

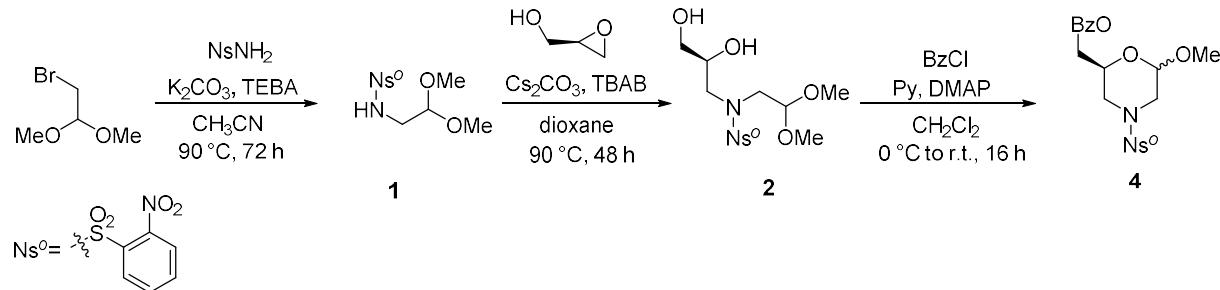
Synthesis of Morpholino Nucleosides

Starting From Enantiopure Glycidol

Marta Papis,^a Camilla Loro,^a Michele Penso,^b Gianluigi Broggini^a and Francesca Foschi^{a*}

^a Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 9, 22100, Como, Italy.

^b CNR-Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Via Golgi 19, IT-20133 Milano, Italy.


Supporting Information

Materials and methods	S-2
Procedure for the synthesis of morpholine acetals 4α, β	S-3
General procedure for the preparation of protected morpholino compounds	
Method A: synthesis of 5α,β; 6β; 8β	S-4
Method B: synthesis of 7β; 9α, β	S-7
Method C: synthesis of 9α, β; 12	S-9
N,O deprotection of uridine analogue 9β : synthesis of 11β	S-9
¹ H and ¹³ C NMR spectra	S-11

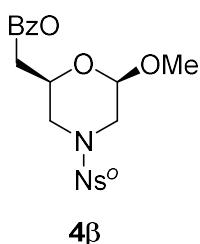
Materials and methods

All available chemicals and solvents were purchased from commercial sources and were used without any further purification. Thin layer chromatography (TLC) was performed using 0.25 mm silica gel precoated plates Si 60-F254 (Merck, Darmstadt, Germany) visualized by UV-254 light and CAM staining. Purification by flash column chromatography (FCC) was conducted by using silica gel Si 60, 230-400 mesh, 0.040-0.063 mm (Merck). ^1H and ^{13}C NMR spectra were recorded on a Bruker Avance 400 (400 and 101 MHz, respectively) or Bruker Fourier 300 (300 and 75 MHz, respectively); chemical shifts are indicated in parts per million downfield from SiMe₄, using the residual proton (DMSO = 2.54; CH₃CN = 1.96; CHCl₃ = 7.26 ppm; CH₃OH = 3.30; H₂O = 4.70) and carbon (DMSO = 39.0 CH₃CN = 30.9 and 118.1; CDCl₃ = 77.0 ppm; CH₃OH = 49.0) solvent resonances as internal reference. Protons and carbon assignments were achieved by ^{13}C -APT, ^1H - ^1H COSY, and ^1H - ^{13}C heteronuclear correlation experiments. Coupling constants values J are given in Hz. Optical rotations were measured on a Perkin-Elmer 241 Polarimeter at 589 nm, using a 10 cm x 5 ml cell and c is in g/100 ml. FTIR spectra were recorded on a Tensor 27 (ATR Diamond) Bruker infrared spectrophotometer and are reported in frequency of absorption (cm⁻¹).

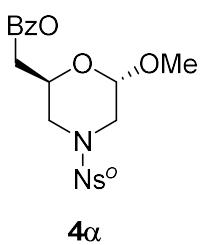
Procedure for the synthesis of morpholine acetals $4\alpha, \beta$

N-(2,2-Dimethoxyethyl)-2-nitrobenzenesulfonamide (1)

1 To a heterogeneous mixture of 2-nitrobenzenesulfonamide (606 mg, 3.00 mmol), TEBA (69 mg, 0.30 mmol) and bromoacetaldehyde dimethyl acetal (507 mg, 3.00 mmol) dissolved in anhydrous CH_3CN (6.0 mL) was added anhydrous K_2CO_3 (455 mg, 3.3 mmol). The resulting mixture was magnetically stirred at 90°C for 72 hours. After cooling, the crude was diluted with CH_2Cl_2 (10 mL) and filtered through a celite pad. The solvent was evaporated under vacuum (RV) and the residue was purified by FCC (AcOEt/hexane 1:2) providing **1** as white solid (653 mg, 75%), m.p.: 62.0-66.2 $^\circ\text{C}$. The characterization of product **1** is consistent with that reported in the literature.^[1]


(S)-N-(2,3-Dihydroxypropyl)-N-(2,2-dimethoxyethyl)-2-nitrobenzenesulfonamide (2)

2 In a screw cap vial, a heterogeneous mixture of sulfonamide **1** (639 mg, 2.20 mmol), TBAB (64 mg, 0.20 mmol), (*R*)-glycidol (148 mg, 2.00 mmol) and anhydrous Cs_2CO_3 (66 mg, 0.2 mmol) in anhydrous dioxane (4 mL), was magnetically stirred at 90°C for 48 hours. After cooling, the crude was diluted with AcOEt (20 mL) and filtered through a celite pad. The solvent was evaporated under reduced pressure (RV) and the residue was purified by FCC (AcOEt/hexane 1:1) providing **2** as yellow wax (634 mg, 87%). ^1H NMR (300 MHz, CDCl_3) δ 8.01 (d, $J = 6.8$ Hz, 1H), 7.74 – 7.65 (m, 3H), 4.63 (t, $J = 5.3$ Hz, 1H), 4.00 – 3.94 (m, 1H), 3.70 (dd, $J = 4.1, 11.4$ Hz, 1H), 3.56 (dd, $J = 4.9, 11.7$ Hz, 1H), 3.51 – 3.40 (m, 10H), 2.64 (bs, 2H). ^{13}C NMR (75 MHz, CDCl_3) δ 151.7, 144.2, 129.9, 129.6, 128.5, 127.4, 105.4, 70.0, 58.9, 51.6 (2 CH_3), 45.0, 44.9. Anal. Calcd. for $\text{C}_{13}\text{H}_{20}\text{N}_2\text{O}_8\text{S}$: C, 42.85; H, 5.53; N, 7.69. Found: C, 42.94; H, 5.58; N, 7.61.

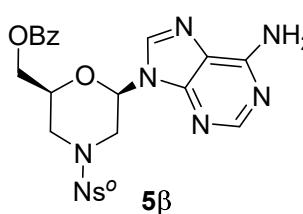

[1] Y. Miyauchi, K. Noguchi, K. Tanaka, Rhodium-Catalyzed One-Pot Intermolecular [2 + 2 + 2] Trimerization/Asymmetric Intramolecular [4 + 2] Cycloaddition of Two Aryl Ethynyl Ethers and 5-Alkynals, *Org. Lett.*, 2012, **23**, 5856-5859.

{(2*R*,6*S*)-2-Methoxy-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methyl benzoate (4 β) and {(2*S*,6*S*)-2-methoxy-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methylbenzoate (4 α)

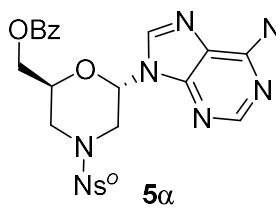
To a solution of sulfonamido diol **2** (364 mg, 1.00 mmol), DMAP (12 mg, 0.10 mmol), pyridine (81 μ L, 79 mg, 1.00 mmol), in dry CH_2Cl_2 (3 mL) benzoyl chloride (141 mg, 1.00 mmol) was added dropwise at 0 $^{\circ}\text{C}$. The resulting solution was stirred at 35 $^{\circ}\text{C}$ for 16 h, then the reaction was diluted with CH_2Cl_2 (10 mL), washed with saturated NH_4Cl solution (2 \times 10 mL), saturated NaHCO_3 solution (2 \times 10 mL) and brine (10 mL), dried over MgSO_4 and filtered. After evaporation of the solvent under vacuum (RV), the crude was purified by FCC (AcOEt/hexane 1:2) affording morpholines **4 α , β** .

4 β (300 mg, 69%), yellow wax, $[\alpha]_D^{20}:$ – 11.2 (*c* 1.00, CHCl_3). ^1H NMR (300 MHz, CDCl_3) δ 8.10–8.00 (m, 3H), 7.80 – 7.61 (m, 4H), 7.49 (t, *J* = 7.4 Hz, 2H), 4.60 (d, *J* = 8.0 Hz, 1H), 4.50 (dd, *J* = 5.3, 11.6 Hz, 1H), 4.41 (dd, *J* = 5.3, 11.5 Hz, 1H), 4.10–4.07 (m, 1H), 3.89 – 3.81 (m, 2H), 3.56 (s, 3H), 2.89 (t, *J* = 11.3 Hz, 1H), 2.74 (dd, *J* = 8.7, 12.1 Hz, 1H). ^{13}C NMR (75 MHz, CDCl_3) δ 166.1, 148.3, 142.2, 134.2, 133.4, 132.4, 131.9, 131.0, 129.7 (2 CH_{ar}), 128.5 (2 CH_{ar}), 124.4, 99.3, 71.8, 64.2, 56.6, 48.5, 46.7. IR ν_{max} 3356, 3338, 1749, 1354, 928, 768 cm^{-1} . Anal. Calcd. for $\text{C}_{19}\text{H}_{20}\text{N}_2\text{O}_8\text{S}$: C, 52.29; H, 4.62; N, 6.42. Found: C, 52.45; H, 4.70; N, 6.36.

4 α (100 mg, 23%), yellow wax, $[\alpha]_D^{20}:$ – 10.9 (*c* 0.7, CHCl_3). ^1H NMR (300 MHz, CDCl_3) δ 8.08 – 8.05 (m, 3H), 7.71 – 7.58 (m, 4H), 7.49 – 7.45 (m, 2H), 4.76 (s, 1H), 4.47 – 4.35 (m, 3H), 3.95 (d, *J* = 12.8 Hz, 1H), 3.78 (d, *J* = 13.2 Hz, 1H), 3.34 (s, 3H), 3.17 (dd, *J* = 1.9, 13.1 Hz, 1H), 3.00 (dd, *J* = 10.0, 12.5 Hz, 1H). ^{13}C NMR (75 MHz, CDCl_3) δ 164.4, 148.4, 141.4, 134.0, 133.7, 132.8, 131.7, 131.0 (2 CH_{ar}), 130.2 (2 CH_{ar}), 128.6, 124.2, 101.1, 71.3, 64.4, 56.8, 49.0, 46.7. Anal. Calcd. for $\text{C}_{19}\text{H}_{20}\text{N}_2\text{O}_8\text{S}$: C, 52.29; H, 4.62; N, 6.42. Found: C, 52.47; H, 4.73; N, 6.32.

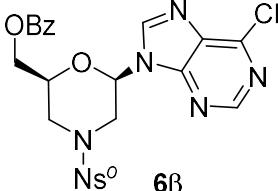

General procedure for the preparation of protected morpholino compounds

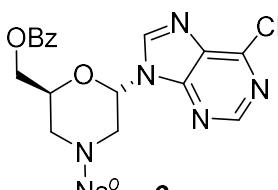
Method A: synthesis of 5- and 6- α , β ; 8 β


In a round bottom flask, TMSOTf (272 μ L, 333 mg, 1.5 mmol) was added dropwise at 0 °C to a mixture of morpholines **4** (218 mg, 0.5 mmol) and the appropriate nucleobase (1.0 mmol) in anhydrous CH₃CN (1.0 mL). The reaction was allowed to warm to room temperature until completion (4 hours). The reaction was then cooled to 0 °C, diluted with AcOEt (10 mL), quenched and washed with saturated NaHCO₃ solution (2×10 mL), NH₄Cl solution (5 mL), brine (5 mL), dried over MgSO₄ and filtered. After evaporation of the solvent under vacuum (RV), the crude was purified by FCC affording the correspondent analogue. Reaction time, yield, physical, spectroscopic, and analytical data of compound **5- and 6- α, β ; 8 β** are as follows.

{(2R,6S)-2-(6-Amino-9H-purin-9-yl)-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methylbenzoate (5 β) and {(2S,6S)-2-(6-amino-9H-purin-9-yl)-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methyl benzoate (5 α)

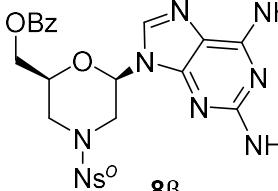
Adenine (135 mg); FCC (AcOEt/hexane 3:1) + 10% CH₃OH.


