Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Copper Catalyzed Dearomatization by Michael-Type Addition of Indolyl Ynones: Divergent Synthesis of Functionalized Spiroindoles and Cyclopenta[c]quinolin-3-ones

Guang-Xin Ru, Meng Zhang, Ting-Ting Zhang, Xiao-Lei Jiang, Guang-Qin Gao, Xiu-Hong Zhu, Shun Wang, Cai-Ling Fan, Xiao Li, and Wen-Bo Shen*
College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, China

Content	Page Number
General Information	S 2
More Reaction Condition and Mechanism Studies	S 3
Preparation of Starting Materials	S4
General Procedure: Copper Catalysis	S 5
Synthetic Applications	S 32
X-Ray Crystallographic Data	S 35
NMR Spectra	S 39

General Information. Ethyl acetate (ACS grade), hexanes (ACS grade) and anhydrous 1,2-dichloroethane (ACS grade) were obtained commercially and used without further purification. Methylene chloride, tetrahydrofuran and diethyl ether were purified according to standard methods unless otherwise noted. Commercially available reagents were used without further purification. Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed over silica gel (300-400 mesh). Infrared spectra were recorded on a Nicolet iS 10 spectrometer as thin film and are reported in reciprocal centimeter (cm⁻¹). Mass spectra were recorded with Micromass Q-Exactive Focus mass spectrometer using electron spray ionization.

¹H NMR spectra were recorded on a Bruker AV-400 spectrometer in chloroform-d₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data is being reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, brs = broad singlet, coupling constant(s) in Hz, integration).

¹³C NMR spectra were recorded on on a Bruker AV-400 spectrometer in chloroform-d₃. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard.

More Reaction Condition and Mechanism Studies

1. Optimization of reaction conditions for the skeletal rearrangement of indolyl ynone **3a**, please see as followed:^[a]

	N -	cat. (5-10 mol oxidants (2.0 e conditions	%) yq) N Ph	0		
	3a		4a			
Entry	Cat. (<i>x</i> mol %)	Oxidant	Conditions	Yield [%] ^[b]		
1	Cu(CH ₃ CN) ₄ PF ₆ (10)	-	DCE, 80 °C, 7 h	37		
2	Cu(CH ₃ CN) ₄ BF ₄ (10)	-	DCE, 80 °C, 6 h	42		
3	CuOTf (10)	-	DCE, 80 °C, 7 h	24		
4	Cu(PPh ₃) ₃ Br (10)	-	DCE, 80 °C, 12 h	<1		
5	Cu(OTf) ₂ (10)	-	DCE, 80 °C, 11 h	31		
6	Cu(hfacac) ₂ (10)	-	DCE, 80 °C, 11 h	38		
7	Zn(OTf) ₂ (10)	-	DCE, 80 °C, 12 h	<1		
8	Y(OTf) ₃ (10)	-	DCE, 80 °C, 12 h	<1		
9	Sc(OTf) ₃ (10)	-	DCE, 80 °C, 12 h	<1		
10	Ph ₃ PAuCl/AgNTf ₂ (5)	-	DCE, 80 °C, 12 h	<1		
11	[Rh(CO) ₂ Cl] ₂ (5)	-	DCE, 80 °C, 12 h	<1		
12	Cu(CH ₃ CN) ₄ BF ₄ (10)	-	toluene, 80 °C, 12 h	38		
13	Cu(CH ₃ CN) ₄ BF ₄ (10)	-	MeCN, 80 °C, 12 h	47		
14	Cu(CH ₃ CN) ₄ BF ₄ (10)	MnO ₂	MeCN, 80 °C, 12 h	<1		
15	$Cu(CH_3CN)_4BF_4$ (10)	PhI(OAc) ₂	MeCN, 80 °C, 10 h	50		
16	Cu(CH ₃ CN) ₄ BF ₄ (10)	TBHP	MeCN, 80 °C, 15 h	60		
17	Cu(CH ₃ CN) ₄ BF ₄ (10)	TBHP	MeCN, 60 °C, 17 h	55		
18 ^[c]	Cu(CH ₃ CN) ₄ BF ₄ (10)	ТВНР	MeCN, 80 °C, 10 h	66		
 [a] Reaction conditions: 1a (0.1 mmol), oxidant (0.2 mmol), catalyst (5-10 mol %), 0.05 M, 80 °C, in vials. [b] Measured by ¹H NMR using diethyl phthalate as the internal standard. 						

[c] 10 mol % NaBARF was added.

2. Plausible reaction mechanism for the formation of **2a** and **4a**:

Representative synthetic procedures for the preparation of indolyl ynones 1a-1p and 3a-3t:

(A): CDI (1863.0 mg, 11.5 mmol) was slowly added to a solution of indole carboxylic acid (10.0 mmol) in 20.0 mL DCM at room temperature. The reaction mixture was stirred at room temperature for 0.5 h, after which NH(OMe)Me·HCl (1121.3 mg, 11.5 mmol) was added and the progress of the reaction was monitored by TLC. The reaction typically took 12 h. Upon completion, the crude reaction mixture was then poured into water (20 mL) and basified to pH 10 with 2 M NaOH, extracted with EtOAc (3×30 mL) and washed with 10% HCl (15 mL). The organic phases were combined and then dried over anhydrous MgSO₄, concentrated under reduced pressure to yield the crude amide products **s1**, which was then used in the next step without purification.¹

(B): Add ^{*n*}BuLi (10.0 mL, 25 mmol, 2.5 M in hexane) to a stirred solution of alkyne (30 mmol) in dry THF (20.0 mL) at -78 °C under Ar dropwise. The mixture was stirred for 0.5 h at -78 °C and then compounds s1 were added. The reaction mixture was warmed to room temperature and was stirred at room temperature and the progress of the reaction was monitored by TLC. The reaction typically took 1 h. Upon completion, the reaction was quenched by the addition of sat. aq. NH₄Cl (20 mL). The organic phases were separated and the aqueous phases was extracted with EtOAc (3 × 20 mL). The organic phases were combined and dried over anhydrous MgSO₄, concentrated under reduced pressure. The residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired indolyl ynone substrates **1a-1p** and **3a-3t**.²

General procedure for the synthesis of dibromo-substituted spiroindoles 2:

NBS (0.44 mmol, 76.6 mg), $Cu(CH_3CN)_4PF_6$ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) were added in this order to the indolyl ynones **1** (0.2 mmol) in PhCl (4.0 mL) at room temperature. The reaction mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. The reaction

typically took 0.5 h. Upon completion, the mixture was then concentrated and the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired products 2.

2',3-dibromo-2-phenylspiro[cyclopentane-1,3'-indol]-2-en-4-one (2a)

The reaction was conducted with 1-(1*H*-indol-3-yl)-4-phenylbut-3-yn-2-one (**1a**, 0.2 mmol, 51.8 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2a** (64.2 mg, 77%) as a yellow solid (mp 179-181 °C). The reaction was conducted with 1-(1*H*-indol-3-yl)-4-phenylbut-3-yn-2-one (**1a**, 4.0 mmol, 1036.0 mg), NBS (8.8 mmol, 1548.8 mg), Cu(CH₃CN)₄PF₆ (0.4 mmol, 14.9 mg), NaBARF (0.2 mmol, 177.2 mg), and 5Å molecular sieves (400 mg) in PhCl (40.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2a** (1117.6 mg, 67%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.7 Hz, 1H), 7.43 – 7.40 (m, 1H), 7.34 – 7.29

(m, 3H), 7.23 - 7.20 (m, 2H), 6.95 (d, J = 7.6 Hz, 2H), 3.14 (d, J = 18.7 Hz, 1H), 2.90 (d, J = 18.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 166.8, 163.7, 154.1, 139.2, 131.3, 130.6, 129.8, 128.5, 127.5, 126.9, 126.8, 122.2, 121.3, 70.3, 41.9; IR (neat): 2924, 1725, 1539, 1454, 1267, 939, 771, 746, 704; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₂Br₂NO 415.9280, found 415.9282.

2-phenylspiro[cyclopentane-1,3'-indol]-2-en-4-one (2aa)

The reaction was conducted with 1-(1H-indol-3-yl)-4-phenylbut-3-yn-2-one (**1a**, 0.2 mmol, 51.8 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2aa** (43.0 mg, 83%) as a pale yellow oil.

