Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information for

Photocatalytic selective 1,2-hydroxyacylmethylation of 1,3-dienes

with sulfur ylides as source of alkyl radicals

Shuang-Hua Xu,^a Dong-Mei Yan,^a Li Rao, ^a Min Jiang,^b Ya-Li Wu,^a Wen-Jing Xiao,^a and Jia-Rong Chen^{a,c*}

^aCCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China. E-mail: chenjiarong@mail.ccnu.edu.cn

^bCollege of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 310036, China

^cSchool of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China

* E-mail: chenjiarong@mail.ccnu.edu.cn.

Table of Contents

1. General Information	2
2. Scope of the Substrates	3
3. Detailed Optimization of Reaction Conditions and Control Experiments	4
3.1 Optimization of Reaction Conditions	4
3.2. Control Experiments	11
4. General Procedure and Spectral Data of Products	12
4.1 General Procedure for the Synthesis of Products	12
4.2 Spectral Data of Products	12
5. Gram Scale Reaction and Synthetic Utility	22
5.1 Gram Scale Reaction	22
5.2 Synthetic Utility	23
6. The Mechanism Studies	26
6.1 TEMPO Trapping Experiment	26
6.2 PhSeSePh Trapping Experiment	26
6.3 H ₂ ¹⁸ O Labelling Experiment	27
6.4 EPR Experiment	27
6.5. Luminescence Quenching Experiments	28
6.6 Cyclic Voltammogram of Sulfur Ylide 2a and sulfonium salt 2a-I	31
6.7 Interaction of sulfur ylide 2a with CF ₃ CH ₂ OH	32
6.8 Determination of Quantum Yield	
6.9 Density Functional Theory Calculations	
7. X-Ray Structures of Compounds	46
8. Spectra of Products	56

1. General Information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. 1,3-dienes **1** and sulfur ylides **2** were prepared according to the known procedure.^{1,2} All the solvents were treated according to standard methods.^{3,4}

¹H NMR spectra were recorded on a 400 MHz spectrometer. Chemical shifts are reported in parts per million (ppm) and the spectra are calibrated to the resonance resulting from incomplete deuteration of the solvent (CDCl₃: 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = double doublet), coupling constants (Hz) and integration ¹³C NMR spectra were recorded on 100 MHz with complete proton decoupling spectrophotometers (CDCl₃: 77.0 ppm, t). ¹⁹F NMR spectra were recorded on 376 MHz with complete proton decoupling spectrophotometers. **IR** were measured on Bruker TENSOR 27. The high resolution mass spectra (**HRMS**) were measured on Bruker micrOTOF-II mass spectrometer by ESI. Blue LED lamps (20 W; Kessil PR160, λ max = 456 nm) were used to irradiate the reaction mixtures, which were bought from Anhui Kemi Machinery Technology Co., Ltd. (http://www.ahkemi.com/). **Electron Paramagnetic Resonance (EPR)**: Electron paramagnetic resonance studies was performed on JES X320, JEOL Inc.

Figure S1. Light source and photoreactor used in this research

References:

1. (a) Sun, X.; Li, X.; Song, S.; Zhu, Y.; Liang, Y.-F.; Jiao, N. *J. Am. Chem. Soc.* **2015**, 137, 6059. (b) Hemric, B. N., Chen, A. W.; Wang, Q. *ACS Catal.* **2019**, *9*, 10070. (c) Sardini, S. R.; Brown, M. K. *J. Am. Chem. Soc.* **2017**, *139*, 9823.

2. (a) Ratts, K. W.; Yao, A. N. J. Org. Chem. 1966, 31, 1185. (b) Anderson, W. K.; Jones, A. N. J. Med.Chem. 1984, 27, 1559. (c) Quintana, J.; Torres, M.; Serratosa, F. Tetrahedron, 1973, 29, 2065. (d) Payne, G. J. Org. Chem. 1967, 32, 3351.

3. Perrin, D. D.; Armarego, W. L. F. *Purification of Laboratory Chemicals, 4th ed.*; Pergamon Press: Oxford, **1997**.

4. CF₃CH₂OH is bubbled with argon for 20 mins before each experiment.

2. Scope of the Substrates

3. Detailed Optimization of Reaction Conditions and Control Experiments

3.1 Optimization of Reaction Conditions

Table S1. Screening of the ratio of H₂O^[a]

Ph 1a	+ Me 2a Me + H_2O	fac-[lr(ppy) ₃] (2 mol%) <u>20 W blue LED</u> CF ₃ CH ₂ OH (2.0 mL), r.t. Ar, degas, 24 h, fan	OH PMP 3aa O
Entry	H2O (x eq.)	Conversion (%) ^[b]	Yield (%) ^[b]
1	1.0	100	19
2	1.75	100	30
3	2.75	100	37
4	3	100	33
5	5	100	43
6	10	100	44
7	15	100	59
8	20	100	57
9	0.5 mL	30	<10

^[a]Reaction conditions: **1a** (0.6 mmol), **2a** (0.2 mmol), **H₂O** (x eq.), *fac*-[Ir(ppy)₃] (2 mol%), CF₃CH₂OH (2.0 mL), RT, 24 h, irradiation with 20 W blue LED under argon atmosphere. ^[b]Determined using 1,3,5-trimethoxybenzene as an internal standard.

As shown in *Table S1*, among the different ratios of H_2O tested, 15.0 eq. gave the best results in terms of yield (59% yield), and was thus selected for further optimization studies.

Table S2. Optimization of the photocatalysts^[a]

^[a]Reaction conditions: **1a** (0.6 mmol), **2a** (0.2 mmol), **H₂O** (15.0 eq.), Photocatalyst (2 mol%), CF₃CH₂OH (2.0 mL), RT, 24 h, irradiation with 20 W blue LED under argon atmosphere. ^[b]Determined using 1,3,5-trimethoxybenzene as an internal standard.

As shown in *Table S2*, among all the photocatalysts tested, fac-[Ir(ppy)₃] gave the best results in terms of yield (59% yield), and was thus selected for further optimization studies.

Table S3. Screening of the ratio of photocatalyst^[a]

Ph 1a	$ \begin{array}{c} & \bullet \\ & \bullet & \bullet$	py) ₃] (x mol%) <u>V blue LED</u> DH (2.0 mL), r.t. gas, 24 h, fan 3a	H PMP a O
Entry	fac-[Ir(ppy)3] (x mol%)	Conversion (%) ^[b]	Yield (%) ^[b]
1	1	100	40
2	2	100	59
3	3	100	63
4	4	100	61
5	5	100	64

^[a]Reaction conditions: **1a** (0.6 mmol), **2a** (0.2 mmol), **H₂O** (15.0 eq.), *fac*-[Ir(ppy)₃] (x mol%), CF₃CH₂OH (2.0 mL), RT, 24 h, irradiation with 20 W blue LED under argon atmosphere. ^[b]Determined using 1,3,5-trimethoxybenzene as an internal standard.

As shown in *Table S3*, among the ratio of *fac*-[Ir(ppy)₃] tested, 5 mol% gave slightly better results in terms of yield (64% yield) than 2 mol% (59%), and 2 mol% was thus selected for further optimization studies.

Table S4. Optimization of solvent^[a]

Ph 1a	+ $PMP \xrightarrow{O} Me \\ S_{Me} + H_2O$ 2a	fac-[lr(ppy) ₃] (2 mol%) 20 W blue LED Solvent (2.0 mL), r.t. Ar, degas, 24 h, fan	OH PMP 3aa O
Entry	Solvent	Conversion (%) ^[b]	Yield (%) ^[b]
1	CF ₃ CH ₂ OH	100	59
2	MeOH	17	0
3	EtOH	0	0
4	ⁱ PrOH	51	0

5	HFIP	10	8
6	DMF	85	0
7	DMSO	100	0
8	THF	100	0
9	DCM	0	0
10	MeCN	100	0

^[a]Reaction conditions: **1a** (0.6 mmol), **2a** (0.2 mmol), **H2O** (15.0 eq.), *fac*-[Ir(ppy)₃] (2 mol%), Solvent (2.0 mL), RT, 24 h, irradiation with 20 W blue LED under argon atmosphere. ^[b]Determined using 1,3,5-trimethoxybenzene as an internal standard.

As shown in Table S4, among the solvent tested, CF₃CH₂OH gave the best result (59% yield), and was thus selected for further studies.

ОН

O Me	fac-[lr(ppv)a

Table S5. Optimization of substrate ratio^[a]

Ph 🤇	+ 1a	O Me fac-[lr(ppy) ₃] (2 mol%) 20 W blue LED 20 W blue LED 2a CF ₃ CH ₂ OH (2.0 mL), r.t. Ar, degas, 24 h, fan	t. Ph 3aa O
	Entry	1a: 2a: H ₂ O	Yield (%) ^[b]
	1	3/1/15	59
	2	1/1/15	27
	3	1/2/15	46
	4	1/3/15	63
	5	1/4/15	59

^[a]At 0.2 mmol scale. Reaction conditions: The ratio of 1a: 2a: H₂O as shown in Table S5, fac-[Ir(ppy)₃] (2 mol%), CF₃CH₂OH (2.0 mL), RT, 24 h, irradiation with 20 W blue LED under argon atmosphere. ^[b]Determined using 1,3,5-trimethoxybenzene as an internal standard.

As shown in Table S5, among the ratios tested, a 1:3:15 ratio of 1a:2a:H2O gave the best result in terms of yield (63% yield), and was thus selected for further studies.

Table S6. Optimization of light intensity^[a]

Ph ¹	a $2a$ Me H_2O $H_$	ac-[Ir(ppy) ₃] (2 mol%) <u>X W blue LED</u> F ₃ CH ₂ OH (2.0 mL), r.t. Ar, degas, 24 h, fan	OH PMP 3aa O
Entry	Light source	Light intensity	Yield (%) ^[b]
1	4×6 W blue LEDs	10 mW/cm^2	49
2	7 W blue LEDs	5 mW/cm^2	22
3	10 W kessil blue LED	15 mW/cm^2	40
4	20 W kessil blue LED	32 mW/cm²	63
5	30 W kessil blue LED	48 mW/cm ²	56
6	40 W kessil blue LED	65 mW/cm ²	55

^[a]Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), **H₂O** (15.0 eq.), *fac*-[Ir(ppy)₃] (2 mol%), CF₃CH₂OH (2.0 mL), RT, 24 h, irradiation with X W blue LED under argon atmosphere. ^[b]Determined using 1,3,5-trimethoxybenzene as an internal standard.

As shown in *Table S6*, among the tested, 20 W Kessil blue LED gave the best result in terms of yield (63% yield), and was thus selected for further studies.

Table S7. Optimization of concentration^[a]

Ph	+ 1a	$\begin{array}{c} O & Me \\ \hline PMP & S \\ 2a \end{array} + H_2O & \begin{array}{c} fac-[Ir(ppy)_3] (2) \\ 20 & W & blue \\ CF_3CH_2OH (x & r \\ Ar, & degas, 24 \end{array}$	mol%) ED hL), r.t. h, fan Ph OH PMP 3aa
_	Entry	CF ₃ CH ₂ OH (x mL)	Yield (%) ^[b]
_	1	1	41
	2	1.5	42
	3	2	63
	4	3	74
	5	4	49

^[a]Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), **H₂O** (15.0 eq.), *fac*-[Ir(ppy)₃] (2 mol%), CF₃CH₂OH (x mL), RT, 24 h, irradiation with 20 W blue LED under argon atmosphere. ^[b]Determined using 1,3,5-trimethoxybenzene as an internal standard.

As shown in *Table S7*, among the tested, $3.0 \text{ mL CF}_3\text{CH}_2\text{OH}$ gave the best result in terms of yield (74% yield), and was thus selected for further studies.

Ph +	O Me S Me + H ₂ O —	fac-[lr(ppy) ₃] (2 mol%) 20 W blue LED additive (x eq.) CF ₃ CH ₂ OH (3 mL), r.t. Ar. degas, 24 h. fan	→ Ph	F
1a	2d	,	3ad	
Entry	Additive (x e	q.)	Yield (%) ^[b]	_
1			<10	_
2	Et ₃ N·3HF (1.	0)	90	
3	Et ₃ N·HCl (1.	0)	14	
4	NH4Cl (1.0))	16	
5	Py·HF (1.0)	1	34	
6	CsF (1.0)		Trace	
7	KF (1.0)		Trace	
8	Et ₃ N·3HF (0.3	33)	12	
9	Et ₃ N·3HF (0.	5)	17	
10	Et ₃ N·3HF (2.	0)	28	
11	Et ₃ N·3HF (3.	0)	21	
12	Et ₃ N·3HF (4.	0)	48	

Table S8. Optimization of additive^[a]

^[a]Reaction conditions: **1a** (0.2 mmol), **2d** (0.6 mmol), **H₂O** (15.0 eq.), *fac*-[Ir(ppy)₃] (2 mol%), additive (x eq.), CF₃CH₂OH (3.0 mL), RT, 24 h, irradiation with 20 W blue LED under argon atmosphere. ^[b]Determined using 1,3,5-trimethoxybenzene as an internal standard.

As shown in *Table S8*, among all the additives tested, Et_3N ·3HF (1.0 eq.) gave the best result in terms of yield (90% yield), and was thus selected for further studies.