5 β (138 mg, 51%), white wax $[\alpha]_D^{20}$: - 10.6 (c 0.5, CH₃CN). ¹H NMR (300 MHz, CD₃CN) δ 8.24 (s, 1H), 8.07 – 8.00 (m, 4H), 7.91 – 7.78 (m, 3H), 7.75 – 7.48 (m, 3H), 6.22 (bs, 2H), 5.96 (dd, *J* = 2.4, 10.2 Hz, 1H), 4.45 – 4.30 (m, 3H), 4.10 (d, *J* = 12.1 Hz, 1H), 3.95 (d, *J* = 12.4 Hz, 1H), 3.56 (t, *J* = 11.6 Hz, 1H), 3.10 (t, *J* = 11.4 Hz, 1H). ¹³C NMR (75 MHz, CD₃CN) δ 166.2, 157.4, 153.4, 148.3, 146.3, 138.4, 136.7, 135.0, 134.5, 134.1, 132.7, 131.1, 130.3 (2 CH_{ar}), 123.0 (2 CH_{ar}), 129.4, 124.7, 80.8, 77.1, 66.6, 49.5, 48.2. IR ν_{max} 3356, 3338, 1749, 1354, 928, 768 cm⁻¹. Anal. Calcd. for C₂₃H₂₁N₇O₇S: C, 51.20; H, 3.92; N, 18.17. Found: C, 51.31; H, 3.97; N, 18.04.



5 α (59 mg, 22%), white amorphous solid, $[\alpha]_D^{20}$ = - 13.9 (c 0.5, CH₃CN). ¹H NMR (300 MHz, CD₃OD) δ 8.42 (s, 1H), 8.11 – 8.05 (m, 2H), 7.91 – 7.79 (m, 5H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.45 – 7.40 (m, 2H), 6.32 (s, 1H), 4.48 (dd, *J* = 6.5, 11.9 Hz, 1H), 4.37 (dd, *J* = 3.8, 12.1 Hz, 1H), 4.20 – 4.13 (m, 1H), 3.92 (d, *J* = 12.7 Hz, 1H), 3.69 – 3.64 (m, 2H), 3.27 – 3.20 (m, 1H) *NH* protons not visible. ¹³C NMR (75 MHz, CD₃OD) δ 160.0, 156.6, 153.2, 152.5, 143.2, 143.1, 138.9, 137.0, 135.8, 135.0, 134.1, 133.2 (2 CH_{ar}), 132.8, 132.1 (2 CH_{ar}), 128.3, 125.0, 80.5, 72.6, 67.1, 50.2, 33.3. IR ν_{max} 3365, 3358, 1749, 1348, 940, 785 cm⁻¹. Anal. Calcd. for C₂₃H₂₁N₇O₇S: C, 51.20; H, 3.92; N, 18.17. Found: C, 51.35; H, 4.00; N, 18.02.

{(2R,6S)-2-(6-Chloro-9H-purin-9-yl)-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methylbenzoate (6 β) and {(2S,6S)-2-(6-chloro-9H-purin-9-yl)-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methyl benzoate (6 α)


6-Chloropurine (154 mg); FCC (AcOEt/hexane 3:1).

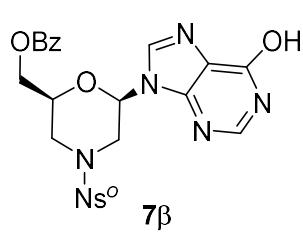
6 β (134 mg, 48%), yellow wax, $[\alpha]_D^{20} = -31.1$ (*c* 0.5, CH₃CN). ¹H NMR (300 MHz, CDCl₃) δ 8.76 (s, 1H), 8.27 (s, 1H), 8.12 – 8.01 (m, 3H), 7.80 – 7.68 (m, 3H), 7.59 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 6.03 (dd, *J* = 1.7, 9.9 Hz, 1H), 4.53 – 4.45 (m, 2H), 4.38 – 4.25 (m, 2H), 4.02 (d, *J* = 13.0 Hz, 1H), 3.50 (t, *J* = 11.9 Hz, 1H), 3.11 (t, *J* = 12.2 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 165.9, 152.2, 151.3, 150.9, 148.0, 142.8, 134.5, 133.3, 132.1, 131.6, 131.1, 130.9, 129.6 (2 CH_{ar}), 129.1, 128.4 (2 CH_{ar}), 124.5, 79.9, 74.6, 63.5, 48.2, 46.3. IR ν_{max} 1744, 1359, 1361, 1024, 912, 777 cm⁻¹. Anal. Calcd. for C₂₃H₁₉ClN₆O₇S: C, 49.42; H, 3.43; N, 15.04. Found: C, 49.58; H, 3.50; N, 14.88.

6 α (59 mg, 21%), yellow wax, $[\alpha]_D^{20} = -42.7$ (*c* 0.5, CH₃CN). ¹H NMR *impure compound* (300 MHz, CDCl₃) δ 8.67 (s, 1H), 8.57 (s, 1H), 8.03 – 7.97 (m, 3H), 7.79 – 7.64 (m, 3H), 7.59 (t, *J* = 7.2 Hz, 1H), 7.48 – 7.37 (m, 2H), 6.42 (t, *J* = 3.1 Hz, 1H), 4.64 (dd, *J* = 11.6, 6.0 Hz, 1H), 4.54 – 4.18 (m, 3H), 3.95 (d, *J* = 12.1 Hz, 1H), 3.81 (dd, *J* = 13.3, 3.3 Hz, 1H), 3.32 (dd, *J* = 12.5, 8.2 Hz, 1H).

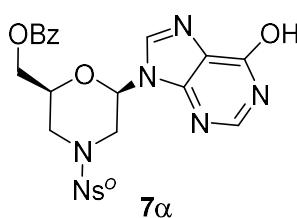
{(2R,6S)-2-(2,6-Diamino-9H-purin-9-yl)-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methylbenzoate (8 β)

2,6-Diaminopurine (150 mg); FCC (AcOEt/hexane 9:1) + 10% CH₃OH.

8 β (116 mg, 42%, 6 h), white amorphous solid, $[\alpha]_D^{20} = -32.0$ (*c* 0.4, CH₃CN). ¹H NMR (300 MHz, CD₃CN) δ 8.00 – 7.91 (m, 3H), 7.85 – 7.70 (m, 3H), 7.66 (s, 1H), 7.60 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 2H), 5.89 (bs, 2H), 5.71 (dd, *J* = 2.8, 10.3 Hz, 1H), 5.10 (bs, 2H), 4.49 – 4.36 (m, 2H), 4.32 – 4.20 (m, 1H), 4.00 (dd, *J* = 1.9, 12.5 Hz, 1H), 3.90 (dd, *J* = 1.9, 14.2 Hz, 1H), 3.46 (dd, *J* = 10.3, 12.2 Hz, 1H), 3.02 (dd, *J* = 10.9, 12.4 Hz, 1H). ¹³C NMR (75 MHz, CD₃CN) δ 169.8, 161.1, 157.1, 151.9, 149.9, 142.1, 140.4, 138.7, 138.1, 137.7, 136.3, 134.7 (2 CH_{ar}), 133.9 (2 CH_{ar}), 133.6, 133.1, 128.4, 84.4, 80.7, 70.2, 53.2, 51.8. IR ν_{max} 3399, 3390, 3350,


1721, 1339, 879, 752 cm^{-1} . Anal. Calcd. for $\text{C}_{23}\text{H}_{22}\text{N}_8\text{O}_7\text{S}$: C, 49.82; H, 4.00; N, 20.21. Found: C, 50.00; H, 4.13; N, 20.08.

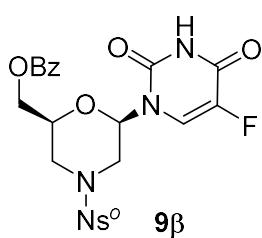
Method B: synthesis of 7- and 9- α , β


In a round bottom flask, a mixture of the appropriate nucleobase (1.0 mmol), HMDS (323 mg, 2.0 mmol) and saccharin (3.5 mg, 0.02 mmol) was refluxed in anhydrous CH_3CN (3 ml) for 3 hours to get a clear solution. The solvent was evaporated under reduced pressure and a solution of morpholines **4** (218 mg, 0.5 mmol) in anhydrous CH_3CN (1.0 ml) was then added to the silylated base. The reaction mixture was then cooled to 0°C in an ice bath and TMSOTf (272 μL , 333 mg, 1.5 mmol) was added dropwise. After 15 minutes, the reaction was allowed to warm to room temperature until completion (4 h). The reaction was then cooled to 0 °C, diluted with AcOEt (10 mL), quenched and washed with saturated NaHCO_3 solution (2×10 mL), NH_4Cl solution (5 mL), and brine (10 mL), dried over MgSO_4 and filtered. After evaporation of the solvent under vacuum (RV), the crude was purified by FCC affording the correspondent analogue. Reaction time, yield and physical, spectroscopic, and analytical data of compounds **7**- and **9- α, β** are as follows.

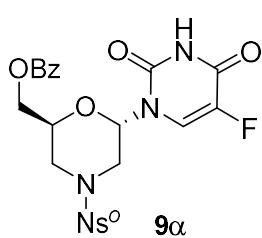
$\{(2R,6S)\text{-2-(6-Hydroxy-9H-purin-9-yl)-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}\text{methyl benzoate (7}\beta\text{)} \text{ and } \{(2S,6S)\text{-2-(6-hydroxy-9H-purin-9-yl)-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}\text{methyl benzoate (7}\alpha\text{)}$

Hypoxanthine (136 mg); FCC ($\text{AcOEt}/\text{hexane}$ 8:2).

7 β (138 mg, 51%), pale yellow amorphous solid, $[\alpha]_D^{20} = -27.4$ (*c* 0.5, CH_3CN). ^1H NMR (300 MHz, CD_3OD) δ 8.20 (s, 1H), 8.10 (dd, *J* = 1.8, 7.8 Hz, 1H), 8.03–7.98 (m, 3H), 7.85 – 7.77 (m, 3H), 7.59 (t, *J* = 7.3 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 5.98 (dd, *J* = 2.9, 10.3 Hz, 1H), 4.63 (bs, 1H), 4.47 (d, *J* = 5.0 Hz, 2H), 4.36 – 4.29 (m, 1H), 4.20 – 4.14 (m, 1H), 4.04 – 3.98 (m, 1H), 3.57 (dd, *J* = 10.2, 12.4 Hz, 1H), 3.08 (dd, *J* = 10.9, 12.8 Hz, 1H). ^{13}C NMR (75 MHz, CD_3OD) δ 170.7, 161.7, 153.1, 151.5, 150.5, 143.6, 140.6, 138.8, 138.0, 136.1, 134.5 (2 CH_{ar}), 134.3, 134.1 (2 CH_{ar}), 131.6, 129.8, 129.4, 83.8, 78.9, 69.2, 52.4, 51.0. IR ν_{max} 3579, 1734, 1361, 1349, 900, 752 cm^{-1} . Anal. Calcd. for $\text{C}_{23}\text{H}_{20}\text{N}_6\text{O}_8\text{S}$: C, 51.11; H, 3.73; N, 15.55. Found: C, 51.26; H, 3.83; N, 15.41.

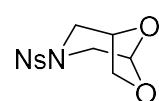


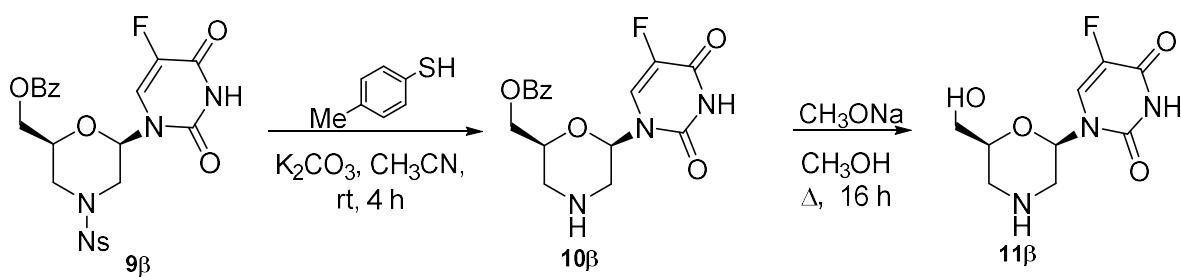
7α (59 mg, 22%), pale yellow wax, $[\alpha]_{D}^{20} = -22.4$ (*c* 0.5, CH₃CN). ¹H NMR (300 MHz, DMSO-*d*6) δ 12.31 (bs, 1H), 8.27 (s, 1H), 7.97 (s, 1H), 7.81 (d, *J* = 9.4 Hz, 2H), 7.70 – 7.63 (m, 3H), 7.49–7.44 (m, 4H), 6.19 (s, 1H), 4.33 – 4.32 (m, 2H) 4.22 – 3.97 (m, 2H), 3.73 – 3.69 (m, 1H), 3.07–2.99 (m, 1H), 2.77–2.74 (m, 1H). ¹³C NMR (75 MHz, CD₃OD) δ 165.5, 156.3, 148.6, 145.9, 141.5, 137.6, 135.0, 133.2, 132.3, 131.1, 130.1, 129.9, 129.5 (2 CH_{ar}), 128.6 (2 CH_{ar}), 124.8, 124.4, 79.3, 74.3, 63.9, 48.1, 46.3. IR ν_{max} 3467, 1758, 1350, 920, 781 cm⁻¹. Anal. Calcd. for C₂₃H₂₀N₆O₈S: C, 51.11; H, 3.73; N, 15.55. Found: C, 51.43; H, 3.97; N, 15.24.