The data of **2aa** was reported in previous literature.³ ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.44 (t, J = 7.4 Hz, 1H), 7.31 – 7.24 (m, 3H), 7.20 – 7.16 (m, 2H), 6.98 (d, J = 7.7 Hz, 2H), 6.85 (s, 1H), 3.05 (d, J = 18.7 Hz, 1H), 2.68 (d, J = 18.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 204.2, 174.0, 171.9, 154.8, 140.8, 132.4, 131.3, 130.7, 129.0, 128.8, 127.6, 126.7, 122.1, 121.5, 65.9, 42.3.

3-chloro-2-phenylspiro[cyclopentane-1,3'-indol]-2-en-4-one (2aba)

2aba

The reaction was conducted with 1-(1*H*-indol-3-yl)-4-phenylbut-3-yn-2-one (**1a**, 0.2 mmol, 51.8 mg), CuCl₂ (0.12 mmol, 16.1 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2aba** (48.2 mg, 82%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.42 – 7.38 (m, 1H), 7.33 – 7.27 (m, 3H), 7.21 – 7.17 (m, 2H), 6.92 (d, *J* = 7.6 Hz, 2H), 3.24 (d, *J* = 18.8 Hz, 1H), 2.94 (d, *J* = 18.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 174.5, 171.5, 155.2, 138.6, 133.5, 130.2, 129.4, 128.3, 127.6, 126.4, 121.9, 121.8, 105.1, 68.8, 38.7; IR (neat):

2921, 2200, 1729, 1601, 1459, 1275, 968, 744, 698; HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₈H₁₃ClNO 294.0680, found 294.0675.

3-chloro-5'-methoxy-2-phenylspiro[cyclopentane-1,3'-indol]-2-en-4-one (2abb)

2abb

The reaction was conducted with 1-(5-methoxy-1*H*-indol-3-yl)-4-phenylbut-3-yn-2-one (**1p**, 0.2 mmol, 57.8 mg), CuCl₂ (0.12 mmol, 16.1 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2abb** (48.6 mg, 75%) as a yellow solid (mp 164-166 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.57 (d, *J* = 8.5 Hz, 1H), 7.32 – 7.20 (m, 3H), 7.07 (d, *J* = 7.9 Hz, 2H), 6.92 (d, *J* = 8.0 Hz, 1H), 6.82 (s, 1H), 3.80 (s, 3H), 3.12 (d, *J* = 18.9 Hz, 1H), 2.79 (d, *J* = 18.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 170.1, 164.1, 159.8, 148.7, 141.1, 133.0, 131.0, 130.7, 128.5, 127.0, 122.6, 114.3, 107.8, 64.9, 55.8, 40.0; IR (neat): 2924, 2847, 1720, 1590, 1470, 1280, 1027, 976, 746; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₅ClNO₂ 324.0786, found 324.0783.

2',3-dibromo-2-(4-fluorophenyl)spiro[cyclopentane-1,3'-indol]-2-en-4-one (2b)

The reaction was conducted with 4-(4-fluorophenyl)-1-(1*H*-indol-3-yl)but-3-yn-2-one (**1b**, 0.2 mmol, 55.4 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL)

at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2b** (52.2 mg, 60%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.7 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.34 (d, *J* = 4.3 Hz, 2H), 6.98 – 6.90 (m, 4H), 3.14 (d, *J* = 18.7 Hz, 1H), 2.90 (d, *J* = 18.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 165.6, 163.7 (d, *J* = 252.0 Hz), 163.6, 154.1, 139.1, 129.9, 129.3 (d, *J* = 9.0 Hz), 127.7, 127.2 (d, *J* = 3.0 Hz), 127.0, 122.1, 121.4, 115.9 (d, *J* = 22.0 Hz), 70.3, 41.9; IR (neat): 2923, 1732, 1618, 1505, 1472, 1232, 1158, 951, 673; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₁Br₂FNO 433.9186, found 433.9190.

2',3-dibromo-2-(4-chlorophenyl)spiro[cyclopentane-1,3'-indol]-2-en-4-one (2c)

The reaction was conducted with 4-(4-chlorophenyl)-1-(1*H*-indol-3-yl)but-3-yn-2-one (**1c**, 0.2 mmol, 58.8 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2c** (59.7 mg, 66%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.6 Hz, 1H), 7.45 – 7.42 (m, 1H), 7.34 (d, *J* = 3.0 Hz, 2H), 7.20 (d, *J* = 7.2 Hz, 2H), 6.89 (d, *J* = 7.2 Hz, 2H), 3.14 (d, *J* = 18.7 Hz, 1H), 2.90 (d, *J* = 18.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 165.4, 163.4, 154.1, 138.9, 136.8, 130.0, 129.6, 128.9, 128.4, 127.7, 127.3, 122.1, 121.4, 70.2, 41.8; IR (neat): 2917, 1720, 1538, 1485, 1096, 1010, 937, 769, 721; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₁Br₂CINO 451.8870, found 451.8898.

2',3-dibromo-2-(4-bromophenyl)spiro[cyclopentane-1,3'-indol]-2-en-4-one (2d)

The reaction was conducted with 4-(4-bromophenyl)-1-(1*H*-indol-3-yl)but-3-yn-2-one (**1d**, 0.2 mmol, 67.6 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2d** (79.4 mg, 80%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.7 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.37 – 7.33 (m, 4H), 6.82 (d, J = 8.5 Hz, 2H), 3.14 (d, J = 18.7 Hz, 1H), 2.90 (d, J = 18.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 165.5, 163.4, 154.1, 138.9, 131.9, 130.1, 130.0, 128.5, 127.7, 127.3, 125.2, 122.1, 121.4, 70.2, 41.8; IR (neat): 3069, 1715, 1596, 1538, 1450, 1198, 1070, 934, 775; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₁Br₃NO 495.8385, found 493.8395.

2',3-dibromo-2-(*p*-tolyl)spiro[cyclopentane-1,3'-indol]-2-en-4-one (2e)

The reaction was conducted with 1-(1*H*-indol-3-yl)-4-(*p*-tolyl)but-3-yn-2-one (**1e**, 0.2 mmol, 54.6 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2e** (63.8 mg, 74%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.7 Hz, 1H), 7.44 – 7.40 (m, 1H), 7.32 (d, J = 4.2 Hz, 2H), 7.02 (d, J = 8.1 Hz, 2H), 6.87 (d, J = 8.2 Hz, 2H), 3.12 (d, J = 18.6 Hz, 1H),

2.87 (d, J = 18.6 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 166.7, 164.1, 154.0, 141.2, 139.5, 129.7, 129.3, 128.4, 127.6, 127.0, 126.1, 122.2, 121.2, 70.3, 42.0, 21.4; IR (neat): 2924, 1717, 1609, 1541, 1502, 1453, 1269, 934, 766; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₄Br₂NO 429.9437, found 429.9446.

2',3-dibromo-2-(4-(tert-butyl)phenyl)spiro[cyclopentane-1,3'-indol]-2-en-4-one (2f)

The reaction was conducted with 4-(4-(*tert*-butyl)phenyl)-1-(1*H*-indol-3-yl)but-3-yn-2one (**1f**, 0.2 mmol, 63.0 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2f** (71.9 mg, 76%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.7 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.33 (d, *J* = 4.2 Hz, 2H), 7.22 (d, *J* = 8.3 Hz, 2H), 6.92 (d, *J* = 8.3 Hz, 2H), 3.12 (d, *J* = 18.6 Hz, 1H), 2.86 (d, *J* = 18.6 Hz, 1H), 1.24 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 166.4, 164.2, 154.3, 154.0, 139.8, 129.7, 128.3, 127.6, 126.9, 126.0, 125.5, 122.1, 121.3, 70.2, 42.2, 34.8, 31.0; IR (neat): 2958, 1723, 1604, 1538, 1459, 1269, 1201, 934, 763; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₀Br₂NO 471.9906, found 471.9907.

2',3-dibromo-2-(3-fluorophenyl)spiro[cyclopentane-1,3'-indol]-2-en-4-one (2g)

S11

The reaction was conducted with 4-(3-fluorophenyl)-1-(1*H*-indol-3-yl)but-3-yn-2-one (**1g**, 0.2 mmol, 55.4 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2g** (68.7 mg, 79%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.7 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.35 (d, *J* = 4.4 Hz, 2H), 7.23 – 7.18 (m, 1H), 7.01 (t, *J* = 8.3 Hz, 1H), 6.72 (d, *J* = 7.7 Hz, 1H), 6.65 (d, *J* = 9.6 Hz, 1H), 3.15 (d, *J* = 18.7 Hz, 1H), 2.91 (d, *J* = 18.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 165.2 (d, *J* = 2.0 Hz), 163.2, 162.1 (d, *J* = 246.0 Hz), 154.1, 138.8, 133.0 (d, *J* = 8.0 Hz), 130.4, 130.3, 130.0, 127.7, 127.6, 122.7 (d, *J* = 3.0 Hz), 122.1, 121.4, 117.6 (d, *J* = 20.0 Hz), 114.2 (d, *J* = 23.0 Hz), 70.2, 41.8; IR (neat): 2924, 1729, 1595, 1470, 1391, 1130, 1073, 956, 763; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₁Br₂FNO 435.9166, found 435.9179.

