Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Silver-Catalyzed Radical Ring-Opening of Cycloalkanols for the Synthesis of distal acylphosphine oxides

Cheng-Kun Li, Adedamola Shoberu, Jian-Ping Zou*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical

Engineering, Soochow University, Jiangsu 215123, China. E-mail: jpzou@suda.edu.cn

Contents

1. General Information	S2
2. Optimization of Reaction Conditions	S2
3. General Procedure for the Preparation of Diarylphosphine Oxides (GP1)	S7
4. General Procedure for the Synthesis of Aryl-phenylphosphine Oxides (GP2)	S7
5. General Procedure for the Preparation of Compounds 3 and 4 (GP3)	S8
6. Characterization Data for Products 3 , 4 , 7 and 8	S8
7. References	. S23
8. ¹ H, ¹³ C and ³¹ P NMR Spectra of Products 3 , 4 , 7 and 8	S24

1. General Information

All reactions were performed under argon atmosphere. ¹H NMR (400 MHz or 300 MHz) and ¹³C NMR (150, 100 or 75 MHz) spectra were determined on a Varian-Inova 300 MHz or 400 MHz spectrometer with CDCl₃ or DMSO- d_6 as solvent and tetramethylsilane (TMS) as internal standard or 85% H₃PO₄ as external standard for ³¹P NMR (162 MHz). Chemical shifts were reported in ppm from internal TMS (δ), all coupling constants (*J* values) were reported in Hertz (Hz). High resolution mass spectra were recorded on a microTOF-Q III (ESI). Column chromatography was performed with 300-400 mesh silica gel using flash column techniques. All of the reagents were used directly as obtained commercially unless otherwise noted.

2. Optimization of Reaction Conditions

2.1 Optimization of Reaction Conditions for 3a

Table S1. Screening of Reaction Conditions^a

НО	+ HP(O)Ph ₂	Oxidant, catalyst, ligand	$P(O)Ph_2$
1a	+ HP(0)PN ₂ 2a	DCE, Ar, temp.	3a

Entry	Oxidant	Catalyst (20 mol %)	Ligand	Temp. (°C)	Yield (%)
Entry		Cataryst (20 mor %)	Ligaliu		
1	$Mn(OAc)_3$			60	N.D. ^b
2	$CuCl_2$			60	N.D. ^b
3	CuCl			60	N.D. ^b
4	TBHP			60	N.D. ^b
5	DTBP			60	N.D. ^b
6	PIDA			60	N.D. ^b
7	AgNO ₃			60	24
8	AgOAc			60	trace
9	Ag_2CO_3			60	23
10	Ag_2O			60	22
11	AgOTf			60	trace
12	AgNO ₂			60	12
13	Ag_2SO_4			60	35
14	Ag_2SO_4			80	42
15	Ag_2SO_4	CuCl	bipy	80	N.D. ^b
16	Ag_2SO_4	CuI	bipy	80	N.D. ^b
17	Ag_2SO_4	CuOAc	bipy	80	N.D. ^b
18	Ag_2SO_4	CuTc	bipy	80	N.D. ^b
19	Ag_2SO_4	Cu(OTf) ₂	bipy	80	N.D. ^b

20	$Na_2S_2O_8$	Ag_2SO_4		80	33
21	$K_2S_2O_8$	Ag_2SO_4		80	48
22	$K_2S_2O_8$	Ag_2SO_4	bipy	80	24
23	$K_2S_2O_8$	Ag_2SO_4	1,10-phen	80	22
24	$K_2S_2O_8$	Ag_2SO_4	TMEDA	80	25
25	$(NH_4)_2S_2O_8$	Ag_2SO_4		80	61
26	$Mg(NO_3)_2$	Ag_2SO_4		80	N.D. ^b
27	LPO	Ag_2SO_4		80	N.D. ^b

^a Conditions: **1a** (0.1 mmol), Ph₂P(O)H (0.2 mmol), catalyst (0.02 mmol), oxidant (0.3 mmol), DCE (1 mL) under argon atmosphere for 12 h. ^b N.D. means not detected.

Table S2. Screening of Solvents and Temperature^a

HO	+ HP(O)Ph₂	(NH ₄) ₂ S ₂ O ₈ , Ag ₂ SO ₄	$\sim P(0)Ph_2$
1a	2a	solvent, Ar, temp.	3a

Entry	Oxidant	Catalyst (20 mol %)	Solvent	Temp. (°C)	Yield (%)
1	$(NH_4)_2S_2O_8$	Ag_2SO_4	DCE	80	61
2	$(NH_4)_2S_2O_8$	Ag_2SO_4	MeCN	80	46
3	(NH ₄) ₂ S ₂ O ₈	Ag_2SO_4	PhH	80	52
4	$(NH_4)_2S_2O_8$	Ag_2SO_4	PhF	80	54
5	$(NH_4)_2S_2O_8$	Ag_2SO_4	Toluene	80	67
6	$(NH_4)_2S_2O_8$	Ag_2SO_4	DMF	80	trace
7	$(NH_4)_2S_2O_8$	Ag_2SO_4	DMSO	80	N.D. ^b
8	$(NH_4)_2S_2O_8$	Ag_2SO_4	DME	80	41
9	$(NH_4)_2S_2O_8$	Ag_2SO_4	THF	80	trace
10	$(NH_4)_2S_2O_8$	Ag_2SO_4	1,4-Dioxane	80	23
11	$(NH_4)_2S_2O_8$	Ag_2SO_4	EtOAc	80	14
12	$(NH_4)_2S_2O_8$	Ag_2SO_4	Cyclohexane	80	16
13	$(NH_4)_2S_2O_8$	Ag_2SO_4	CHCl ₃	80	N.D. ^b
14	$(NH_4)_2S_2O_8$	Ag_2SO_4	PhCl	80	66
15	$(NH_4)_2S_2O_8$	Ag_2SO_4	Toluene	60	44
16	$(NH_4)_2S_2O_8$	Ag_2SO_4	Toluene	70	59
17	$(NH_4)_2S_2O_8$	Ag_2SO_4	Toluene	90	76
18	$(NH_4)_2S_2O_8$	Ag_2SO_4	DMF	90	19
19	$(NH_4)_2S_2O_8$	Ag_2SO_4	MeCN	90	52
20	$(NH_4)_2S_2O_8$	Ag_2SO_4	Toluene/H ₂ O	90	44
21	$(NH_4)_2S_2O_8$	Ag_2SO_4	PhH	90	60
22	$(NH_4)_2S_2O_8$	Ag_2SO_4	PhF	90	59
23	$(NH_4)_2S_2O_8$	Ag_2SO_4	PhCl	90	69

^a Conditions: **1a** (0.1 mmol), Ph₂P(O)H (0.2 mmol), catalyst (0.02 mmol), oxidant (0.3 mmol), solvent (1 mL) under argon atmosphere for 12 h. ^b N.D. means not detected.

2.2 Optimization of Reaction Conditions for 4j

Table S3.	Screening	of	oxidant ^a
-----------	-----------	----	----------------------

HO + 1a	(EtO) ₂ P(O)H Oxidant, Ag ₂ SO ₄ toluene, 90 °C, Ar	PO(OEt) ₂
Entry	Oxidant	Yield (%)
1	TBHP	N.D. ^b
2	DTBP	N.D. ^b
3	BPO	N.D. ^b
4	$K_2S_2O_8$	N.D. ^b
5	$Na_2S_2O_8$	N.D. ^b
6	$(NH_4)_2S_2O_8$	N.D. ^b
7	PIDA	N.D. ^b

^a Conditions: **1a** (0.1 mmol), (EtO)₂P(O)H (0.2 mmol), Ag₂SO₄ (0.02 mmol), oxidant (0.3 mmol), toluene (1 mL) under argon atmosphere at 90 °C for 12 h. ^b N.D. means not detected.

Table S4. Screening of silver catalyst^a

HO + 1a	$(EtO)_2 P(O)H \xrightarrow{(NH_4)_2 S_2 O_8, [Ag]}{toluene, 90 °C, Ar}$	PO(OEt) ₂
Entry	[Ag]	Yield (%)
1	AgNO ₃	N.D. ^b
2	AgOAc	N.D. ^b
3	Ag_2CO_3	N.D. ^b
4	Ag_2O	N.D. ^b
5	AgOTf	N.D. ^b
6	$AgNO_2$	N.D. ^b
7	AgTFA	N.D. ^b
8	AgOTs	N.D. ^b
9	$AgBF_4$	N.D. ^b
10	$AgSbF_6$	N.D. ^b

^a Conditions: **1a** (0.1 mmol), (EtO)₂P(O)H (0.2 mmol), [Ag] (0.02 mmol), (NH₄)₂S₂O₈ (0.3 mmol), toluene (1 mL) under argon atmosphere at 90 °C for 12 h. ^b N.D. means not detected.

Table S5. Screening of copper catalyst^a

HO + 1a	(EtO) ₂ P(O)H $\xrightarrow{(NH_4)_2S_2O_8, [Cu]}{toluene, 90 °C, Ar}$	PO(OEt) ₂
Entry	[Cu]	Yield (%)
1	CuBr	N.D. ^b
2	CuI	Trace
3	CuOAc	Trace
4	CuTc	N.D. ^b
5	Cu(OTf) ₂	Trace
6	$Cu(acac)_2$	Trace
7	$CuSO_4$	N.D. ^b
8	Cu(OAc) ₂	N.D. ^b
9	CuBr ₂	N.D. ^b
10	CuBr	N.D. ^b

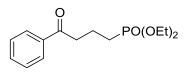
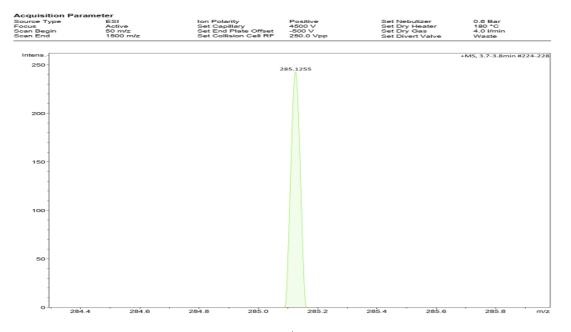
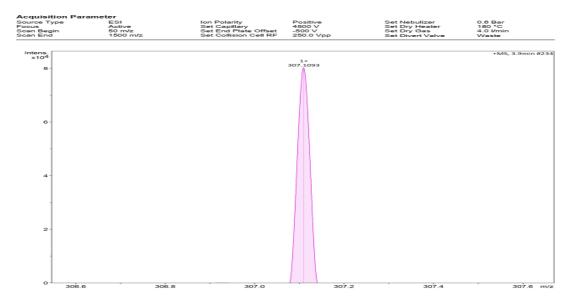

^a Conditions: **1a** (0.1 mmol), (EtO)₂P(O)H (0.2 mmol), Cu salt (0.02 mmol), (NH₄)₂S₂O₈ (0.3 mmol), toluene (1 mL) under argon atmosphere at 90 $^{\circ}$ C for 12 h. ^b N.D. means not detected.

Table S6. Screening of Ag₂SO₄/[Cu] co-catalyst^a


HO Ia	7 + (EtO)₂P(O)H	(NH ₄) ₂ S ₂ O ₈ , Ag ₂ SO ₄ , [Cu] toluene, 90 ^o C, Ar	o 4j	∠PO(OEt) ₂
-	Entry	[Cu]	Yield (%)	
-	1	CuBr	Trace	
	2	CuI	Trace	
	3	CuOAc	Trace	
	4	CuTc	Trace	
	5	Cu(OTf) ₂	Trace	
	6	$Cu(acac)_2$	Trace	
	7	$CuSO_4$	Trace	
	8	Cu(OAc) ₂	Trace	
_	9	CuBr ₂	N.D. ^b	

^a Conditions: **1a** (0.1 mmol), (EtO)₂P(O)H (0.2 mmol), Ag₂SO₄ (0.02 mmol), Cu salt (0.02 mmol), (NH₄)₂S₂O₈ (0.3 mmol), toluene (1 mL) under argon atmosphere at 90 °C for 12 h. ^b N.D. means not detected.


Diethyl (4-oxo-4-phenylbutyl)phosphonate (4j)

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{14}H_{22}O_4P$ 285.1256, found 285.1255; $[M+Na]^+$ Calcd for $C_{14}H_{21}NaO_4P$ 307.1075, found 307.1093.

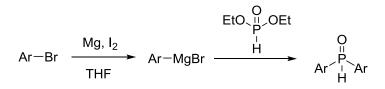
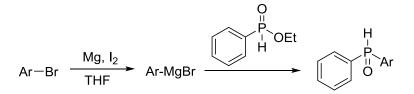
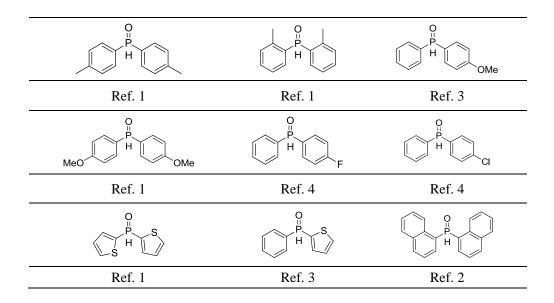


Figure S1. HRMS of compound **4j** (*m*/*z*: [M+H]⁺ Calcd for C₁₄H₂₂O₄P 285.1256, found 285.1255)


Figure S2. HRMS of compound **4j** (*m*/*z*: [M+Na]⁺ Calcd for C₁₄H₂₁NaO₄P 307.1075, found 307.1093)

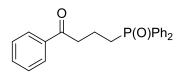
3. General Procedure for the Preparation of Diarylphosphine Oxides (GP1)



Arylmagnesium bromide was prepared from the corresponding aryl bromide (22 mmol), a grain of iodine and magnesium (57.6 mg, 24 mmol) in dry THF. Then, diethyl phosphite (1.29 mL, 10.0 mmol) was added drop-wise to a 2.5 M solution of the prepared arylmagnesium bromide at 0 °C. The mixture was cooled at 0 °C for 30 minutes, and then stirred at ambient temperature for 2-12 hours. Afterwards, the mixture was allowed to cool to 0 °C, followed by the slow addition of 30 mL aqueous NH₄Cl. The mixture was extracted with ethyl acetate, dried over with Mg₂SO₄, and the solvent was completely removed under vacuum. The residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (v : v = 1 : 1) as eluent to give the product.^{1,2}

4. General Procedure for the Synthesis of Aryl-phenylphosphine Oxides (GP2)

Arylmagnesium bromide was prepared from the corresponding aryl bromide (22 mmol), a grain of iodine and magnesium (57.6 mg, 24 mmol) in dry THF. Afterwards, ethyl phenylphosphinate (1701 mg, 10.0 mmol) was added in a drop-wise manner to a solution of the prepared arylmagnesium bromide at 0 °C. The mixture was allowed to cool at 0 °C for 30 minutes, and then stirred at ambient temperature for 2-12 hours. Afterwards, the mixture was allowed to cool to 0 °C, followed by the slow addition of 30 mL aqueous NH₄Cl. The mixture was extracted with ethyl acetate, dried over with Mg₂SO₄, and the solvent was completely removed under vacuum. The residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (v : v = 1 : 1) as eluent to give the product.^{3,4}



5. General Procedure for the Preparation of Compounds 3 and 4 (GP3)

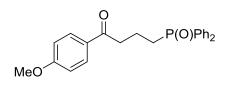
To a Schlenk tube was successively added cycloalkanol **1** (0.1 mmol), phosphine oxide **2** (0.2 mmol, 2 equiv), Ag_2SO_4 (6.2 mg, 0.02 mmol), $(NH_4)_2S_2O_8$ (68.5 mg, 0.3 mmol), and toluene (1 mL). The tube was sealed and then backfilled thrice with argon. The mixture was allowed to stir at 90 °C for 12 hours. Afterwards, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered. The filtrate was concentrated under vacuum, and the residue was purified by column chromatography on silica gel using acetone/petroleum ether (v : v = 1 : 1.86) as eluent to give pure products **3** or **4**.