{(2*R*,6*S*)-2-[5-Fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methyl benzoate (9β) and

{(2*S*,6*S*)-2-[5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methyl benzoate (9α)

5-Fluorouracil (130 mg); FCC (AcOEt/hexane 6:4).


9β (171 mg, 64%), yellow wax, $[\alpha]_{D}^{20} = -31.8$ (*c* 1.0, CH₃CN). ¹H NMR (300 MHz, CDCl₃) δ 8.74 (d, *J* = 4.3 Hz, 1H), 8.15 – 8.03 (m, 4H), 7.79 – 7.68 (m, 3H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.50–7.41 (m, 2H), 5.75 (d, *J* = 8.6 Hz, 1H), 4.50–4.39 (m, 2H), 4.30 – 4.23 (m, 1H), 4.09 – 3.95 (m, 2H), 2.96 (dd, *J* = 11.2, 12.7 Hz, 1H), 2.82 (dd, *J* = 10.8, 12.4 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 166.0, 160.2, 158.7 (d, *J* = 30.8 Hz, 1C), 154.5, 146.7 (d, *J* = 252.9 Hz, 1CF), 135.8, 133.5, 133.4, 131.8, 131.4, 130.2 (2 CH_{ar}), 129.7 (2 CH_{ar}), 128.0, 125.0 (d, *J* = 33.1 Hz, 1CH), 124.5, 79.5, 75.7, 63.9, 47.2, 46.7. IR ν_{max} 3389, 1780, 1754, 1358, 1296, 891 cm⁻¹. Anal. Calcd. for C₂₂H₁₉FN₄O₉S: C, 49.44; H, 3.58; N, 10.48. Found: C, 49.54; H, 3.64; N, 10.39.

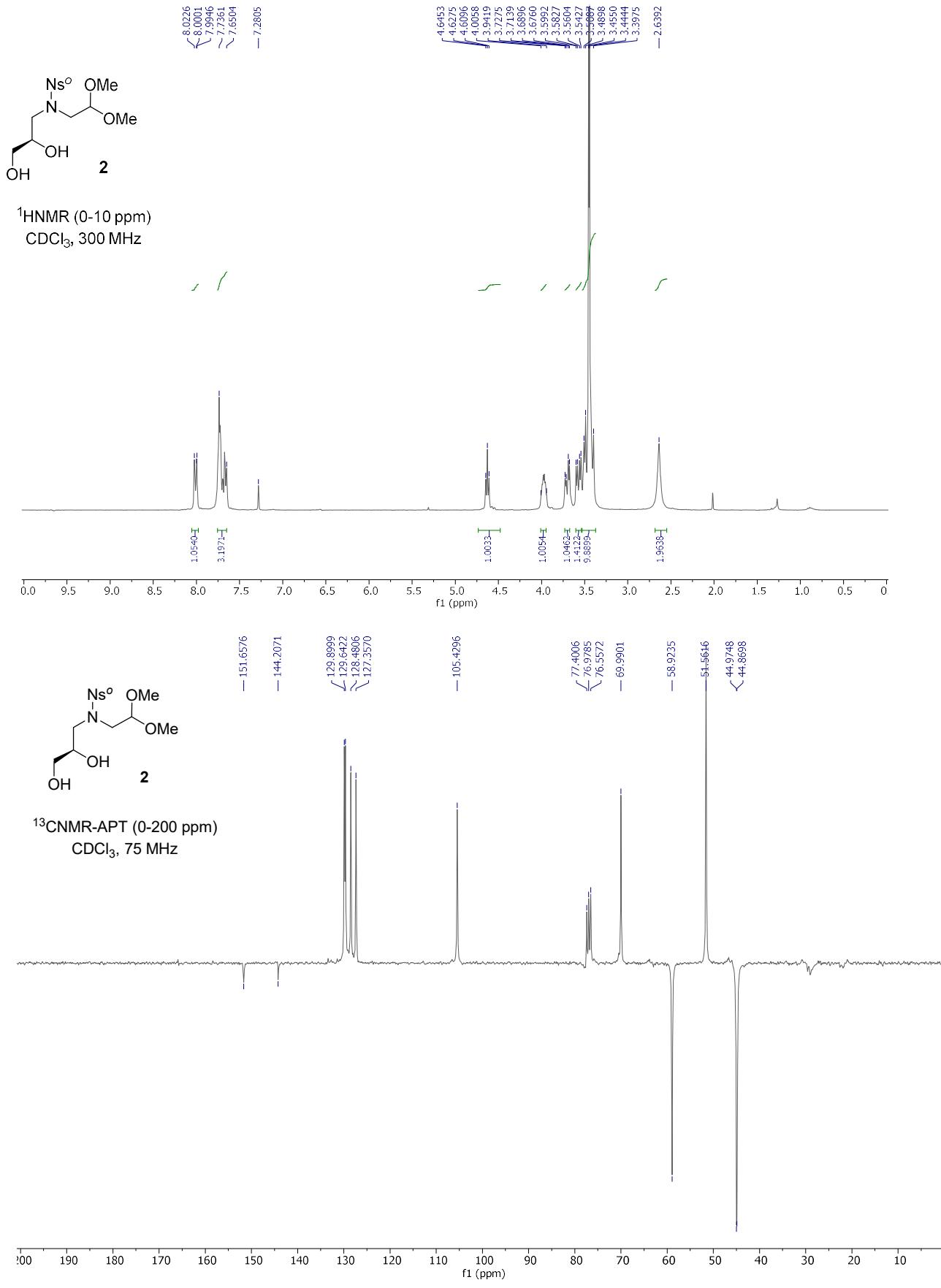

9α (26 mg, 21%), yellow wax, $[\alpha]_{D}^{20} = -25.7$ (*c* 0.5, CH₃CN). ¹H NMR (300 MHz, CDCl₃) δ 8.49 (bs, 1H), 8.02 (d, *J* = 7.4 Hz, 3H), 7.77–7.50 (m, 5H), 7.46 (t, *J* = 7.5 Hz, 2H), 6.11 (s, 1H), 4.68 (dd, *J* = 5.4, 10.4 Hz, 1H), 4.51 – 4.40 (m, 2H), 3.91 (dd, *J* = 3.4, 12.8 Hz, 1H), 3.58 (m, 2H), 3.32 (dd, *J* = 7.2, 12.9 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 160.2, 159.6 (d, *J* = 15.6 Hz, 1C), 157.2, 125.2, 150.0, 147.0, 139.8, 135.3, 133.3, 131.1 – 128.0 (m, 7C), 124.6, 75.8, 74.6, 63.5, 47.2, 47.0. IR ν_{max} 3341, 1766, 1749, 1360, 1299, 729 cm⁻¹. Anal. Calcd. for C₂₂H₁₉FN₄O₉S: C, 49.44; H, 3.58; N, 10.48. Found: C, 49.61; H, 3.69; N, 10.31.

Method C: synthesis of **9 α , β ; 12**

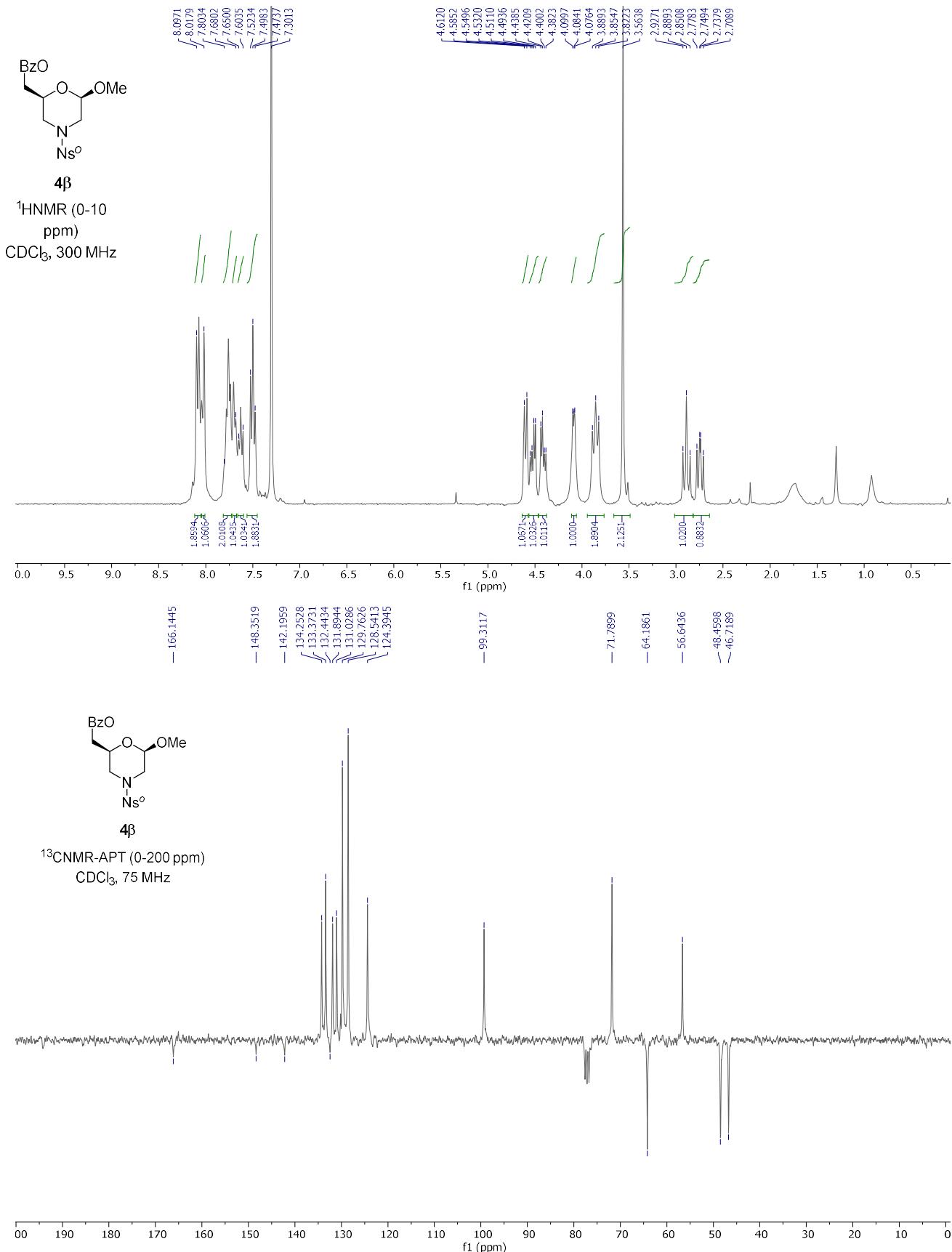
In a round bottom flask, a mixture of 5-Fluorouracil (130 mg, 1.0 mmol), HMDS (323 mg, 2.0 mmol) and saccharin (3.5 mg, 0.02 mmol) was refluxed in anhydrous CH₃CN (3 ml) for 3 hours to get a clear solution. The solvent was evaporated under reduced pressure. A solution of diol **2** (182 mg, 0.5 mmol) and benzoylchloride (98 mg, 0.7 mmol) in anhydrous CH₃CN (1.0 ml) was then added to the silylated base. The reaction mixture was then cooled to 0°C in an ice bath and TMSOTf (272 μ L, 333 mg, 1.5 mmol) was added dropwise. After 15 minutes, the reaction was allowed to warm to room temperature and stirred for 8 hours. The reaction was then cooled to 0 °C, diluted with AcOEt (10 mL), quenched and washed with saturated NaHCO₃ solution (2 \times 10 mL), NH₄Cl solution (5 mL), and brine (10 mL), dried over MgSO₄ and filtered. After evaporation of the solvent under vacuum (RV), the crude was purified by FCC (AcOEt/hexane 1:1) affording products **9 α , β** (14% yield) and **(1R,5S)-3-[(3-nitrophenyl)sulfonyl]-6,8-dioxa-3-azabicyclo[3.2.1]octane 12**.