2',3-dibromo-2-(3-chlorophenyl)spiro[cyclopentane-1,3'-indol]-2-en-4-one (2h)

The reaction was conducted with 4-(3-chlorophenyl)-1-(1*H*-indol-3-yl)but-3-yn-2-one (**1h**, 0.2 mmol, 58.8 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2h** (75.0 mg, 83%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.4 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.38 – 7.35 (m, 2H), 7.27 – 7.26 (m, 1H), 7.15 (t, *J* = 7.9 Hz, 1H), 6.92 (s, 1H), 6.78 (d, *J* = 7.8 Hz, 1H), 3.15 (d, *J* = 18.7 Hz, 1H), 2.91 (d, *J* = 18.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 165.2, 163.1, 154.1, 138.7, 134.5, 132.8, 130.6, 130.0, 129.9, 127.7, 127.1, 125.0,

122.1, 121.4, 70.2, 41.7; IR (neat): 2921, 1726, 1541, 1453, 1257, 1192, 1073, 931, 760; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₁Br₂ClNO 451.8870, found 451.8875.

2',3-dibromo-2-(3-bromophenyl)spiro[cyclopentane-1,3'-indol]-2-en-4-one (2i)

The reaction was conducted with 4-(3-bromophenyl)-1-(1*H*-indol-3-yl)but-3-yn-2-one (**1i**, 0.2 mmol, 67.6 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2i** (64.5 mg, 65%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.7 Hz, 1H), 7.47 – 7.43 (m, 2H), 7.36 (d, *J* = 4.8 Hz, 2H), 7.11 – 7.07 (m, 2H), 6.83 (d, *J* = 7.7 Hz, 1H), 3.15 (d, *J* = 18.7 Hz, 1H), 2.92 (d, *J* = 18.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 165.0, 163.2, 154.1, 138.6, 133.5, 133.0, 130.1, 130.0, 129.9, 127.7, 125.4, 122.4, 122.2, 121.4, 70.2, 41.6; IR (neat): 2924, 1729, 1541, 1584, 1448, 1255, 1067, 937, 761; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₁Br₃NO 495.8365, found 495.8376.

2',3-dibromo-2-(*m*-tolyl)spiro[cyclopentane-1,3'-indol]-2-en-4-one (2j)

The reaction was conducted with 1-(1H-indol-3-yl)-4-(m-tolyl)but-3-yn-2-one (**1**j, 0.2 mmol, 54.6 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at

room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2j** (55.2 mg, 64%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.7 Hz, 1H), 7.44 – 7.40 (m, 1H), 7.35 – 7.31 (m, 2H), 7.13 – 7.07 (m, 2H), 6.73 – 6.70 (m, 2H), 3.13 (d, *J* = 18.6 Hz, 1H), 2.89 (d, *J* = 18.7 Hz, 1H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 167.1, 163.8, 154.1, 139.3, 138.2, 131.4, 131.2, 129.7, 128.4, 127.5, 127.4, 126.6, 124.0, 122.2, 121.2, 70.3, 41.9, 21.3; IR (neat): 2918, 1723, 1592, 1536, 1450, 1394, 1229, 934, 755; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₄Br₂NO 429.9437, found 429.9442.

2',3-dibromo-2-(3,5-dichlorophenyl)spiro[cyclopentane-1,3'-indol]-2-en-4-one (2k)

The reaction was conducted with 4-(3,5-dichlorophenyl)-1-(1*H*-indol-3-yl)but-3-yn-2one (**1k**, 0.2 mmol, 65.6 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2k** (59.3 mg, 61%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.7 Hz, 1H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.41 – 7.35 (m, 2H), 7.32 – 7.30 (m, 1H), 6.75 (s, 2H), 3.16 (d, *J* = 18.8 Hz, 1H), 2.93 (d, *J* = 18.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 163.8, 162.7, 154.2, 138.2, 135.3, 133.8, 130.5, 130.3, 128.5, 127.8, 125.3, 122.1, 121.5, 70.1, 41.5; IR (neat): 2921, 1732, 1578, 1538, 1453, 1263, 1121, 937, 761; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₀Br₂Cl₂NO 483.8501, found 483.8507.

2',3-dibromo-2-(3,5-dimethylphenyl)spiro[cyclopentane-1,3'-indol]-2-en-4-one (2l)

The reaction was conducted with 4-(3,5-dimethylphenyl)-1-(1*H*-indol-3-yl)but-3-yn-2one (**11**, 0.2 mmol, 57.4 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2l** (65.9 mg, 74%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.7 Hz, 1H), 7.44 – 7.40 (m, 1H), 7.34 – 7.31 (m, 2H), 6.92 (s, 1H), 6.51 (s, 2H), 3.12 (d, *J* = 18.7 Hz, 1H), 2.89 (d, *J* = 18.6 Hz, 1H), 2.14 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 167.3, 163.9, 154.2, 139.4, 138.0, 132.3, 131.1, 129.7, 127.4, 126.3, 124.5, 122.2, 121.1, 70.4, 41.8, 21.2; IR (neat): 2918, 1729, 1590, 1541, 1453, 1235, 1175, 934, 732; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₆Br₂NO 443.9593, found 443.9605.

2',3-dibromo-2-butylspiro[cyclopentane-1,3'-indol]-2-en-4-one (2m)

2m

The reaction was conducted with 1-(1*H*-indol-3-yl)oct-3-yn-2-one (**1m**, 0.2 mmol, 47.8 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2m** (60.3 mg, 76%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.8 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.22 (d, J = 7.5 Hz, 1H), 2.99 (d, J = 18.7 Hz, 1H), 2.78 (d, J = 18.7 Hz,

1H), 2.07 - 2.00 (m, 1H), 1.94 - 1.88 (m, 1H), 1.34 - 1.26 (m, 1H), 1.21 - 1.09 (m, 3H), 0.73 (t, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 171.9, 163.9, 154.2, 138.8, 129.7, 127.3, 126.9, 122.3, 121.1, 70.3, 41.2, 29.2, 28.8, 22.8, 13.3; IR (neat): 2955, 1723, 1612, 1473, 1326, 1201, 1096, 948, 752; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₁₆Br₂NO 395.9593, found 395.9596.

2',3-dibromo-2-cyclopropylspiro[cyclopentane-1,3'-indol]-2-en-4-one (2n)

The reaction was conducted with 4-cyclopropyl-1-(1*H*-indol-3-yl)but-3-yn-2-one (**1n**, 0.2 mmol, 44.6 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2n** (59.4 mg, 78%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 7.7 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.29 – 7.25 (m, 1H), 2.94 (d, *J* = 18.7 Hz, 1H), 2.71 (d, *J* = 18.7 Hz, 1H), 1.31 – 1.25 (m, 1H), 1.18 – 1.11 (m, 1H), 1.04 – 0.97 (m, 1H), 0.94 – 0.87 (m, 1H), 0.84 – 0.79 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 171.6, 164.6, 154.0, 139.5, 129.7, 127.5, 122.4, 122.2, 121.2, 70.4, 41.3, 13.1, 9.2, 8.0; IR (neat): 2915, 1720, 1595, 1533, 1450, 1229, 1076, 934, 763; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₁₂Br₂NO 379.9280, found 379.9287.

2',3,5'-tribromo-2-phenylspiro[cyclopentane-1,3'-indol]-2-en-4-one (20)

The reaction was conducted with 1-(5-bromo-1*H*-indol-3-yl)-4-phenylbut-3-yn-2-one (**10**, 0.2 mmol, 67.6 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **20** (78.4 mg, 79%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.3 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.35 (t, *J* = 7.3 Hz, 1H), 7.28 – 7.24 (m, 2H), 6.99 (d, *J* = 7.8 Hz, 2H), 3.13 (d, *J* = 18.6 Hz, 1H), 2.89 (d, *J* = 18.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 165.9, 164.1, 152.9, 141.3, 133.0, 131.0, 130.8, 128.7, 127.3, 126.9, 125.5, 122.5, 121.4, 70.5, 41.9; IR (neat): 2921, 1726, 1615, 1549, 1473, 1388, 1209, 948, 690; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₁Br₃NO 493.8385, found 493.8388.