Table S9. Op	ptimization of	mixture solvents
--------------	----------------	------------------

Ph + 1a	PMP S Me + H ₂ O 2a	fac-[lr(ppy) ₃] (2 mol%) 20 W blue LED mixted solvents (5:1,v/v) r.t., Ar, degas, 24 h, fan	- Ph 3aa	ſΡ
Entry	Solvent	(5:1, v/v)	Yield (%) ^[b]	
1	TFE -	+ DCM	74	
2	TFE + DCM (with	h 1.0 eq. Et3N [.] 3HF)	94 (90) ^[c]	
3	TFE -	+ HFIP	62	
4	TFE +	EtOAc	14	
5	TFE	+ THF	20	
6	TFE -	+ DMF	Trace	
7	TFE +	CH ₃ CN	19	
8	TFE +	Acetone	8	

^[a]Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), **H₂O** (15.0 eq.), *fac*-[Ir(ppy)₃] (2 mol%), mixture solvent (3.0 mL), RT, 24 h, irradiation with 20 W blue LED under argon atmosphere. ^[b] Determined using 1,3,5-trimethoxybenzene as an internal standard. ^[c]Isolated yield.

As shown in *Table S9*, among the tested, TFE: DCM (5:1, v/v) as the solvent, Et₃N[·]3HF (1.0 eq.) as the additive gave the best result in terms of yield (94% yield), and was thus selected for further studies.

3.2. Control Experiments

Table S10. Control experiments^[a]

Ph [^]	a 2a	<i>fac</i> -[lr(ppy) ₃] (2 mol%) 20 W blue LED Et ₃ N•3HF(1.0 eq) TFE + DCM (2.5 + 0.5 mL) r.t., Ar, degas, 24 h, fan	OH J J J J J J J J J J J J J J J J J J J
Entry	Variation	Yield (%) ^[b]	1a remained (%) ^[b]
1	None	94	0
2	No light	0	>95
3	No <i>fac</i> -[Ir(ppy) ₃]	0	>95
4	No degas	0, messy	0
5	No Et ₃ N·3HF	74	0

^[a]Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), **H₂O** (15.0 eq.), *fac*-[Ir(ppy)₃] (2 mol%), Et₃N·3HF (1.0 eq.), CF₃CH₂OH (2.5 mL), DCM (0.5 mL), RT, 24 h, irradiation with 20 W blue LED. ^[b]Determined using 1,3,5-trimethoxybenzene as an internal standard.

Figure S2. Control experiments with other radical precursors

These control experiments show that sulfonium salts **2a-I** and 2-bromo-4'-methoxyacetophen one **2a-III** cannot give better results in the current established catalytic system.

4. General Procedure and Spectral Data of Products

4.1 General Procedure for the Synthesis of Products

In a flame-dried 10.0 mL Schlenk tube equipped with a magnetic stir bar was charged sequentially with sulfur ylides **2a-n** (0.60 mmol, 3.0 eq.), *fac*-[Ir(ppy)₃] (2.6 mg, 0.004 mmol, 2 mol%) and **H₂O** (54 μ L, 3 mmol, 15.0 eq.), followed by the addition of TFE (2.5 mL) and DCM (0.5 mL). The resulting mixture was degassed via 'freeze-pump-thaw' procedure (3 times) under argon atmosphere. After that, diene **1a-z** (0.2 mmol, 1.0 eq.) and Et₃N·3HF (32 mg, 0.2 mmol, 1.0 eq.) were added. Then, the solution was stirred under irradiation of 20 W blue LEDs at room temperature about 4-7 h and monitored through TLC analysis. The crude product was purified by flash chromatography on silica gel directly to give the desired product.

4.2 Spectral Data of Products

(E)-4-hydroxy-1-(4-methoxyphenyl)-6-phenylhex-5-en-1-one

53.3 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.25), yellow solid, yield: 90%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.95 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.23 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.61 (d, *J* = 8.8 Hz, 1H), 6.25 (dd, *J* = 16.0,

1H), 4.42 (q, J = 6.4 Hz, J = 12.8 Hz 1H), 3.86 (s, 3H), 3.12 (t, J = 6.8 Hz, 2H), 2.15-2.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.2, 163.5, 136.6, 132.0, 130.4, 130.3, 129.8, 128.5, 127.6, 126.4, 113.7, 72.1, 55.4, 34.0, 31.4. IR (in KBr): 2977, 2360, 1670, 1600, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₉H₂₀NaO₃: 319.1305, found: 319.1303.

(E)-4-hydroxy-1-(4-methoxyphenyl)-6-(p-tolyl)hex-5-en-1-one

48.9 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.3), yellow solid, yield: 75%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94 (d, *J* = 8.8 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.90 (d, *J* = 8.8 Hz, 2H), 6.56 (d, *J* = 15.6 Hz, 1H), 6.19 (dd, *J* = 15.6, 6.4 Hz, 1H), 4.39 (q, *J* = 6.0 Hz, 1H), 3.84 (s, 3H), 3.09 (t, *J*

= 7.2 Hz, 2H), 2.61 (s, 1H), 2.32 (s, 3H), 2.16 – 1.98 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.2, 163.42, 137.4, 133.8, 130.9, 130.3, 130.2, 129.8, 129.2, 126.3, 113.6, 72.1, 55.4, 34.0, 31.4,

21.1. IR (in KBr): 2975, 2360, 1669, 1600, 1050 cm⁻¹. HRMS (ESI): $m/z [M + Na]^+$ calcd for $C_{20}H_{22}NaO_3$: 333.1459, found: 333.1461.

(E)-4-hydroxy-1,6-bis(4-methoxyphenyl)hex-5-en-1-one

45.2 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.3), yellow solid, yield: 70%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 8.8 Hz, 2H), 6.84 (d, *J* = 8.3 Hz, 2H), 6.53 (d, *J* = 16.0 Hz, 1H), 6.10 (dd, *J* =

15.6, 6.4 Hz, 1H), 4.37 (q, J = 6.4 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 3.09 (t, J = 7.2 Hz, 2H), 2.65 (s, 1H), 2.08 – 2.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.1, 163.4, 159.1, 130.3, 129.8, 129.8, 129.3, 127.6, 113.8, 113.6, 72.2, 55.3, 55.2, 34.0, 31.5. IR (in KBr): 2988, 2361, 1667, 1599, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₀H₂₂NaO₄: 349.1419, found: 349.1410.

(E)-6-(4-(tert-butyl)phenyl)-4-hydroxy-1-(4-methoxyphenyl)hex-5-en-1-one

55.0 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.3), yellow solid, yield: 79%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94 (d, *J* = 8.8 Hz, 2H), 7.34 – 7.29 (m, 4H), 6.90 (d, *J* = 8.8 Hz, 2H), 6.58 (d, *J* = 16.0 Hz, 1H), 6.21 (dd, *J* = 15.6, 6.0 Hz, 1H), 4.40 (q, *J* = 6.0 Hz, 1H), 3.83 (s, 3H), 3.09 (t, *J* = 6.8 Hz, 2H), 2.60 (s, 1H),

2.14 – 1.98 (m, 2H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.1, 163.4, 150.7, 133.8, 131.2, 130.4, 130.1, 129.9, 126.1, 125.40, 113.6, 72.1, 55.4, 34.5, 34.0, 31.4, 31.2. IR (in KBr): 2974, 2360, 1683, 1600, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₃H₂₈NaO₃: 375.1929, found: 375.1931.

(E)-6-(4-fluorophenyl)-4-hydroxy-1-(4-methoxyphenyl)hex-5-en-1-one

40.4 mg (petroleum ether: ethyl acetate = $3:1 \text{ R}_{f} = 0.2$), yellow solid, yield: 64%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94 (d, J = 9.2 Hz, 2H), 7.31 (dd, J = 8.4, 5.2 Hz, 2H), 6.98 (t, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 6.56 (d, J = 16.0 Hz, 1H), 6.16 (dd, J = 16.0, 6.4 Hz, 1H), 4.40 (q, J = 5.6 Hz, 1H), 3.85 (s, 3H), 3.11 (t, J = 16.0 Hz, 1H), 4.40 (q, J = 5.6 Hz, 1H), 3.85 (s, 3H), 3.11 (t, J = 16.0 Hz, 1H), 3.85 (s, 3H), 3.11 (t, J = 16.0 Hz, 1H), 4.40 (q, J = 5.6 Hz, 1H), 3.85 (s, 3H), 3.11 (t, J = 16.0 Hz, 1H), 4.40 (q, J = 5.6 Hz, 1H), 3.85 (s, 3H), 3.11 (t, J = 16.0 Hz, 1H), 4.40 (q, J = 5.6 Hz, 1H), 3.85 (s, 3H), 3.11 (t, J = 16.0 Hz, 1H), 4.40 (q, J = 5.6 Hz, 1H), 3.85 (s, 3H), 3.11 (t, J = 16.0 Hz, 1H), 4.40 (q, J = 5.6 Hz, 1H), 4.40 (q

7.2 Hz, 2H), 2.75 (s, 1H), 2.16 – 1.95 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.21, 163.48, 160.99, 132.8 (d, J = 3.2 Hz), 131.8 (d, J = 2.2 Hz), 130.36, 129.76, 129.00, 128.0 (d, J = 7.9 Hz), 115.4 (d, J = 21.4 Hz), 113.64, 72.0, 55.4, 34.0, 31.3. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -114.4. IR (in KBr): 2973, 2360, 1669, 1600, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₉H₁₉FNaO₂: 337.1202, found: 337.1210.

(E)-6-(4-chlorophenyl)-4-hydroxy-1-(4-methoxyphenyl)hex-5-en-1-one

48.8 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.25), yellow solid, yield: 74%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94 (d, *J* = 9.2 Hz, 2H), 7.25 (s, 4H), 6.90 (d, *J* = 8.8 Hz, 2H), 6.54 (d, *J* = 16.0 Hz, 1H), 6.21 (dd, *J* = 16.0, 6.0 Hz, 1H), 4.40 (q, *J* = 6.0 Hz, 1H), 3.84 (s, 3H), 3.10 (t, *J* = 6.8 Hz, 2H), 2.20 – 1.97 (m, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ (ppm) 199.2, 163.5, 135.1, 133.1, 132.7, 130.3, 129.7, 128.8, 128.6,

127.6, 113.6, 71.8, 71.8, 55.4, 34.0, 31.3. IR (in KBr): 2978, 2360, 1670, 1600, 1050 cm⁻¹. HRMS (ESI): $m/z [M + Na]^+$ calcd for $C_{19}H_{19}ClNaO_3$: 353.0913, found: 353.0915.

(E)-6-(4-bromophenyl)-4-hydroxy-1-(4-methoxyphenyl)hex-5-en-1-one

74.8 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.25), yellow solid, yield: 69%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.95 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 6.93 (d, *J* = 8.4 Hz, 2H), 6.55 (d, *J* = 16.0 Hz, 1H), 6.24 (dd, *J* = 15.6, 5.6 Hz, 1H), 4.41 (q, *J* = 6.4 Hz, 1H), 3.86 (s, 4H), 3.12 (t, *J*

= 6.8 Hz, 2H), 2.57 (s, 1H), 2.16 – 2.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.2, 163.5, 135.6, 132.8, 131.6, 130.4, 129.8, 129.0, 128.0, 121.1, 113.7, 71.9, 55.4, 34.0, 31.3. IR (in KBr): 2970, 2360, 1683, 1600, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₉H₁₉BrNaO₃: 399.0386, found: 399.0389.

(E)-4-hydroxy-1-(4-methoxyphenyl)-6-(4-(trifluoromethyl)phenyl)hex-5-en-1-one

36.9 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.2), yellow solid, yield: 51%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.89 (d, *J* = 8.8 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 6.59 (d, *J* = 15.6 Hz, 1H), 6.28 (dd, *J* = 16.0, 6.0 Hz, 1H), 4.39 (s, 1H), 3.80 (s, 3H), 3.08 (t, *J* = 6.8 Hz,

2H), 2.43 (s, 1H), 2.11–1.95 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.2, 163.6, 140.2, 134.8, 130.4, 129.8, 128.7, 126.6, 125.5, 125.4, 113.7, 71.7, 55.4, 34.0, 31.2, 29.7. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -62.5. IR (in KBr): 2969, 2360, 1683, 1599, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₀H₁₉F₃NaO₃: 387.1183, found: 387.1179.

(E)-6-(3-fluorophenyl)-4-hydroxy-1-(4-methoxyphenyl)hex-5-en-1-one

62.8 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.25), yellow solid, yield: 96%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94 (d, J = 8.8 Hz, 2H), 7.26 – 7.21 (m, 1H), 7.10 (d, J = 8.0 Hz, 1H), 7.03 (d, J = 10.0 Hz, 1H), 6.93 – 6.88 (m, 3H), 6.56 (d, J = 16.0 Hz, 1H), 6.25 (dd, J = 15.6, 6.0 Hz, 1H), 4.41 (q, J = 6.0 Hz, 1H), 3.84 (s, 3H), 3.11 (t, J = 15.6 Hz, 1H), 4.41 (q, J = 6.0 Hz, 1H), 3.84 (s, 3H), 3.11 (t, J = 15.6 Hz, 1H), 4.41 (q, J = 6.0 Hz, 1H), 3.84 (s, 3H), 3.11 (t, J = 15.6 Hz, 1H), 4.41 (q, J = 6.0 Hz, 1H), 3.84 (s, 3H), 3.11 (t, J = 15.6 Hz, 1H), 4.41 (q, J = 6.0 Hz, 1H), 3.84 (s, 3H), 3.11 (t, J = 15.6 Hz, 1H), 4.41 (q, J = 6.0 Hz, 1H), 3.84 (s, 3H), 3.11 (t, J = 15.6 Hz, 1H), 4.81 (q, J = 6.0 Hz, 1H), 3.84 (s, 3H), 3.11 (t, J = 15.6 Hz, 1H), 4.81 (q, J = 6.0 Hz, 1H), 3.84 (s, 3H), 3.11 (t, J = 15.6 Hz, 1H), 4.81 (q, J = 6.0 Hz, 1H), 3.84 (s, 3H), 3.11 (t, J = 15.6 Hz, 1H), 4.81 (q, J = 16.0 Hz, 1H), 3.84 (s, 3H), 3.11 (t, J = 15.6 Hz, 1H), 4.81 (q, J = 16.0 Hz, 1H), 3.84 (s, 3H), 3.11 (t, J = 15.6 Hz, 1H), 4.81 (q, J = 16.0 Hz, 1H), 4.81 (q, J = 10.0 Hz, 1H), 4.81 (q, J = 10.0

6.8 Hz, 2H), 2.15 – 1.97 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.2, 163.48, 163.0 (d, J = 243.6 Hz), 139.0 (d, J = 7.6 Hz), 133.48, 130.35, 129.9 (d, J = 8.3H, 129.72, 128.9 (d, J = 2.6 Hz), 122.3, 114.2 (d, J = 21.6Hz), 113.63, 112.8, 71.6, 55.4, 33.9, 31.3. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -113.52. IR (in KBr): 2983, 2360, 1680, 1600, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₉H₁₉FNaO₃: 337.1208, found: 337.1210.

