Petrov, V. A.; Montanari, V.; Pregnolato, M.; Resnati, G. Mild and selective oxygenation of sulfides to sulfoxides and sulfones by perfluoro-cis-2,3-dialkyloxaziridines, *J. Org. Chem.* 1994, **59**, 2762-2765.
- **8.** I. G. Molnár, E. M. Tanzer, C. Daniliuc and R. Gilmour, Enantioselective aziridination of cyclic enals facilitated by the fluorine-iminium ion gauche effect. *Chem. Eur. J.* 2014, **20**, 794-800.
- Gaussian 16 Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
- 10. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, *J. Chem. Phys.*, 1993, 98, 5648-5652.
- 11. J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, *Phys. Rev. B*, 1992, **45**, 13244-13249.
- 12. S. Grimme, S. Ehrlich and L. Goerigk, Effect of the damping function in dispersion corrected density Functional theory, *J. Comp. Chem.*, 2011, 32, 1456-1465.
- **13.** W. Küchle, M. Dolg, H. Stoll, and H. Preuss, Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide, *J. Chem. Phys.*, **1994**, *100*, 7535-7542.
- 14. X. Cao, M. Dolg, and H. Stoll, Valence basis sets for relativistic energy-consistent small-core actinide Pseudopotentials, *J. Chem. Phys.*, 2003, 118, 487-496.

- **15.** W. J. Hehre, R. Ditchfield, and J. A. Pople, Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules, *J. Chem. Phys.* 1972, **56**, 2257-2261.
- **16.** J. D. Dill and J. A. Pople, Self-consistent molecular orbital methods. XV. Extended Gaussian-type basis sets for lithium, beryllium, and boron, *J. Chem. Phys.* 1975, **62**, 2921-2923.
- 17. M. M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and Pople, J. A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements, *J. Chem. Phys.* 1982, 77, 3654-3665.
- **18.** P. Xiao, H. Yuan, J. Liu, Y. Zheng, X. Bi, and J. Zhang, Radical mechanism of isocyanide-alkyne cycloaddition by multicatalysis of Ag₂CO₃, solvent, and substrate, *ACS Catal.* 2015, **5**, 6177-6184.
- **19.** A. V. Marenich, C. J. Cramer, and D. G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, *J. Phys. Chem. B* 2009, **113**, 6378-6396.
- 20. K. Fukui, Formulation of the reaction coordinate, J. Phys. Chem., 1970, 74, 4161-4163.
- 21. K. Fukui, The path of chemical reactions-the IRC approach, Acc. Chem. Res., 1981, 14, 363-368.
- **22.** C. Y. Legault, CYLview, 1.0b; Université de Sherbrooke: Canada, 2009. Available at: <u>http://www.cylview.org</u> (accessed September, **2014**).
- **23.** Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer, *J. Comput. Chem.* 2012, **33**, 580-592.
- 24. T. Lu, and Q. Chen, Interaction region indicator (IRI): A simple real space function clearly revealing both chemical bonds and weak interactions, *Chemistry-Methods*, 2021, 1, 231-239.
- 25. M. Nishio, The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates, *Phys. Chem. Chem. Phys.* 2011, 13, 13873-13900.

7. NMR Spectra of Products

Figure S7. ¹³C NMR (151 MHz, CDCl₃) Spectrum of 2.

Figure S9. ¹³C NMR (126 MHz, CDCl₃) Spectrum of 4.

Figure S11. ¹H NMR (500 MHz, CDCl₃) Spectrum of 5.

Figure S13. ¹H NMR (500 MHz, CDCl₃) Spectrum of 6.

Figure S19. ¹H NMR (500 MHz, CDCl₃) Spectrum of 9.

Figure S23. ¹H NMR (500 MHz, CDCl₃) Spectrum of 11.

Figure S31. ¹H NMR (500 MHz, CDCl₃) Spectrum of 15.

Figure S35. ¹H NMR (500 MHz, CDCl₃) Spectrum of 17.

Figure S39. ¹H NMR (500 MHz, CDCl₃) Spectrum of 19.

Figure S41. ¹H NMR (500 MHz, CDCl₃) Spectrum of 20.

Figure S43. ¹H NMR (600 MHz, CDCl₃) Spectrum of 21.

Figure S48. ¹³C NMR (126 MHz, CDCl₃) Spectrum of 23.

Figure S49. NOE of 23.

Figure S51. ¹³C NMR (126 MHz, CDCl₃) Spectrum of 24.

Figure S55. ¹³C NMR (151 MHz, CDCl₃) Spectrum of 26.

Figure S57. ¹³C NMR (151 MHz, CDCl₃) Spectrum of 27.

Figure S61. ¹H NMR (500 MHz, CDCl₃) Spectrum of 29.

Figure S63. ¹H NMR (500 MHz, CDCl₃) Spectrum of 30.

Figure S67. ¹⁹F NMR (471 MHz, CDCl₃) Spectrum of 31.

Figure S69. ¹³C NMR (126 MHz, CDCl₃) Spectrum of **32**.

Figure S71. ¹³C NMR (151 MHz, CDCl₃) Spectrum of **33**.

170 155 140 125 110 95 85 75 65 55 45 35

Figure S73. ¹³C NMR (151 MHz, CDCl₃) Spectrum of 34.

Figure S75. ¹³C NMR (126 MHz, CDCl₃) Spectrum of 35.

Figure S85. ¹H NMR (600 MHz, CDCl₃) Spectrum of 40.

Figure S93. ¹H NMR (600 MHz, CDCl₃) Spectrum of 44.

Figure S115. ¹⁹F NMR (471 MHz, CDCl₃) Spectrum of 54.

Figure S117. ¹³C NMR (126 MHz, CDCl₃) Spectrum of 55.

Figure S121. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 56.

Figure S127. ¹⁹F NMR (600 MHz, CDCl₃) Spectrum of 58.

Figure S129. ¹³C NMR (151 MHz, CDCl₃) Spectrum of 59.

Figure S149. ¹H NMR (500 MHz, CDCl₃) Spectrum of 69.

Figure S151. ¹H NMR (500 MHz, CDCl₃) Spectrum of 70.

Figure S169. NOE of 83.

Figure S173. ¹³C NMR (126 MHz, CDCl₃) Spectrum of 80.

Figure S175. ¹³C NMR (126 MHz, CDCl₃) Spectrum of 81.

Figure S177. ¹³C NMR (126 MHz, DMSO) Spectrum of S-65.

Figure S183. ¹³C NMR (126 MHz, CDCl₃) Spectrum of S-72.

Figure S189. ¹³C NMR (126 MHz, CDCl₃) Spectrum of S-78.