2',3-dibromo-5'-methoxy-2-phenylspiro[cyclopentane-1,3'-indol]-2-en-4-one (2p)

The reaction was conducted with 1-(5-methoxy-1*H*-indol-3-yl)-4-phenylbut-3-yn-2-one (**1p**, 0.2 mmol, 57.8 mg), NBS (0.44 mmol, 76.6 mg), Cu(CH₃CN)₄PF₆ (0.02 mmol, 7.5 mg), NaBARF (0.02 mmol, 17.7 mg), and 5Å molecular sieves (40 mg) in PhCl (4.0 mL) at room temperature. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) yielded **2p** (76.9 mg, 86%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.5 Hz, 1H), 7.33 (t, J = 7.4 Hz, 1H), 7.27 – 7.22 (m, 2H), 7.00 (d, J = 7.6 Hz, 2H), 6.92 – 6.86 (m, 2H), 3.82 (s, 3H), 3.14 (d, J = 18.7 Hz, 1H), 2.87 (d, J = 18.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 166.8,

160.3, 159.5, 147.7, 140.8, 131.3, 130.7, 128.5, 127.0, 126.7, 121.8, 114.5, 108.4, 70.3, 55.9, 42.2; IR (neat): 2932, 1720, 1604, 1536, 1470, 1289, 1209, 951, 735; HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₉H₁₄Br₂NO₂ 445.9386, found 445.9387.

General procedure for the synthesis of cyclopenta[*c*]quinolin-3-ones 4:

TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) were added in this order to the indolyl ynones **3** (0.2 mmol) in MeCN (4.0 mL) at room temperature. The reaction mixture was stirred at 80 °C (80 °C, heating mantle temperature) and the progress of the reaction was monitored by TLC. The reaction typically took 2 - 13 h. Upon completion, the mixture was then concentrated and the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired products **4**.

4-phenyl-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4a)

The reaction was conducted with 5-(1*H*-indol-3-yl)-1-phenylpent-1-yn-3-one (**3a**, 0.2 mmol, 54.6 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4a** (33.2 mg, 64%) as a yellow solid (mp 197-199 °C).

The reaction was conducted with 5-(1*H*-indol-3-yl)-1-phenylpent-1-yn-3-one (**3a**, 6.0 mmol, 1638.0 mg), TBHP (12.0 mmol, 1080.0 mg), Cu(CH₃CN)₄BF₄ (0.6 mmol, 189.0 mg), and NaBARF (0.3 mmol, 265.8 mg) in MeCN (60.0 mL) at 80 °C. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4a** (1024.2 mg, 66%) as a yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.4 Hz, 1H), 8.03 (d, *J* = 8.1 Hz, 1H), 7.89 – 7.81 (m, 3H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.58 – 7.48 (m, 3H), 3.47 – 3.44 (m, 2H), 2.87 – 2.84 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.5, 166.8, 157.1, 149.1, 137.6, 132.7, 130.3, 129.7, 129.3, 127.8, 127.5, 127.2, 125.0, 123.7, 36.4, 23.7; IR (neat): 2918, 1708, 1615, 1550, 1411, 1195, 1076, 772, 695; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₄NO 260.1070, found 260.1070.

4-hydroxy-3-oxo-4-phenyl-1,2,3,4-tetrahydro-5*H*-cyclopenta[*c*]quinoline-5carbaldehyde (4aa)

4aa

The reaction was conducted with 5-(1*H*-indol-3-yl)-1-phenylpent-1-yn-3-one (**3a**, 0.2 mmol, 54.6 mg), TBHP (0.4 mmol, 36.0 mg), PdCl₂ (0.02 mmol, 3.6 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) yielded **4aa** (52.5 mg, 86%) as a yellow solid (mp 171-173 °C).

¹H NMR (400 MHz, CDCl₃) δ 9.01 (s, 1H), 7.54 – 7.45 (m, 4H), 7.33 – 7.23 (m, 5H), 3.06 – 2.77 (m, 3H), 2.66 – 2.53 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 143.4, 136.7, 134.5, 134.4, 133.2, 129.5, 128.8, 128.7, 128.5, 125.3, 124.9, 124.6, 120.5, 35.2, 23.9; IR (neat): 3392(br), 2930, 2853, 2203, 1700, 1641, 1463, 1382, 1195, 761; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₉H₁₆NO₃ 328.0944, found 328.0941.

4-(4-fluorophenyl)-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4b)

The reaction was conducted with 1-(4-fluorophenyl)-5-(1H-indol-3-yl)pent-1-yn-3-one (**3b**, 0.2 mmol, 58.2 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4b** (41.6 mg, 75%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.5 Hz, 1H), 8.07 (d, J = 8.2 Hz, 1H), 7.92 – 7.83 (m, 3H), 7.68 (t, J = 7.5 Hz, 1H), 7.18 (t, J = 8.5 Hz, 2H), 3.52 - 3.49 (m, 2H), 2.91 -2.88 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.7, 167.1, 163.7 (d, J = 248.0 Hz), 156.0, 149.1, 133.7 (d, J = 4.0 Hz), 132.9, 131.9 (d, J = 9.0 Hz), 130.3, 127.4, 125.0, 123.8, 114.9 (d, J = 22.0 Hz), 36.5, 23.8; IR (neat): 2913, 1706, 1615, 1556, 1402, 1198, 1076, 843, 763; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₃FNO 278.0976, found 278.0974.

4-(4-chlorophenyl)-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4c)

4c

The reaction was conducted with 1-(4-chlorophenyl)-5-(1H-indol-3-yl)pent-1-yn-3-one (3c, 0.2 mmol, 61.6 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating

mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4c** (42.9 mg, 73%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 5.4 Hz, 1H), 8.06 (d, *J* = 5.4 Hz, 1H), 7.90 (t, *J* = 6.1 Hz, 1H), 7.80 – 7.77 (m, 2H), 7.70 – 7.66 (m, 1H), 7.47 – 7.44 (m, 2H), 3.50 – 3.48 (m, 2H), 2.89 – 2.87 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.6, 167.1, 155.8, 149.1, 136.1, 135.6, 132.9, 131.3, 130.3, 128.1, 127.5, 127.4, 125.1, 123.8, 36.4, 23.8; IR (neat): 2924, 1703, 1612, 1544, 1419, 1272, 1087, 834, 749; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₃CINO 294.0680, found 294.0677.

4-(4-bromophenyl)-1,2-dihydro-3H-cyclopenta[c]quinolin-3-one (4d)

4d

The reaction was conducted with 1-(4-bromophenyl)-5-(1*H*-indol-3-yl)pent-1-yn-3-one (**3d**, 0.2 mmol, 70.4 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4d** (44.6 mg, 66%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.4 Hz, 1H), 8.08 (d, *J* = 8.1 Hz, 1H), 7.91 (t, *J* = 7.6 Hz, 1H), 7.74 – 7.62 (m, 5H), 3.52 – 3.50 (m, 2H), 2.90 – 2.88 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.6, 167.1, 155.9, 149.1, 136.5, 132.9, 131.5, 131.0, 130.3, 127.6, 127.4, 125.1, 124.1, 123.8, 36.5, 23.8; IR (neat): 2918, 1712, 1612, 1553, 1408, 1195, 1073, 945, 758; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₃BrNO 338.0175, found 338.0171.

4-(4-(trifluoromethyl)phenyl)-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4e)

The reaction was conducted with 5-(1*H*-indol-3-yl)-1-(4-(trifluoromethyl)phenyl)pent-1yn-3-one (**3e**, 0.2 mmol, 68.2 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4e** (41.9 mg, 64%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.4 Hz, 1H), 8.09 (d, *J* = 8.1 Hz, 1H), 7.95 – 7.91 (m, 3H), 7.76 – 7.69 (m, 3H), 3.54 – 3.51 (m, 2H), 2.92 – 2.89 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.5, 167.1, 155.5, 149.1, 141.1, 133.0, 130.4, 130.2, 127.8, 127.4, 125.2, 124.8 (q, *J* = 3.7 Hz), 123.9, 36.4, 23.9; IR (neat): 2918, 1715, 1553, 1411, 1323, 1107, 1059, 849, 761; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₃F₃NO 328.0944, found 328.0940.