(E)-6-(3-chlorophenyl)-4-hydroxy-1-(4-methoxyphenyl)hex-5-en-1-one

66.0 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.25), white solid, yield: 77%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94 (d, *J* = 8.8 Hz, 2H), 7.32 (s, 1H), 7.23 - 7.16 (m, 3H), 6.90 (d, *J* = 8.8 Hz, 2H), 6.54 (d, *J* = 15.6 Hz, 1H), 6.25 (dd, *J* = 16.0, 6.0 Hz, 1H), 4.41 (q, *J* = 6.0 Hz, 1H), 3.85 (s, 3H), 3.11 (t, *J* = 6.8 Hz, 2H), 2.87 (s, 1H), 2.14 -

1.97 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.2, 163.5, 138.5, 134.4, 133.6, 130.4, 129.7, 129.7, 128.7, 127.4, 126.3, 124.6, 113.7, 71.7, 55.4, 33.9, 31.2. IR (in KBr): 2988, 2360, 1669, 1597, 1049 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₉H₁₉ClNaO₃: 353.0906, found: 353.0915.

(E)-4-hydroxy-1-(4-methoxyphenyl)-6-(m-tolyl)hex-5-en-1-one

51.1 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.2), yellow solid, yield: 78%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94 (d, *J* = 8.8 Hz, 2H), 7.20 – 7.14 (m, 3H), 7.04 (d, *J* = 6.8 Hz, 1H), 6.89 (d, *J* = 8.8 Hz, 2H), 6.56 (d, *J* = 15.6 Hz, 1H), 6.22 (dd, *J* = 16.0, 6.4 Hz, 1H), 4.39 (q, *J* = 6.0 Hz, 1H), 3.83 (s, 3H), 3.09 (t, *J* = 7.2 Hz, 2H), 2.32 (s, 3H),

2.11 - 2.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.2, 163.4, 138.0, 136.5, 131.8, 130.3, 130.3, 129.8, 128.4, 128.3, 127.1, 123.6, 113.6, 72.0, 55.4, 34.0, 31.4, 21.3. IR (in KBr): 2987, 2360, 1683, 1599, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₀H₂₂NaO₃: 333.1455, found: 333.1461.

(E)-4-hydroxy-1-(4-methoxyphenyl)-6-(3-(trifluoromethoxy)phenyl)hex-5-en-1-one

66.5 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.2), white solid, yield: 88%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94 (d, J = 8.4 Hz, 2H), 7.32 – 7.24 (m, 2H), 7.18 (s, 1H), 7.07 (d, J = 7.6 Hz, 1H), 6.90 (d, J = 8.4 Hz, 2H), 6.59 (d, J = 15.6 Hz, 1H), 6.27 (dd, J = 16.0, 6.0 Hz, 1H), 4.43 (q, J = 6.0 Hz, 1H), 3.84 (s, 3H), 3.12 (t, J = 7.2 Hz, 2H),

2.95 (s, 1H), 2.17 – 1.98 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.3, 163.5, 149.5, 149.5, 138.9, 133.9, 130.4, 129.8, 129.7, 128.6, 124.8, 118.6, 113.7,71.6, 55.4, 34.0, 31.2, 22.5. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -57.70. IR (in KBr): 2973, 2360, 1683, 1600, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₀H₁₉F₃NaO₃: 403.1129, found: 403.1128.

(E)-4-hydroxy-1-(4-methoxyphenyl)-6-(o-tolyl)hex-5-en-1-one

45.6 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.3), yellow solid, yield: 70%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.95 (d, *J* = 8.8 Hz, 2H), 7.44 – 7.41 (m, 1H), 7.18 – 7.10 (m, 3H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.81 (d, *J* = 15.6 Hz, 1H), 6.13 (dd, *J* = 16.0, 6.4 Hz, 1H), 4.43 (q, *J* = 6.4 Hz, 1H), 3.84 (s, 3H), 3.12 (t, *J* = 6.8 Hz, 2H), 2.31 (s, 3H),

2.15 - 2.02 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.2, 163.4, 135.7, 135.4, 133.4, 130.3, 130.2, 129.8, 128.0, 127.4, 126.0, 125.6, 113.7, 72.2, 55.4, 34.0, 31.4, 19.7. IR (in KBr): 2989, 2360, 1680, 1599, 1056 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₀H₂₂NaO₃: 333.1457, found: 333.1461.

(E)-4-hydroxy-6-(2-methoxyphenyl)-1-(4-methoxyphenyl)hex-5-en-1-one

50.8 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.3), yellow solid, yield: 78%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.00 (d, *J* = 7.2 Hz, 2H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.26 (t, *J* = 8.0 Hz, 1H), 6.98 – 6.93 (m, 4H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.31 (dd, *J* = 15.6, 6.4 Hz, 1H), 4.45 (q, *J* = 6.4 Hz, 1H), 3.88 (s, 3H), 3.85 (s, 3H), 3.15 (t, *J* = 7.2 Hz, 2H),

2.61 (s, 1H), 2.19 – 2.04 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.1, 163.5, 136.6, 135.2, 132.8, 130.4, 129.8, 129.0, 128.8, 127.4, 127.1, 123.6, 113.7, 72.3, 55.4, 34.0, 31.1. IR (in KBr): 2978, 2360, 1678, 1600, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₀H₂₂NaO₄: 349.1410, found: 349.1411.

(E)-6-(2-chlorophenyl)-4-hydroxy-1-(4-methoxyphenyl)hex-5-en-1-one

46.2 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.3), yellow solid, yield: 70%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.97 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 7.6 Hz, 1H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.24 – 7.16 (m, 2H), 6.99 (d, *J* = 15.6 Hz, 1H), 6.93 (d, *J* = 8.4 Hz, 2H), 6.24 (dd, *J* = 16.0, 6.4 Hz, 1H), 4.47 (q, *J* = 6.4 Hz, 1H), 3.87 (s, 3H), 3.15 (t, *J* =

6.8 Hz, 2H), 2.39 (s, 1H), 2.19 – 2.02 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.1, 163.5, 135.0, 134.8, 133.1, 130.4, 129.9, 129.7, 128.6, 126.9, 126.8, 126.5, 113.7, 72.1, 55.5, 34.0, 31.2. IR (in KBr): 2978, 2360, 1680, 1600, 1053 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₉H₁₉ClNaO₃: 353.0915, found:353.0904.

(E)-6-(2-bromophenyl)-4-hydroxy-1-(4-methoxyphenyl)hex-5-en-1-one

50.8 mg (petroleum ether:ethyl acetate = 3:1 R_f = 0.3), yellow solid, yield: 68%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.96 (d, *J* = 8.4 Hz, 2H), 7.50 (dd, *J* = 12.4, 7.6 Hz, 2H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.08 (t, *J* = 7.2 Hz, 1H), 6.95 - 6.90 (m, 3H), 6.19 (dd, *J* = 16.0, 6.4 Hz, 1H), 4.46 (q, *J* = 6.4 Hz, 1H), 3.85 (s, 3H), 3.13 (t, *J* = 6.8 Hz, 2H), 2.73 (s,

1H), 2.17 – 2.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.1, 163.5, 136.6, 135.2, 132.8, 130.4, 129.8, 129.0, 128.8, 127.4, 127.1, 123.6, 113.7, 71.9, 55.4, 34.0, 31.2. IR (in KBr): 2988, 2360, 1678, 1600, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₉H₁₉BrNaO₃: 397.0410, found: 397.0399.

(E)-4-hydroxy-1-(4-methoxyphenyl)-6-(thiophen-3-yl)hex-5-en-1-one

44.7 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.25), yellow solid, yield: 74%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94 (d, *J* = 8.8 Hz, 2H), 7.25 (dd, *J* = 5.6, 3.6 Hz, 1H), 7.19 (d, *J* = 5.2 Hz, 1H), 7.12 (d, *J* = 2.8 Hz, 1H), 6.91 (d, *J* = 8.9 Hz, 2H), 6.60 (d, *J* = 16.0 Hz, 1H), 6.09

(dd, J = 16.0, 6.4 Hz, 1H), 4.37 (q, J = 6.0 Hz, 1H), 3.85 (s, 3H), 3.10 (t, J = 6.8 Hz, 2H), 2.12 – 1.98 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.2, 163.4, 139.2, 131.9, 130.4, 129.8, 126.0, 125.0, 124.5, 122.2, 113.6, 71.9, 55.4, 34.0, 31.4. IR (in KBr): 2987, 2360, 1667, 1599, 1054 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₇H₁₈NaO₃S: 325.0858, found: 325.0869.

(E)-4-hydroxy-1-(4-methoxyphenyl)-6-(naphthalen-2-yl)hex-5-en-1-one

45.2 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.3), white solid, yield: 65%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94 (d, *J* = 8.8 Hz, 2H), 7.78 – 7.74 (m, 3H), 7.68 (s, 1H), 7.56 (d, *J* = 8.8 Hz, 1H), 7.47 – 7.40 (m, 3H), , 6.88 (d, *J* = 8.8 Hz, 2H), 6.75 (d, *J* = 16.0 Hz, 1H), 6.36 (dd, *J* = 16.0, 6.4 Hz, 1H), 4.46 (q, *J* = 6.0

Hz, 1H), 3.81 (s, 3H), 3.12 (t, J = 7.2 Hz, 2H), 2.69 (s, 1H), 2.18 – 2.02 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.2, 163.4, 134.0, 133.5, 132.9, 132.4, 130.4, 130.3, 129.8, 128.1, 127.9, 127.6, 126.4, 126.2, 125.8, 123.5, 113.6, 55.4, 34.0, 31.4. IR (in KBr): 2987, 2360, 1683, 1600, 1078 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₃H₂₂NaO₃: 369.1461, found: 369.1461.

(E)-6-(2-chloro-4-methylphenyl)-4-hydroxy-1-(4-methoxyphenyl)hex-5-en-1-one

59.1 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.2), yellow solid, yield: 86%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.99 (d, *J* = 8.8 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.19 (s, 1H), 7.04 (d, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 8.8 Hz, 3H), 6.23 (dd, *J* = 15.6, 6.4 Hz, 1H), 4.48 (q, *J* = 6.0 Hz, 1H), 3.89 (s, 4H), 3.16 (t, *J* = 6.8 Hz, 2H),

2.76 (s, 1H), 2.34 (s, 4H), 2.20 – 2.04 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.1, 163.4, 138.8, 133.9, 132.7, 131.8, 130.3, 129.9, 129.8, 127.7, 126.6, 126.3, 113.6, 113.6, 72.1, 55.4, 34.0, 31.3, 20.8. IR (in KBr): 2974, 2360, 1670, 1600, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₀H₂₁ClNaO₃: 367.1061, found: 367.1071.

(E)-6-(2,6-dimethylphenyl)-4-hydroxy-1-(4-methoxyphenyl)hex-5-en-1-one

42.8 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.3), yellow solid, yield: 66%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.97 (d, *J* = 8.8 Hz, 2H), 7.06 – 7.00 (m, 3H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.59 (d, *J* = 16.4 Hz, 1H), 5.77 (q, dd, *J* = 16.4, 6.4 Hz, 1H), 4.45 (q, *J* = 6.4 Hz, 1H), 3.86 (s, 3H), 3.16 (t, *J* = 7.2 Hz, 2H), 2.48 (s, 1H), 2.28 (s, 6H), 2.16 –

2.02 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.1, 163.5, 137.3, 136.4, 135.8, 130.3, 129.8, 127.9, 127.7, 126.6, 113.7, 72.3, 55.4, 34.1, 31.4, 21.0. IR (in KBr): 2988, 2360, 1674, 1699, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₁H₂₄NaO₃: 347.1612, found: 347.1618.

4-hydroxy-1-(4-methoxyphenyl)-6,6-diphenylhex-5-en-1-one

40.1mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.2), yellow solid, yield: 54%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.91 (d, *J* = 8.8 Hz, 2H), 7.37 - 7.30 (m, 3H), 7.27 - 7.22 (m, 5H), 7.19 - 7.17 (m, 2H), 6.90 (d, *J* = 9.2 Hz, 2H), 6.10 (d, *J* = 9.2 Hz, 1H), 4.30 - 4.24 (m, 1H),

3.84 (s, 3H), 3.10 - 2.94 (m, 2H), 2.34 (s, 1H), 2.10 - 2.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 198.9, 163.4, 143.5, 141.6, 139.2, 130.8, 130.3, 129.8, 129.6, 128.2, 128.1, 127.6, 127.4, 127.4, 113.61, 69.1, 55.4, 34.3, 31.8. IR (in KBr): 2988, 2360, 1670, 1599, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₅H₂₄NaO₃: 395.1615, found: 395.1619.