 12 (75 mg, 50%), clear wax, $[\alpha]_D^{20} = +3.3$ (*c* 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 8.11 – 7.92 (m, 1H), 7.85 – 7.55 (m, 3H), 5.53 (s, 1H), 4.62 (d, *J* = 5.1 Hz, 1H), 4.17 (d, *J* = 7.1 Hz, 1H), 3.84 – 3.79 (m, 1H), 3.72 (d, *J* = 12.4 Hz, 1H), 3.64 (d, *J* = 12.0 Hz, 1H), 3.36 (d, *J* = 12.4 Hz, 1H), 3.08 (d, *J* = 12.0 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 149.9, 134.1, 133.7, 131.5, 130.7, 124.1, 97.9, 71.5, 67.0, 49.4, 48.6. Anal. Calcd. for C₁₁H₁₂N₂O₆S: C, 44.00; H, 4.03; N, 9.33. Found: C, 44.10; H, 4.09; N, 9.27

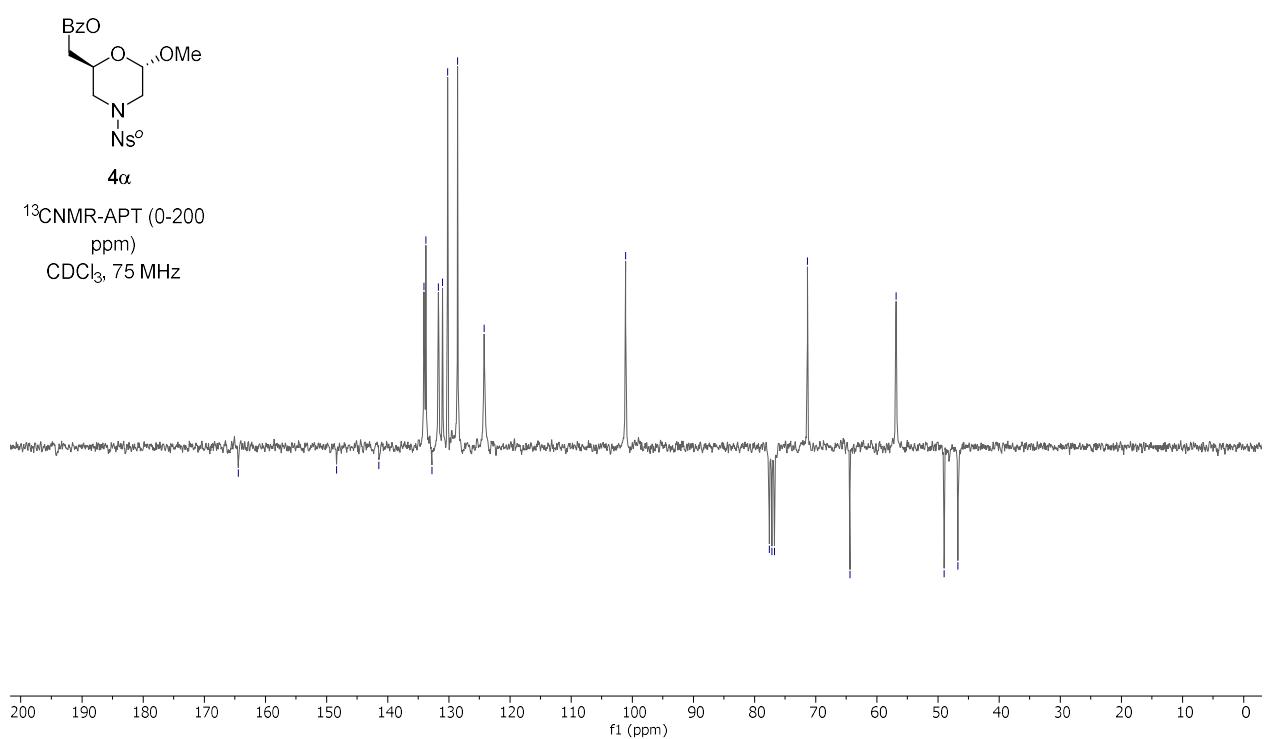
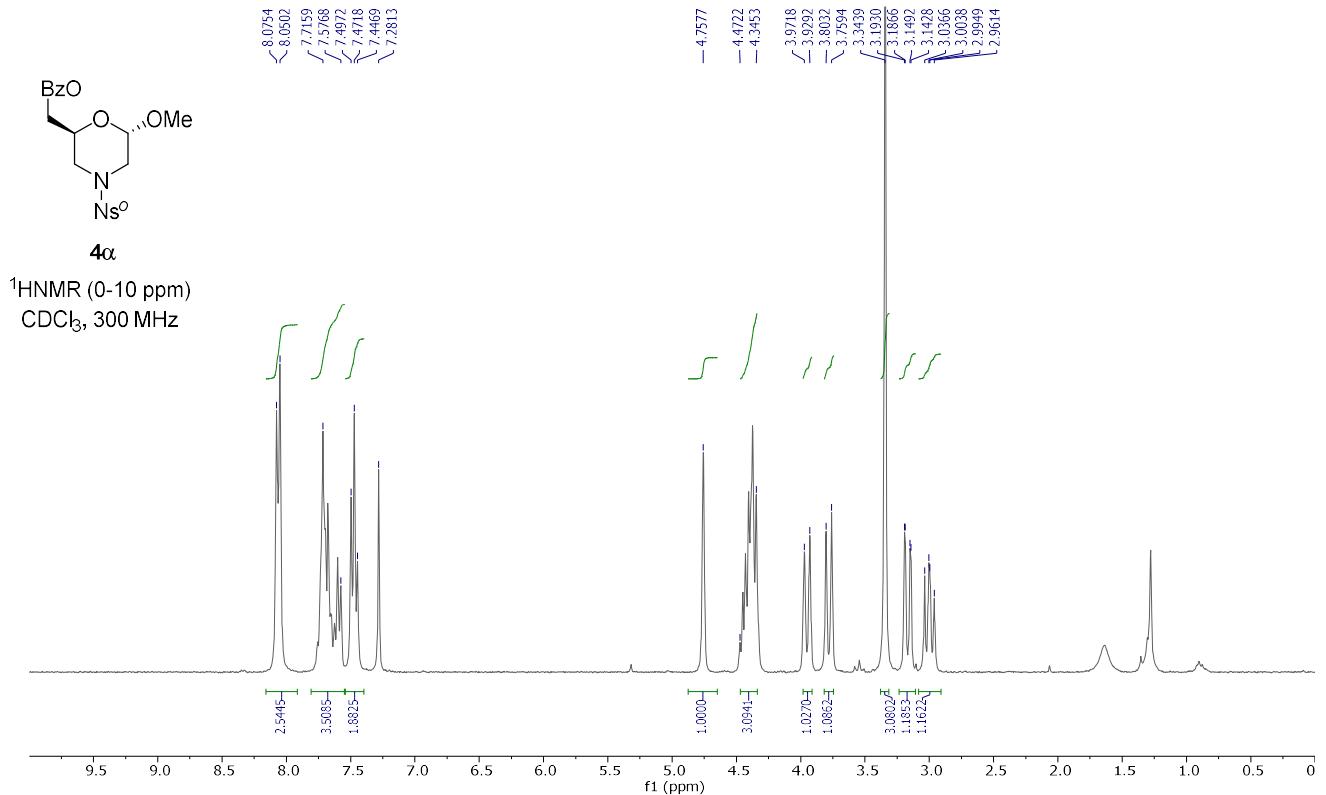
N,O Deprotection of uridine analogue **9 β** : synthesis of **11 β**

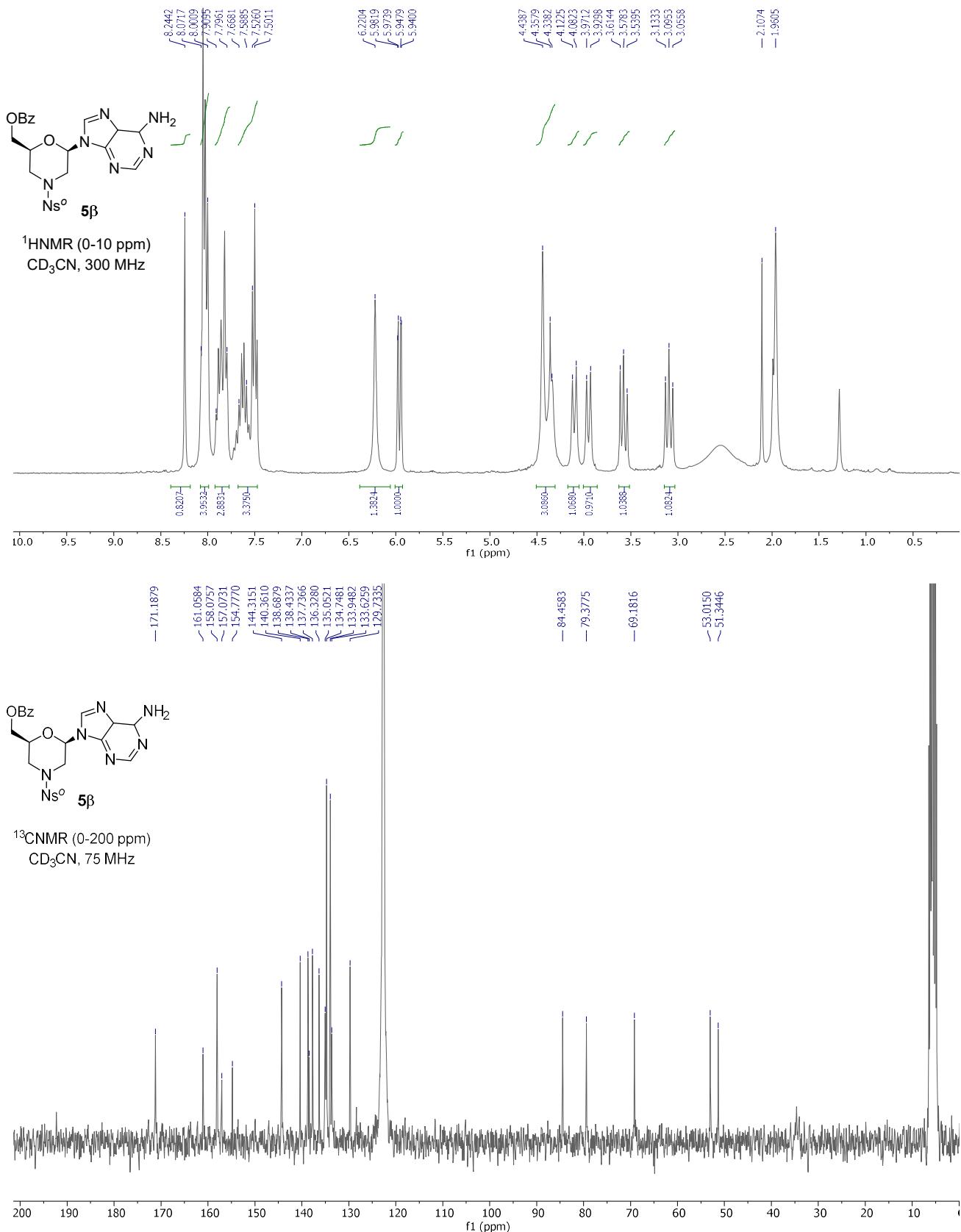


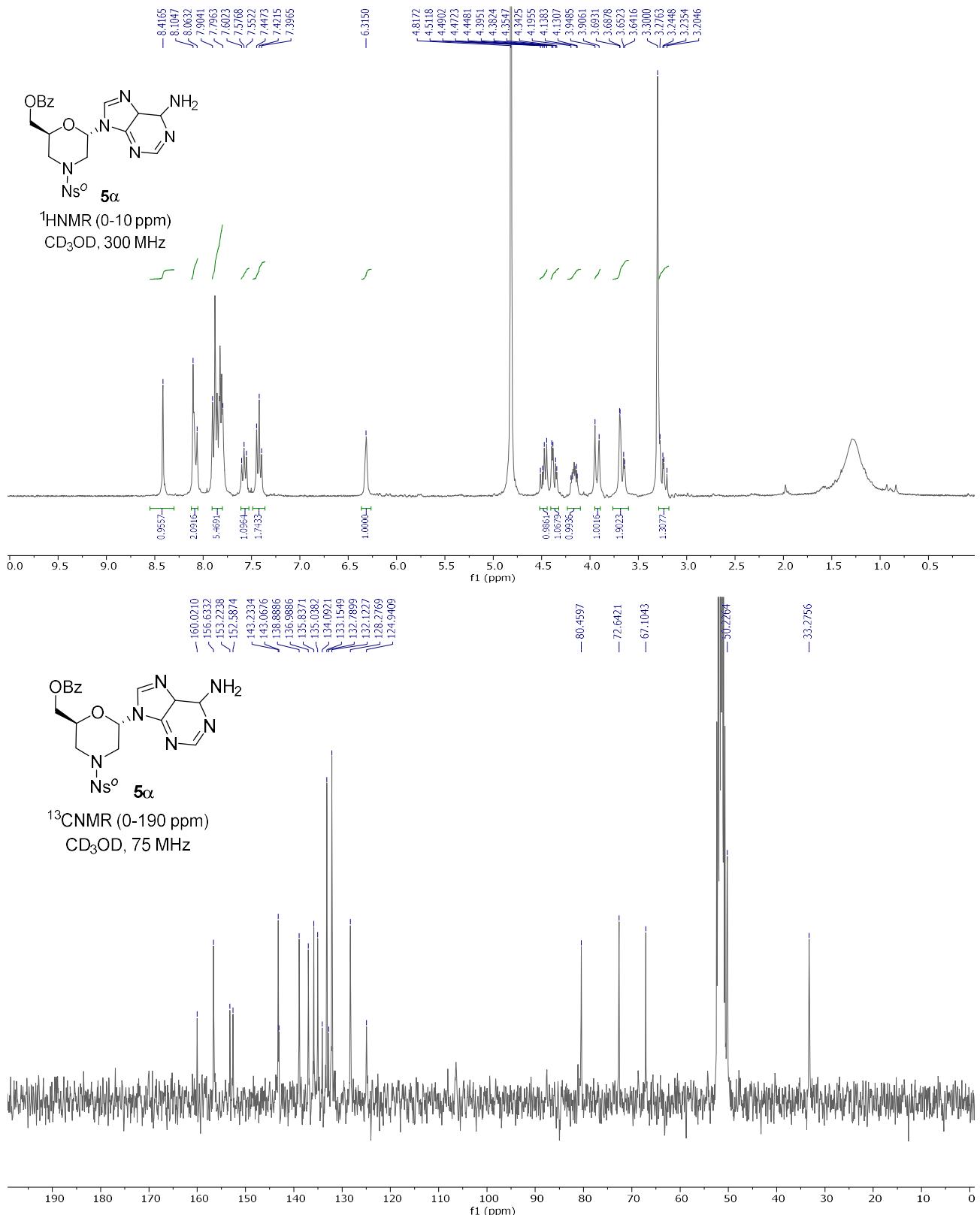
In a round bottom flask, to a solution of **9 β** (160 mg, 0.3 mmol) in CH₃CN (3.0 mL), K₂CO₃ (138 mg, 1.0 mmol) and 4-methylbenzenethiol (50 mg, 0.4 mmol) were added. The reaction was