4-(3-oxo-2,3-dihydro-1*H*-cyclopenta[*c*]quinolin-4-yl)benzonitrile (4f)

The reaction was conducted with 4-(5-(1*H*-indol-3-yl)-3-oxopent-1-yn-1-yl)benzonitrile (**3f**, 0.2 mmol, 59.6 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4f** (47.7 mg, 84%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.3 Hz, 1H), 8.11 (d, *J* = 8.1 Hz, 1H), 7.95 – 7.93 (m, 3H), 7.78 – 7.72 (m, 3H), 3.54 – 3.52 (m, 2H), 2.92 – 2.90 (m, 2H); ¹³C NMR

(100 MHz, CDCl₃) δ 203.5, 167.2, 154.8, 149.0, 142.0, 133.2, 131.6, 130.6, 130.4, 128.1, 125.3, 123.9, 118.9, 112.8, 36.4, 23.9; IR (neat): 2913, 2223, 1703, 1612, 1547, 1410, 1272, 846, 763; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₃N₂O 285.1022, found 285.1020.

4-(*p*-tolyl)-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4g)

4g

The reaction was conducted with 5-(1*H*-indol-3-yl)-1-(*p*-tolyl)pent-1-yn-3-one (**3g**, 0.2 mmol, 57.4 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4g** (43.1 mg, 79%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.1 Hz, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.88 (t, *J* = 7.6 Hz, 1H), 7.73 (d, *J* = 6.2 Hz, 2H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.30 (d, *J* = 6.6 Hz, 2H), 3.49 – 3.47 (m, 2H), 2.88 – 2.87 (m, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.7, 166.8, 157.2, 149.2, 139.4, 134.8, 132.7, 130.3, 129.7, 128.6, 127.5, 127.1, 124.9, 123.8, 36.5, 23.7, 21.5; IR (neat): 2918, 2853, 1715, 1612, 1550, 1408, 1181, 812, 755; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₆NO 274.1226, found 274.1223.

4-(4-ethylphenyl)-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4h)

4h

The reaction was conducted with 1-(4-ethylphenyl)-5-(1*H*-indol-3-yl)pent-1-yn-3-one (**3h**, 0.2 mmol, 60.2 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4h** (39.0 mg, 68%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.4 Hz, 1H), 8.05 (d, *J* = 8.1 Hz, 1H), 7.88 (t, *J* = 7.7 Hz, 1H), 7.77 (d, *J* = 8.1 Hz, 2H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 3.49 – 3.47 (m, 2H), 2.89 – 2.86 (m, 2H), 2.74 (q, *J* = 7.6 Hz, 2H), 1.29 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.6, 166.8, 157.2, 149.2, 145.7, 135.1, 132.6, 130.3, 129.8, 127.5, 127.4, 127.1, 124.9, 123.7, 36.5, 28.8, 23.7, 15.4; IR (neat): 2918, 2251, 1712, 1615, 1550, 1414, 1263, 908, 729; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₈NO 288.1383, found 288.1380.

4-(4-(*tert*-butyl)phenyl)-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4i)

4i

The reaction was conducted with 1-(4-(*tert*-butyl)phenyl)-5-(1*H*-indol-3-yl)pent-1-yn-3one (**3i**, 0.2 mmol, 65.8 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4i** (40.0 mg, 63%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.2 Hz, 1H), 8.04 (d, *J* = 8.0 Hz, 1H), 7.87 (t, *J* = 7.5 Hz, 1H), 7.80 (d, *J* = 7.1 Hz, 2H), 7.64 (t, *J* = 7.3 Hz, 1H), 7.52 (d, *J* = 7.1 Hz, 2H), 3.48 – 3.46 (m, 2H), 2.88 – 2.86 (m, 2H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 203.7, 166.8, 157.1, 152.4, 149.2, 134.8, 132.6, 130.3, 129.5, 127.5, 127.1, 124.9, 123.7, 36.5, 34.7, 31.3, 23.7; IR (neat): 2958, 2319, 1709, 1615, 1544, 1402, 1198, 942, 752; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₂NO 316.1696, found 316.1692. 4-(4-methoxyphenyl)-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4j)

The reaction was conducted with 5-(1*H*-indol-3-yl)-1-(4-methoxyphenyl)pent-1-yn-3-one (**3j**, 0.2 mmol, 60.6 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4j** (39.9 mg, 69%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.5 Hz, 1H), 8.06 (d, *J* = 8.2 Hz, 1H), 7.90 – 7.83 (m, 3H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.03 (d, *J* = 8.5 Hz, 2H), 3.89 (s, 3H), 3.51 – 3.48 (m, 2H), 2.91 – 2.88 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.8, 167.0, 160.8, 156.8, 149.2, 132.7, 131.5, 130.2, 127.4, 127.0, 124.8, 123.8, 113.4, 55.3, 36.5, 23.7; IR (neat): 2918, 2191, 1706, 1607, 1248, 1172, 1025, 837, 755; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₆NO₂ 290.1176, found 290.1172.

4-(3-chlorophenyl)-1,2-dihydro-3H-cyclopenta[c]quinolin-3-one (4k)

4k

The reaction was conducted with 1-(3-chlorophenyl)-5-(1*H*-indol-3-yl)pent-1-yn-3-one (**3k**, 0.2 mmol, 61.6 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4k** (40.0 mg, 68%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.5 Hz, 1H), 8.07 (d, *J* = 8.2 Hz, 1H), 7.91 (t, *J* = 7.7 Hz, 1H), 7.84 (s, 1H), 7.69 (t, *J* = 8.0 Hz, 2H), 7.46 – 7.39 (m, 2H), 3.51 – 3.49 (m, 2H), 2.90 – 2.87 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.4, 167.0, 155.5, 149.0, 139.3, 133.8, 132.9, 130.3, 129.8, 129.4, 129.0, 128.2, 127.6, 127.4, 125.2, 123.8, 36.4, 23.8; IR (neat): 2921, 2850, 1703, 1615, 1416, 1198, 1081, 877, 758; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₃ClNO 294.0680, found 294.0676.

4-(*m*-tolyl)-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4l)

41

The reaction was conducted with 5-(1*H*-indol-3-yl)-1-(*m*-tolyl)pent-1-yn-3-one (**31**, 0.2 mmol, 57.4 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4l** (34.9 mg, 64%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.5 Hz, 1H), 8.07 (d, *J* = 8.2 Hz, 1H), 7.89 (t, *J* = 7.7 Hz, 1H), 7.68 – 7.57 (m, 3H), 7.38 (t, *J* = 6.9 Hz, 1H), 7.30 – 7.26 (m, 1H), 3.51 – 3.49 (m, 2H), 2.89 – 2.87 (m, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.6, 166.8, 157.4, 149.1, 137.6, 137.5, 132.7, 130.3, 130.2, 130.1, 127.7, 127.6, 127.2, 127.1, 125.0, 123.8, 36.5, 23.8, 21.5; IR (neat): 2921, 2181, 1715, 1615, 1556, 1408, 1181, 1033, 755; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₆NO 274.1226, found 274.1224.

4-(2-chlorophenyl)-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4m)

The reaction was conducted with 1-(2-chlorophenyl)-5-(1*H*-indol-3-yl)pent-1-yn-3-one (**3m**, 0.2 mmol, 61.6 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4m** (39.4 mg, 67%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.3 Hz, 1H), 8.11 (d, *J* = 8.1 Hz, 1H), 7.92 (t, *J* = 7.6 Hz, 1H), 7.72 (t, *J* = 7.4 Hz, 1H), 7.50 – 7.40 (m, 4H), 3.59 – 3.46 (m, 2H), 2.92 – 2.79 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.0, 165.4, 154.6, 149.1, 137.4, 133.1, 132.7, 130.4, 130.2, 130.0, 129.2, 128.8, 127.8, 126.8, 125.6, 124.0, 36.2, 23.9; IR (neat): 2921, 2850, 1712, 1612, 1556, 1431, 1027, 945, 752; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₃CINO 294.0680, found 294.0678.

4-(thiophen-3-yl)-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4n)

4n

The reaction was conducted with 5-(1*H*-indol-3-yl)-1-(thiophen-3-yl)pent-1-yn-3-one (**3n**, 0.2 mmol, 55.8 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4n** (36.0 mg, 68%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 8.17 (d, *J* = 8.5 Hz, 1H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.89 – 7.84 (m, 2H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.41 – 7.36 (m, 1H), 3.46 – 3.44 (m, 2H), 2.90 – 2.87 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 204.1, 167.2, 151.5, 149.1,

139.5, 132.7, 130.1, 129.3, 129.0, 127.5, 127.1, 124.8, 124.3, 123.7, 36.5, 23.8; IR (neat): 3111, 2915, 1700, 1558, 1436, 1311, 1181, 871, 756; HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₆H₁₂NOS 266.0634, found 266.0632.