6. Characterization Data for Products 3, 4, 7 and 8

4-(Diphenylphosphoryl)-1-phenylbutan-1-one (3a)

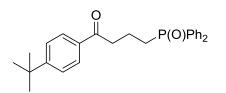
According to the general procedure (**GP3**) using 1-phenylcyclobutanol **1a** (14.9 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3a** was obtained as colorless oil (26.5 mg, 76%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.92–7.87 (m, 2H), 7.81–7.72 (m, 4H), 7.57–7.38 (m, 9H), 3.15 (t, *J* = 6.6 Hz, 2H), 2.45–2.36 (m, 2H), 2.16–2.04 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 199.5, 136.8, 133.5, 133.3, 132.5, 131.89, 131.87, 131.0, 130.9, 128.9, 128.8, 128.7,

128.1, 38.8 (d, J = 12.2 Hz), 29.0 (d, J = 71.9 Hz), 16.6 (d, J = 3.4 Hz); ³¹**P** NMR (162 MHz, CDCl₃): δ 33.0. **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calcd for C₂₂H₂₂O₂P 349.1357, found 349.1360.

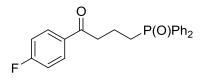

4-(Diphenylphosphoryl)-1-(*o*-tolyl)butan-1-one (3b)

According to the general procedure (**GP3**) using 1-(*o*-tolyl)cyclobutanol **1b** (16.3 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3b** was obtained as colorless oil (29.4 mg, 81%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.81–7.70 (m, 4H), 7.58–7.53 (m, 1H), 7.50–7.40 (m, 6H), 7.33 (td, *J* = 7.4, 1.4 Hz, 1H), 7.24–7.16 (m, 2H), 3.05 (t, *J* = 6.8 Hz, 2H), 2.45 (s, 3H), 2.42 – 2.28 (m, 2H), 2.13 – 1.96 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 203.3, 138.0, 137.6, 133.5, 132.6, 132.0, 131.79, 131.77, 131.4, 130.9, 130.8, 128.8, 128.7, 128.6, 125.8, 41.6 (d, *J* = 12.1 Hz), 29.0 (d, *J* = 71.8 Hz), 21.4, 16.8 (d, *J* = 3.4 Hz); ³¹**P NMR** (162 MHz, CDCl₃): δ 32.5. **HRMS (ESI-TOF)** *m/z*: [M+Na]⁺ Calcd for C₂₃H₂₃NaO₂P 385.1333, found 385.1338.

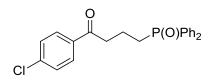
4-(Diphenylphosphoryl)-1-(*p*-tolyl)butan-1-one (3c)


According to the general procedure (**GP3**) using 1-(*p*-tolyl)cyclobutanol **1c** (16.3 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3c** was obtained as colorless oil (30.8 mg, 85%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.82–7.74 (m, 4H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.55–7.40 (m, 6H), 7.38-7.27 (m, 2H), 3.14 (t, *J* = 6.7 Hz, 2H), 2.48–2.33 (m, 5H), 2.19–2.03 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 199.6, 138.4, 136.8, 134.0, 133.6, 132.6, 131.78, 131.75, 130.9, 130.8, 128.8, 128.7, 128.6, 128.5, 125.3, 38.8 (d, *J* = 12.2 Hz), 28.9 (d, *J* = 71.9 Hz), 21.4, 16.6 (d, *J* = 3.4 Hz); ³¹**P NMR** (162 MHz, CDCl₃): δ 32.6. **HRMS** (**ESI-TOF**) *m*/*z*: [M+Na]⁺ Calcd for C₂₃H₂₃NaO₂P 385.1333, found 385.1340.

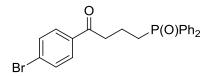
4-(Diphenylphosphoryl)-1-(4-methoxyphenyl)butan-1-one (3d)


According to the general procedure (**GP3**) using 1-(4-methoxyphenyl)cyclobutanol **1d** (17.9 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3d** was obtained as colorless oil (26.1 mg, 69%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.91–7.86 (m, 2H), 7.82–7.73 (m, 4H), 7.54–7.40 (m, 6H), 6.90 (d, *J* = 8.9 Hz, 2H), 3.86 (s, 3H), 3.09 (t, *J* = 6.6 Hz, 2H), 2.55–2.30 (m, 2H), 2.15–2.01 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃): δ 198.1, 163.6, 133.7, 132.7, 131.83, 131.81, 131.0, 130.9, 130.4, 130.0, 128.9, 128.7, 113.9, 55.6, 38.5 (d, *J* = 12.2 Hz), 29.1 (d, *J* = 71.9 Hz), 16.9 (d, *J* = 3.5 Hz); ³¹**P NMR** (162 MHz, CDCl₃): δ 32.7. **HRMS (ESI-TOF)** *m*/*z*: [M+H]⁺ Calcd for C₂₃H₂₄O₃P 379.1463, found 379.1456.

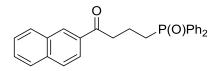
1-(4-(*tert*-Butyl)phenyl)-4-(diphenylphosphoryl)butan-1-one (3e)


According to the general procedure (**GP3**) using 1-(4-(*tert*-butyl)phenyl)cyclobutanol **1e** (20.5 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3e** was obtained as colorless oil (34.3 mg, 85%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.85 (d, J = 8.6 Hz, 2H), 7.81–7.73 (m, 4H), 7.50–7.42 (m, 8H), 3.12 (t, J = 6.6 Hz, 2H), 2.48–2.32 (m, 2H), 2.15–2.01 (m, 2H), 1.33 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃): δ 199.2, 157.1, 134.3, 131.9, 131.1, 128.9, 128.1, 125.7, 38.8, 35.2, 31.2, 16.7; ³¹**P NMR** (162 MHz, CDCl₃): δ 32.7. **HRMS** (**ESI-TOF**) m/z: [M+H]⁺ Calcd for C₂₆H₃₀O₂P 405.1983, found 405.1977.

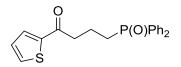
4-(Diphenylphosphoryl)-1-(4-fluorophenyl)butan-1-one (3f)


According to the general procedure (**GP3**) using 1-(4-fluorophenyl)cyclobutanol **1f** (16.7 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3f** was obtained as colorless oil (23.8 mg, 65%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.98–7.89 (m, 2H), 7.83–7.70 (m, 4H), 7.55–7.42 (m, 6H), 7.10 (t, J = 8.6 Hz, 2H), 3.13 (t, J = 6.7 Hz, 2H), 2.48–2.33 (m, 2H), 2.20–2.01 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 197.9, 165.9 (d, J = 254.8 Hz), 133.6, 133.3(d, J = 3.2 Hz), 132.6, 131.90 131.88, 131.0, 130.9, 130.8, 130.7, 128.9, 128.8, 115.9, 115.7, 38.7 (d, J = 11.5 Hz), 28.9 (d, J = 71.9 Hz), 16.7 (d, J = 3.5 Hz); ³¹**P NMR** (162 MHz, CDCl₃): δ 32.6. **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calcd for C₂₂H₂₁FO₂P 367.1263, found 367.1267.

1-(4-Chlorophenyl)-4-(diphenylphosphoryl)butan-1-one (3g)

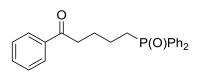

According to the general procedure (**GP3**) using 1-(4-chlorophenyl)cyclobutanol **1g** (18.3 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3g** was obtained as colorless oil (26.7 mg, 70%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.86–7.81 (m, 2H), 7.80–7.71 (m, 4H), 7.53–7.42 (m, 6H), 7.41–7.37 (m, 2H), 3.13 (t, J = 6.7 Hz, 2H), 2.44–2.34 (m, 2H), 2.10–2.03 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 198.2, 139.7, 135.1, 133.5, 132.6, 131.89, 131.87, 130.9, 130.8, 129.5, 129.0, 128.9, 128.8, 38.7 (d, J = 11.4 Hz), 28.8 (d, J = 71.9 Hz), 16.6 (d, J = 3.6 Hz); ³¹**P NMR** (162 MHz, CDCl₃): δ 32.6. **HRMS** (**ESI-TOF**) *m*/*z*: [M+H]⁺ Calcd for C₂₂H₂₁ClO₂P 383.0968, found 383.0960.

1-(4-Bromophenyl)-4-(diphenylphosphoryl)butan-1-one (3h)

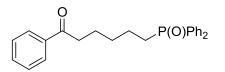

According to the general procedure (**GP3**) using 1-(4-bromophenyl)cyclobutanol **1h** (22.6 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3h** was obtained as colorless oil (32.8 mg, 77%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.78–7.71 (m, 6H), 7.56–7.52 (m, 2H), 7.5–7.40 (m, 6H), 3.10 (t, *J* = 6.7 Hz, 2H), 2.43–2.33 (m, 2H), 2.14–1.99 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 198.3, 135.3, 133.4, 132.5, 131.8, 130.7, 129.5, 128.7, 128.3, 38.5, 28.7 (d, *J* = 71.6 Hz), 16.5; ³¹**P NMR** (162 MHz, CDCl₃): δ 32.5. **HRMS** (**ESI-TOF**) *m*/*z*: [M+Na]⁺ Calcd for C₂₂H₂₀BrNaO₂P 449.0282, found 449.0280.

4-(Diphenylphosphoryl)-1-(naphthalen-2-yl)butan-1-one (3i)

According to the general procedure (**GP3**) using 1-(naphthalen-2-yl)cyclobutanol **1i** (19.9 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3i** was obtained as colorless oil (29.8 mg, 75%). ¹**H NMR** (400 MHz, CDCl₃): δ 8.58 (d, J = 8.5 Hz, 1H), 7.97 (d, J = 8.2 Hz, 1H), 7.88–7.85 (m, 1H), 7.82 (dd, J = 7.2, 0.9 Hz, 1H), 7.79–7.73 (m, 4H), 7.61–7.42 (m, 9H), 3.23 (t, J = 6.7 Hz, 2H), 2.50–2.41 (m, 2H), 2.23–2.09 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 203.7, 135.6, 134.1, 132.9, 131.92, 131.89, 131.0, 130.9, 130.2, 128.9, 128.8, 128.6, 128.1, 128.0, 126.6, 125.8, 124.5, 42.1 (d, J = 12.2 Hz), 29.0 (d, J = 71.3 Hz), 17.2 (d, J = 3.4 Hz); ³¹**P NMR** (162 MHz, CDCl₃): δ 32.9. **HRMS** (**ESI-TOF**) m/z: [M+H]⁺ Calcd for C₂₆H₂₄O₂P 399.1514, found 399.1510.


4-(Diphenylphosphoryl)-1-(thiophen-2-yl)butan-1-one (3j)

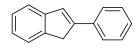
According to the general procedure (**GP3**) using 1-(thiophen-2-yl)cyclobutanol **1j** (15.5 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3j** was obtained as colorless oil (18.1 mg, 51%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.81–7.72 (m, 4H), 7.66 (d, J = 3.8


Hz, 1H), 7.61 (d, J = 4.9 Hz, 1H), 7.54–7.41 (m, 6H), 7.10 (t, J = 4.4 Hz, 1H), 3.08 (t, J = 6.7 Hz, 2H), 2.45–2.35 (m, 2H), 2.17–2.04 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 192.5, 144.2, 133.8, 133.5, 132.6, 132.2, 131.90, 131.87, 131.0, 130.9, 128.9, 128.8, 128.3, 39.5, 29.0 (d, J = 71.9 Hz), 17.0 (d, J = 3.4 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 32.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₀H₂₀O₂PS 355.0922, found 355.0919.

5-(Diphenylphosphoryl)-1-phenylpentan-1-one (3m)

According to the general procedure (**GP3**) using 1-phenylcyclopentanol **1m** (16.3 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3m** was obtained as colorless oil (21.5 mg, 58%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.92–7.88 (m, 2H), 7.77–7.70 (m, 4H), 7.58–7.40 (m, 9H), 2.96 (t, *J* = 7.2 Hz, 2H), 2.37–2.28 (m, 2H), 1.91–1.81 (m, 2H), 1.79–1.68 (m, 2H); ¹³**C NMR** (100 MHz, DMSO): δ 199.9, 137.0, 133.6, 133.2, 132.6, 131.9, 131.9, 131.0, 130.9, 128.9, 128.8, 128.7, 128.1, 38.2, 29.9 (d, *J* = 71.8 Hz), 25.6 (d, *J* = 15.3 Hz), 21.5 (d, *J* = 3.8 Hz); ³¹**P NMR** (162 MHz, CDCl₃): δ 30.2. **HRMS (ESI-TOF)** *m/z*: [M+H]⁺ Calcd for C₂₃H₂₄O₂P 363.1514, found 363.1510.