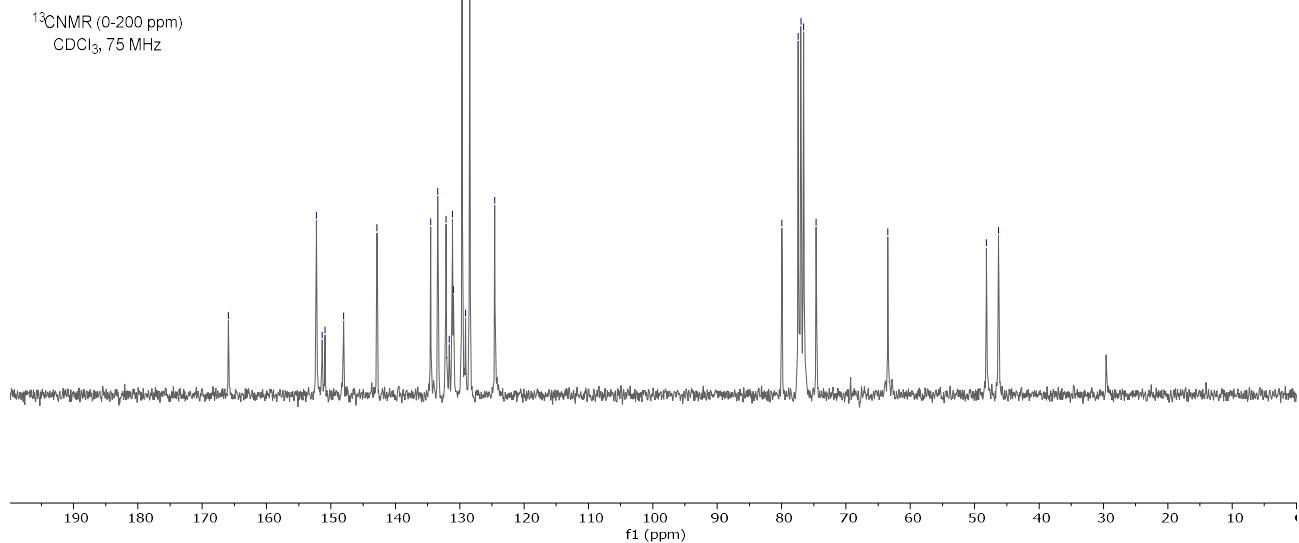
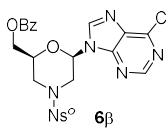
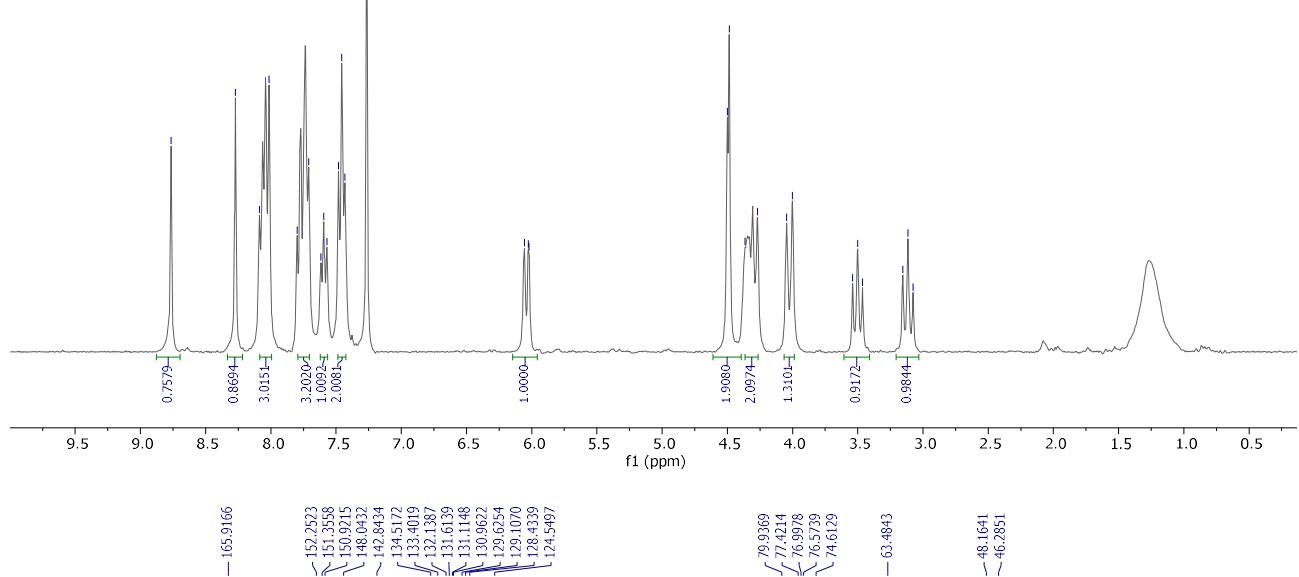
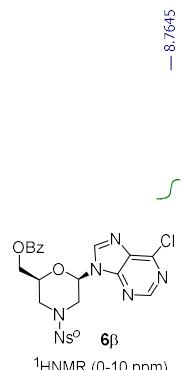

stirred at reflux for 1 hour. After cooling, it was filtered through a celite pad and it was diluted with CH₂Cl₂ (10 mL). the filtrate was transferred into a separating funnel and HCl 10% solution was added up to acid pH. The solution was washed with CH₂Cl₂ (2 x 10 mL) and the aqueous layer was basified and extracted with CH₂Cl₂ (3 x 10 mL). The solvent was evaporated under reduced pressure providing 82 mg (0.23 mmol, 72%) of a white solid which was used without any further purification. *{(2R,6S)-6-[5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl]morpholin-2-yl}methylbenzoate **10β***: ¹H NMR of the crude (300 MHz, CH₃OD) δ 8.19 – 7.87 (m, 2H), 7.85 (d, *J* = 6.5 Hz, 1H), 7.59 (t, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 7.3 Hz, 3H), 5.73 (d, *J* = 9.6 Hz, 1H), 4.48 – 4.31 (m, 2H), 4.25 – 4.13 (m, 1H), 3.05-2.96 (m, 2H), 2.78 – 2.6 (m, 2H) *NH proton not visible*. The crude *O*-protected uridine analogue **10β** (82 mg, 0.23 mmol) was dissolved in CH₃CN (1.0 mL) and CH₃OH (2.0 mL). Then, CH₃ONa 95% (28 mg, 0.5 mmol) was added. The reaction was stirred at reflux for 16 hours. After cooling, the reaction was quenched with acetic acid (0.5 mL). The solvent was evaporated under reduced pressure and the residue was filtered through RP C-18 – CH₃CN/H₂O (99.5:0.5) providing 5-fluoro-1-[(2*R*,6*S*)-6-(hydroxymethyl)morpholin-2-yl]pyrimidine-2,4(1*H*,3*H*)-dione **11β** (44 mg, 78%) as white solid; [α]_D²⁰: – 88.5 (*c* 1.1, D₂O). ¹H NMR (300 MHz, D₂O) δ 8.10 (d, *J* = 5.1 Hz, 1H), 6.14 (d, *J* = 9.2 Hz, 1H), 4.34 (d, *J* = 7.1 Hz, 1H), 3.93 – 3.80 (m, 3H), 3.70 (d, *J* = 11.7 Hz, 1H), 3.55 (d, *J* = 12.2 Hz, 1H), 3.36 – 3.18 (m, 2H) *OH and aminic NH protons not visible*. ¹³C NMR (75 MHz, D₂O) δ 165.6 (d, *J* = 30.1 Hz, 1C), 152.0, 127.7 (d, *J* = 33.5 Hz, 1CH), 119.0 (d, *J* = 284.1 Hz, 1CF), 80.2, 77.2, 63.7, 46.3, 45.1. IR ν_{max} 3598, 3556, 3389, 1780, 1724 cm^{–1}. Anal. Calcd. For C₉H₁₂FN₃O₄: C, 44.08; H, 4.93; N, 17.14. Found: C, 44.24; H, 5.01; N, 17.01.

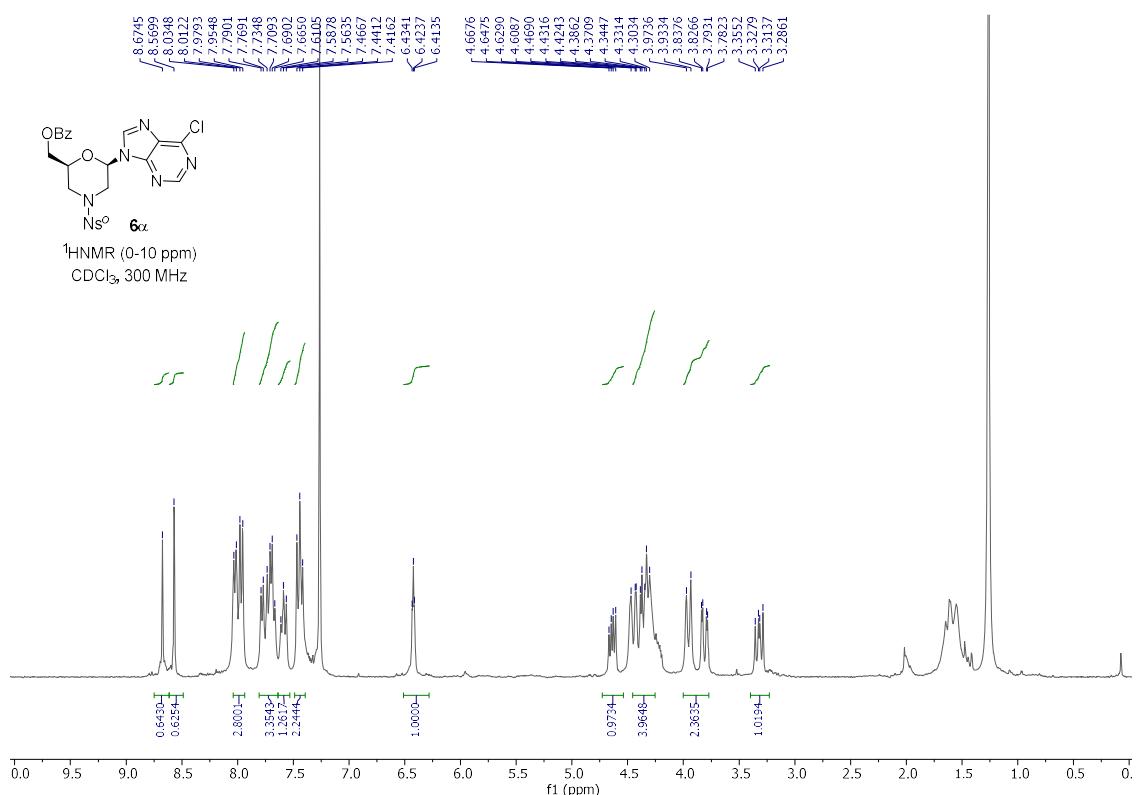
¹H-NMR and ¹³C-NMR spectra

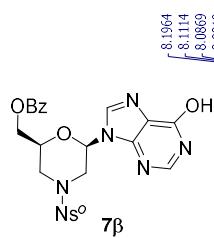


(S)-N-(2,3-Dihydroxypropyl)-N-(2,2-dimethoxyethyl)-2-nitrobenzenesulfonamide (2)