(E)-4-hydroxy-1-(4-methoxyphenyl)-5-methyl-6-phenylhex-5-en-1-one

38.9 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.3), yellow solid, yield: 63%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.97 (d, *J* = 8.8 Hz, 2H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.26 – 7.19 (m, 4H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.54 (s, 1H), 4.28 (t, *J* = 6.4 Hz, 1H), 3.87 (s, 3H), 3.13 – 3.09 (m, 2H), 2.38 (s, 1H), 2.14 – 2.06 (m, 2H), 1.90 (s, 3H). ¹³C NMR (100

MHz, CDCl₃) δ (ppm) 199.2, 163.5, 140.1, 130.4, 128.9, 128.1, 126.4, 125.4, 113.7, 55.4, 34.4, 29.4, 13.8. IR (in KBr):2360, 1683, 1600, 1060 cm⁻¹. HRMS(ESI): m/z [M + Na]⁺ calcd for C₂₀H₂₂NaO₃: 333.1461, found: 333.1460.

(E)-4-hydroxy-1-(4-methoxyphenyl)-4-methyl-6-phenylhex-5-en-1-one

56.4 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.23), yellow solid, yield: 91%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.92 (d, *J* = 8.8 Hz, 2H), 7.36 (d, *J* = 7.6 Hz, 2H), 7.29 (t, *J* = 7.2 Hz, 2H), 7.20 (t, *J* = 7.2 Hz, 1H), 6.87 (d, *J* = 8.8 Hz, 2H), 6.64 (d, *J* = 16.0 Hz, 1H), 6.24 (d, *J*

= 16.4 Hz, 1H), 3.82 (s, 3H), 3.07 (t, J = 7.6 Hz, 2H), 2,73 (s, 1H), 2.16 – 2.01 (m, 2H), 1.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.7, 163.4, 136.8, 135.9, 130.4, 129.8, 128.4, 127.6, 127.3, 126.3, 113.6, 72.6, 55.3, 36.2, 33.1, 29.2. IR (in KBr): 2989, 2360, 1680, 1600, 1044 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₀H₂₂NaO₃: 333.1454, found: 333.1461.

Ethyl (E)-6-hydroxy-9-(4-methoxyphenyl)-9-oxonon-4-enoate

40.2 mg (petroleum ether: ethyl acetate = $3:1 \text{ R}_{f} = 0.4$), colorless oil, yield: 63%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.95 (d, J = 8.9 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 5.72 – 5.65 (m, 1H), 5.55 (dd, J = 15.6, 6.4 Hz, 1H), 4.17 (q, J = 6.0 Hz, 1H), 4.11 (q, J = 6.8 Hz, 2H),

3.86 (s, 3H), 3.04 (t, J = 7.2 Hz, 2H), 2.37 (s, 4H), 2.01 – 1.89 (m, 2H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.1, 173.0, 163.4, 133.7, 130.3, 129.8, 129.5, 113.6, 71.8, 60.3, 55.4, 34.0, 33.7, 31.3, 27.3, 14.1. IR (in KBr):1733,1669, 1600, 1170 cm⁻¹. HRMS(ESI): m/z [M + Na]⁺ calcd for C₁₈H₂₄NaO₅: 343.1509, found: 343.1516.

4-hydroxy-1-(4-methoxyphenyl)-6-phenylhex-5-yn-1-one

29.1 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.33), white solid, yield: 50%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.98 (d, *J* = 8.8 Hz, 2H), 7.41 – 7.39 (m, 2H), 7.31 – 7.26 (m, 4H), 6.92 (d, *J* = 8.8 Hz, 2H), 4.78 (q, *J* = 5.6 Hz, 1H), 3.85 (s, 3H), 3.27 – 3.22 (m, 2H), 2.28 – 72.21 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 198.8, 163.5,

131.6, 130.4, 129.7, 128.4, 128.2, 122.5, 113.7, 89.6, 85.1, 62.1, 55.4, 33.9, 31.9. IR (in KBr): 2360, 1683, 1060 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₈H₁₈NaO₃: 317.1146, found: 317.1148.

$\label{eq:expectation} Ethyl(E) - 2 - (3 - (3 - hydroxy - 6 - (4 - methoxyphenyl) - 6 - oxohex - 1 - en - 1 - yl) - 4 - isobutoxyphenyl) - 4 - meth ylthiazole - 5 - carboxylate$

76.4 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.35), yellow solid, yield: 70%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.00 – 7.95 (m, 3H), 7.78 (d, *J* = 10.0 Hz, 1H), 6.93 – 6.84 (m, 4H), 6.41 (dd, *J* = 16.0, 6.4 Hz, 1H), 4.45 (q, *J* = 6.4 Hz, 1H), 4.34 (q, *J* = 7.2 Hz, 2H), 3.84 (s, 3H), 3.78 (d, *J* = 6.4 Hz, 2H), 3.14 (t, *J* = 7.2 Hz, 2H), 2.76 (s, 3H),

2.18 – 2.03 (m, 3H), 1.38 (t, J = 7.2 Hz, 3H), 1.03 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.0, 169.8, 163.4, 162.3, 160.9, 158.5, 134.0, 130.3, 129.9, 127.2, 126.3, 125.5, 125.3, 124.4, 120.7, 113.6, 111.8, 74.8, 72.4, 61.1, 55.4, 34.1, 31.4, 28.2, 19.3, 17.5, 14.3. IR (in KBr):

2988, 2360, 1678, 1599, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₃₀H₃₅NNaO₆S: 560.2074, found: 560.2077.

(E)-4-hydroxy-1,6-diphenylhex-5-en-1-one

(q, J = 5.6 Hz, 1H), 3.15 (t, J = 7.2Hz, 2H), 2.51 (s, 1H), 2.17 – 1.99 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 200.6, 136.7, 136.5, 133.1, 131.9, 130.4, 128.5, 128.0, 127.6, 126.4, 72.0, 34.4, 31.2. IR (in KBr): 2974, 2360, 1680, 1605, 1054 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₈H₁₈NaO₂: 289.1199, found: 289.1193.

(E)-4-hydroxy-6-phenyl-1-(p-tolyl)hex-5-en-1-one

46.4 mg (petroleum ether: ethyl acetate = $3:1 R_f = 0.4$), white solid, yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.86 (d, J = 8.4 Hz, 2H), 7.36(d, J = 7.2 Hz, 2H), 7.30 (t, J = 7.2 Hz, 2H), 7.25 - 7.21 (m, 3H), 6.60(d, J = 15.9 Hz, 1H), 6.24 (dd, J = 15.9, 6.3 Hz, 1H), 4.41 (q, J = 6.2 Hz, 1H), 3.13 (t, J = 7.0 Hz, 2H), 2.50 (s, 1H), 2.39 (s, 3H), 2.14 – 2.01 (m, 2H). ¹³C NMR (100 MHz,

CDCl₃) δ (ppm) 200.2, 143.9, 136.6, 134.3, 132.0, 130.3, 129.2, 128.5, 128.2, 127.6, 126.4, 72.0, 34.2, 31.3, 21.6. IR (in KBr): 2974, 2360, 1683, 1607, 1048 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₉H₂₀NaO₂: 303.1356, found: 3030.1349.

(*E*)-1-(4-fluorophenyl)-4-hydroxy-6-phenylhex-5-en-1-one

52.3 mg (petroleum ether: ethyl acetate = $3:1 R_f = 0.33$), yellow solid, yield: 92%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.05 – 8.02 (m, 2H), 7.41 (d, J = 7.6 Hz, 2H), 7.36 (t, J = 7.2 Hz, 2H), 7.31 – 7.27 (m, 1H), 7.15 (t, J = 8.8 Hz, 2H), 6.65 (d, J = 16.0 Hz, 1H), 6.29 (dd, J = 15.9, 6.4 Hz, 1H), 4.47 (q, J = 6.0Hz, 1H), 3.17 (t, J = 7.2 Hz, 2H), 2.32 (s, 1H), 2.32 - 2.05 (m, 2H). ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta$ (ppm) 198.9, 165.7 (d, J = 253.1 Hz), 136.5, 133.2, 133.2, 131.8, 130.7 (d, J = 253.1 Hz) 9.2 Hz), 130.4, 128.5, 127.7, 126.4, 115.7 (d, J = 21.7 Hz), 71.9, 34.2, 31.2. ¹⁹F NMR (376 MHz. CDCl₃) δ (ppm) -105.22. IR (in KBr): 2974, 2360, 1667, 1600, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₈H₁₇FNaO₂: 307.1105, found: 307.1106.

(E)-1-(4-chlorophenyl)-4-hydroxy-6-phenylhex-5-en-1-one

45.0 mg (petroleum ether: ethyl acetate = $3:1 R_f = 0.33$), yellow solid, yield: 75%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.88 (d, J = 8.4 Hz, 2H), 7.40 - 7.21 (m, 7H), 6.59 (d, J = 15.6 Hz, 1H), 6.23 (dd, J = 15.6, 6.4 Hz, 1H), 4.40 (q, J = 6.4 Hz, 1H), 3.11 (t, J = 7.2 Hz, 2H), 2.42 (s, 1H), 2.14 – 2.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.2, 139.46, 136.4,

135.0, 131.7, 130.4, 129.5, 128.8, 128.5, 127.7, 126.4, 71.9, 34.3, 31.1. IR (in KBr): 2975, 2360, 1683, 1600, 1050 cm⁻¹. HRMS (ESI): $m/z [M + Na]^+$ calcd for $C_{18}H_{17}CINaO_2$:323.0809, found: 323.0789.

(E)-1-(4-bromophenyl)-4-hydroxy-6-phenylhex-5-en-1-one

43.8 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.5), yellow solid, yield: 64%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.81 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 6.8 Hz, 2H), 7.30 (t, *J* = 7.2 Hz, 2H), 7.25 – 7.21 (m, 1H), 6.59 (d, *J* = 15.6 Hz, 1H), 6.23 (dd, *J* = 16.0 Hz, 6.4 Hz,

1H), 4.40 (q, J = 6.0 Hz, 1H), 3.10 (t, J = 7.2 Hz, 2H), 2.38 (s, 1H), 2.15 – 1.95 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.4, 136.4, 135.5, 131.8, 131.7, 130.5, 129.6, 128.5, 128.2, 127.7, 126.4, 71.9, 34.2, 31.1. IR (in KBr): 2973, 2360, 1683, 1600, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₈H₁₇BrNaO₂: 369.0284, found: 369.0288.

(E)-4-hydroxy-1-(3-methoxyphenyl)-6-phenylhex-5-en-1-one

46.4 mg (petroleum ether: ethyl acetate = $3:1 R_f = 0.3$), yellow solid, yield: 78%. ¹H NMR (400 MHz,

CDCl₃) δ (ppm) 7.54 (d, J = 8.0 Hz, 1H), 7.49 – 7.48 (m, 1H), 7.36 – 7.33 (m, 2H), 7.29 (t, J = 8.0 Hz, 2H), 7.25 – 7.20 (m, 1H), 7.09 (dd, J = 8.0, 2.4 Hz, 1H), 6.59 (d, J = 16.0 Hz, 1H), 6.24 (dd, J = 15.9, 6.4 Hz, 1H), 4.40 (q, J = 5.6 Hz, 1H), 3.82 (s, 3H), 3.13 (t, J = 7.2 Hz, 2H), 2.53 (s, 1H),

 $2.13 - 2.01 \text{ (m, 2H)}. {}^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3) \delta \text{ (ppm)} 200.3, 159.7, 138.1, 136.5, 131.8, 130.3, 129.5, 128.5, 127.6, 126.4, 120.7, 119.5, 112.2, 71.9, 55.3, 34.5, 31.2. \text{ IR (in KBr)}: 2971, 2360, 1683, 1600, 1050 \text{ cm}^{-1}. \text{ HRMS (ESI)}: \text{m/z [M +Na]}^+ \text{ calcd for } \text{C}_{19}\text{H}_{20}\text{NaO}_3: 319.1305, \text{ found}: 319.1296.$

(E)-1-(3-fluorophenyl)-4-hydroxy-6-phenylhex-5-en-1-one

48.0 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.3), yellow solid, yield: 85%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.75 (d, *J* = 7.6 Hz, 1H), 7.65 (d, *J* = 9.2 Hz, 1H), 7.45 – 7.40 (m, 1H), 7.37 (d, *J* = 7.6 Hz, 2H), 7.31 (t, *J* = 7.2 Hz, 2H), 7.28 – 7.22 (m, 2H), 6.61 (d, *J* = 16.0 Hz, 1H), 6.25 (dd, *J* =

16.0, 6.4 Hz, 1H), 4.43 (q, J = 6.0 Hz, 1H), 3.14 (t, J = 6.8 Hz, 2H), 2.18 – 2.01 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.11, 162.8 (d, J = 246.2 Hz), 138.9 (d, J = 6.3 Hz), 136.42, 131.71, 130.56, 130.2 (d, J = 7.8 Hz), 128.57, 127.74, 126.45, 123.8 (d, J = 3.1 Hz), 120.1 (d, J = 21.3 Hz), 114.8 (d, J = 22.0 Hz), 72.0, 34.5, 31.0. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -111.84. IR (in KBr): 2974, 2360, 1677, 1600, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₈H₁₇FNaO₂: 307.1105, found: 307.1104.

(E)-1-(3-bromophenyl)-4-hydroxy-6-phenylhex-5-en-1-one

34.5 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.3), yellow solid, yield: 50%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.09 (s, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 7.6 Hz, 1H), 7.39 – 7.30 (m, 5H), 7.26 – 7.22 (m, 1H), 6.61 (d, *J* = 16.0 Hz, 1H), 6.25 (dd, *J* = 16.0, 6.4 Hz, 1H), 4.42 (q, *J* = 5.2 Hz, 1H),

3.13 (t, J = 6.8 Hz, 2H), 2.18 – 2.00 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.0, 138.5, 136.4, 135.9, 131.7, 131.1, 130.6, 130.1, 128.6, 127.7, 126.6, 126.4, 122.9, 71.9, 34.4, 31.0. IR (in KBr): 2973, 2360, 1683, 1597, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₈H₁₇BrNaO₂: 369.0284, found:369.0285.