6-(Diphenylphosphoryl)-1-phenylhexan-1-one (3n)


According to the general procedure (**GP3**) using 1-phenylcyclohexanol **1n** (17.7 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3n** was obtained as colorless oil (19.5 mg, 52%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.95–7.89 (m, 2H), 7.78–7.68 (m, 4H), 7.59–7.39 (m, 9H), 2.92 (t, *J* = 7.2 Hz, 2H), 2.33–2.22 (m, 2H), 1.7–1.62 (m, 4H), 1.56–1.45 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 200.2, 137.1, 133.7, 133.1, 132.7, 131.80, 131.77, 130.9, 130.8, 128.8, 128.70, 128.69, 128.1, 38.2, 30.6 (d, *J* = 14.5 Hz), 29.7 (d, *J* = 72.1 Hz), 23.7, 21.4 (d, *J* = 3.8 Hz);

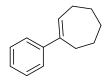
³¹**P** NMR (162 MHz, CDCl₃): δ 32.4. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for C₂₄H₂₆O₂P 377.1670, found 377.1664.

1,2,3,7b-Tetrahydro-*3aH*-cyclopenta[3,4]cyclobuta[1,2]benzen-*3a*-yl diphenylphosphinate (3p')

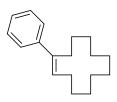
According to the general procedure (**GP3**) using 1,2,3,7b-tetrahydro-3a*H*-cyclopenta[3,4]cyclobuta[1,2]benzen-3a-ol **1p**' (16.0 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3p**' was obtained as colorless oil (29.9 mg, 83%). ¹**H** NMR (400 MHz, CDCl₃): δ 7.83–7.70 (m, 4H), 7.51–7.31 (m, 6H), 7.20 (td, *J* = 7.5, 1.0 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 6.97 (d, *J* = 7.3 Hz, 1H), 6.93– 6.87 (m, 1H), 3.97 (d, *J* = 6.7 Hz, 1H), 2.26 (dd, *J* = 12.6, 6.1 Hz, 1H), 2.06–1.96 (m, 1H), 1.85–1.68 (m, 3H), 1.10–0.96 (tt, *J* = 12.3, 6.0 Hz, 1H). ¹³**C** NMR (101 MHz, CDCl₃): δ 144.5 (d, *J* = 4.8 Hz), 142.8, 134.1 (d, *J* = 12.9 Hz), 132.7 (d, *J* = 13.6 Hz), 131.9 (d, *J* = 2.9 Hz), 131.8 (d, *J* = 2.9 Hz), 131.73, 131.66, 131.62, 131.56, 130.0, 128.5, 128.40, 128.35, 128.3, 127.9, 122.8, 122.5, 93.4 (d, *J* = 8.6 Hz), 55.8 (d, *J* = 5.2 Hz), 36.7 (d, *J* = 3.2 Hz), 28.2, 24.4. ³¹**P** NMR (162 MHz, CDCl₃): δ 28.2. **HRMS (ESI-TOF)** *m/z*: [M+H]⁺ Calcd for C₂₃H₂₂O₂P 361.1357, found 361.1356.

2-Phenyl-1*H*-indene (3q')

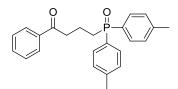
According to the general procedure (**GP3**) using 2-phenyl-2,3-dihydro-1H-inden-2-ol **1q**' (21.0 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3q**' was obtained as colorless oil (17.5 mg, 91%).⁷ ¹H NMR (400 MHz, CDCl₃): δ 7.73–7.66 (m, 2H), 7.57–7.51 (m, 1H), 7.49–7.41 (m, 3H), 7.39–7.30 (m, 2H), 7.32–7.21 (m, 2H), 3.85 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 146.5, 145.5, 143.3, 136.1, 128.8, 127.6, 126.8, 126.6, 125.8, 124.9,


123.8, 121.1, 39.1. **HRMS (ESI-TOF)** m/z: $[M+H]^+$ Calcd for C₁₅H₁₃ 193.1017, found 193.1022.

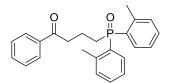
4-Phenyl-1,2-dihydronaphthalene (3r')


According to the general procedure (**GP3**) using 1-phenyl-1,2,3,4-tetrahydronaphthalen-1-ol **1r**' (22.4 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3r**' was obtained as colorless oil (17.5 mg, 85%).⁸ ¹**H NMR** (400 MHz, CDCl₃): δ 7.39–7.24 (m, 5H), 7.20–7.04 (m, 3H), 7.00 (d, J = 7.7 Hz, 1H), 6.06 (t, J = 4.8 Hz, 1H), 2.82 (t, J = 8.0 Hz, 2H), 2.42–2.33 (m, 2H). ¹³C **NMR** (101 MHz, CDCl₃): δ 141.1, 140.2, 137.1, 135.4, 129.1, 128.5, 127.93, 127.9, 127.4, 127.3, 126.5, 125.8, 28.6, 23.9. **HRMS** (**ESI-TOF**) *m*/*z*: [M+H]⁺ Calcd for C₁₆H₁₅ 207.1174, found 207.1176.

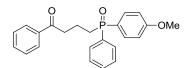
1-Phenylcyclohept-1-ene (3s')


According to the general procedure (**GP3**) using 1-phenylcycloheptan-1-ol **1s'** (19.0 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3s'** was obtained as colorless oil (15.3 mg, 89%).⁵ ¹**H NMR** (400 MHz, CDCl₃): δ 7.27–7.18 (m, 4H), 7.15–7.08 (m, 1H), 6.02 (t, J = 6.8 Hz, 1H), 2.58–2.51 (m, 2H), 2.29–2.17 (m, 2H), 1.82–1.72 (m, 2H), 1.63–1.53 (m, 2H), 1.53–1.44 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃): δ 145.1 (d, J = 2.7 Hz), 130.5, 128.2, 126.4, 125.8, 32.9, 29.0, 27.1, 27.0. **HRMS** (**ESI-TOF**) m/z: [M+H]⁺ Calcd for C₁₃H₁₇ 173.1330, found 173.1327.

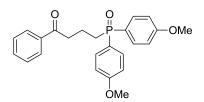
1-Phenylcyclododec-1-ene (3t')


According to the general procedure (**GP3**) using 1-phenylcyclododecan-1-ol **1t**' (26.0 mg, 0.1 mmol) and diphenylphosphine oxide **2a** (40.5 mg, 0.2 mmol), compound **3t**' was obtained as colorless oil (22.3 mg, 92%).⁶ ¹**H NMR** (400 MHz, CDCl₃): δ 7.36 – 7.27 (m, 4H), 7.24 – 7.15 (m, 1H), 5.58 (t, J = 7.8 Hz, 1H), 2.59 (t, J = 6.8 Hz, 2H), 2.26 (q, J = 7.1 Hz, 2H), 1.60 – 1.52 (m, 2H), 1.46 – 1.30 (m, 12H), 1.22 – 1.15 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃): δ 143.6, 140.5, 130.5, 128.2, 126.9, 126.5, 29.8, 27.5, 25.7, 25.6, 25.5, 25.0, 24.9, 24.5, 24.4, 22.6, 22.6. **HRMS** (**ESI-TOF**) m/z: [M+Na]⁺ Calcd for C₁₈H₂₆Na 265.1932, found 265.1933.

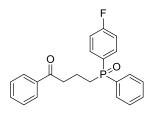
4-(Di-*p*-tolylphosphoryl)-1-phenylbutan-1-one (4a)


According to the general procedure (**GP3**) using 1-phenylcyclobutanol **1a** (14.9 mg, 0.1 mmol) and di-*p*-tolylphosphine oxide **2b** (46.2 mg, 0.2 mmol), compound **4a** was obtained as colorless oil (29.3 mg, 78%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.90 (d, *J* = 7.1 Hz, 2H), 7.64 (dd, *J* = 11.3, 7.8 Hz, 4H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.27–7.23 (m, 4H), 3.14 (t, *J* = 6.6 Hz, 2H), 2.41–2.32 (m, 8H), 2.16–2.02 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃): δ 199.6, 142.2, 142.2, 136.9, 133.2, 131.0, 130.9, 130.6, 129.6, 129.5, 128.7, 128.1, 38.8 (d, *J* = 11.8 Hz), 29.2 (d, *J* = 71.9 Hz), 21.7, 16.8 (d, *J* = 3.4 Hz). ³¹**P NMR** (162 MHz, CDCl₃): δ 32.9. **HRMS (ESI-TOF**) *m/z*: [M+Na]⁺ Calcd for C₂₄H₂₅NaO₂P 399.1490, found 399.1495.

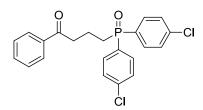
4-(Di-o-tolylphosphoryl)-1-phenylbutan-1-one (4b)


According to the general procedure (**GP3**) using 1-phenylcyclobutanol **1a** (14.9 mg, 0.1 mmol) and di-*o*-tolylphosphine oxide **2c** (46.2 mg, 0.2 mmol), compound **4b** was obtained as colorless oil (27.1 mg, 72%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.92 (d, J = 7.4 Hz, 2H), 7.84–7.75 (m, 2H), 7.54 (t, J = 7.3 Hz, 1H), 7.47–7.34 (m, 4H), 7.31–7.24 (m, 2H), 7.20–7.14 (m, 2H), 3.17 (t, J = 6.4 Hz, 2H), 2.55–2.44 (m, 2H), 2.31 (s, 6H), 2.16–2.03 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 199.6, 141.7, 141.6, 136.9, 133.3, 132.2, 132.1, 132.0, 131.9, 128.7, 128.1, 125.9, 125.7, 38.9 (d, J = 12.4 Hz), 28.3 (d, J = 71.8 Hz), 21.3 (d, J = 4.2 Hz), 16.8; ³¹**P NMR** (162 MHz, CDCl₃): δ 34.5. **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calcd for C₂₄H₂₆O₂P 377.1670, found 377.1668.

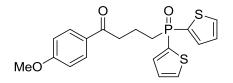
4-((4-Methoxyphenyl)(phenyl)phosphoryl)-1-phenylbutan-1-one (4c)


According to the general procedure (**GP3**) using 1-phenylcyclobutanol **1a** (14.9 mg, 0.1 mmol) and (4-methoxyphenyl)(phenyl)phosphine oxide **2d** (46.6 mg, 0.2 mmol), compound **4c** was obtained as colorless oil (23.8 mg, 63%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.92–7.87 (m, 2H), 7.79–7.65 (m, 4H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.50–7.39 (m, 5H), 6.95 (dd, *J* = 8.8, 2.0 Hz, 2H), 3.81 (s, 3H), 3.13 (t, *J* = 6.6 Hz, 2H), 2.42–2.32 (m, 2H), 2.14–2.01 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 199.6, 162.5, 136.8, 133.3, 132.9, 132.8, 131.7, 130.9, 130.8, 128.8, 128.7, 128.1, 114.5, 114.3, 55.4, 38.8 (d, *J* = 12.5 Hz), 29.2 (d, *J* = 72.5 Hz), 16.7 (d, *J* = 2.9 Hz); ³¹**P NMR** (162 MHz, CDCl₃): δ 32.7. **HRMS (ESI-TOF)** *m*/*z*: [M+Na]⁺ Calcd for C₂₃H₂₃NaO₃P 401.1283, found 401.1280.

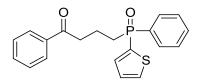
4-(Bis(4-methoxyphenyl)phosphoryl)-1-phenylbutan-1-one (4d)


According to the general procedure (**GP3**) using 1-phenylcyclobutanol **1a** (14.9 mg, 0.1 mmol) and bis(4-methoxyphenyl)phosphine oxide **2e** (52.6 mg, 0.2 mmol), compound **4d** was obtained as colorless oil (22.4 mg, 55%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.90 (d, J = 7.5 Hz, 2H), 7.67 (t, J = 9.3 Hz, 4H), 7.54 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 6.95 (d, J = 7.6 Hz, 4H), 3.82 (s, 6H) 3.14 (t, J = 6.3 Hz, 2H), 2.40–2.28 (m, 2H), 2.15–2.04 (m, 2H); ¹³**C NMR** (100 MHz, DMSO): δ 199.5, 161.7, 136.5, 133.2, 132.3, 132.2, 128.7, 127.8, 125.8, 124.8, 114.3, 114.2, 55.3, 38.4 (d, J = 13.0 Hz), 28.2 (d, J = 72.6 Hz), 16.5 (d, J = 3.1 Hz); ³¹**P NMR** (162 MHz, CDCl₃): δ 30.1. **HRMS (ESI-TOF)** m/z: [M+Na]⁺ Calcd for C₂₄H₂₅NaO₄P 431.1388, found 431.1388.

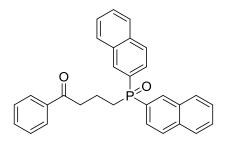
4-((4-Fluorophenyl)(phenyl)phosphoryl)-1-phenylbutan-1-one (4e)


According to the general procedure (**GP3**) using 1-phenylcyclobutanol **1a** (14.9 mg, 0.1 mmol) and (4-fluorophenyl)(phenyl)phosphine oxide **2f** (44.1 mg, 0.2 mmol), compound **4e** was obtained as colorless oil (17.9 mg, 49%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.93–7.88 (m, 2H), 7.82–7.72 (m, 4H), 7.58–7.41 (m, 6H), 7.15 (td, *J* = 8.7, 2.0 Hz, 2H), 3.16 (t, *J* = 6.5 Hz, 2H), 2.44–2.34 (m, 2H), 2.15–2.04 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃): δ 199.4, 163.8 (d, *J* = 3.1 Hz), 136.8, 133.6–133.3 (m), 132.0, 132.0, 130.9, 130.8, 129.0, 128.9, 128.8, 128.1, 116.4, 116.24, 116.16, 116.0, 38.7 (d, *J* = 12.4 Hz), 29.1 (d, *J* = 72.4 Hz), 16.6 (d, *J* = 3.4 Hz). ³¹**P NMR** (162 MHz, CDCl₃): δ 32.2. **HRMS (ESI-TOF)** *m/z*: [M+H]⁺ Calcd for C₂₂H₂₁FO₂P 367.1263, found 367.1259.

4-(Bis(4-chlorophenyl)phosphoryl)-1-phenylbutan-1-one (4f)

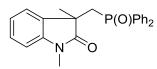

According to the general procedure (**GP3**) using 1-phenylcyclobutanol **1a** (14.9 mg, 0.1 mmol) and bis(4-chlorophenyl)phosphine oxide **2g** (54.0 mg, 0.2 mmol), compound **4f** was obtained as colorless oil (32.9 mg, 79%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.94–7.86 (m, 2H), 7.69 (dd, J = 10.9, 8.2 Hz, 4H), 7.60–7.52 (m, 1H), 7.49–7.41 (m, 6H), 3.15 (t, J = 6.4 Hz, 2H), 2.45–2.31 (m, 2H), 2.17–2.00 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃): δ 199.3, 138.8, 138.7, 136.7, 133.4, 132.3, 132.2, 131.8, 130.8, 129.4, 129.3, 128.8, 128.1, 38.5 (d, J = 12.7 Hz), 28.8 (d, J = 72.8 Hz), 16.5 (d, J = 3.5 Hz). ³¹**P NMR** (162 MHz, CDCl₃): δ 31.6. **HRMS** (**ESI-TOF**) m/z: [M+H]⁺ Calcd for C₂₂H₂₀Cl₂O₂P 417.0578, found 417.0579.