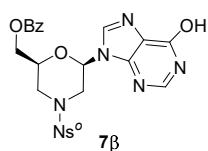
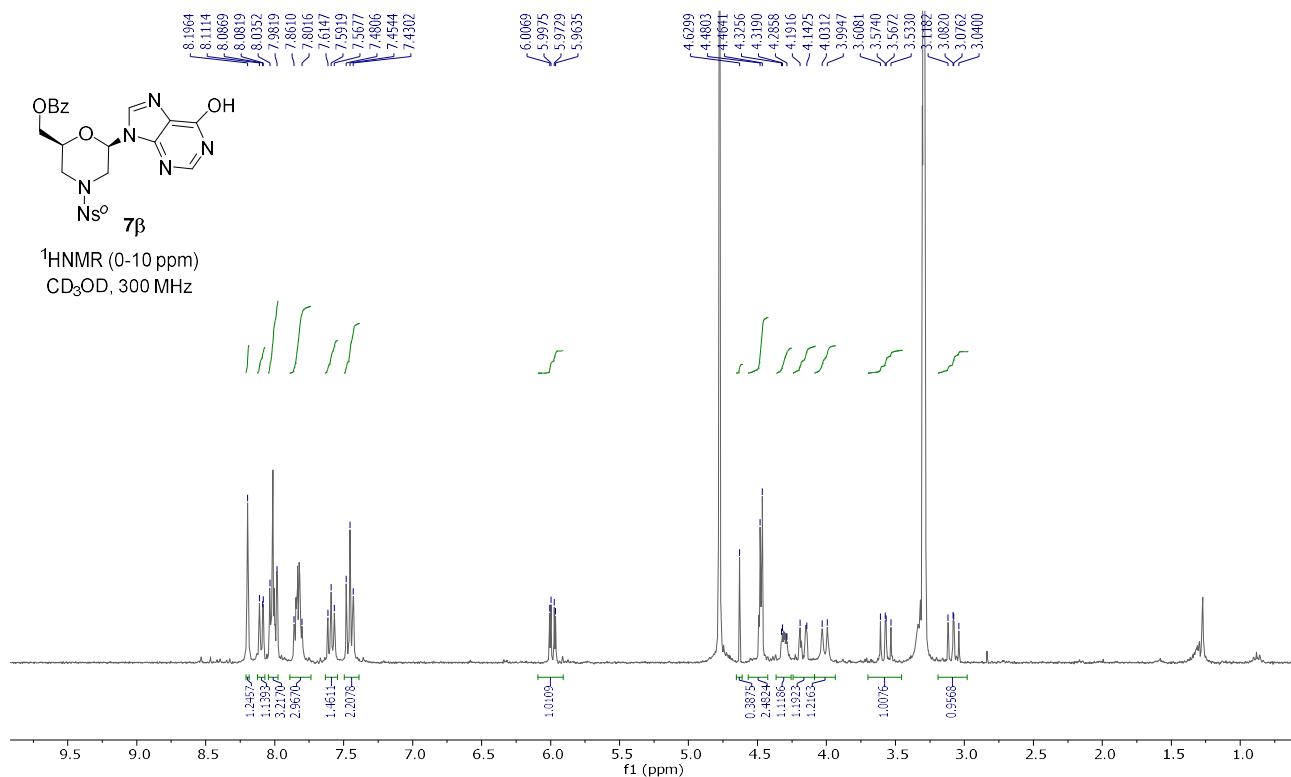

{(2*R*,6*S*)-2-Methoxy-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methyl benzoate (**4 β**)

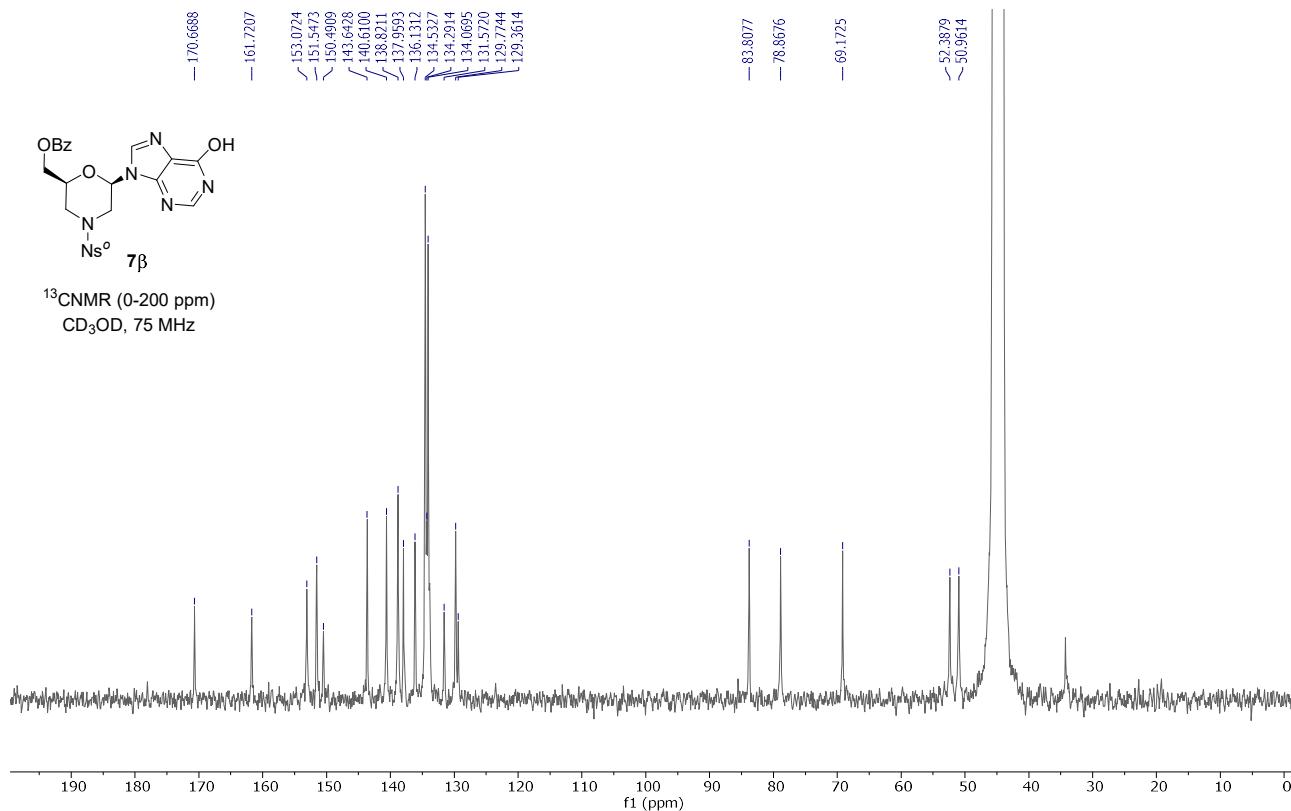

((2*S*,6*S*)-2-Methoxy-4-(2-nitrophenyl)sulfonyl)morpholin-6-yl)methylbenzoate (4*α*)

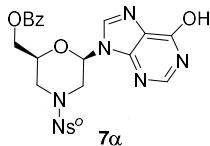




{(2*R*,6*S*)-2-(6-Amino-9*H*-purin-9-yl)-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methylbenzoate (5*β*)

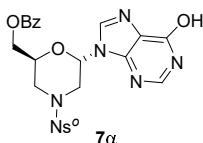
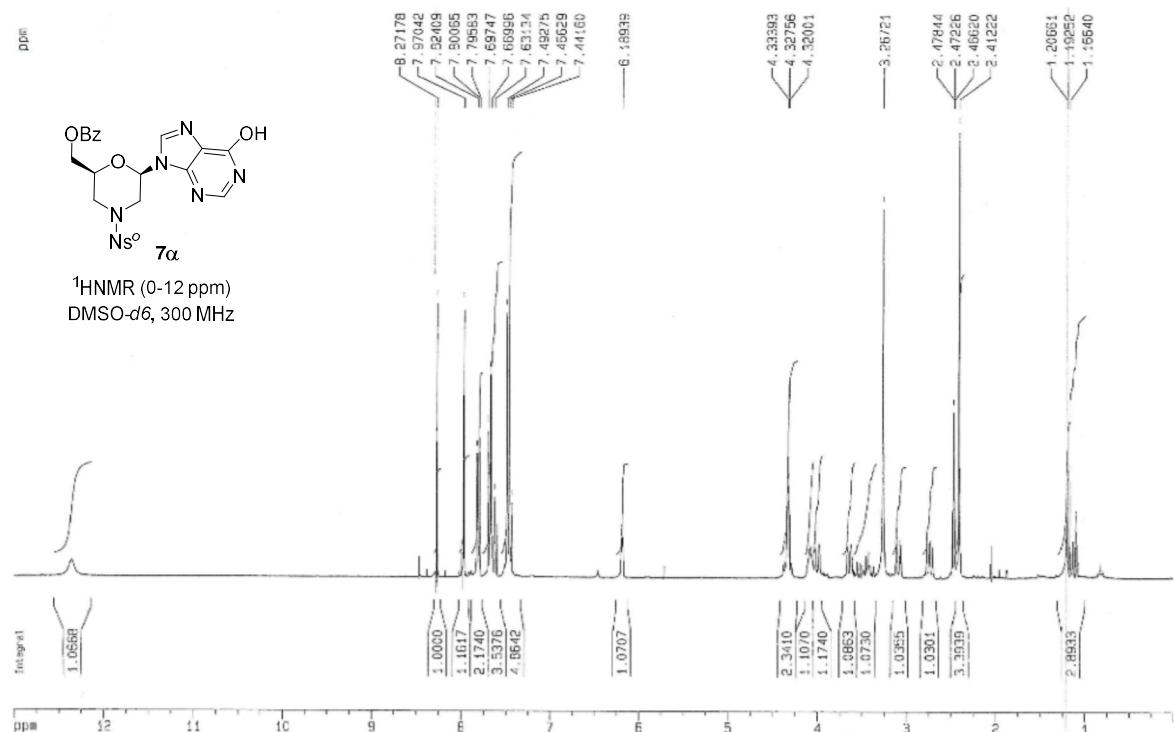

{(2*S*,6*S*)-2-(6-Amino-9*H*-purin-9-yl)-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methyl benzoate (5 α)

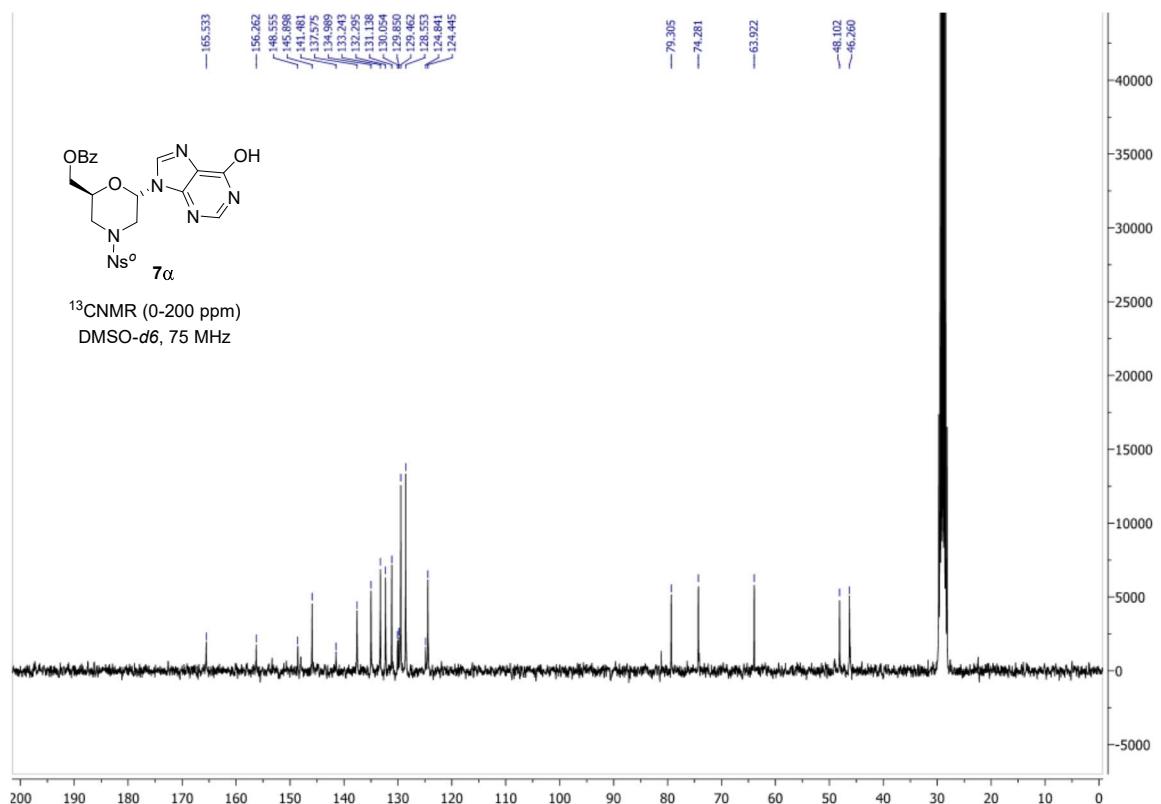

{(2*R*,6*S*)-2-(6-Chloro-9*H*-purin-9-yl)-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methylbenzoate (6*β*)