9-fluoro-4-phenyl-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (40)

The reaction was conducted with 5-(4-fluoro-1*H*-indol-3-yl)-1-phenylpent-1-yn-3-one (**30**, 0.2 mmol, 58.2 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **40** (30.5 mg, 55%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.4 Hz, 1H), 7.79 – 7.74 (m, 3H), 7.55 – 7.49 (m, 3H), 7.29 (t, *J* = 9.3 Hz, 1H), 3.76 – 3.65 (m, 2H), 2.85 – 2.83 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.1, 165.0, 160.7, 158.2 (d, *J* = 4.0 Hz), 150.3 (d, *J* = 2.0 Hz), 137.3, 132.3 (d, *J* = 9.0 Hz), 129.8, 129.6, 128.2, 128.1, 127.9, 126.2 (d, *J* = 4.0 Hz), 116.1 (d, *J* = 14.0 Hz), 111.8 (d, *J* = 20.0 Hz), 36.4 (d, *J* = 2.8 Hz), 27.0 (d, *J* = 7.5 Hz); IR (neat): 2924, 2850, 1712, 1624, 1575, 1391, 1192, 1021, 780; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₃FNO 278.0976, found 278.0974.

8-chloro-4-phenyl-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4p)

The reaction was conducted with 5-(5-chloro-1*H*-indol-3-yl)-1-phenylpent-1-yn-3-one (**3p**, 0.2 mmol, 61.6 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3

mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4p** (45.3 mg, 77%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.19 (t, *J* = 9.1 Hz, 1H), 8.04 (d, *J* = 7.2 Hz, 1H), 7.88 – 7.76 (m, 3H), 7.57 – 7.51 (m, 3H), 3.51 – 3.41 (m, 2H), 2.93 – 2.84 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.2, 165.9, 157.4, 147.5, 137.3, 133.4, 133.2, 131.9, 129.8, 129.6, 128.2, 127.9, 125.8, 122.8, 36.4, 23.7; IR (neat): 2921, 2850, 1712, 1547, 1487, 1385, 1183, 834, 712; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₃ClNO 294.0680, found 294.0678.

8-bromo-4-phenyl-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4q)

The reaction was conducted with 5-(5-bromo-1*H*-indol-3-yl)-1-phenylpent-1-yn-3-one (**3q**, 0.2 mmol, 70.4 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4q** (45.3 mg, 67%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.24 – 8.18 (m, 1H), 8.11 – 8.07 (m, 1H), 7.95 – 7.92 (m, 1H), 7.86 – 7.80 (m, 2H), 7.55 – 7.48 (m, 3H), 3.45 – 3.42 (m, 2H), 2.90 – 2.87 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.1, 165.7, 157.5, 147.7, 137.3, 135.9, 132.0, 129.8, 129.6, 128.2, 127.9, 126.3, 126.1, 121.3, 36.4, 23.7; IR (neat): 3924, 2847, 1715, 1544, 1385, 1181, 954, 840, 698; HRMS (ESI) m/z: [M + H]+ calcd for C₁₈H₁₃BrNO 338.0175, found 338.0173.

8-methyl-4-phenyl-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4r)

The reaction was conducted with 5-(5-methyl-1*H*-indol-3-yl)-1-phenylpent-1-yn-3-one (**3r**, 0.2 mmol, 57.4 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4r** (33.3 mg, 61%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.6 Hz, 1H), 7.82 – 7.80 (m, 3H), 7.72 (d, *J* = 8.6 Hz, 1H), 7.51 – 7.47 (m, 3H), 3.46 – 3.43 (m, 2H), 2.88 – 2.85 (m, 2H), 2.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.7, 166.1, 156.2, 147.6, 137.8, 137.4, 134.9, 130.0, 129.7, 129.2, 127.8, 127.5, 125.0, 122.7, 36.5, 23.7, 21.7; IR (neat): 2918, 2200, 1717, 1561, 1436, 1172, 1072, 826, 692; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₆NO 274.1226, found 274.1225.

8-methoxy-4-phenyl-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4s)

The reaction was conducted with 5-(5-methoxy-1*H*-indol-3-yl)-1-phenylpent-1-yn-3-one (**3s**, 0.2 mmol, 60.6 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4s** (43.4 mg, 75%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 9.2 Hz, 1H), 7.79 (d, J = 7.0 Hz, 2H), 7.53 – 7.47 (m, 4H), 7.21 (d, J = 2.4 Hz, 1H), 3.98 (s, 3H), 3.41 – 3.38 (m, 2H), 2.87 – 2.84 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.8, 165.1, 158.4, 154.6, 145.0, 137.8, 131.7, 129.7, 129.0, 127.8, 127.5, 126.0, 124.7, 101.6, 55.7, 36.5, 23.8; IR (neat): 2921, 2847,

1706, 1558, 1405, 1218, 1027, 832, 689; HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{19}H_{16}NO_2$ 290.1176, found 290.1172.

7-bromo-4-phenyl-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4t)

The reaction was conducted with 5-(6-bromo-1*H*-indol-3-yl)-1-phenylpent-1-yn-3-one (**3t**, 0.2 mmol, 70.4 mg), TBHP (0.4 mmol, 36.0 mg), Cu(CH₃CN)₄BF₄ (0.02 mmol, 6.3 mg), and NaBARF (0.02 mmol, 17.7 mg) in MeCN (4.0 mL) at 80 °C (80 °C, heating mantle temperature). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) yielded **4t** (58.1 mg, 86%) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.89 (d, *J* = 6.6 Hz, 1H), 7.81 – 7.80 (m, 2H), 7.72 (d, *J* = 8.6 Hz, 1H), 7.58 – 7.49 (m, 3H), 3.46 – 3.44 (m, 2H), 2.87 – 2.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.1, 166.7, 158.2, 149.6, 137.2, 132.7, 130.8, 129.8, 129.7, 127.9, 127.8, 127.3, 125.0, 123.7, 36.4, 23.7; IR (neat): 2924, 2847, 1715, 1601, 1547, 1408, 1073, 899, 692; HRMS (ESI) m/z: [M + H]+ calcd for C₁₈H₁₃BrNO 338.0175, found 338.0173.

Synthetic Applications

2',3-dibromo-2-phenylspiro[cyclopentane-1,3'-indol]-2-en-4-ol (5)

NaBH₄ (0.4 mmol, 15.2 mg) was added to a solution of compound **2a** (0.2 mmol, 83.4 mg) in MeOH at 0 °C. The reaction mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. Upon completion, the mixture was then concentrated and the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired product **5** (55.3 mg, 66% yield, yellow oil). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.6 Hz, 1H), 7.39 – 7.30 (m, 3H), 7.20 (t, *J* = 7.2 Hz, 1H), 7.16 – 7.12 (m, 2H), 6.81 (d, *J* = 7.5 Hz, 2H), 5.27 (t, *J* = 6.3 Hz, 1H), 2.69 – 2.55 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 153.5, 141.7, 141.3, 132.0, 129.1, 128.9, 128.2, 127.5, 126.9, 122.0, 120.9, 78.1, 74.1, 41.7; IR (neat): 3239(br), 2924, 2245, 1712, 1618, 1470, 1326, 1192, 752, 692; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₄Br₂NO 417.9437, found 417.9443.

2',3-dibromo-2,4-diphenylspiro[cyclopentane-1,3'-indol]-2-en-4-ol (6)

PhMgCl (0.4 mL, 0.4 mmol, 1.0 M in THF) was added to a solution of the compound **2a** (0.2 mmol, 83.4 mg) in dry THF (4.0 mL) at 0 °C. The reaction mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. Upon completion, the mixture was then concentrated and the residue was purified by

chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired product **6** (71.3 mg, 72% yield, yellow oil). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.51 – 7.47 (m, 2H), 7.43 – 7.14 (m, 8H), 6.97 (d, *J* = 8.0 Hz, 2H), 3.06 (d, *J* = 15.1 Hz, 1H), 2.98 (s, 1H), 2.83 (d, *J* = 15.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 153.7, 144.5, 142.8, 141.4, 132.6, 132.1, 129.0, 128.9, 128.7, 128.1, 128.0, 127.9, 126.9, 125.6, 122.5, 120.7, 87.0, 74.8, 48.8; IR (neat): 3228(br), 3057, 2921, 1706, 1612, 1470, 1317, 1218, 749, 692; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₁₈Br₂NO 493.9750, found 493.9769.