4-(Di(thiophen-2-yl)phosphoryl)-1-phenylbutan-1-one (4g)

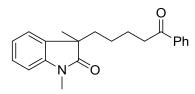

According to the general procedure (**GP3**) using 1-phenylcyclobutanol **1a** (14.9 mg, 0.1 mmol) and bis(4-chlorophenyl)phosphine oxide **2h** (54.0 mg, 0.2 mmol), compound **4g** was obtained as colorless oil (20.7 mg, 53%). ¹**H NMR** (400 MHz, CDCl₃): δ 77.95–7.87 (m, 2H), 7.74–7.67 (m, 2H), 7.67–7.59 (m, 2H), 7.22–7.15 (m, 2H), 6.95–6.87 (m, 2H), 3.86 (s, 3H), 3.12 (t, *J* = 6.7 Hz, 2H), 2.48–2.36 (m, 2H), 2.22–2.08 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 197.8, 163.7, 135.6, 135.5, 133.6, 133.5, 133.4, 130.4, 129.9, 128.6, 128.4, 113.9, 55.6, 38.3 (d, *J* = 12.9 Hz), 33.3 (d, *J* = 79.8 Hz), 17.0 (d, *J* = 3.7 Hz); ³¹**P NMR** (162 MHz, CDCl₃): δ 22.5. **HRMS (ESI-TOF**) *m/z*: [M+Na]⁺ Calcd for C₁₉H₁₉NaO₃PS₂ 413.0411, found 413.0409.

1-Phenyl-4-(phenyl(thiophen-2-yl)phosphoryl)butan-1-one (4h)

According to the general procedure (**GP3**) using 1-phenylcyclobutanol **1a** (14.9 mg, 0.1 mmol) and phenyl(thiophen-2-yl)phosphine oxide **2i** (41.7 mg, 0.2 mmol), compound **4h** was obtained as colorless oil (21.9 mg, 62%). ¹**H NMR** (400 MHz, DMSO-*d*₆): δ 8.03–7.99 (m, 1H), 7.93–7.89 (m, 2H), 7.84–7.76 (m, 2H), 7.68–7.64 (m, 1H), 7.61 (dt, *J* = 2.6, 1.6 Hz, 1H), 7.58–7.48 (m, 5H), 7.29–7.26 (m, 1H), 3.19 (t, *J* = 7.1 Hz, 2H), 2.48–2.38 (m, 2H), 1.91–1.72 (m, 2H); ¹³**C NMR** (101 MHz, DMSO-*d*₆): δ 199.4, 136.5, 135.5, 134.7, 134.6, 133.8 (d, *J* = 4.4 Hz), 131.8 (d, *J* = 2.7 Hz), 130.3, 130.2, 128.8, 128.71, 128.67, 127.8, 38.3 (d, *J* = 13.8 Hz), 29.8 (d, *J* = 74.8 Hz), 16.4 (d, *J* = 3.3 Hz). ³¹**P NMR** (162 MHz, CDCl₃): δ 27.9. **HRMS (ESI-TOF)** *m*/*z*: [M+Na]⁺ Calcd for C₂₀H₁₉NaO₂PS 377.0741, found 377.0744.


4-(Di(naphthalen-1-yl)phosphoryl)-1-phenylbutan-1-one (4i)

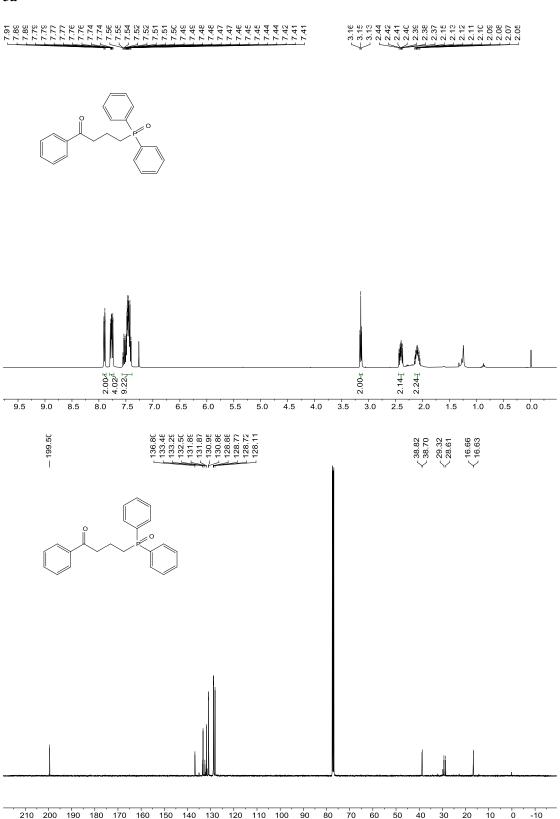
According to the general procedure (**GP3**) using 1-phenylcyclobutanol **1a** (14.9 mg, 0.1 mmol) and di(naphthalen-1-yl)phosphine oxide **2j** (60.6 mg, 0.2 mmol), compound **4i** was obtained as colorless oil (28.7 mg, 68%). ¹**H NMR** (400 MHz, CDCl₃): δ 8.47 (dd, J = 13.2, 1.5 Hz, 2H), 7.97–7.82 (m, 8H), 7.78–7.70 (m, 2H), 7.61–7.48 (m, 5H), 7.44–7.35 (m, 2H), 3.19 (t, J = 6.6 Hz, 2H), 2.66–2.55 (m, 2H), 2.27–2.12 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃): δ 199.5, 136.8, 134.8, 133.3, 132.9, 132.8, 132.7, 130.7, 129.7, 129.0, 128.8, 128.7, 128.2, 128.1, 128.0, 127.1, 125.8, 125.7, 38.7 (d, J = 12.5 Hz), 28.8 (d, J = 72.1 Hz), 16.8. ³¹**P NMR** (162 MHz, CDCl₃): δ 33.0. **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calcd for C₃₀H₂₆O₂P 449.1670, found 449.1666.

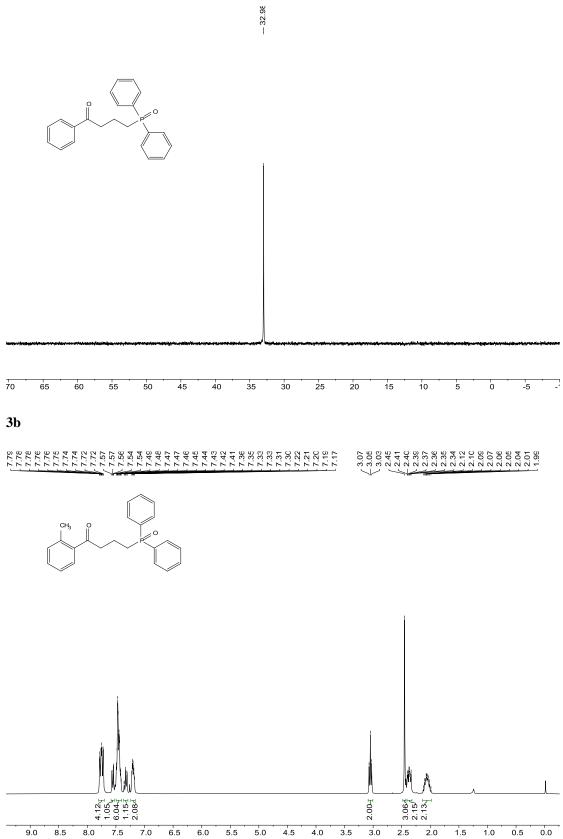

Detection of Radical Intermediates

3-((Diphenylphosphoryl)methyl)-1,3-dimethylindolin-2-one (7)

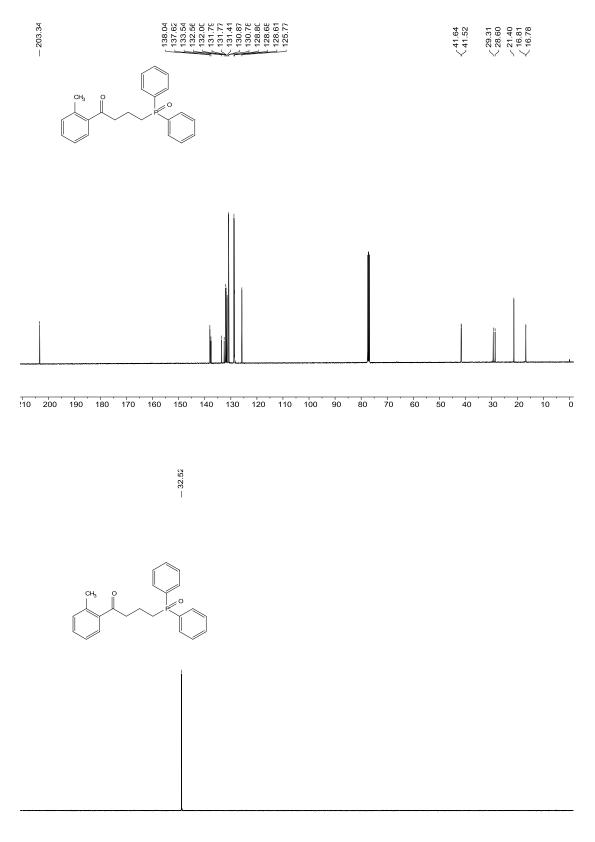
To a Schlenk tube was successively added diphenylphosphine oxide **2a** (40.4 mg, 0.2 mmol), *N*-methyl-*N*-phenylmethacrylamide **6** (35.4 mg, 0.2 mmol), Ag₂SO₄ (6.2 mg, 0.02 mmol), (NH₄)₂S₂O₈ (68.5 mg, 0.3 mmol) and toluene (1 mL). The tube was sealed and then backfilled thrice with argon. The reaction mixture was stirred at 90 °C for 12 hours, and then allowed to cool to room temperature. Afterwards, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered. The filtrate was concentrated under vacuum, and the residue was purified by column chromatography on silica gel (acetone/petroleum ether = 1.86:1) to afford compound **7** as colorless oil (31.4 mg, 42%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.58–7.51 (m, 2H), 7.50–7.44 (m, 2H), 7.43–7.27 (m, 6H), 7.17–7.10 (m, 2H), 6.76 (td, *J* = 7.6, 0.8 Hz, 1H), 6.66 (d, *J* = 7.7 Hz, 1H), 3.07 (dd, *J* = 15.2, 10.3 Hz, 1H), 3.00 (s, 3H), 2.84 (dd, *J* = 15.2, 10.7 Hz, 1H), 1.41 (d, *J* = 1.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 179.6 (d, *J* = 4.0 Hz), 143.1, 134.3, 133.6, 133.3, 132.6, 131.5 (d, *J* = 2.7 Hz), 131.3 (d, *J* = 2.5 Hz), 130.8 (d, *J* = 9.4 Hz), 130.6 (d, *J* = 9.0 Hz), 128.5, 128.4, 128.3, 128.2, 128.0, 124.9, 122.3, 107.9, 45.6 (d, *J* = 3.8 Hz), 37.6 (d, *J* = 71.4 Hz), 27.0 (d, *J* = 11.9 Hz), 26.4; ³¹P NMR (162 MHz, CDCl₃): δ 26.0. HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcd for C₂₃H₂₃NO₂P 376.1466, found 376.1470.

1,3-Dimethyl-3-(5-oxo-5-phenylpentyl)indolin-2-one (8)

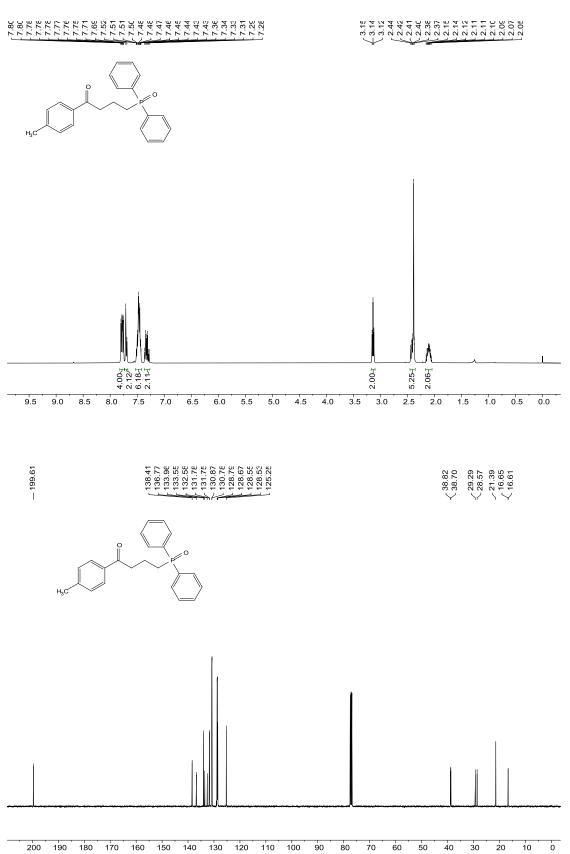

To a Schlenk tube was successively added 1-phenylcyclobutanol **1a** (14.9 mg, 0.1 mmol), *N*-methyl-*N*-phenylmethacrylamide **6** (35.4 mg, 0.2 mmol), Ag_2SO_4 (6.2 mg, 0.02 mmol), $(NH_4)_2S_2O_8$ (68.5 mg, 0.3 mmol) and toluene (1 mL). The tube was sealed and then backfilled