(E)-4-hydroxy-1-(2-methoxyphenyl)-6-phenylhex-5-en-1-one

Hz, 1H), 4.40 (q, J = 6.4 Hz, 1H), 3.86 (s, 3H), 3.16 (t, J = 6.8 Hz, 2H), 2.41 (s, 1H), 2.10 – 1.99 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 203.0, 158.4, 136.7, 133.4, 132.2, 130.2, 130.0, 128.5, 128.2, 127.5, 126.4, 120.6, 111.5, 72.2, 55.4, 39.7, 31.6. IR (in KBr): 2971, 2360, 1688, 1600, 1055 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₉H₂₀NaO₃: 319.1305, found:319.1307.

(E)-1-(2-fluorophenyl)-4-hydroxy-6-phenylhex-5-en-1-one

47.2 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.5), yellow solid, yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.86 –7.81 (m, 1H), 7.51 –7.46 (m, 1H), 7.36 (d, *J* = 7.2 Hz, 2H), 7.29 (t, *J* = 7.2 Hz, 2H), 7.25 – 7.17 (m, 2H), 7.11 (dd, *J* = 11.2, 8.4 Hz, 1H), 6.59 (d, *J* = 15.6 Hz, 1H), 6.23 (dd, *J* = 16.0,

6.4 Hz, 1H),4.40 (q, J = 6.4 Hz, 1H), 3.17 –3,13 (m, 2H), 2.36 (s, 1H), 2.13 – 2.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 198.9 (d, J = 4.0 Hz), 161.8 (d, J = 253.1 Hz), 136.5, 134.5 (d, J = 9.0 Hz), 131.87, 130.5 (d, J = 2.6 Hz), 130.3, 128.48, 127.58, 126.41, 125.6 (d, J = 12.9 Hz), 124.3 (d, J = 3.4 Hz), 116.6 (d, J = 23.7 Hz), 72.0, 39.4 (d, J = 7.4 Hz), 31.0 (d, J = 1.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -109.02. IR (in KBr): 2970, 2360, 1678, 1599, 1053 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₈H₁₇FNaO₂: 307.1105, found: 307.1106.

(E)-1-(2,4-dimethylphenyl)-4-hydroxy-6-phenylhex-5-en-1-one

46.7 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.6), yellow solid, yield: 79%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.60 (d, *J* = 8.4 Hz, 1H), 7.35 (d, *J* = 7.2 Hz, 2H), 7.29 (t, *J* = 7.2 Hz, 2H), 7.23 (d, *J* = 7.2 Hz, 1H), 7.03 (d, *J* = 6.8 Hz, 2H), 6.59 (d, *J* = 16.0 Hz, 1H), 6.23 (dd, *J* = 16.0, 6.4 Hz, 1H), 4.39 (q, *J* = 6.0 Hz, 1H), 3.06 (t, *J* = 6.8 Hz, 2H), 2.47 (s, 3H), 2.33 (s,

3H), 2.07 - 1.99 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 203.9, 141.9, 138.6, 136.6, 134.7, 132.8, 131.9, 130.2, 129.1, 128.5, 127.6, 126.40, 126.2, 72.0, 37.0, 31.4, 21.5, 21.5. IR (in KBr): 2976, 2360, 1683, 1600, 1050 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₀H₂₂NaO₂: 317.1512, found: 317.1508.

(E)-4-hydroxy-6-phenyl-1-(thiophen-2-yl)hex-5-en-1-one

44.3 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.33), yellow solid, yield: 81%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.06 (s, 1H), 7.54 (d, *J* = 4.8 Hz, 1H), 7.36 – 7.21 (m, 6H), 6.59 (d, *J* = 16.0 Hz, 1H), 6.23 (dd, *J* = 16.0, 6.4 Hz, 1H), 4.40 (q, *J* = 6.4 Hz, 1H), 3.06 (t, *J* = 6.8 Hz, 2H), 2.53 (s, 1H), 2.15 –

1.98 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 194.9, 142.0, 136.5, 132.2, 131.8, 130.3, 128.5, 127.6, 126.9, 126.4, 126.3, 71.9, 35.6, 31.1. 2974, 2360, 1683, 1600, 1050 cm⁻¹. IR (in KBr): 2987, 2359, 1668, 1600, 1051 cm⁻¹. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₆H₁₆NaO₂S: 295.0763, found: 295.0763.

(E)-4-hydroxy-1-(naphthalen-2-yl)-6-phenylhex-5-en-1-one

54.6 mg (petroleum ether: ethyl acetate = $3:1 \text{ R}_{f} = 0.4$), white solid, yield: 86%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.46 (s, 1H), 8.01 (d, J = 8.8 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.8 Hz, 2H), 7.59 – 7.49 (m, 2H), 7.35 (d, J = 7.2 Hz, 2H), 7.28 (t, J = 7.2 Hz, 2H), 7.22 (t, J = 7.2 Hz,

1H), 6.61 (d, J = 15.6 Hz, 1H), 6.27 (dd, J = 16.0, 6.4 Hz, 1H), 4.45 (q, J = 5.6 Hz, 1H), 3.27 (t, J = 6.8 Hz, 2H), 2.54 (s, 1H), 2.21 – 2.05 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 200.4, 136.5, 135.5, 134.0, 132.4, 131.9, 130.4, 129.8, 129.5, 128.5, 128.4, 128.3, 127.7, 127.6, 126.7, 126.4, 123.8, 72.0, 34.4, 31.3. IR (in KBr): 2974, 2360, 1683, 1600, 1050 cm⁻¹. HRMS (ESI): m/z [M +Na]⁺ calcd for C₂₂H₂₀NaO₂: 339.1356, found: 339.1347.

Sulfonium salts 2a-I

¹H NMR (400 MHz, D₂O) δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 3.90 (s, 3H), 2.99 (s, 6H). ¹³C NMR (101 MHz, D₂O) δ 190.2, 165.0, 131.4, 126.4, 114.5, 55.7, 24.8.

5. Gram Scale Reaction and Synthetic Utility

5.1 Gram Scale Reaction

Figure S3. Set-up of the reaction (5 mmol scale)

5 mmol scale: In a flame-dried 100 mL Schlenk tube equipped with a magnetic stir bar was charged sequentially with sulfur ylide **2a** (3.15 g, 15 mmol, 3.0 eq.), *fac*-[Ir(ppy)₃] (65 mg, 0.004 mmol, 2 mol%) and **H₂O** (1.35 mL, 75 mmol, 15.0 eq.) followed by the addition of TFE (62.5 mL) and DCM (12.5 mL). The resulting mixture was degassed via 'freeze-pump-thaw' procedure (3 times) under argon atmosphere. After that, diene **1a** (0.65g, 5 mmol, 1.0 eq.) and

 Et_3N ·3HF (0.8 g, 5 mmol, 1.0 eq.) were added. Then, the solution was stirred under irradiation of 20 W blue LEDs at room temperature about 8.5 h and monitored through TLC analysis. The crude product was purified by flash chromatography on silica gel directly to give the desired product.

5.2 Synthetic Utility

Procedure for the Synthesis of 4

DMP (0.2 mmol, 82.8 mg, 2.0 eq.) was added to a solution of compound **3aa** (0.1 mmol, 29.6 mg) in DCM (2.0 mL) under argon atmosphere. The reaction flask was sealed and the mixture were stirred at room temperature for 15 minutes followed by the TLC monitoring. After the reaction was complete, the volatiles were removed under reduced pressure. The pure product was purified by flash column chromatography on silica with an eluent (petroleum ether/ ethyl acetate 7:1 v/v) to afford the pure product **4** as a white solid (23.5 mg, 80%).

(*E*)-1-(4-methoxyphenyl)-6-phenylhex-5-ene-1,4-dione

23.5 mg (petroleum ether: ethyl acetate = 3:1 R_f = 0.5), white solid, yield: 80%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) δ 8.01 (d, *J* = 8.4 Hz, 2H), 7.64 (d, *J* = 16.4 Hz, 1H), 7.58 – 7.55 (m, 2H), 7.40 – 7.39 (m, 3H), 6.94 (d, *J* = 8.4 Hz, 2H), 6.82 (d, *J* = 16.4 Hz, 1H), 3.87 (s, 3H), 3.35 (t,

J = 6.4 Hz, 2H), 3.14 (t, J = 6.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 198.8, 197.1, 163.4, 142.7, 134.4, 130.4, 130.3, 129.7, 128.9, 128.25, 126.1, 113.6, 55.4, 34.4, 32.2. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₉H₁₉O₃: 295.1329, found: 219.1327.

Procedure for the Synthesis of 5

PPh₃ (0.3 mmol, 78.7 mg, 1.5 eq.), CBr₄ (0.3 mmol, 99.5 mg, 1.5 eq.) were added to a solution compound **3aa** (0.1 mmol, 29.6 mg) in DCM (2.0 mL) under argon atmosphere. The suspension was stirred at room temperature for 24 h. After the reaction was complete, the volatiles were removed under reduced pressure. The pure product was purified by flash column chromatography on silica with an eluent (petroleum ether/ ethyl acetate 8:1 v/v) to afford the pure product **5** as a colorless oil (40.0 mg, 72%).

(3E,5E)-1-(4-methoxyphenyl)-6-phenylhexa-3,5-dien-1-one

40.0 mg, colorless oil, yield: 72%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.02 (d, J = 8.8 Hz, 2H), 7.43 (d, J = 7.2 Hz, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.26 (t, J = 7.6 Hz, 1H), 7.00 (d, J = 8.8, 2H), 6.86 (dd, J = 15.6, 10.4 Hz, 1H), 6.55 (d, J = 15.6, 1H), 6.43 – 6.37 (m, 1H), 6.15 – 6.08 (m,

1H), 3.91 (s, 3H), 3.85 (d, J = 6.8Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.3, 163.5, 137.2, 133.9, 131.7, 130.6, 129.5, 128.6, 128.5, 127.4, 126.9, 126.2, 113.7, 55.4, 42.3. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₉H₁₉O₂: 279.1380, found: 279.1372.

Procedure for the Synthesis of 6

Et₃N·3HF (0.4 mmol, 64.5 mg, 4.0 eq.) was added to a solution compound **3aa** (0.1 mmol, 29.6 mg) in CF₃CH₂OH (3.0 mL) under argon atmosphere. The suspension was stirred at room temperature for 18 h. After the reaction was complete, the volatiles were removed under reduced pressure. The pure product was purified by flash column chromatography on silica with an eluent (petroleum ether/ ethyl acetate 5:1 v/v) to afford the pure product **6** as a white solid (34.0 mg, 90%).

(*E*)-1-(4-methoxyphenyl)-6-phenyl-4-(2,2,2-trifluoroethoxy) hex-5-en-1-one

34.0 mg, white solid, yield: 90%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.95 (d, J = 9.2 Hz, 2H), 7.39 (d, J = 7.2 Hz, 2H), 7.33 (t, J = 7.2 Hz, 2H), 7.29 – 7.24 (m, 1H), 6.92 (d, J = 7.6 Hz, 2H), 6.59 (d, J = 16.0 Hz, 1H), 6.07 (dd, J = 16.0, 8.0 Hz, 1H), 4.12 (q, J = 7.2 Hz, 1H), 3.91 –

3.85 (m, 4H), 3.78 - 3.69 (m, 1H), 3.09 (t, J = 7.2 Hz, 2H), 2.11 (q, J = 6.98 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 198.1, 163.4, 135.8, 133.8, 130.2, 129.9, 128.6, 128.2, 128.0, 126.6, 125.5,

122.8, 117.2, 113.6, 81.7, 65.5 (q, J = 33.7), 55.4, 33.4, 29.9. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -74.0. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₁H₂₁F₃NaO₃: 401.1335, found: 401.1330.

Procedure for the Synthesis of 7

Pyridine (0.9 mmol, 71.2 mg, 1.5 eq.), acetic anhydride (1.2 mmol, 122.5 mg, 2.0 eq.) and DMAP (7.3 mg, 0.06 mmol, 0.1 eq.) were added to a solution compound **3aa** (0.6 mmol, 177 mg) in DCM (4 mL) under argon atmosphere at 0 °C and then stirred for 2 h at room temperature. After completion of the reaction, it was quenched 2 N HCl (5 mL). The organic layer was separated and the aqueous layer extracted with DCM (3×15 mL). The combined organic layers were thoroughly washed with brine (10 mL), dried (Na₂SO₄) and concentrated. The residue was used for next reaction without further purification.

NaOAc·3H₂O (3.0 mmol, 408 mg, 5.0 eq.) and NH₂OH·HCl (1.8 mmol, 125.1 mg, 3.0 eq.) were added to the above compound in MeOH (4 mL) under argon atmosphere. The reaction mixture was stirred at 80 °C for 12 h. Then, the solvent was evaporated and the residue dissolved in EtOAc (10 mL) and water (5 mL). The organic layer was separated and washed with brine, dried (Na₂SO₄) and concentrated. The pure product was purified by flash column chromatography on silica with an eluent (petroleum ether/ ethyl acetate 3:1 v/v) to afford the desired product **7** as a colorless oil (114.3 mg, 20%).

To the substrate **7** (0.2 mmol) was added Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 5 mol%), K₂CO₃ (110.6 mg, 0.8 mmol, 4.0 eq.) and anhydrous DMF (1.5 mL) under argon atmosphere. The reaction mixture was stirred for 24 h and then concentrated. The residue was purified by silica gel column chromatography with an eluent (petroleum ether/ ethyl acetate 4:1 v/v) to give the corresponding product **8** as a yellow solid (39.8 mg, 68%).