4-phenyl-2,3-dihydro-1*H*-cyclopenta[*c*]quinolin-3-ol (7)

NaBH₄ (0.4 mmol, 15.2 mg) was added dropwise to a solution of compound **4a** (0.2 mmol, 51.8 mg) in MeOH (4.0 mL) at 0 °C. The reaction mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. Upon completion, the mixture was then concentrated and the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired product **7** (50.6 mg, 97% yield, yellow oil). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 6.9 Hz, 2H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.55 – 7.43 (m, 4H), 5.58 (d, *J* = 4.7 Hz, 1H), 3.49 – 3.41 (m, 1H), 3.24 – 3.16 (m, 1H), 2.54 – 2.45 (m, 1H), 2.33 (s, 1H), 2.22 – 2.16 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 156.5, 152.1, 148.1, 139.8, 135.7, 129.9, 129.6, 128.8(2), 128.7(9), 128.7, 126.4, 125.1, 124.3, 75.6, 34.7, 28.5; IR (neat): 3347(br), 3061, 2927, 2240, 1583, 1496, 1357, 1044, 891, 695; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₈H₁₆NO 262.1226, found 262.1225.

3,4-diphenyl-2,3-dihydro-1*H*-cyclopenta[*c*]quinolin-3-ol (8)

PhMgCl (0.4 mL, 0.4 mmol, 1.0 M in THF) was added dropwise to a solution of compound **4a** (0.2 mmol, 51.8 mg) in dry THF (4.0 mL) at 0 °C. The reaction mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. Upon completion, the mixture was then concentrated and the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired product **8** (66.7 mg, 99% yield, yellow oil). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.5 Hz, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.25 – 7.18 (m, 8H), 7.10 (d, *J* = 7.8 Hz, 2H), 3.49 – 3.42 (m, 1H), 3.30 – 3.22 (m, 1H), 2.67 – 2.53 (m, 2H), 2.47 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 151.5, 147.8, 147.3, 139.6, 138.0, 130.0, 129.7, 128.6, 128.3(3), 128.2(6), 128.1, 126.8, 126.7, 124.9, 124.6, 124.2, 86.5, 45.1, 27.4; IR (neat): 3361(br), 3063, 2924, 1956, 1737, 1578, 1490, 1050, 763, 698; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₀NO 338.1539, found 338.1537.

Reference

- (1) D. Dagoneau, Q. Wang, J. Zhu, Chem. Eur. J. 2020, 26, 4866-4873.
- (2) P. Fedoseev, E. Van der Eycken, Chem. Commun. 2017, 53, 7732-7735.
- (3) M. J. James, J. D. Cuthbertson, P. O'Brien, R. J. K. Taylor, W. P. Unsworth, Angew. Chem. Int. Ed. 2015, 54, 7640 –7643.

2',3-dibromo-2-phenylspiro[cyclopentane-1,3'-indol]-2-en-4-one (2a). CCDC Number = 2132356

Crystal of **2a** was grown by slow evaporation of hexane/ethyl acetate solution of **2a** at room temperature (25 °C). X-ray diffraction data was collected at 293 K on a Rigaku Gemini E diffractometer with graded-multilayer focused CuK(alpha) X-rays.

Figure S1. Crystal structure of 2a with thermal ellipsoids at 50% probability

Bond precision:	C-C = 0.0049 A	Wavelength=1.54184				
Cell:	a=14.2057(2) alpha=90	b=10.32140(14) beta=95.5952(14)	c=21.0985(3) gamma=90			
Temperature:	293 К		-			
	Calculated	Reported				
Volume	3078.78(7)	3078.78(8)				
Space group	C 2/c	C 1 2/c 1				
Hall group	-C 2yc	-C 2yc				
Moiety formula	C18 H11 Br2 N O	C18 H11 Br	2 N O			
Sum formula	C18 H11 Br2 N O	C18 H11 Br	2 N O			
Mr	417.08	417.10				
Dx,g cm-3	1.800	1.800				
Z	8	8				
Mu (mm-1)	6.679	6.679				
F000	1632.0	1632.0				
F000'	1624.30					
h,k,lmax	16,12,25	16,12,25				
Nref	2756	2753				
Tmin, Tmax	0.435,0.548	0.735,1.00	0			
Tmin'	0.374					
Correction method= # Reported T Limits: Tmin=0.735 Tmax=1.000 AbsCorr = MULTI-SCAN						
Data completenes	s= 0.999	Theta(max)= 67.077				
R(reflections)=	0.0353(2472)		wR2(reflections) 0.1010(2753)			
S = 1.074	Npar= 2	200				

3-chloro-5'-methoxy-2-phenylspiro[cyclopentane-1,3'-indol]-2-en-4-one (2abb). CCDC Number = 2132359

Crystal of **2abb** was grown by slow evaporation of hexane/dichloromethane solution of **2abb** at room temperature (25 °C). X-ray diffraction data was collected at 293 K on a Rigaku Gemini E diffractometer with graded-multilayer focused CuK(alpha) X-rays.

Figure S2. Crystal structure of 2abb with thermal ellipsoids at 50% probability

Bond precision:	C-C = 0.0031 A	Wavelength=1.54184	
Cell:	a=15.4499(5) alpha=90	b=6.48001(16) beta=100.667(3)	c=16.3247(5) gamma=90
Temperature:	293 K		
	Calculated	Reported	
Volume	1606.11(8)	1606.11(8))
Space group	P 21/n	P 1 21/n 1	L
Hall group	-P 2vn	-P 2vn	
Moiety formula	C19 H14 Cl N O2	C19 H14 C	L N 02
Sum formula	C19 H14 Cl N O2	C19 H14 C	L N 02
Mr	323.76	323.76	
Dx, g cm-3	1.339	1.339	
Z	4	4	
Mu (mm-1)	2.176	2.176	
F000	672.0	672.0	
F000′	675.27		
h,k,lmax	18,7,19	18,7,19	
Nref	2868	2867	
Tmin, Tmax	0.728,0.804	0.968,1.00	00
Tmin'	0.658		
Correction metho AbsCorr = MULTI-	od= # Reported T L -SCAN	imits: Tmin=0.968 Tma	ax=1.000
Data completenes	ss= 1.000	Theta(max)= 67.054	
R(reflections)=	0.0459(2220)		wR2(reflections)= 0.1333(2867)
S = 1.040	Npar= 2	204	
4-phenyl-1,2-dihydro-3*H*-cyclopenta[*c*]quinolin-3-one (4a). CCDC Number = 2132360

Crystal of **4a** was grown by slow evaporation of hexane/dichloromethane solution of **4a** at room temperature (25 °C). X-ray diffraction data was collected at 293 K on a Rigaku Gemini E diffractometer with graded-multilayer focused CuK(alpha) X-rays.

Bond precision:	C-C = 0.0066	A	Wavelength	n=1.54184
Cell:	a=30.272(3) alpha=90	b=7.2755(2) beta=136.53	0(17)	c=19.6366(18) gamma=90
Temperature:	293 K			-
	Calculated		Reported	
Volume	2975.4(10)		2975.4(8)	
Space group	C 2/C		C 1 2/C 1	
Hall group	-C 2yc		-C 2yc	
Moiety formula	2(C18 H13 N O)	, C H2 Cl2	2(C18 H13	N O), C H2 Cl2
Sum formula	C37 H28 Cl2 N2	02	C37 H28 C	C12 N2 O2
Mr	603.51		603.51	
Dx,g cm-3	1.347		1.347	
Z	4		4	
Mu (mm-1)	2.256		2.256	
F000	1256.0		1256.0	
F000′	1262.09			
h,k,lmax	36,8,23		36,8,23	
Nref	2668		2665	
Tmin,Tmax	0.719,0.835		0.773,1.0	000
Tmin'	0.607			
Correction metho AbsCorr = MULTI	od= # Reported -SCAN	T Limits: Tr	nin=0.773	Tmax=1.000
Data completenes	ss= 0.999	Theta(m	ax)= 67.06	56
R(reflections) =	0.0774(1929)	wR2(ref	lections)=	= 0.2391(2665)
S = 1.049	Npa	r= 195		

4-hydroxy-3-oxo-4-phenyl-1,2,3,4-tetrahydro-5*H*-cyclopenta[*c*]quinoline-5carbaldehyde (4aa). CCDC Number = 2132361

Crystal of **4aa** was grown by slow evaporation of hexane/dichloromethane solution of **4aa** at room temperature (25 °C). X-ray diffraction data was collected at 293 K on a Rigaku Gemini E diffractometer with graded-multilayer focused CuK(alpha) X-rays.