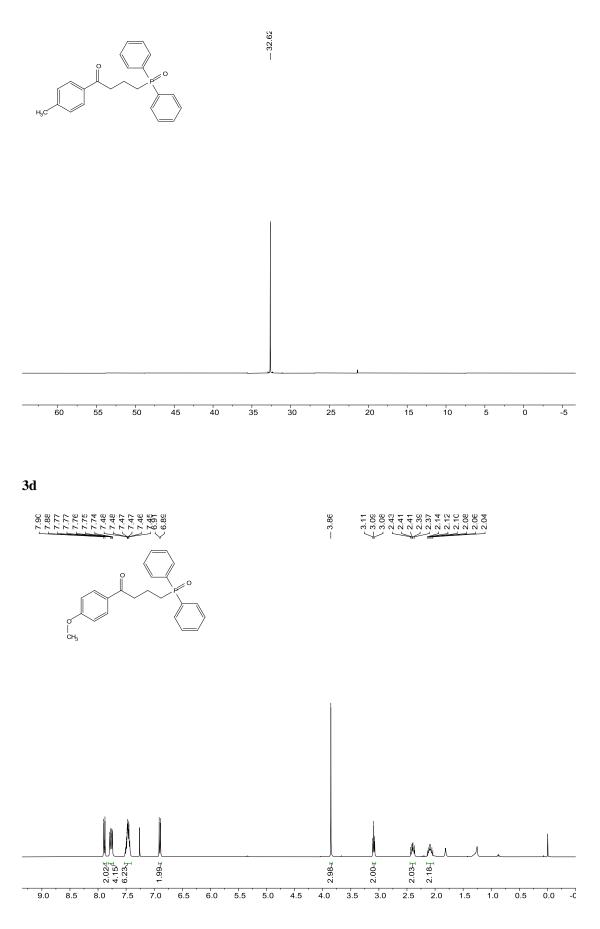

thrice with argon. The reaction mixture was stirred at 90 °C for 12 hours, and then allowed to cool to room temperature. Afterwards, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered. The filtrate was concentrated under vacuum, and the residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether = 10:1) to afford compound **8** as colorless oil (10.3 mg, 32%). ¹H NMR (400 MHz, CDCl₃): δ 7.92–7.87 (m, 2H), 7.55–7.50 (m, 1H), 7.47–7.40 (m, 2H), 7.30–7.23 (m, 1H), 7.17 (d, *J* = 7.3 Hz, 1H), 7.07 (t, *J* = 7.5 Hz, 1H), 6.84 (d, *J* = 7.7 Hz, 1H), 3.21 (s, 3H), 2.93–2.75 (m, 2H), 2.02–1.91 (m, 1H), 1.84–1.72 (m, 1H), 1.68–1.54 (m, 2H), 1.26 (s, 3H), 1.12–1.03 (m, 1H), 1.01–0.93 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 200.2, 180.8, 143.4, 137.0, 134.2, 133.0, 128.7, 128.1, 127.8, 122.7, 122.6, 108.1, 48.5, 38.43, 38.37, 26.3, 24.40, 24.38, 24.0. HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcd for C₂₁H₂₄NO₂ 322.1807, found 322.1812.

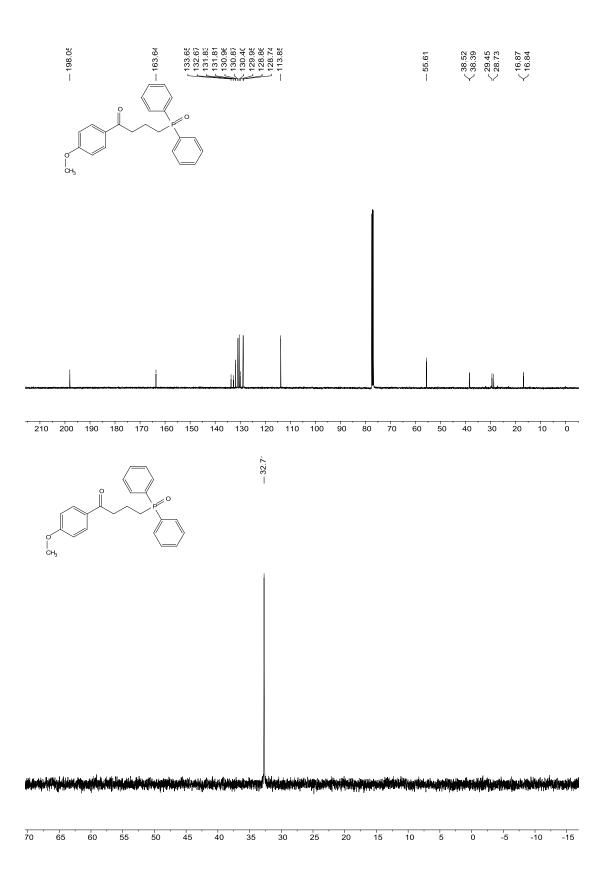
7. References

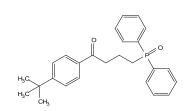

- Peng, P.; Peng, L.; Wang, G.-Y.; Wang, F.-Y.; Luo, Y.; Lei, A.-W. Visible Light Mediated Aerobic Radical C–H Phosphorization toward Arylphosphonates. *Org. Chem. Front.* 2016, *3*, 749-752.
- Hatano, M.; Mizuno, T.; Ishihara, K. Catalytic Enantioselective Synthesis of Sterically Demanding Alcohols using Di(21-alkyl)zinc Prepared by the Refined Charette's Method. *Chem. Commun.* 2010, *46*, 5443-5445.
- Xu, Q.; Zhao, C.-Q.; Han, L.-B. Stereospecific Nucleophilic Substitution of Optically Pure *H*-Phosphinates: A General Way for the Preparation of Chiral P-Stereogenic Phosphine Oxides. *J. Am. Chem. Soc.* 2008, *130*, 12648-12655.
- Jablonkai, E.; Keglevich G. Catalyst-Free P–C Coupling Reactions of Halobenzoic Acids and Secondary Phosphine Oxides under Microwave Irradiation in Water. *Tetrahedron Lett.* 2015, 56, 1638-1640.
- Olsson, V. J.; Szabó, K. J. Functionalization of Unactivated Alkenes through Iridium-Catalyzed Borylation of Carbon-Hydrogen Bonds. Mechanism and Synthetic Applications. J. Org. Chem. 2009, 74, 7715-7723.
- 6. Huang, L.-F.; Huang, C.-H.; Stulgies, B.; Meijere, A.; Luh, T.-Y. Nickel-Catalyzed Olefination of Unactivated Aliphatic Dithioacetals. *Org. Lett.* **2003**, *5*, 4489-4491.
- Usanov, D. L.; Yamamoto, H. Nickel-Catalyzed Olefination of Unactivated Aliphatic Dithioacetals. Org. Lett. 2012, 14, 414-417.
- Xu, L.; Li, B.-J.; Wu, Z.-H.; Lu, X.-Y.; Guan, B.-T.; Wang, B.-Q.; Zhao, K.-Q.; Shi, Z.-J. Nickel-Catalyzed Efficient and Practical Suzuki-Miyaura Coupling of Alkenyl and Aryl Carbamates with Aryl Boroxines. *Org. Lett.* 2010, *12*, 884-887.