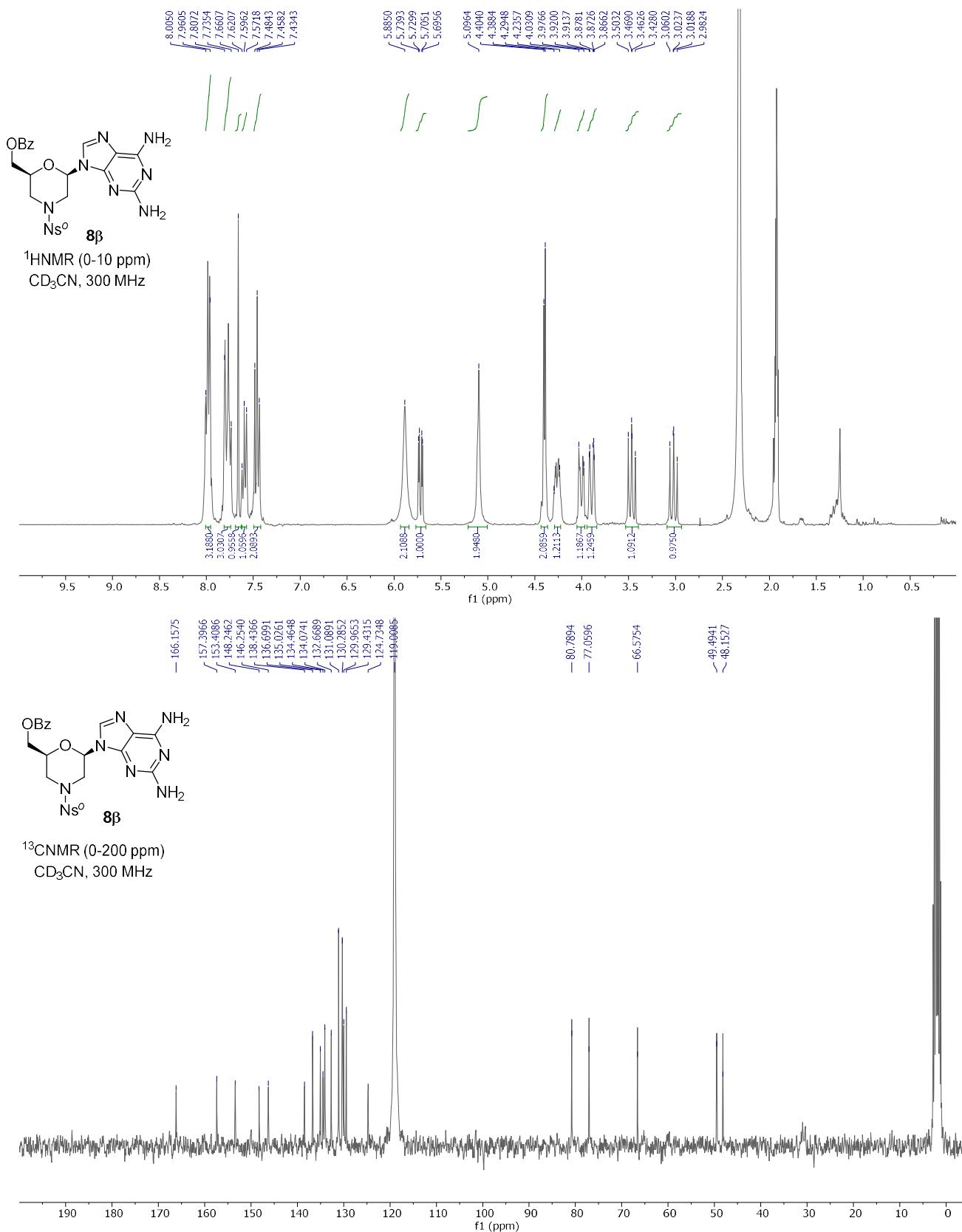


{(2S,6S)-2-(6-Chloro-9H-purin-9-yl)-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methyl benzoate (6 α)

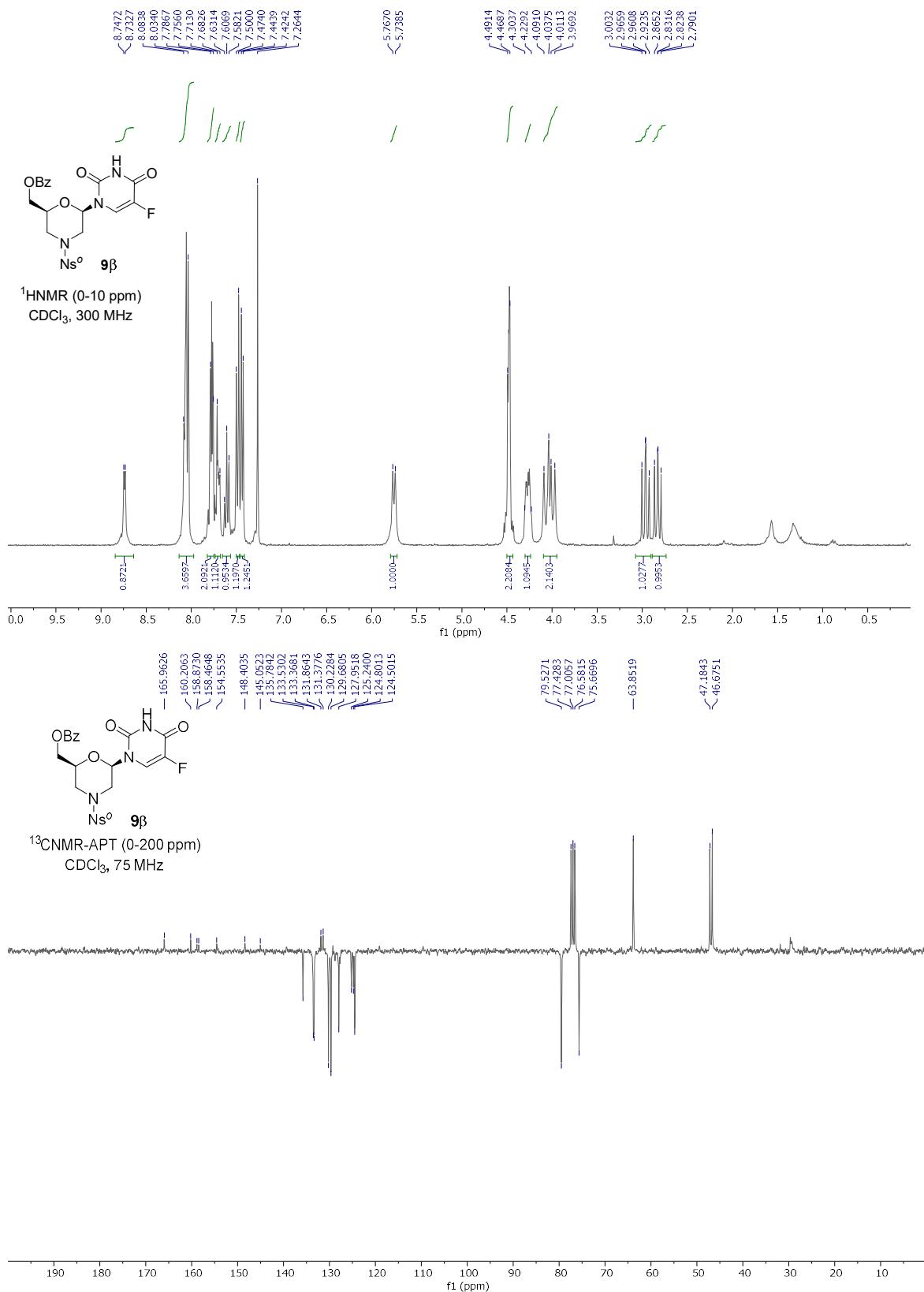

{(2R,6S)-2-(6-Hydroxy-9H-purin-9-yl)-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methyl benzoate (7 β)