(E)-3-(4-methoxyphenyl)-6-styryl-5,6-dihydro-4H-1,2-oxazine

39.8 mg, yellow solid, yield: 68%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.66 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 7.6 Hz, 2H), 7.33 (t, J = 7.2 Hz, 2H), 7.24 – 7.27 (m, 1H), 6.91 (d, J = 8.8Hz, 2H), 6.74 (d, J = 16.0 Hz, 1H), 6.28 (dd, J = 16.0, 6.0 Hz, 1H), 4.45 – 4.50 (m, 1H), 3.82 (s, 3H), 2.64 – 2.70 (m, 2H), 2.15 – 2.25 (m, 1H), 2.07 – 1.98 (m, 1H). ¹³C NMR (100 MHz, CDCl₃)

δ (ppm) 160.6, 153.9, 132.8, 128.6, 128.3, 127.9, 127.0, 126.7, 126.6, 113.7, 75.2, 55.3, 24.7, 21.2. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₉H₂₀NO₂: 294.1489, found: 294.1490.

6. The Mechanism Studies

6.1 TEMPO Trapping Experiment

In a flame-dried 10.0 mL Schlenk tube equipped with a magnetic stir bar was charged sequentially with sulfur ylide **2a** (126 mg, 0.60 mmol, 3.0 eq.), *fac*-[Ir(ppy)₃] (2.6 mg, 0.004 mmol, 2 mol%), TEMPO (93.8 mg, 0.6 mmol, 3.0 eq.) and **H**₂**O** (54 μ L, 3 mmol, 15.0 eq.) followed by the addition of TFE (2.5 mL) and DCM (0.5 mL). The resulting mixture was degassed via 'freeze-pump-thaw' procedure (3 times) under argon atmosphere. After that, diene **1a** (26 mg, 0.2 mmol, 1.0 eq.) and Et₃N·3HF (32 mg, 0.2 mmol, 1.0 eq.) were added. Then, the solution was stirred under irradiation of 20 W blue LEDs at room temperature about 4 h and monitored through TLC analysis. The crude product was purified by flash chromatography on silica gel directly to give the desired product in 10% yield as a white solid.

1-(4-methoxyphenyl)-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)ethan-1-one

6.2 PhSeSePh Trapping Experiment

In a flame-dried 10.0 mL Schlenk tube equipped with a magnetic stir bar was charged sequentially with sulfur ylide **2a** (126 mg, 0.60 mmol, 3.0 eq.), *fac*-[Ir(ppy)₃] (2.6 mg, 0.004 mmol, 2 mol%), PhSeSePh (187.3 mg, 0.6 mmol, 3.0 eq.) and **H₂O** (54 μ L, 3 mmol, 15.0 eq.) followed by the addition of TFE (2.5 mL) and DCM (0.5 mL). The resulting mixture was degassed via 'freeze-pump-thaw' procedure (3 times) under argon atmosphere. After that, diene **1a** (26 mg, 0.2 mmol, 1.0 eq.) and Et₃N·3HF (32 mg, 0.2 mmol, 1.0 eq.) were added. Then, the solution was stirred under irradiation of 20 W blue LEDs at room temperature about 4 h and monitored through TLC

analysis. The crude product was purified by flash chromatography on silica gel directly to give the desired product in 57% yield as a colorless oil.

1-(4-methoxyphenyl)-2-(phenylselanyl)ethan-1-one

 $\begin{array}{l} & \mbox{64.9 mg (petroleum ether: ethyl acetate = 5:1 R_f = 0.4), colorless oil, yield: 57\%. ^1H \\ & \mbox{NMR (400 MHz, CDCl_3) } \delta (ppm) \ 7.85 \ (d, J = 8.4 Hz, 2H), 7.54 - 7.51 \ (m, 2H), 7.25 \ (d, J = 6.0 Hz, 3H), 6.88 \ (d, J = 8.4 Hz, 2H), 4.13 \ (s, 2H), 3.84 \ (s, 3H). ^{13}C \ NMR \ (100 \ MHz, CDCl_3) \\ & \mbox{DCl}_3) \\ & \mbox{\delta 193.7, 163.5, 133.7, 130.9, 129.2, 129.1, 128.3, 127.8, 113.7, 55.4, 32.5. HRMS \ (ESI): m/z \\ & \mbox{[M +H]}^+ \ calcd \ for \ C_{15}H_{15}O_2Se: \ 307.0232, \ found: \ 307.0235. \end{array}$

6.3 H₂¹⁸O Labelling Experiment

Figure S4. High resolution mass spectrometry of 3aa-¹⁸O

6.4 EPR Experiment

Fig. S5 Electron paramagnetic resonance studies

In a flame-dried 10.0 mL Schlenk tube equipped with a magnetic stir bar was charged sequentially with sulfur ylide **2a** (126 mg, 0.60 mmol, 3.0 eq.), *fac*-[Ir(ppy)₃] (2.6 mg, 0.004 mmol, 2 mol%), **H₂O** (54 μ L, 3 mmol, 15.0 eq.) and DMPO (50 mg), followed by the addition of TFE (2.5 mL) and DCM (0.5 mL). The resulting mixture was degassed via 'freeze-pump-thaw' procedure (3 times) under argon atmosphere. Then, the mixed solution (40 uL) was transferred to a flat cell, and the flat cell was measured *in-vivo*. No signal occoured in dark for over 10 min (**Fig. S5a**), while a sharped sextet signal was obtained after the mixture was irradiated with a blue led (26 W) for 5 min (**Fig. S5b**), with a *g* value = 2.003, and A_N = 1.597 mT, A_H = 2.307 mT, which could be confirmed to be a carbon-centered radical adduct. The simulation EPR spectrum (**Fig. S5c**) was in perfectly agreement with the experimental one.

6.5. Luminescence Quenching Experiments

Fluorescence spectra were collected on Agilent Fluorescence Spectrophotometer G9800AS24 for all experiments. All *fac*-[Ir(ppy)₃] solutions were excited at 400 nm and the emission intensity was collected at 520 nm. In a typical experiment, the emission spectrum of a 1.0×10^{-4} M solution of in TFE+DCM (5:1, v/v) or DCM was collected. The significant decrease of *fac*-[Ir(ppy)₃] luminescence could be observed in the presence of substrate **2a** and additive **Et3N·3HF** in mixture solvent (TFE+DCM (5:1, v/v)). The results suggest the possible interaction between sulfur ylides and the photoexcited photocatalyst.

Fig. S6. Quenching of *fac*-[Ir(ppy)₃] by 2a in TFE+DCM (5:1, v/v)

Fig. S7. Quenching of *fac*-[Ir(ppy)₃] by 2a+Et₃N·3HF in TFE+DCM (5:1, v/v)

Fig. S8. Quenching of *fac*-[Ir(ppy)₃] by 2a in DCM

Fig. S8 Quenching of *fac*-[Ir(ppy)₃] by 2a-I in TFE+DCM (5:1, v/v)

Fig. S9 The Stern-Volmer plot for the quenching of *fac*-[Ir(ppy)₃]

Fig. S10 Cyclic voltammogram of sulfur ylide 2a and sulfonium salt 2a-I

Cyclic voltammetry (CV) was taken using a CHI660D potentiostat. CV measurement of **2a** was carried out in 0.1 M of ^{*n*}Bu4NPF6/CF₃CH₂OH at a scan rate of 100 mV/s with the protection of argon atmosphere. The working electrode is a glassy carbon, the counter electrode is a Pt wire, and the reference electrode is Hg/Hg₂Cl₂. The results are as follow: **2a** (E_P = -1.16 V vs SCE in CF₃CH₂OH),

2a-I ($E_p = -1.15$ V vs SCE in CF₃CH₂OH), the excited *fac*-[Ir(ppy)₃]*: ($E_{1/2} = -1.73$ V vs SCE in CH₃CN).

6.7 Interaction of sulfur ylide 2a with CF₃CH₂OH

In order to understand the interaction of sulfur ylide **2a** with CF₃CH₂OH, we explore it througn ¹H NMR. In a mixture of **2a**: CF₃CH₂OH with a molar ration of 1:1, the signal assigned to the OH group of CF₃CH₂OH disappeared. When the amount of CF₃CH₂OH was increased (**2a**: CF₃CH₂OH), the new signal that can be assigned to the two α -hydrogens peak appears (δ = 4.62 (s, 2H)). These results suggest that CF₃CH₂OH might serve as a proton source to participate in the activation of sulfur ylide **2a** into the corresponding sulfonium salt **2a-I**.

Fig. S11 Interaction of sulfur ylide 2a with CF₃CH₂OH

6.8 Determination of Quantum Yield

A cuvette was charged with **1a** (0.2 mmol), **2a** (0.6 mmol), **H₂O** (3.0 mmol), *fac*-[Ir(ppy)₃] (2 mol%) and Et₃N·3HF (0.2 mmol) in 2.4 mL mixture solvents (CF₃CH₂OH: DCM = 5:1, v/v). The sample was irradiated (λ = 450 nm, slit width = 3.0 mm, slit height 5.0 mm with intensity of 2.7100 mW·cm⁻²) for 32208s (8.9 h). The quantum yield was determined as follows.

ϕ = Mole number for product/Mole number for absorption of photons = 0.03

$$\Phi = \frac{nN_{\rm A}/t}{fP\lambda/hc}$$

n: the mole number of the product **3aa**; t: reaction time (32208 s); NA: 6.02×10^{23} /mol; f: 1-10^{-A} (450 nm, A= 4.82); P: P=E*S (E: illumination intensity, E= 2.710 mW/cm²; S: the area that irradiated S= 0.15 cm²); λ : wavelength ($\lambda = 4.50 \times 10^{-7}$ m); h: planck constant (h = 6.626×10^{-34} J*s); c: velocity of light (c = 3×10^8 m/s).

6.9 Density Functional Theory Calculations

The energetics of the species were obtained at $\omega B97xD/6-311+G(d,p)//6-31+G(d)$ level of theory. Solvation effect of 2,2,2-trifluoroethanol was considered employing SMD method. Frequency analysis was performed to verify the nature of stationary points, and provide Gibbs free energy correction.

Coordinates of 1a-B

С	7.64158500	-1.11056700	-0.58559700
С	6.32766000	-0.96563700	-0.99164600
С	5.39911900	-0.25897600	-0.18542100
С	5.83674300	0.30115700	1.04282000
С	7.15060100	0.15289800	1.43978800
С	8.04983400	-0.55206400	0.62823300
Н	8.34901500	-1.65316200	-1.20314900
Н	5.99886100	-1.39594600	-1.93382700
Н	5.14751600	0.85091600	1.67494700
Н	7.48886000	0.58141400	2.37703400
Н	9.08120800	-0.66517500	0.94873900
С	4.06734100	-0.14703200	-0.65335700
С	2.98056100	0.48347700	-0.03393900
Н	3.86544200	-0.61278300	-1.61883000
Н	3.08686500	0.96698400	0.93270700
С	1.76151900	0.49605300	-0.66345300
С	0.54472000	1.14856700	-0.16343000
Н	1.68118100	-0.00044100	-1.63304800
Н	0.32982800	2.01005700	-0.82239800
С	-0.69095700	0.23852300	-0.22134300
Н	-0.68586100	-0.46891700	0.61388200
Н	-0.70129500	-0.35991200	-1.14282400
С	-1.96900800	1.09199300	-0.20526500
0	-1.86742900	2.29998100	-0.33873700

С	-3.27164500	0.41528200	-0.06000000	
С	-3.40310100	-0.98029600	0.05441300	
С	-4.43243000	1.19795700	-0.05543400	
С	-4.64741400	-1.56721200	0.16920900	
Н	-2.53033900	-1.62701500	0.04979600	
С	-5.68950500	0.62322700	0.06130500	
Н	-4.33523800	2.27502000	-0.14812200	
С	-5.80333700	-0.76943800	0.17430000	
Н	-4.76021400	-2.64250300	0.25734500	
Н	-6.56643100	1.25999300	0.06140500	
Н	0.68735800	1.56201100	0.83894800	
0	-6.96487100	-1.43223700	0.29096500	
С	-8.18152200	-0.70058500	0.29079900	
Н	-8.31175800	-0.15820900	-0.65240300	
Н	-8.96998200	-1.44490400	0.39493400	
Н	-8.22120200	-0.00334300	1.13514700	
Coordinates of 1a-C-II				
С	6.02154300	-1.27950200	-0.70065100	
С	5.28191600	-0.13002800	-0.42810000	
С	3.94936400	-0.22797700	-0.02686000	
С	3.36439800	-1.49159400	0.10874000	
С	4.10457800	-2.63951600	-0.15541200	
С	5.43433200	-2.53427000	-0.56359600	
Н	7.05757300	-1.19252400	-1.01324000	
Н	5.74682400	0.84756300	-0.53222900	
Н	2.32841200	-1.57862000	0.42986500	
---	-------------	-------------	-------------	--
Н	3.64548800	-3.61718300	-0.04364600	
Н	6.01070600	-3.43063400	-0.77119500	
С	3.14759900	1.02105500	0.24156000	
С	1.99435000	1.25029700	-0.69953400	
Н	1.55372500	0.37488500	-1.17622000	
С	1.38546400	2.43421300	-0.72458000	
С	-0.03508600	2.64629000	-1.14383400	
Н	1.85776400	3.27854900	-0.21925600	
Н	-0.37016200	1.88484900	-1.85623900	
С	-0.91097800	2.60199800	0.15088900	
Н	-1.87375400	3.07978600	-0.02777400	
Н	-0.41224800	3.18052800	0.93701300	
С	-1.12328000	1.20816500	0.66171700	
0	-0.19909300	0.60299600	1.33292100	
С	-2.31567500	0.46319500	0.44455000	
С	-3.37374400	0.96082700	-0.35291300	
С	-2.45654900	-0.83498700	1.01348500	
С	-4.51037200	0.21715900	-0.58332300	
Н	-3.30729400	1.93758700	-0.81850100	
С	-3.58713200	-1.57601000	0.80160000	
Н	-1.65990000	-1.23479200	1.63044200	
С	-4.63199900	-1.06096400	-0.00040500	
Н	-5.29785400	0.62347900	-1.20617400	
Н	-3.71083700	-2.56070400	1.23871800	