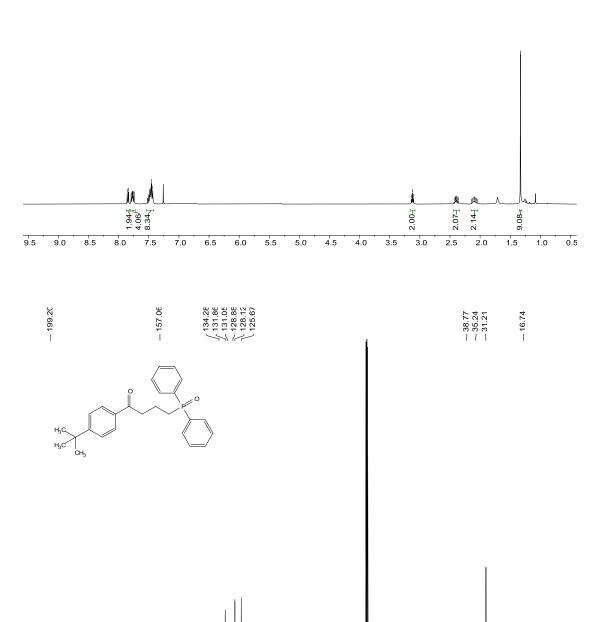
3a





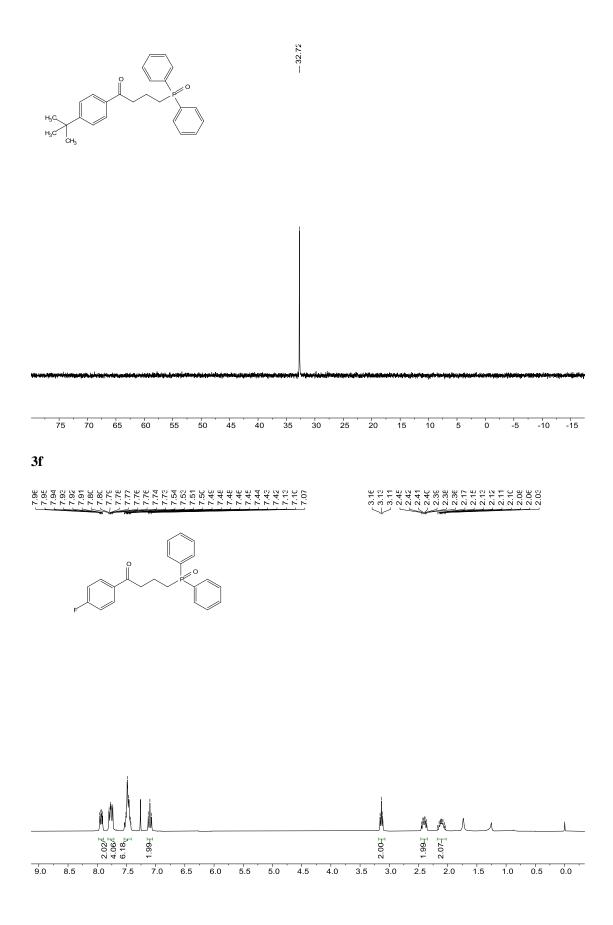

S25

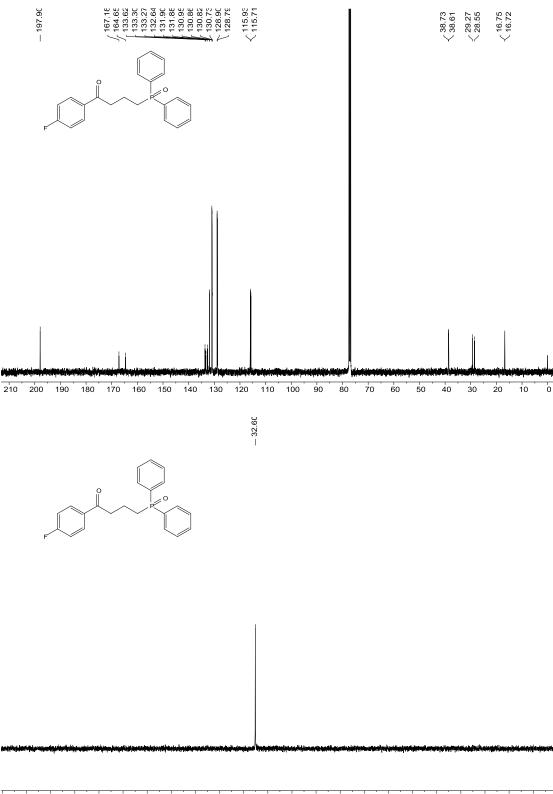



140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240

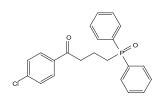
S30

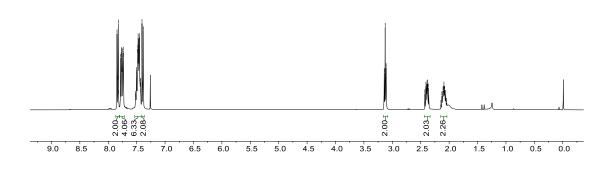
80 70

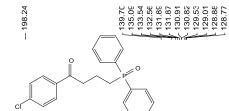

60 50 40 30

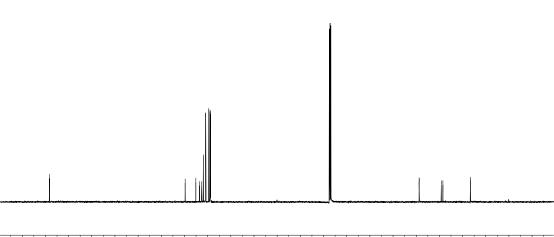

200 190 180 170 160 150 140 130 120 110 100 90

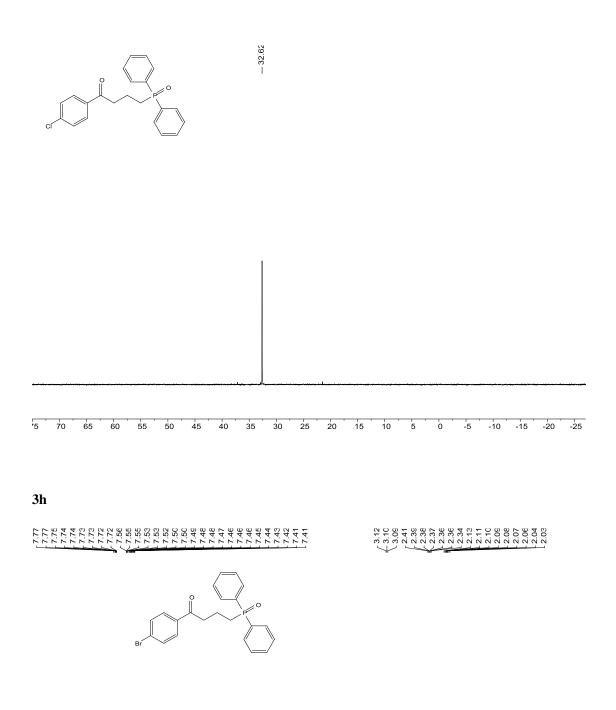
10

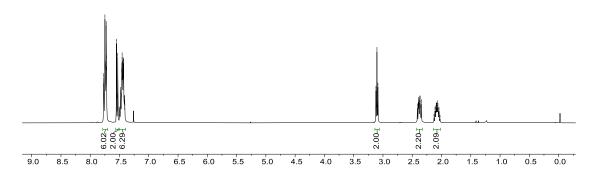

20

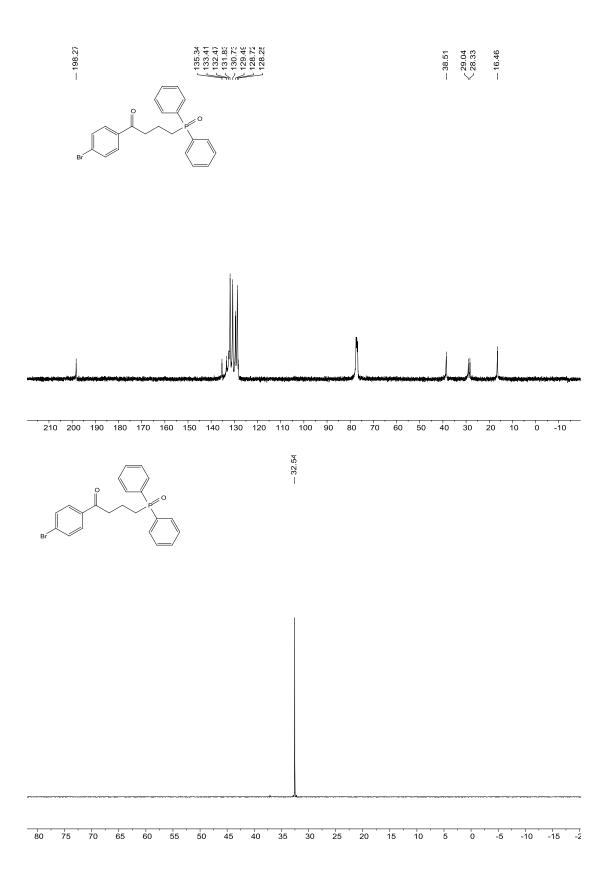

0

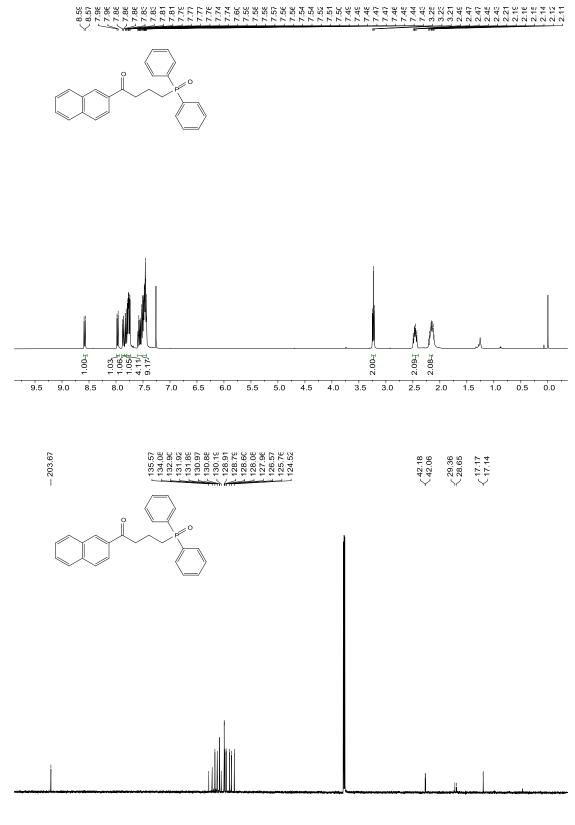


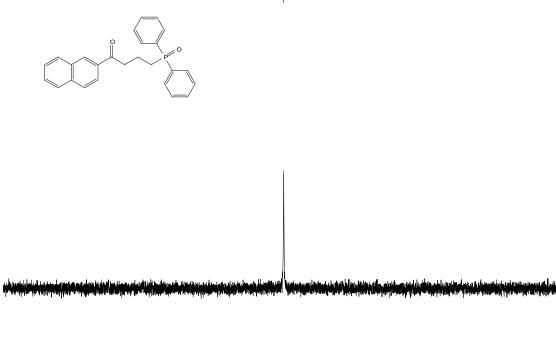

35 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25


7.85 7.128 7.128 7.128 7.128 7.178 7.177 7.177 7.177 7.177 7.1757 7.1757 7.1757 7.1757 7.1757 7.1757 7.1757 7.1757 7.1757 7.17

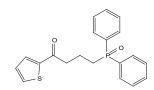


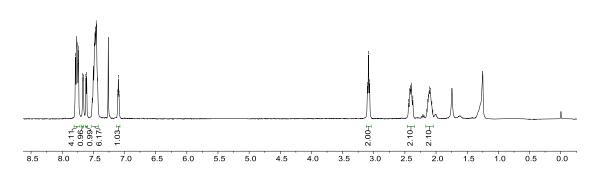


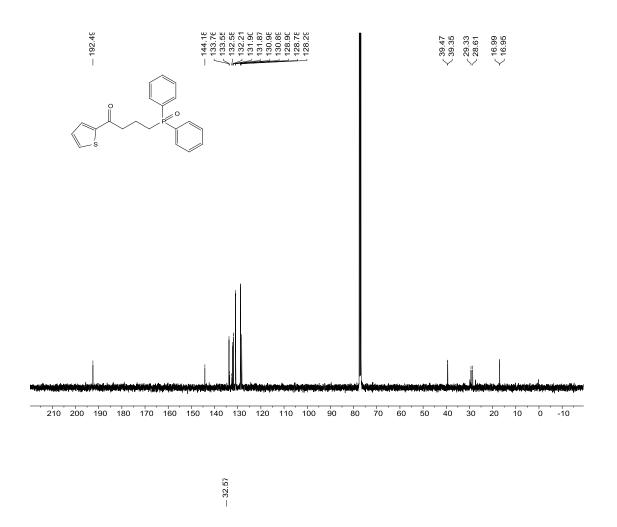


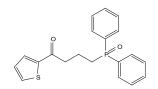


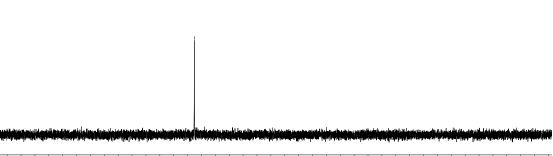
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

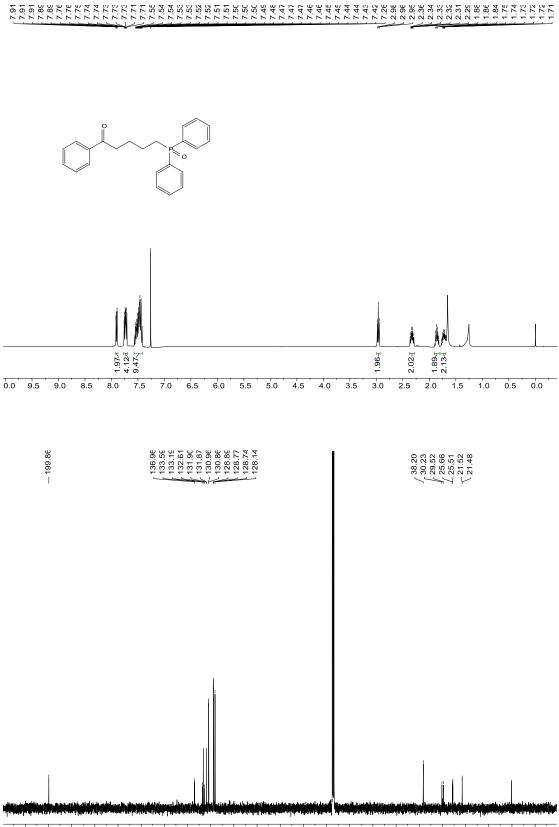

3j

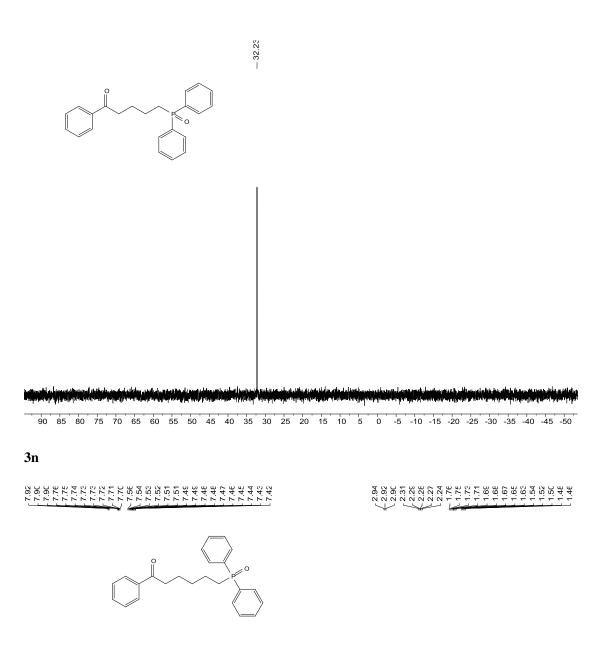

85 80 75 70 65 60 55 50 45 40 35 30 25 20

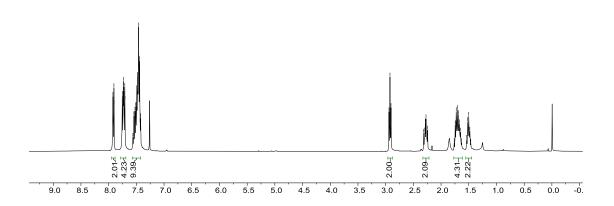

- 3.08 - 3.08 - 3.07 - 3.08 - 3.07 - 3.08 - 3.07 - 3.07 - 3.07 - 3.07 - 3.07 - 3.07 - 3.07 - 3.07 - 3.07 - 3.07 - 3.07 - 3.07 - 3.08 - 3.07 - 3.07 - 3.08 - 3.07 - 3.08 - 3.07 - 3.07 - 3.08 - 3.07 -