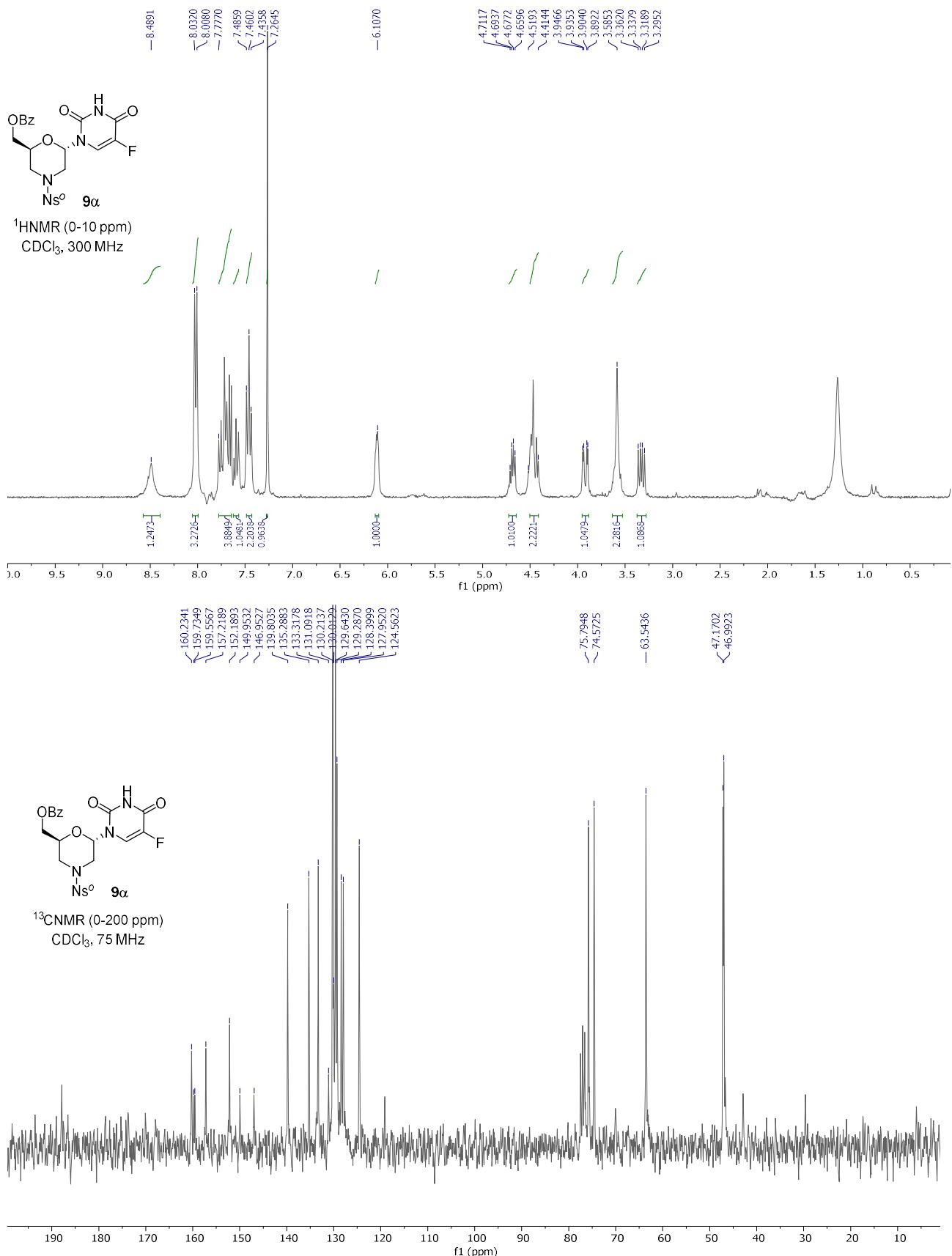

¹H NMR (0-10 ppm)
CD₃OD, 300 MHz

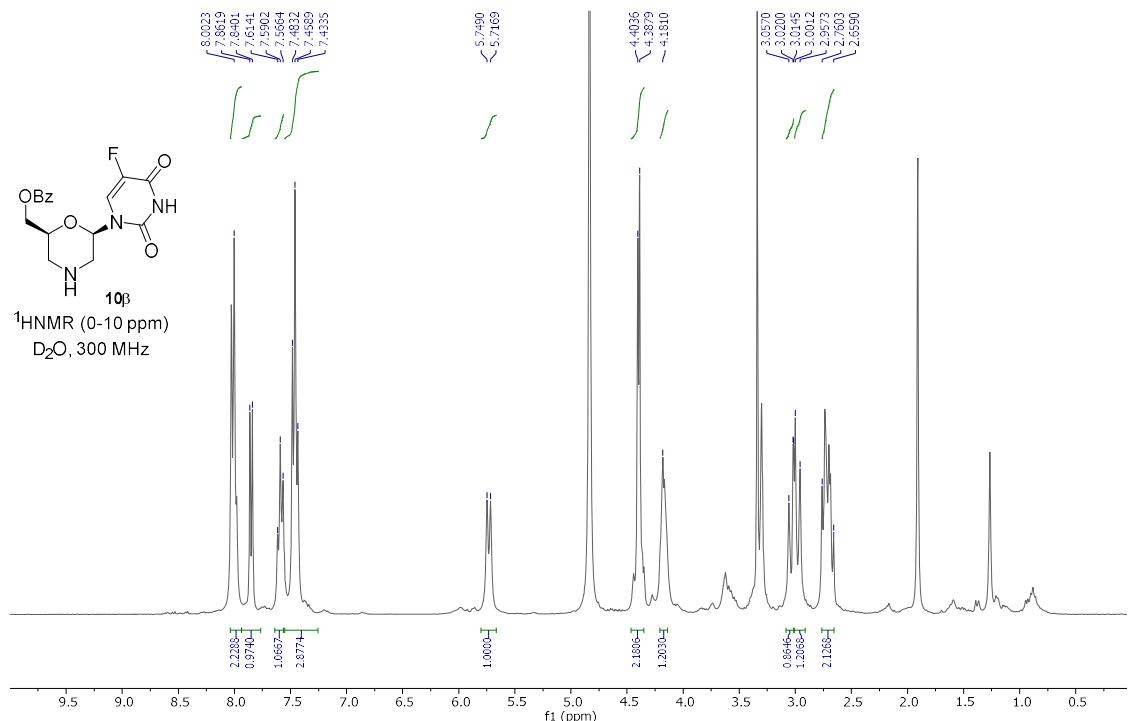


¹³CNMR (0-200 ppm)
CD₃OD, 75 MHz

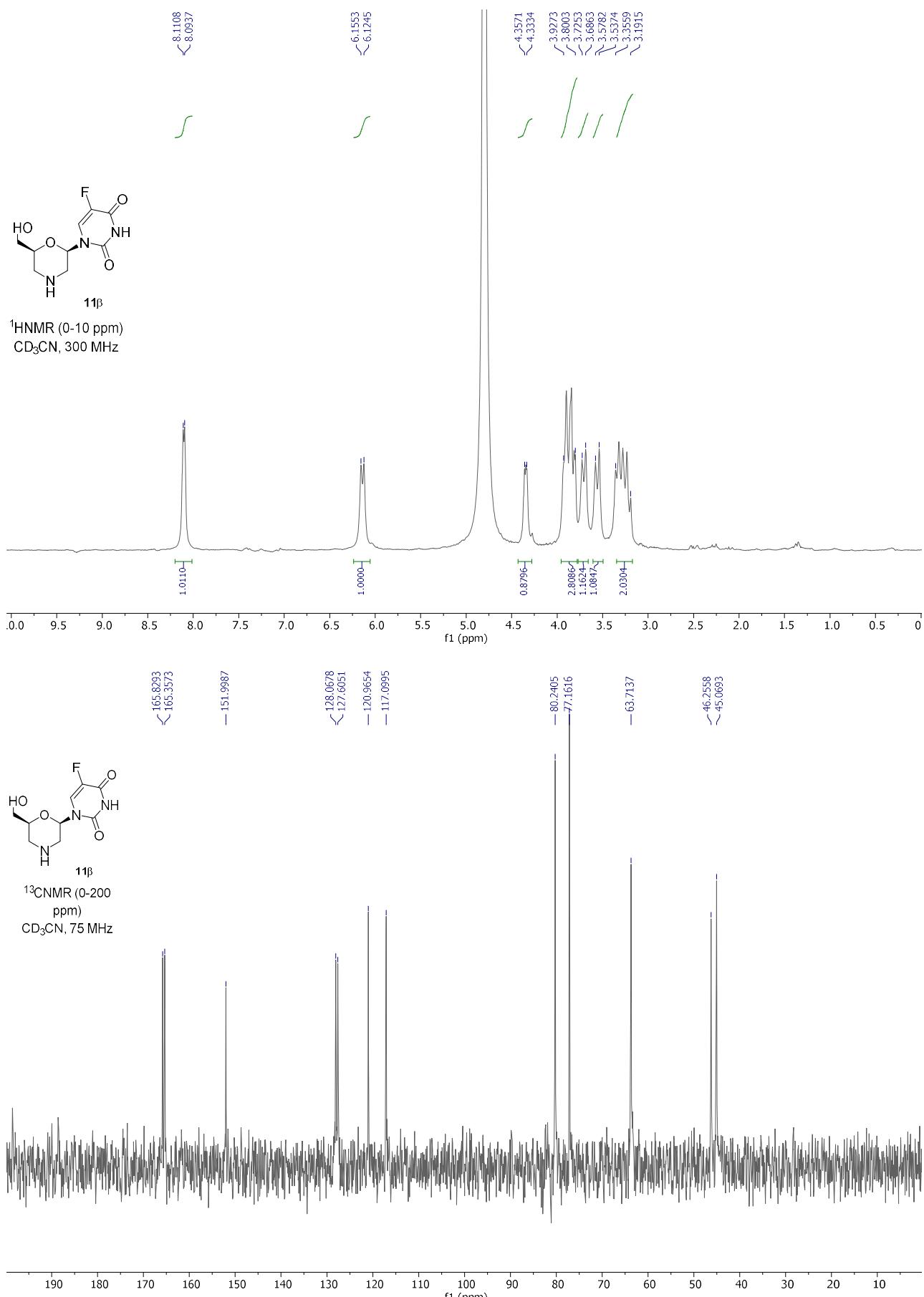

{(2S,6S)-2-(6-Hydroxy-9H-purin-9-yl)-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methyl benzoate (7 α)

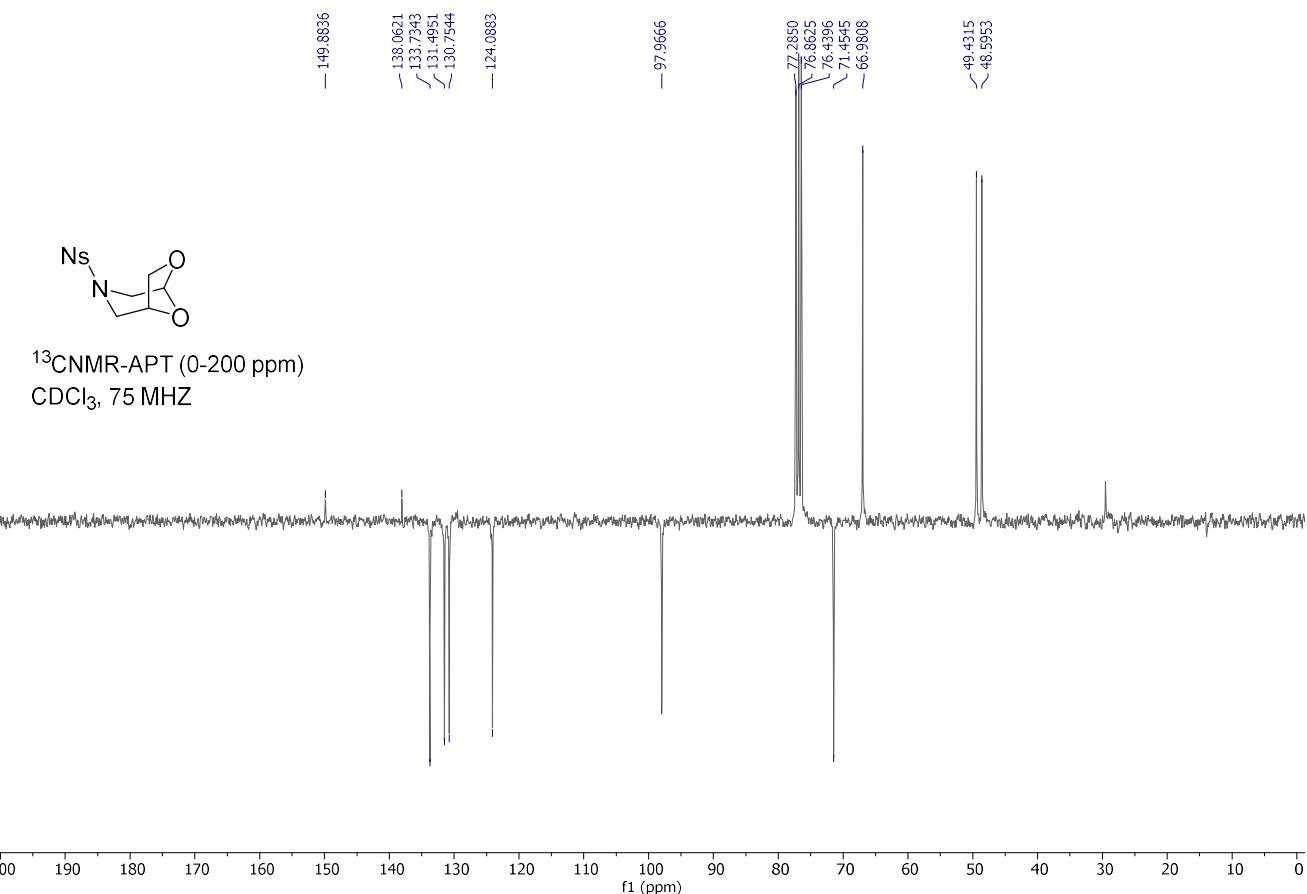
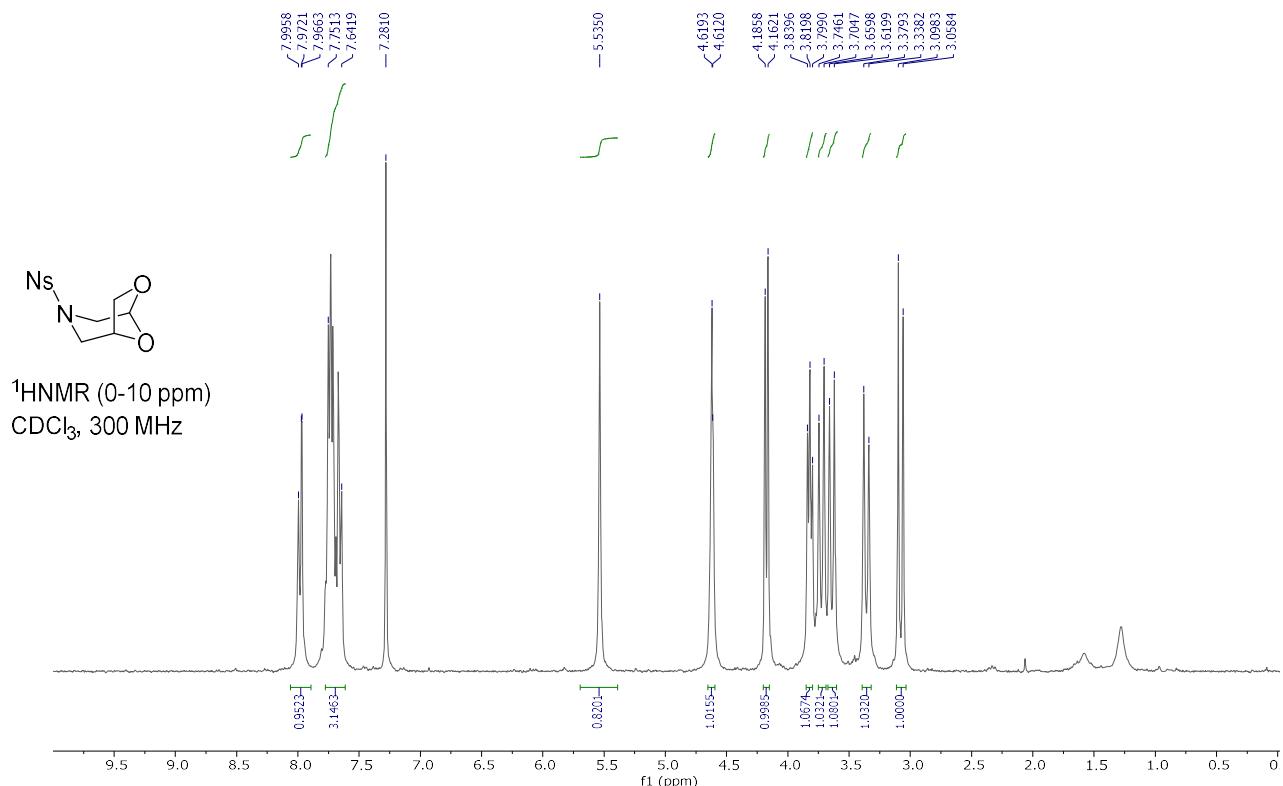

¹HNMR (0-12 ppm)
DMSO-*d*6, 300 MHz


¹³CNMR (0-200 ppm)
DMSO-*d*6 75 MHz


{(2*R*,6*S*)-2-(2,6-Diamino-9*H*-purin-9-yl)-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methylbenzoate (8 β)


{(2*R*,6*S*)-2-[5-Fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl} methyl benzoate(9 β)


{(2R,6S)-2-[5-Fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl]-4-[(2-nitrophenyl)sulfonyl]morpholin-6-yl}methyl benzoate (9 α)



(2*R*,6*S*)-2-[5-Fluoro-2,4-dioxo-3,4-dihydropyrimidin-1-(2*H*)-yl]morpholin-6-yl]methylbenzoate (10 β)

5-Fluoro-1-[(2*R*,6*S*)-6-(hydroxymethyl)morpholin-2-yl]pyrimidine-2,4(1*H*,3*H*)-dione (11 β)

(1*R*,5*S*)-3-[(2-nitrophenyl)sulfonyl]-6,8-dioxa-3-azabicyclo[3.2.1]octane (12)