Н	-0.18478800	3.62679300	-1.60478000
0	-5.68228000	-1.85105800	-0.14350600
С	-6.80459900	-1.42587900	-0.91914900
Н	-6.51237900	-1.26046300	-1.96053600
Н	-7.51937000	-2.24449200	-0.86302400
Н	-7.24487300	-0.52033700	-0.49103100
Н	3.81013700	1.89476200	0.24920800
0	2.47169800	0.96589600	1.53085200
Н	3.04355700	0.54530600	2.18925200
Н	0.71189700	1.00814600	1.40210900
Coordinates of 1a-C-I			
С	7.72022900	0.37348700	-0.35228300
С	6.45888400	0.89185100	-0.07378600
С	5.31909400	0.07914900	-0.12775000
С	5.47335800	-1.27089200	-0.47551600
С	6.73150100	-1.78949300	-0.75277300
С	7.85942100	-0.96935600	-0.69123300
Н	8.59216500	1.01864000	-0.30477100
Н	6.35648200	1.94204300	0.18979700
Н	4.60893500	-1.92624300	-0.53396700
Н	6.83630800	-2.83690600	-1.01903800
Н	8.84129500	-1.37888600	-0.90785300
С	4.01544500	0.68064300	0.18650900
С	2.82310600	0.07144100	0.24159800
Н	4.04831600	1.75165900	0.39541500

Н	2.71438300	-0.99561800	0.05064900
С	1.56274200	0.80145800	0.57657400
С	0.48157000	0.63691700	-0.49074300
Н	0.35078900	-0.42773700	-0.71936100
С	-0.88072600	1.28723400	-0.13501100
Н	-1.32210700	1.72263900	-1.02914800
Н	-0.72735500	2.11934100	0.56777500
С	-1.86314400	0.35643600	0.51798700
0	-1.45698800	-0.35333000	1.51557400
С	-3.22336700	0.20880500	0.13349300
С	-3.79475200	0.91125400	-0.96243600
С	-4.05806100	-0.66622600	0.87484600
С	-5.11573300	0.74897800	-1.28819900
Н	-3.20064200	1.58758600	-1.56576200
С	-5.38483900	-0.83737600	0.55460400
Н	-3.64123500	-1.20930600	1.71565700
С	-5.93048700	-0.12581400	-0.53506300
Н	-5.56237200	1.27824800	-2.12249500
Н	-5.99478600	-1.51156300	1.14331400
Н	0.85613800	1.10650800	-1.40415700
0	-7.18991100	-0.21069800	-0.92891700
С	-8.10226400	-1.07453400	-0.24769100
Н	-8.20576000	-0.77633800	0.79985900
Н	-9.05332800	-0.94917800	-0.76143600
Н	-7.77351700	-2.11529900	-0.32444200

Н	1.77036200	1.87001400	0.72054200
0	0.99227300	0.29766000	1.80947500
Н	1.67960100	0.15689200	2.47445000
Н	-0.48851900	-0.17934700	1.74716300

Coordinates of TS-II

С	6.19965100	-0.99135100	-0.41207700	
С	5.29872200	0.03021300	-0.11794500	
С	3.93554400	-0.24747600	-0.00826400	
С	3.47664700	-1.55760400	-0.18385100	
С	4.37811600	-2.57671200	-0.46637700	
С	5.73962100	-2.29351200	-0.58515500	
Н	7.25816600	-0.76945200	-0.50269300	
Н	5.66258100	1.04632900	0.01707800	
Н	2.41795500	-1.78381000	-0.08342200	
Н	4.02029800	-3.59323300	-0.59702600	
Н	6.44131500	-3.09052400	-0.81059500	
С	2.97799800	0.87199800	0.26031600	
С	1.89750000	1.13861500	-0.73631100	
Н	1.46157500	0.28143500	-1.24611000	
С	1.32283800	2.34077700	-0.76272200	
С	-0.07204200	2.61214700	-1.22100200	
Н	1.80001700	3.16057100	-0.22134100	
Н	-0.43041900	1.84475400	-1.91507900	
С	-0.95568600	2.64597700	0.06364200	
Н	-1.91898300	3.10111000	-0.16692300	

Н	-0.47583800	3.28594400	0.81206400
С	-1.14141000	1.27847100	0.68729600
0	-0.24449500	0.78394700	1.41452600
С	-2.34849900	0.50681500	0.45991500
С	-3.37281700	0.93404500	-0.40497000
С	-2.49882900	-0.74497900	1.10453700
С	-4.49872500	0.16065100	-0.62872000
Н	-3.30238100	1.88014600	-0.93029400
С	-3.61493200	-1.51789700	0.89920300
Н	-1.72004700	-1.08703900	1.77719800
С	-4.63101700	-1.07378600	0.02839200
Н	-5.26431800	0.51946800	-1.30589200
Н	-3.74251400	-2.47354800	1.39608400
Н	-0.15828700	3.58448500	-1.71456600
0	-5.67356700	-1.89166400	-0.10376100
С	-6.76200700	-1.51791000	-0.94281300
Н	-6.43256700	-1.40814900	-1.98131800
Н	-7.47882900	-2.33404800	-0.87035500
Н	-7.22314500	-0.59051100	-0.58753800
Н	3.50501900	1.79488300	0.51697500
0	2.15508900	0.51610100	1.48963700
Н	2.63007900	0.56153700	2.33435000
Н	1.07006000	0.81170600	1.47762600

Coordinates of TS-I

С	5.92397600	-0.99580200	1.27708200	
С	5.20401300	-0.22198700	0.35668100	
С	5.91063700	0.62750400	-0.50945400	
С	7.29513900	0.70186000	-0.44637400	
С	7.99922000	-0.07129800	0.47909500	
Н	7.85315800	-1.52845400	2.05947500	
Н	5.39313200	-1.66121200	1.95392600	
Н	5.38618000	1.23695100	-1.23945500	
Н	7.82873400	1.36364100	-1.12155400	
Н	9.08223600	-0.00939000	0.52469500	
С	3.74419600	-0.33948400	0.34827600	
С	2.86103900	0.34130200	-0.40167100	
Н	3.34451000	-1.07048000	1.05322400	
Н	3.17689600	1.10778000	-1.10755900	
С	1.39942900	0.10186200	-0.29671200	
С	0.52665400	1.30114600	-0.66388400	
Н	0.48022000	1.38262900	-1.75795500	
С	-0.89313100	1.30680500	-0.08740500	
Н	-1.36046800	2.26098600	-0.35864500	
Н	-0.86687800	1.28631600	1.00940400	
С	-1.81186900	0.19862100	-0.57201400	
0	-1.36670000	-0.70544200	-1.32351400	
С	-3.20517100	0.18115700	-0.18709700	
С	-3.77608300	1.17499500	0.64149100	
С	-4.03262800	-0.85698900	-0.65640900	

С	-5.10586900	1.12529400	0.98631000
Н	-3.17963300	1.99666000	1.02504000
С	-5.37178500	-0.91615100	-0.32044200
Н	-3.60596600	-1.62633800	-1.29099100
С	-5.91985700	0.07852700	0.50833700
Н	-5.55516600	1.88337200	1.61832800
Н	-5.98199000	-1.72670600	-0.70071600
Н	1.03684800	2.20550800	-0.31793300
0	-7.19141800	0.11744100	0.89982400
С	-8.09639500	-0.89430200	0.46624900
Н	-7.75660200	-1.88454300	0.78678300
Н	-9.04380800	-0.65961900	0.94875100
Н	-8.21711700	-0.86310700	-0.62143000
Н	1.11794800	-0.33568900	0.66433300
0	1.01940200	-1.03792100	-1.23246500
Н	1.48150300	-0.93648400	-2.08265700
Н	-0.08648600	-0.93950800	-1.36818700
Coordinates of 3aa'			
С	-6.53934600	1.35615100	-1.11935800
С	-6.01692400	0.16882100	-0.60507700
С	-4.81963400	0.17055100	0.10926200
С	-4.14804700	1.38070100	0.30938900
С	-4.67020200	2.56698300	-0.19467000
С	-5.86732800	2.55724700	-0.91350200
Н	-7.47278000	1.34068400	-1.67511200

Н	-6.54685600	-0.76831900	-0.76380800
Н	-3.21216200	1.38039500	0.86244200
Н	-4.14264100	3.50299700	-0.03302900
Н	-6.27275100	3.48365000	-1.31050000
С	-4.24152400	-1.12409900	0.66204100
С	-2.96031100	-1.48706100	-0.04058700
Н	-3.04449600	-1.55377300	-1.12563400
С	-1.79510700	-1.71995500	0.56072500
С	-0.52609300	-2.07730900	-0.15859500
Н	-1.74613900	-1.64900900	1.64704200
Н	-0.68876800	-2.10211400	-1.24108500
С	0.59888300	-1.09665500	0.17371400
Н	0.76786500	-1.06959400	1.25917400
Н	0.30680500	-0.07530400	-0.10847200
С	1.91215100	-1.43012000	-0.51535100
0	1.99096000	-2.36925900	-1.28929700
С	3.10566500	-0.57910300	-0.22544500
С	3.07627000	0.50500400	0.66531700
С	4.30861000	-0.87488900	-0.86956900
С	4.21074600	1.26125300	0.90394900
Н	2.15916700	0.76850000	1.18354900
С	5.45715100	-0.12527300	-0.64254800
Н	4.33284500	-1.71156900	-1.56103900
С	5.41036400	0.95036100	0.25100900
Н	4.19519100	2.09891100	1.59374700

Н	6.37242500	-0.38613700	-1.16158400
Н	-0.20633400	-3.08712600	0.12818100
0	6.46469700	1.74463300	0.54876000
С	7.70058100	1.49516300	-0.09117500
Н	7.61091000	1.60129100	-1.17924000
Н	8.39060000	2.24786400	0.29072000
Н	8.08084600	0.49568300	0.15290100
Н	-4.97315000	-1.92708000	0.47147200
0	-3.99248000	-1.03470100	2.05679500
Н	-4.79141200	-0.70196800	2.48303400
Coordinates of 3aa			
С	7.61854600	-0.24617600	1.21512000
С	6.28495500	-0.64474000	1.24685200
С	5.35218900	-0.12509000	0.34015800
С	5.79232300	0.82448900	-0.59282600
С	7.12367200	1.22355600	-0.62704800
С	8.04388300	0.68891900	0.27508500
Н	8.32459700	-0.66450000	1.92702300
Н	5.96000000	-1.37529500	1.98436500
Н	5.08642700	1.26711900	-1.28983400
Н	7.44404900	1.96248200	-1.35608800
Н	9.08269600	1.00518300	0.24804700
С	3.95611600	-0.59394800	0.40777300
С	2.99948400	-0.41960500	-0.51056000
Н	3.70188900	-1.15037100	1.31198900

Н	3.19831400	0.10104000	-1.44759200
С	1.59856600	-0.93874800	-0.35410400
С	0.56499700	0.18198100	-0.40384900
Н	0.66777200	0.72529000	-1.35005300
С	-0.85743000	-0.34646500	-0.26345000
Н	-0.94702900	-0.96489500	0.64178700
Н	-1.09420900	-1.01055300	-1.10320100
С	-1.89928300	0.75554700	-0.18666700
0	-1.57508900	1.93095100	-0.22588600
С	-3.33561600	0.36605600	-0.05056100
С	-3.76818700	-0.96914800	-0.04359800
С	-4.29315000	1.37363400	0.08027800
С	-5.11020300	-1.28116900	0.08814600
Н	-3.05442700	-1.78100000	-0.14503200
С	-5.64488700	1.07779400	0.21657600
Н	-3.95986700	2.40703300	0.07471100
С	-6.05842800	-0.25893800	0.21999800
Н	-5.45187800	-2.31129500	0.09141300
Н	-6.35839600	1.88763900	0.31769500
Н	0.78232000	0.89701900	0.39627200
0	-7.34460200	-0.66199400	0.34372200
С	-8.34919300	0.32199500	0.48952700
Н	-8.38396900	0.98723900	-0.38195000
Н	-9.29043200	-0.22254800	0.56715200
Н	-8.19447700	0.91350900	1.40025600

Н	1.51385900	-1.45838000	0.61496700
0	1.28022700	-1.84902200	-1.40874400
Н	1.97834500	-2.51387200	-1.45577300

7. X-Ray Structures of Compounds

Single crystals of C₁₉H₂₀O₃[**3aa**]. A suitable crystal was selected and [**3aa**] on a Bruker APEX-II CCD using Mo-K α radiation ($\lambda = 0.71073$ Å). The crystal was kept at 296 (1) K during data collection.

Crystal structure determination of [3aa]

Crystal Data for C₁₉H₂₀O₃ (*M* =296.35 g/mol): triclinic, space group P-1, *a* = 5.7272(12) Å, *b* = 7.6083(16) Å, *c* = 18.734(4) Å, V = 794.1(3) Å³, Z = 2, T = 269(1) K, μ (Mo-K α) = 0.083 mm⁻¹, *Dcalc* = 1.239 g/cm³, 5749 reflections measured (2.728° ≤ 2 Θ ≤ 25.947°), 2900 unique (*R*_{int} = 0.0257) which were used in all calculations. The final *R*₁ was 0.0546 (I > 2 σ (I)) and *wR*₂ was 0.0.1660(all data).

CCDC 2151471 contains the supplementary data for this structure.