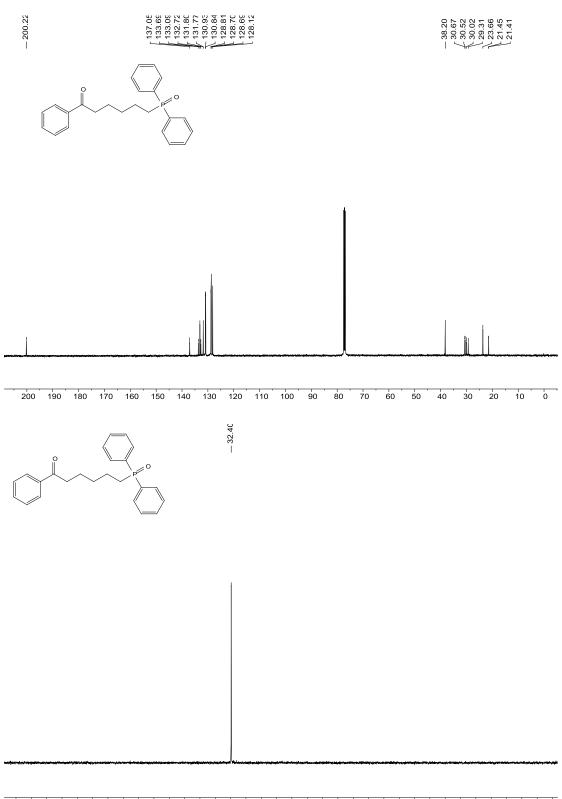

-5 -10 -15

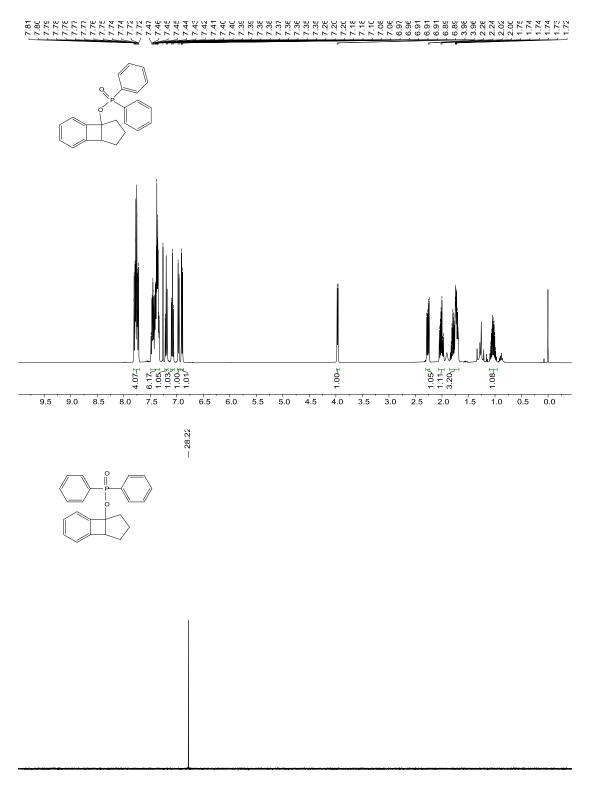

15 10 5 0

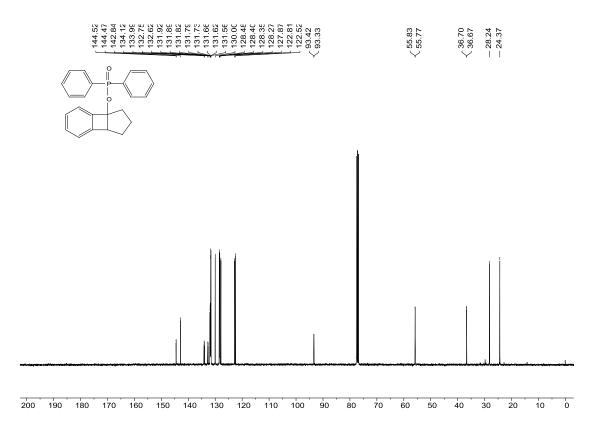




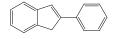


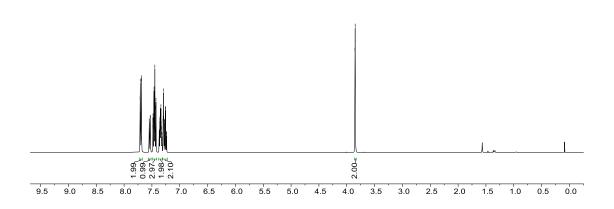

100 90 80 70 60 50 40 30 20 10 o -10 -20 -30 -40 -50 -60 -70 -80 -90

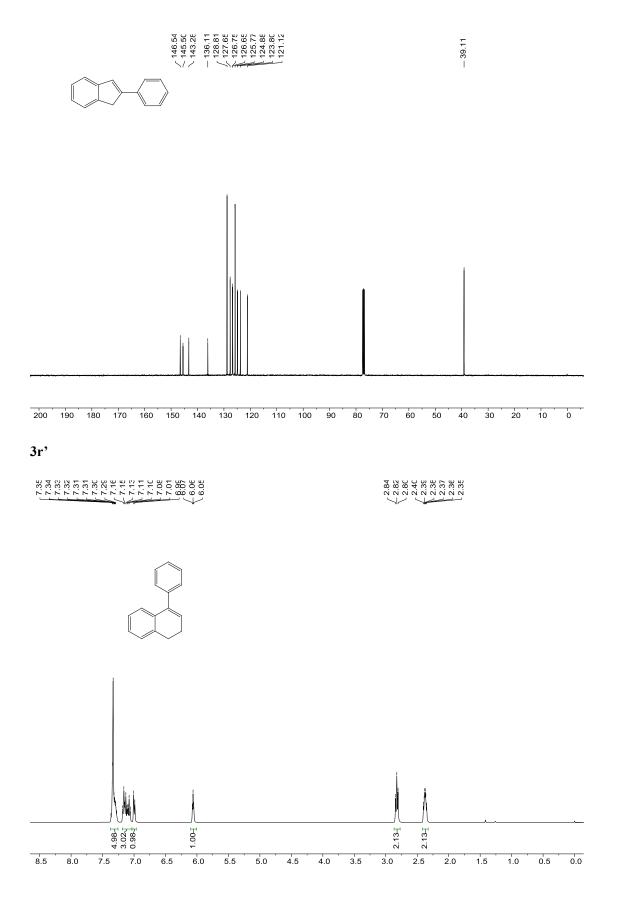

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

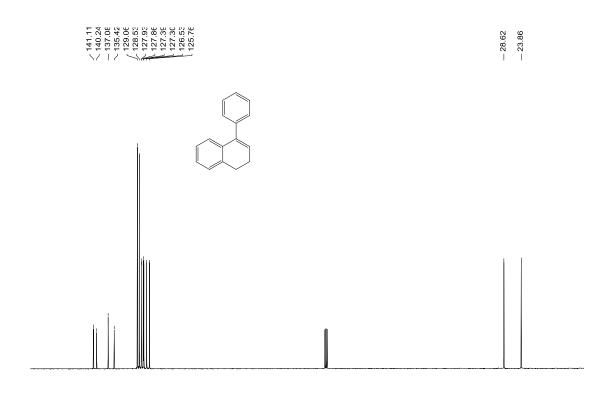


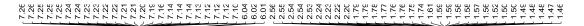
-5 -15 -20 ò -10

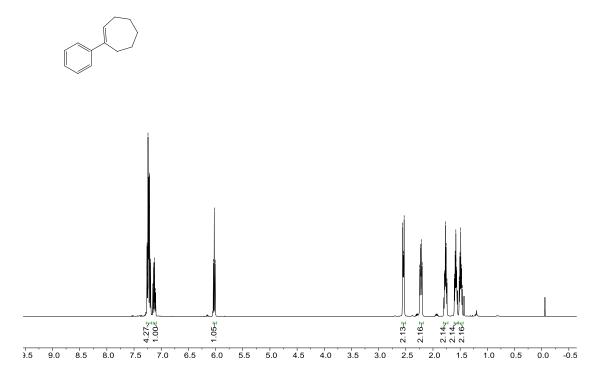


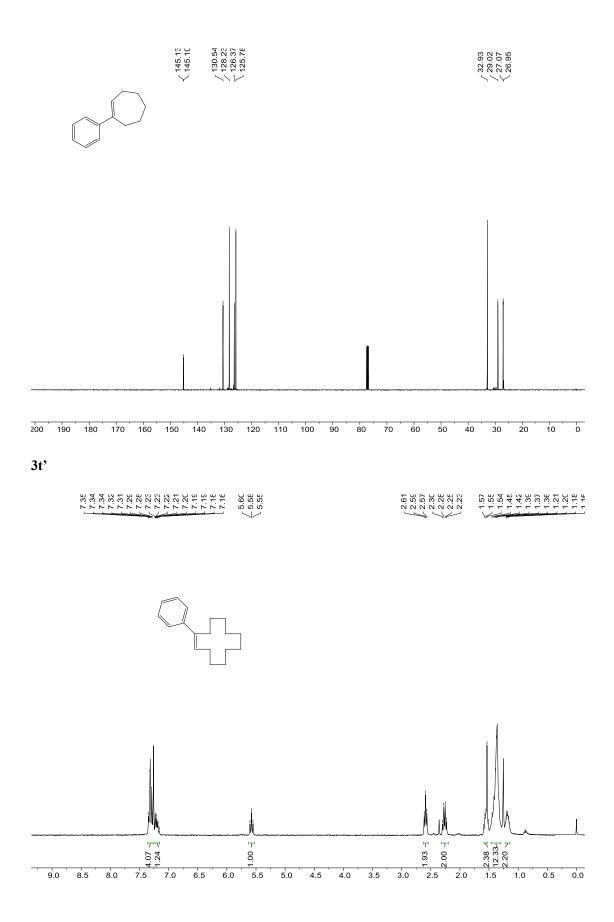

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25

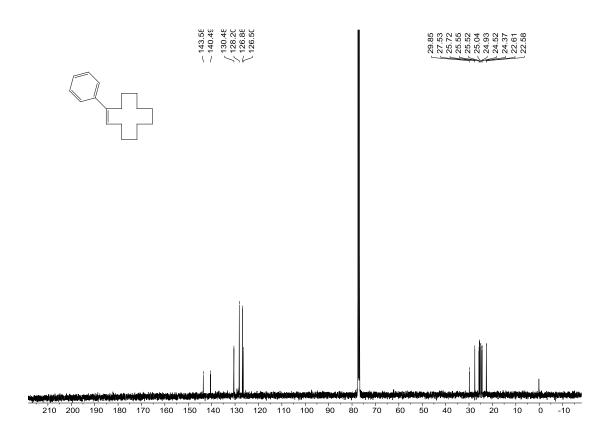



3q'

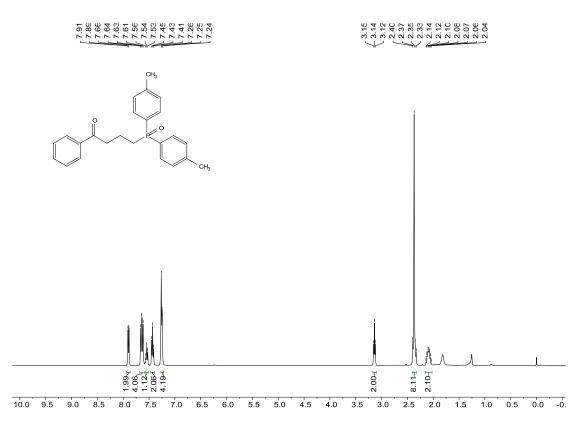


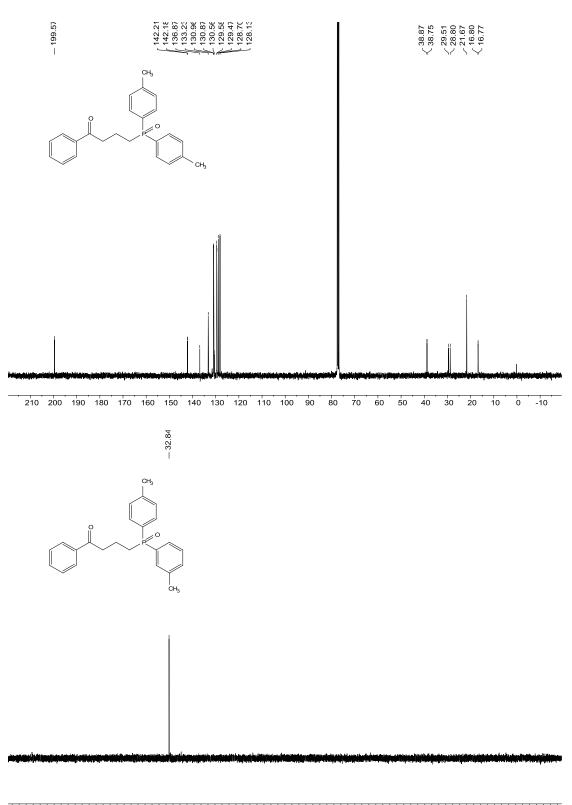


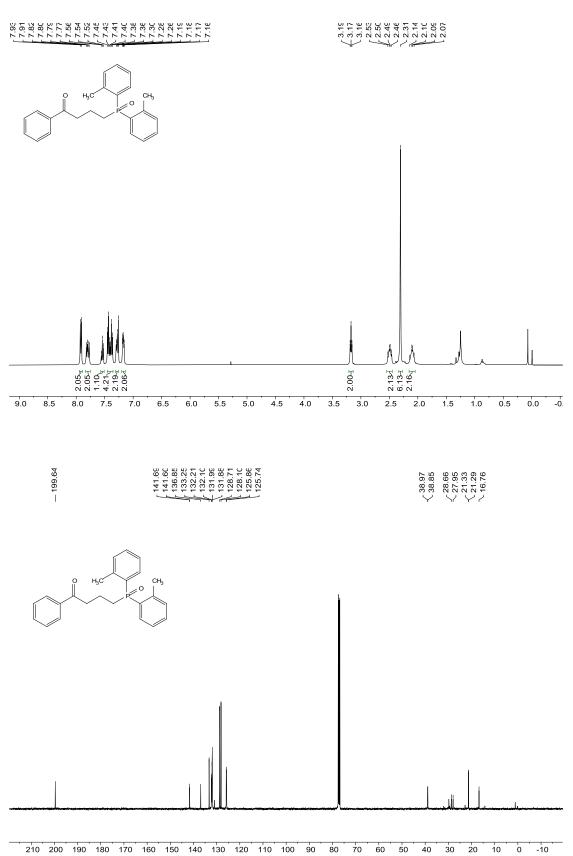



^{155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10}

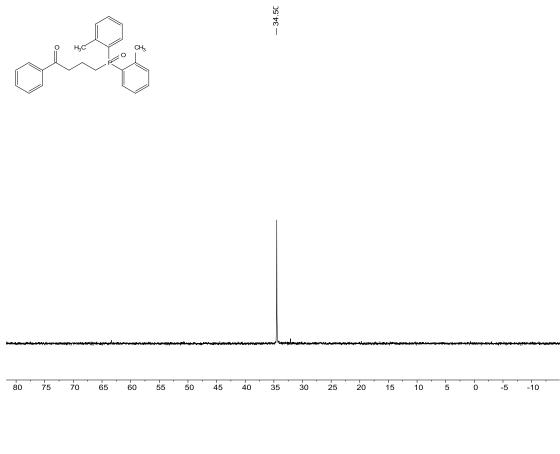
³s'



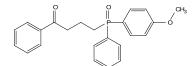


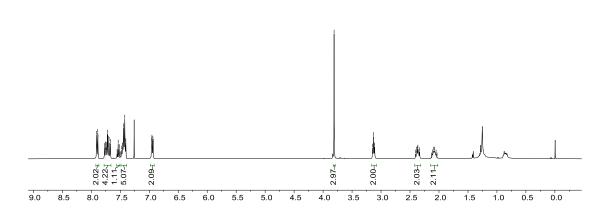


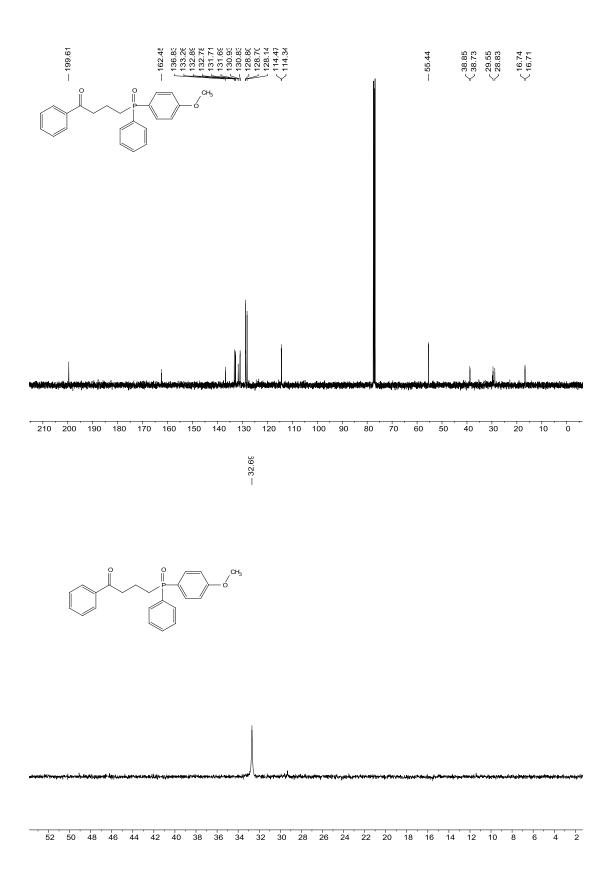
4a

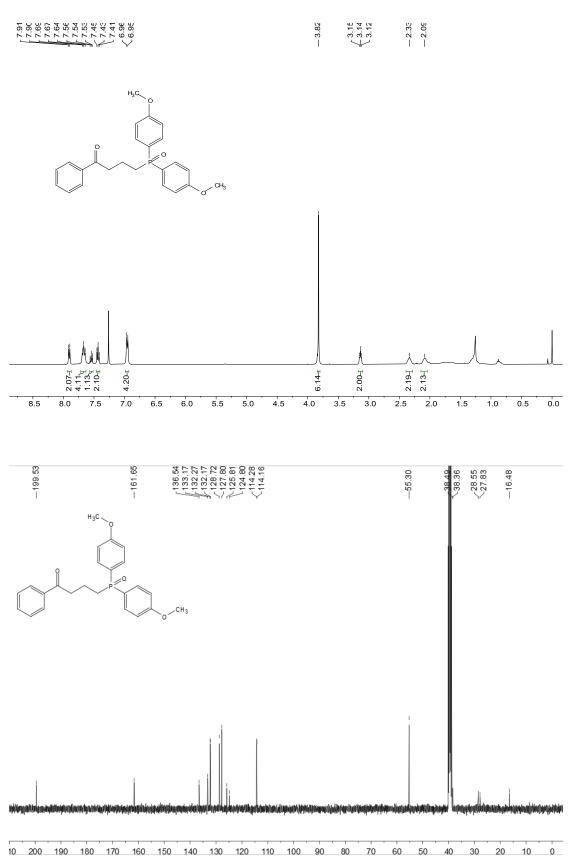


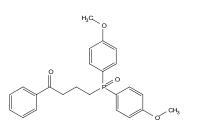
140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240