Figure S4. Crystal structure of 4aa with thermal ellipsoids at 50% probability

Bond precision:	C-C = 0.0051 A	Wavelengt	h=1.54184
Cell:	a=9.0229(4) alpha=90	b=10.3734(4) beta=90	c=15.9971(11) gamma=90
Temperature:	293 K		5
	Calculated	Reported	l
Volume	1497.30(14)	1497.31(14)
Space group	P 21 21 21	P 21 21	21
Hall group	P 2ac 2ab	P 2ac 2a	b
Moiety formula	C19 H15 N O3	C19 H15	N 03
Sum formula	C19 H15 N O3	C19 H15	N 03
Mr	305.32	305.32	
Dx,g cm-3	1.354	1.354	
Z	4	4	
Mu (mm-1)	0.749	0.749	
F000	640.0	640.0	
F000'	642.00		
h,k,lmax	10,12,19	10,12,19	
Nref	2674[1552]	2676	
Tmin,Tmax	0.900,0.928	0.907,1.	000
Tmin'	0.900		
Correction metho AbsCorr = MULTI-	od= # Reported T I SCAN	Limits: Tmin=0.907 T	'max=1.000
Data completenes	ss= 1.72/1.00	Theta(max) = 67.0	68
R(reflections)=	0.0453(2389)		wR2(reflections) 0.1192(2676)
S = 1.052	Npar=	212	

→3.166 →3.119 →2.921 →2.874

¹H NMR (400 MHz, CDCl₃) spectra of 2a

2aa

→3. 071 →3. 025 →2. 700 →2. 653

¹H NMR (400 MHz, CDCl₃) spectra of 2aa

	89	30
77. 77. 76.	65.	42.
\mathbf{V}	Ī	

¹³C NMR (100 MHz, CDCl₃) spectra of **2aa**

2aa

			h	

								1													1		-
210	200	100	180	170	160	150	140	130	120	110	100	QΛ	80	70	60	50	40	30	20	10	0	-10	
210	200	150	100	110	100	100	140	100	120	110	100	50	00	10	00	50	40	50	20	10	0	10	
											C1 ()											
											II (DDM)											

0

2b

,Br

`Br

¹H NMR (400 MHz, CDCl₃) spectra of **2b**

-----0. 000

	28	
77. 77. 76.	70.	
\searrow		

¹³C NMR (100 MHz, CDCl₃) spectra of **2b**

¹H NMR (400 MHz, CDCl₃) spectra of **2c**

----0. 000

¹H NMR (400 MHz, CDCl₃) spectra of **2d**

2d

۲ کر

¹H NMR (400 MHz, CDCl₃) spectra of **2f**

-1.236

--0.000

2g

210

¹³C NMR (100 MHz, CDCl₃) spectra of **2g**

¹H NMR (400 MHz, CDCl₃) spectra of $\mathbf{2h}$

-----0. 000

2h

-3.171-3.124-2.941-2.894

$$-77.32$$

 -77.66
 -76.68
 -70.18
 -70.18

¹³C NMR (100 MHz, CDCl₃) spectra of 2i

٢

0

`N 2j Br

`Br

¹H NMR (400 MHz, CDCl₃) spectra of **2j**

-----0. 000

¹H NMR (400 MHz, CDCl₃) spectra of **2k**

— 196.43	$ \begin{array}{c} & \overbrace{163.76} \\ & \overbrace{162.68} \\ & 154.16 \\ 133.532 \\ 133.532 \\ 133.532 \\ 130.29 \\ 121.25.32 \\ 121.53 \\ 121.$	${77.00}$	
	$ \begin{array}{c} $	¹³ C NMR (100 MH	z, CDCl ₃) spectra of 2k
 210 200 190 180) 170 160 150 140 130 120 110 10		-10

*ک*ر کر

¹H NMR (400 MHz, CDCl₃) spectra of **2I**

0 ,Br Br 21

— 197. 15		$\bigwedge_{121, 27} \bigwedge_{127, 27} 127.27$	$\frac{\sum_{77.00}^{77.32}}{76.68}$	41.16 22.78 13.27
	b r b r b r b r b r b r b r b r		¹³ C NMR (100 M	/IHz, CDCl₃) spectra of 2m
210 200 190 180	на н	130 120 110 100 90	ng miles of the international states of the international	40 30 20 10 0 -10

 \cap

,Br

→ 3. 153 → 3. 107 → 2. 910 → 2. 863

¹H NMR (400 MHz, CDCl₃) spectra of **20**

----0.000

MeO.

0

2р

,Br

`Ph ∙Br ¹H NMR (400 MHz, CDCl₃) spectra of **2p**

4a

°O

Ρh

4a

 $\underbrace{\underbrace{}}_{76.\,68}^{77.\,32}$

—23. 69

¹³C NMR (100 MHz, CDCl₃) spectra of **4a**

f1 (ppm) -10

¹H NMR (400 MHz, CDCl₃) spectra of **4aa**

163. 29 133. 156 133. 155 133. 155 133. 155 120. 54 120. 54	$\underbrace{^{77. 32}_{76. 68}}_{76. 68}$		
Aaa Aaa	¹³ C	NMR (100 MHz, CDCl₃) spectra	of 4aa

4b

¹H NMR (400 MHz, CDCl₃) spectra of ${\bf 4b}$

'N

4c

CI

1				
	alayan ya ka	and the part of th		~~~~

			.																	· · · ·	· · · ·	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											fl (ppm)											

 $\overbrace{-2.882}^{3.521} \underbrace{+}_{3.498}^{3.507}$

¹H NMR (400 MHz, CDCl₃) spectra of **4d**

---0.000

¹H NMR (400 MHz, CDCl₃) spectra of **4e**

¹H NMR (400 MHz, CDCl₃) spectra of **4f**

----0.000

 -167.24 -154.81 -148.97 -148.97 -141.96 130.58 131.55 133.17 128.06 -128.06 -118.88 -112.75	$_{76.\ 68}^{77.\ 32}$		
	¹³ C NM	R (100 MHz, CDCl₃) spectra of 4f	
4f			
11 1			
 -1 -1 -1 -1 -1 -1 -1 -1		- $ -$	

84	14	35	18	$\begin{array}{c} 884 \\ 6326 \\ 6326 \\ 07 \\ 73 \\ 73 \end{array}$
36.	57.	52.	<u> 1</u> 9.	224. 23. 23.
Ĩ	1	Ĩ	Ĩ	
1	1	1		

4i

`^tBu

¹³C NMR (100 MHz, CDCl₃) spectra of **4i**

_				·									·							·				
	210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90)	80	70	60	50	40	30	20	10	0	-10	

 $\overbrace{-2.872}^{3.513}, 499$

¹H NMR (400 MHz, CDCl₃) spectra of **4k**

----0. 000

203.42	-167.02 -155.49 -155.49 -132.93 -132.93 -132.93 -123.84 -123.84 -123.83 -123.83	$\underbrace{\sum_{77.00}^{77.32}}_{76.68}$	
	$ \begin{array}{c} $	¹³ C	NMR (100 MHz, CDCl₃) spectra of 4k
210 200 190	180 170 160 150 140 130 120 110 100 f1 (ppn	90 80 70 60	50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) spectra of **4m**

-----0.000

	-167.19 -167.19 -167.19 -139.48 -139.48 -132.74 122.33 -127.05 -127.05 -127.05 -123.74	$\overbrace{76.68}^{77.32}$		
	4n	¹³ C N	IMR (100 MHz, CDCl₃) spectra of 4n	
		<u>.</u>		
210 200 190	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		50 40 30 20 10 0 -	10

9.0

¹H NMR (400 MHz, CDCl₃) spectra of **4p**

4q

°O

¹H NMR (400 MHz, CDCl₃) spectra of **4q**

----0. 000

 ^{13}C NMR (100 MHz, CDCl_3) spectra of 4q

f1 (ppm) -10

5.2865.270 5.254

¹H NMR (400 MHz, CDCl₃) spectra of **6**

— 166. 05		144.45 144.45 141.37 142.80 132.558 132.558 132.62 128.90 128.90 128.90 128.91 128.90 128.91 128.91 128.91 128.91 128.91 129.62 129.62 120.71 120.71		77. 32 77. 00 76. 68 74. 84	
-----------	--	--	--	--------------------------------------	--

¹³C NMR (100 MHz, CDCl₃) spectra of **6**

 	110 100 90 80 f1 (ppm)	70 60 50 40	

 $<_{5.576}^{5.587}$

¹H NMR (400 MHz, CDCl₃) spectra of **7**

----0.000

					·			1 1			· ·	'			·	·	·		1	·	·	
210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	0	-10

¹³C NMR (100 MHz, CDCl₃) spectra of 8

1						• •			' '	· ·		· I		•		'		· I		·		· ·	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
											fl (nnm))											