Table 1.	Crystal data	and structure	refinement	for mo	210909A	0m.
	•/					

Identification code	mo_210909a_0m
Empirical formula	$C_{19}H_{20}O_3$
Formula weight	296.35
Temperature	296(1) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a = 5.7272(12) \text{ Å}$ $\alpha = 79.036(3)^{\circ}$.
	$b = 7.6083(16) \text{ Å}$ $\beta = 82.382(3)^{\circ}.$
	$c = 18.734(4) \text{ \AA} \qquad \qquad \gamma = 87.161(4)^{\circ}.$
Volume	794.1(3) Å ³

Z	2
Density (calculated)	1.239 Mg/m ³
Absorption coefficient	0.083 mm ⁻¹
F(000)	316
Crystal size	0.12 x 0.1 x 0.1 mm ³
Theta range for data collection	2.728 to 25.497°.
Index ranges	-6<=h<=6, -8<=k<=9, -22<=l<=22
Reflections collected	5749
Independent reflections	2900 [R(int) = 0.0257]
Completeness to theta = 25.242°	98.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7463 and 0.6609
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2900 / 0 / 201
Goodness-of-fit on F ²	1.030
Final R indices [I>2sigma(I)]	R1 = 0.0546, $wR2 = 0.1443$
R indices (all data)	R1 = 0.0861, $wR2 = 0.1660$
Extinction coefficient	n/a
Largest diff. peak and hole	0.567 and -0.286 e.Å ⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$

10³) for mo_210909A_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Х	У	Z	U(eq)	
O(1)	4201(3)	2859(2)	13866(1)	52(1)
O(2)	2816(3)	2253(3)	10647(1)	61(1)
O(3)	11082(4)	1908(4)	9327(1)	99(1)
C(1)	6070(5)	3586(4)	14138(1)	65(1)
C(2)	4435(4)	2839(3)	13133(1)	39(1)

C(3)	2621(4)	2051(3)	12890(1)	44(1)
C(4)	2701(4)	1959(3)	12166(1)	41(1)
C(5)	4621(4)	2616(3)	11656(1)	36(1)
C(6)	6419(4)	3381(3)	11913(1)	44(1)
C(7)	6327(4)	3519(3)	12640(1)	44(1)
C(8)	4638(4)	2504(3)	10874(1)	39(1)
C(9)	6945(4)	2706(4)	10380(1)	48(1)
C(10)	6878(4)	2490(3)	9596(1)	44(1)
C(11)	9176(4)	2944(4)	9118(1)	55(1)
C(12)	9050(4)	2933(4)	8325(1)	50(1)
C(13)	10631(4)	2177(3)	7898(1)	43(1)
C(14)	10674(4)	2163(3)	7113(1)	40(1)
C(15)	8931(4)	2976(4)	6703(1)	56(1)
C(16)	9086(5)	2946(5)	5968(1)	72(1)
C(17)	10948(5)	2095(4)	5620(1)	65(1)
C(18)	12665(5)	1287(4)	6011(1)	60(1)
C(19)	12542(4)	1324(3)	6754(1)	50(1)

Table 3. Bond lengths [Å] and angles [°] for mo-210909A_0m.

O(1)-C(1)	1.422(3)
O(1)-C(2)	1.366(2)
O(2)-C(8)	1.215(3)
O(3)-H(3)	0.8200
O(3)-C(11)	1.370(3)
C(1)-H(1A)	0.9600
C(1)-H(1B)	0.9600
C(1)-H(1C)	0.9600
C(2)-C(3)	1.391(3)
C(2)-C(7)	1.379(3)

C(3)-H(3A)	0.9300
C(3)-C(4)	1.368(3)
C(4)-H(4)	0.9300
C(4)-C(5)	1.401(3)
C(5)-C(6)	1.388(3)
C(5)-C(8)	1.482(3)
C(6)-H(6)	0.9300
C(6)-C(7)	1.380(3)
C(7)-H(7)	0.9300
C(8)-C(9)	1.506(3)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(9)-C(10)	1.515(3)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(10)-C(11)	1.506(3)
С(11)-Н(11)	0.9800
C(11)-C(12)	1.498(3)
C(12)-H(12)	0.9300
C(12)-C(13)	1.313(3)
C(13)-H(13)	0.9300
C(13)-C(14)	1.470(3)
C(14)-C(15)	1.389(3)
C(14)-C(19)	1.382(3)
C(15)-H(15)	0.9300
C(15)-C(16)	1.373(3)
C(16)-H(16)	0.9300
C(16)-C(17)	1.374(4)
C(17)-H(17)	0.9300
C(17)-C(18)	1.357(4)

C(18)-H(18)	0.9300
C(18)-C(19)	1.388(3)
C(19)-H(19)	0.9300
C(2)-O(1)-C(1)	117.45(18)
C(11)-O(3)-H(3)	109.5
O(1)-C(1)-H(1A)	109.5
O(1)-C(1)-H(1B)	109.5
O(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
O(1)-C(2)-C(3)	115.90(19)
O(1)-C(2)-C(7)	124.3(2)
C(7)-C(2)-C(3)	119.76(19)
C(2)-C(3)-H(3A)	119.9
C(4)-C(3)-C(2)	120.24(19)
C(4)-C(3)-H(3A)	119.9
C(3)-C(4)-H(4)	119.5
C(3)-C(4)-C(5)	121.04(19)
C(5)-C(4)-H(4)	119.5
C(4)-C(5)-C(8)	119.50(18)
C(6)-C(5)-C(4)	117.63(19)
C(6)-C(5)-C(8)	122.86(19)
C(5)-C(6)-H(6)	119.1
C(7)-C(6)-C(5)	121.73(19)
C(7)-C(6)-H(6)	119.1
C(2)-C(7)-H(7)	120.2
C(6)-C(7)-C(2)	119.6(2)
C(6)-C(7)-H(7)	120.2
O(2)-C(8)-C(5)	119.87(19)

O(2)-C(8)-C(9)	121.66(19)
C(5)-C(8)-C(9)	118.47(18)
C(8)-C(9)-H(9A)	108.3
C(8)-C(9)-H(9B)	108.3
C(8)-C(9)-C(10)	116.15(18)
H(9A)-C(9)-H(9B)	107.4
C(10)-C(9)-H(9A)	108.3
C(10)-C(9)-H(9B)	108.3
C(9)-C(10)-H(10A)	109.1
C(9)-C(10)-H(10B)	109.1
H(10A)-C(10)-H(10B)	107.8
C(11)-C(10)-C(9)	112.61(18)
C(11)-C(10)-H(10A)	109.1
C(11)-C(10)-H(10B)	109.1
O(3)-C(11)-C(10)	115.2(2)
O(3)-C(11)-H(11)	106.5
O(3)-C(11)-C(12)	108.4(2)
C(10)-C(11)-H(11)	106.5
C(12)-C(11)-C(10)	113.1(2)
C(12)-C(11)-H(11)	106.5
C(11)-C(12)-H(12)	117.6
C(13)-C(12)-C(11)	124.8(2)
C(13)-C(12)-H(12)	117.6
C(12)-C(13)-H(13)	116.0
C(12)-C(13)-C(14)	128.0(2)
C(14)-C(13)-H(13)	116.0
C(15)-C(14)-C(13)	123.3(2)
C(19)-C(14)-C(13)	119.2(2)
C(19)-C(14)-C(15)	117.5(2)
C(14)-C(15)-H(15)	119.7

C(16)-C(15)-C(14)	120.6(2)
C(16)-C(15)-H(15)	119.7
C(15)-C(16)-H(16)	119.5
C(15)-C(16)-C(17)	121.0(3)
C(17)-C(16)-H(16)	119.5
C(16)-C(17)-H(17)	120.4
C(18)-C(17)-C(16)	119.2(2)
C(18)-C(17)-H(17)	120.4
C(17)-C(18)-H(18)	119.8
C(17)-C(18)-C(19)	120.3(2)
C(19)-C(18)-H(18)	119.8
C(14)-C(19)-C(18)	121.2(2)
C(14)-C(19)-H(19)	119.4
C(18)-C(19)-H(19)	119.4

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters ($Å^2x \ 10^3$) for mo_210909A_0m.

The anisotropic displacement factor exponent takes the form: $-2p^2$ [$h^2 a^{*2}U^{11} + ... + 2h k a^{*}$

b* U¹²]

U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
O(1)	58(1)	70(1)	31(1)	-13(1)	-1(1)	-7(1)
O(2)	42(1)	106(2)	42(1)	-21(1)	-9(1)	-15(1)
O(3)	53(1)	206(3)	46(1)	-43(1)	-17(1)	25(2)
C(1)	78(2)	85(2)	37(1)	-21(1)	-10(1)	-15(2)
C(2)	42(1)	43(1)	32(1)	-9(1)	-2(1)	3(1)
C(3)	35(1)	53(2)	39(1)	-7(1)	4(1)	-6(1)
C(4)	31(1)	50(1)	42(1)	-9(1)	-4(1)	-8(1)

C(5)	33(1)	40(1)	36(1)	-8(1)	-5(1)	-2(1)
C(6)	38(1)	59(2)	34(1)	-7(1)	1(1)	-15(1)
C(7)	42(1)	55(2)	39(1)	-12(1)	-6(1)	-14(1)
C(8)	37(1)	46(1)	35(1)	-9(1)	-7(1)	-4(1)
C(9)	38(1)	72(2)	36(1)	-16(1)	-4(1)	-6(1)
C(10)	43(1)	54(2)	36(1)	-12(1)	-5(1)	-5(1)
C(11)	45(1)	85(2)	40(1)	-21(1)	-6(1)	-8(1)
C(12)	44(1)	69(2)	39(1)	-14(1)	-4(1)	-5(1)
C(13)	43(1)	51(2)	35(1)	-8(1)	-7(1)	-2(1)
C(14)	43(1)	40(1)	35(1)	-6(1)	-1(1)	-6(1)
C(15)	47(1)	83(2)	40(1)	-18(1)	-5(1)	11(1)
C(16)	66(2)	109(3)	41(1)	-14(2)	-16(1)	10(2)
C(17)	78(2)	86(2)	34(1)	-18(1)	-1(1)	-9(2)
C(18)	69(2)	60(2)	48(1)	-18(1)	12(1)	-1(1)
C(19)	53(2)	49(2)	44(1)	-8(1)	-2(1)	6(1)

Table 5.	Hydrogen coordinates (x 10 ⁴) and isotropic displacement parameters (Å ² x 10 ³)
for mo_21(0909A_0m.

x	у	Z	U(eq)	
H(3)	11506	2213	9685	149
H(1A)	6267	4815	13903	97
H(1B)	7502	2916	14038	97
H(1C)	5702	3519	14658	97
H(3A)	1349	1586	13222	52
H(4)	1462	1452	12008	49
H(6)	7720	3812	11586	53

H(7)	7531	4067	12796	53
H(9A)	8067	1830	10594	58
H(9B)	7537	3883	10373	58
H(10A)	6506	1263	9592	52
H(10B)	5632	3261	9394	52
H(11)	9512	4176	9150	66
H(12)	7756	3505	8120	60
H(13)	11878	1575	8119	51
H(15)	7647	3547	6929	68
H(16)	7912	3509	5701	86
H(17)	11031	2074	5123	78
H(18)	13930	706	5781	71
H(19)	13739	774	7014	59

Table 6.Torsion angles [°] for mo_210909A_0m.

O(1)-C(2)-C(3)-C(4)	-179.7(2)
O(1)-C(2)-C(7)-C(6)	178.1(2)
O(2)-C(8)-C(9)-C(10)	-2.8(4)
O(3)-C(11)-C(12)-C(13)	-5.3(4)
C(1)-O(1)-C(2)-C(3)	177.4(2)
C(1)-O(1)-C(2)-C(7)	-1.9(3)
C(2)-C(3)-C(4)-C(5)	1.3(3)
C(3)-C(2)-C(7)-C(6)	-1.2(4)
C(3)-C(4)-C(5)-C(6)	-0.8(3)
C(3)-C(4)-C(5)-C(8)	-179.6(2)
C(4)-C(5)-C(6)-C(7)	-0.8(3)
C(4)-C(5)-C(8)-O(2)	17.4(3)
C(4)-C(5)-C(8)-C(9)	-162.6(2)
C(5)-C(6)-C(7)-C(2)	1.8(4)

177.1(2)
-161.4(2)
18.7(3)
-0.3(3)
177.9(2)
172.7(2)
60.9(3)
-173.6(2)
-134.3(3)
-177.7(2)
-0.9(4)
178.3(2)
178.9(3)
-179.6(2)
0.7(5)
-0.4(4)
-0.5(5)
-0.2(4)
0.6(4)
-0.3(4)

Symmetry transformations used to generate equivalent atoms:

Table 7.	Hydrogen bonds for mo	_210909A_	_0m [Å and °].
----------	-----------------------	-----------	----------------

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(3)-H(3)O(2)#1	0.82	2.05	2.845(2)	164.4

Symmetry transformations used to generate equivalent atoms: #1 x+1, y, z

8. Spectra of Products

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3aa

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ba

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ca

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product 3ea

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3fa

 1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product 3ga

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product spectra of product 3ha

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product spectra of product 3ia

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ja

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ka

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹C NMR (376 MHz, CDCl₃) spectra of product 3la

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ma

$^{1}\mathrm{H}$ NMR (400 MHz, CDCl₃) and $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) spectra of product 3na

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 30a

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3pa

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3qa

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ra

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3sa

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ta

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ua

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3va

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3wa

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3xa

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ya

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3za

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ab

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ac

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product 3ad

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ae

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3af

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ag

10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.5 -0.5 -1.5 f1 (ppm)

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃)

spectra of product 3ah

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3ai

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3aj

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product 3ak

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3al

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3am

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3an

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4

 1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product 5

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃)spectra of product 6

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 8

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 9

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 10

¹H NMR (400 MHz, D₂O) and ¹³C NMR (100 MHz, D₂O) spectra of 2a-I