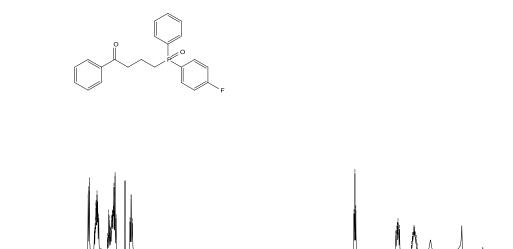

4b

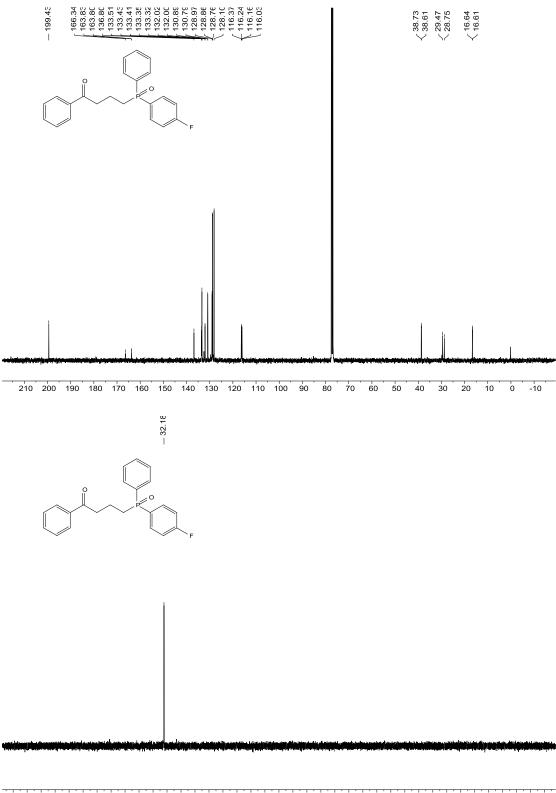



4c

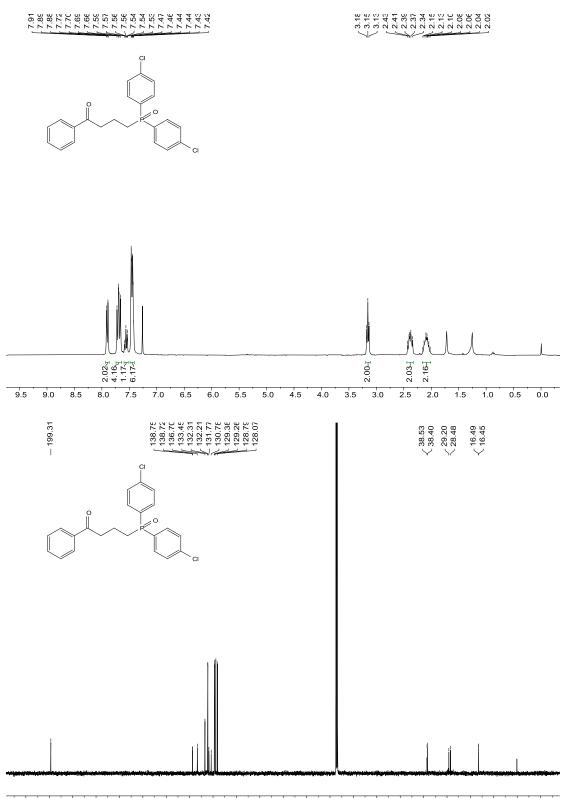


4d

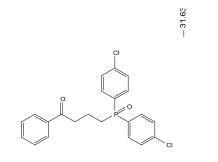



--- 30.05

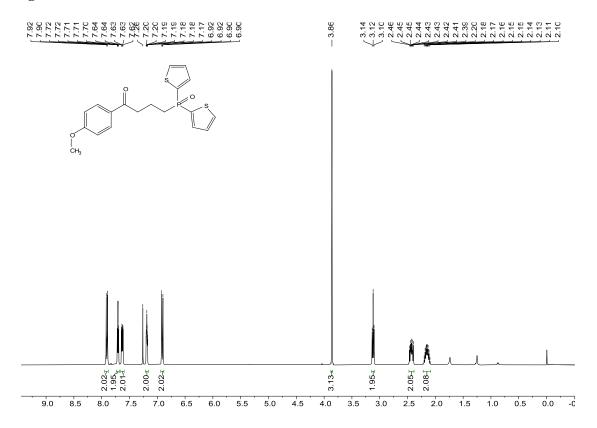
60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 -2

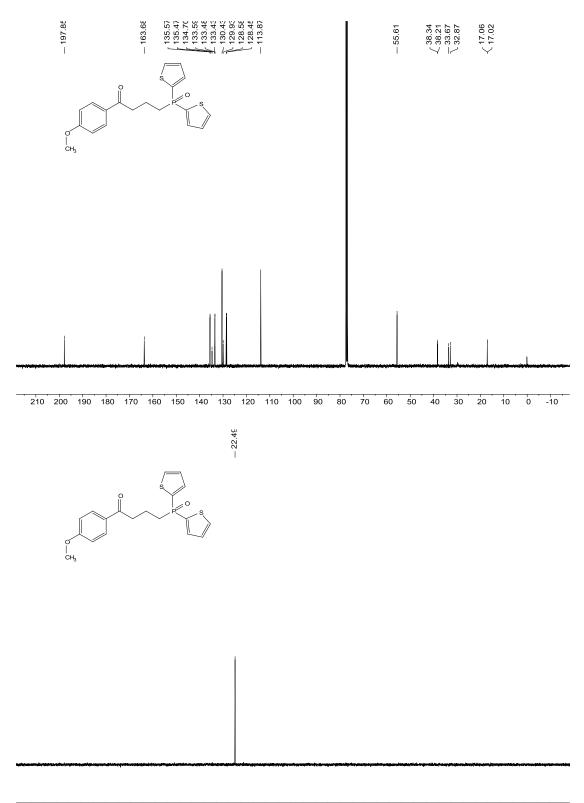

4e

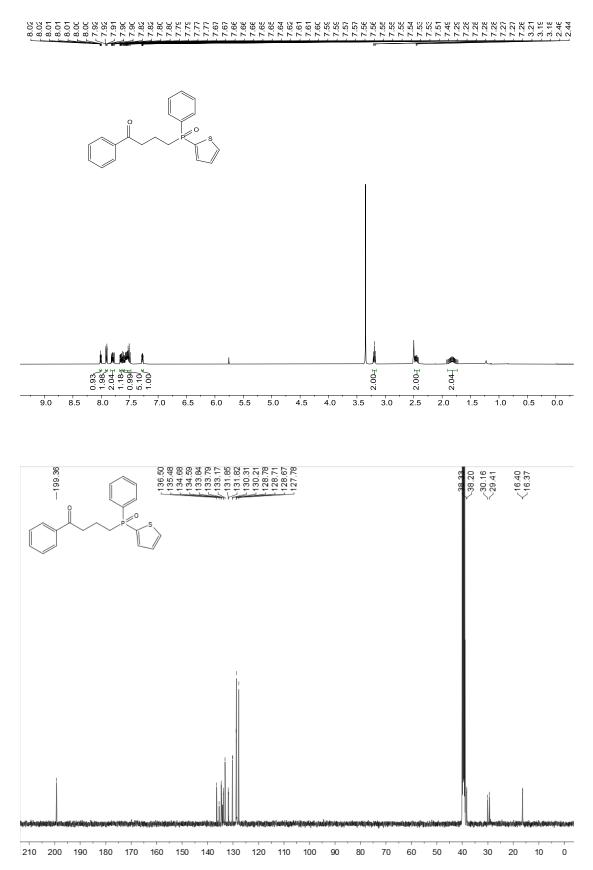
7.20



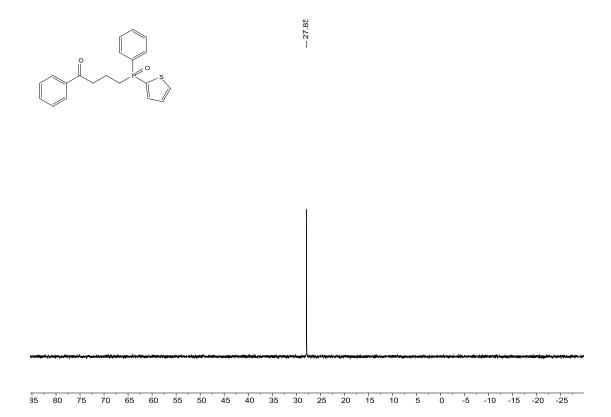
140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240

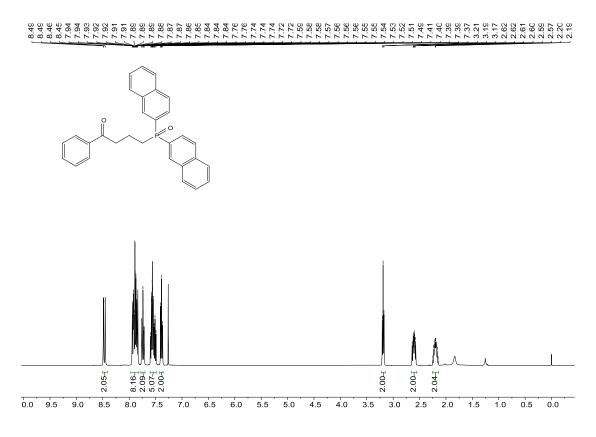

4f

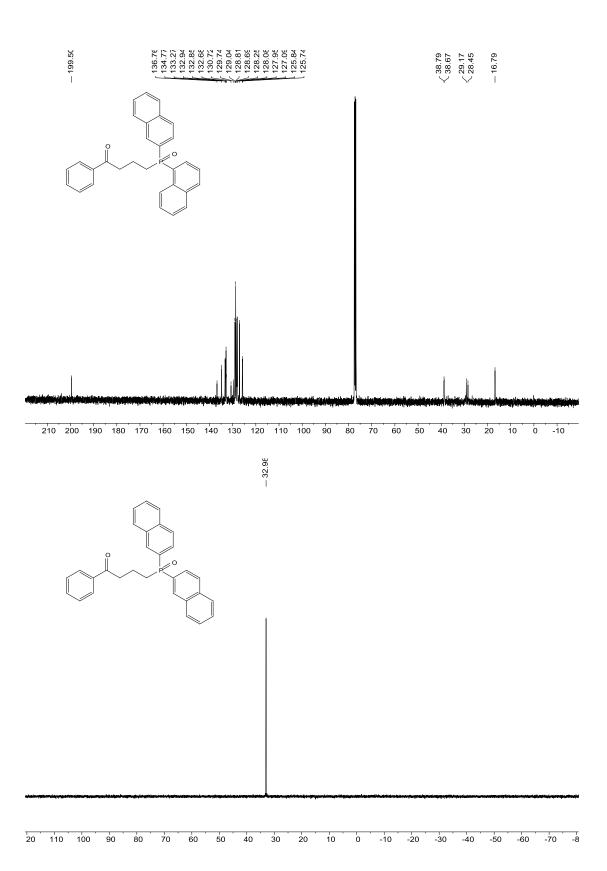

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

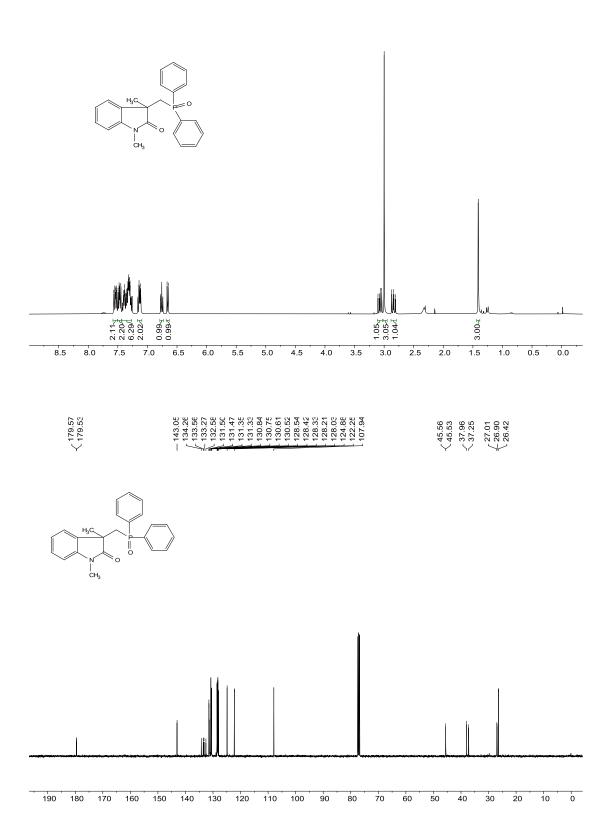


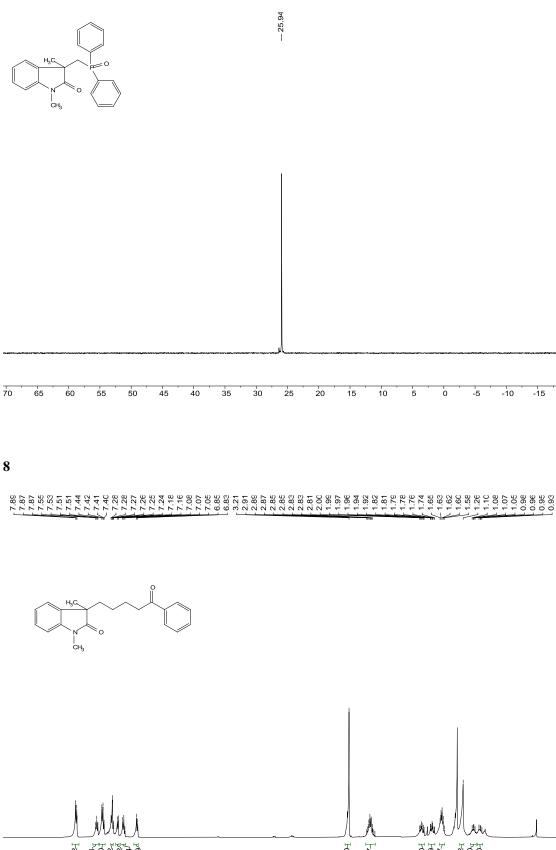
4g

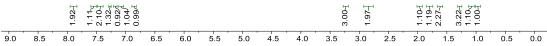


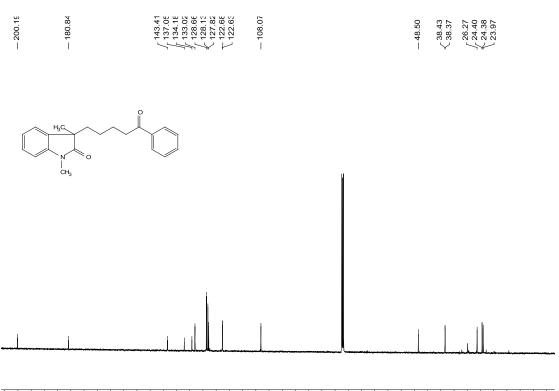

110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -11(




4h


4i





7

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0