Photocatalytic Access to Aromatic Keto Sulfonyl Fluorides from Vinyl Fluorosulfates

Jianchao Cui^a, Sen Ke^a, Jia Zhao^b, Shufeng Wu^a, Wencheng Luo^a, Shinuo Xu^a

Xiaolong Su^{c*} and Yi Li^{a*}

Table of contents:

1. General information	2
2. Optimization details	3
3. Synthesis of 1a-1ak	6
4. Synthesis of 2a-2ak	23
5. Gram-scale synthesis and derivatizations of 2a	
6. Synthesis of 6 and 7	41
7. Mechanism studies	43
8. X-ray crystal data	59
9. References	60
10. Spectra	

1. General information

All the starting materials were obtained from commercial sources and used without further purification; reactions were carried out in flame-dried glassware under N₂ unless otherwise stated. All solvents were purified and dried according to standard methods prior to use. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on BRUKER 400 MHz spectrometer or JOEL 500 MHz spectrometer in deuterated solvents. ¹H NMR chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data is being reported as (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or unresolved, coupling constant(s) in Hz, integration). ¹³C NMR spectra were recorded in deuterated solvent. Chemical shifts are reported in ppm with the internal solvent signal as a standard. GC-MS measurements were conducted on a Shimadzu QP2010SE. HRMS were obtained on Waters GCT-TOF. IR measurements were conducted on Nicolet is 50 KBr pelleting method. CPME = Cyclopentyl Methyl Ether, EA = Ethyl Acetate, DCE = 1,2-Dichloroethane.

2. Optimization details

2.1 Optimization of solvents

	OSO ₂ F [Ir(dFCF ₃ ppy) ₂ bbpy]PF ₆ (1 mol%) 30 W blue LEDs, N ₂ solvent (0.1 M), rt, 12 h	SO ₂ F 2a
entry ^a	solvent	2a/1a (%) ^b
1	Et ₂ O	6/69
2	THF	18/54
3	DMF	<5/51
4	DCE	<5/69
5	CH ₃ CN	6/45
6	2-methyl tetrahydrofuran	15/12
7	EA	33/36
8	CPME	6/75
9	EtOH	<5/18
10	DCM	9/60
11	toluene	30/63
12	benzene	<5/66
13	CF ₃ Ph	<5/48
14	cyclohexane	<5/93
15	1,4-dioxane	21/30
16	H_2O	<5/90
17	toluene:EA (3:1)	21/18
18	toluene:DCM (3:1)	24/18
19	toluene:CH ₃ CN (3:1)	15/36
20	toluene:acetone (3:1)	21/21

^{*a*}*Reaction conditions*: **1a** (0.2 mmol) and $[Ir(dFCF_3ppy)_2bbpy]PF_6$ (0.002 mmol, 1 mol%) in solvent (2 mL) irradiated by 30 W blue LEDs for 12 h at room temperature under N₂. ^{*b*} Determined by crude ¹⁹F NMR analysis with trifluoromethoxybenzene as the internal standard.

2.2 Optimization of photocatalysts

	1a	SO ₂ F 2a
entry ^a	photocatalyst	2a/1a (%) ^b
1	[Ir(dFCF3ppy)2bbpy]PF6	30/63
2	<i>fac</i> -Ir(ppy) ₃	<5/93
3	[Ir(dFCF3ppy)2dtbbpy]PF6	48/21
	~ ~	

4	[Ir(ppy)2dtbbpy]PF6	6/75	
5	[Ir(bbpy)3]PF6	6/81	
6	[Ir(dFppy)2ppy]PF6	12/69	
7	[Ir(dFCF ₃ ppy) ₂ phen]PF ₆	9/60	
8	[Ru(bpy) ₃]Cl ₂	<5/96	
9	[Rh(COD)Cl] ₂	<5/93	
10	Eosin Y-Na ₂	<5/98	
11	4-CzIPN	21/60	
12	Eosin B	<5/96	
13	9-fluorenone	33/60	
14	fluorescein	<5/99	

^{*a*}*Reaction conditions*: **1a** (0.2 mmol) and photocatalyst (0.002 mmol, 1 mol%) in toluene (2 mL) irradiated by 30 W blue LEDs for 12 h at room temperature under N₂. ^{*b*}Determined by crude ¹⁹F NMR analysis with trifluoromethoxybenzene as the internal standard.

2.3 Optimization of light sources

1	OSO ₂ F $\frac{[Ir(dFCF_3ppy)_2dtbbpy]PF_6 (1 mol\%)}{Iight source, N_2}$ toluene (0.1 M), rt, 12 h	SO ₂ F 2a
entry ^a	light source	2a/1a (%) ^b
1	30 W blue LEDs	48/21
2	30 W green LEDs	<5/96
3	30 W white LEDs	24/36
4	3 W blue LEDs	48/39

^{*a*}*Reaction conditions*: **1a** (0.2 mmol) and $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ (0.002 mmol, 1 mol%) in toluene (2 mL) irradiated by light for 12 h at room temperature under N₂. ^{*b*}Determined by crude ¹⁹F NMR analysis with trifluoromethoxybenzene as the internal standard.

2.4 Optimization of additives

OS 1a	O ₂ F [Ir(dFCF ₃ ppy) ₂ dtbbpy]PF ₆ (1 mol%) additive (1.0 equiv.) 3 W blue LEDs, N ₂ toluene (0.1 M), rt, 12 h	SO ₂ F 2a
entry ^a	additive	2a/1a (%) ^b
1	Na ₂ CO ₃	78/<5
2	K ₂ CO ₃	51/24
3	Cs_2CO_3	<5/72
4	Na ₂ HPO ₄	63/<5
5	Li ₂ CO ₃	69/<5

6	Li ₃ PO ₄	<5/72
7	NaHCO ₃	48/<5
8	4 Å MS (88 mg)	81 (78) ^c /9
9	Et ₃ N	<5/99
10	DBN	<5/96
11	LiNO ₃	6/75
12	KNO3	<5/84
13	KHCO3	<5/66
14^d	Na ₂ CO ₃ and 4 Å MS	78/<5

^{*a*}*Reaction conditions*: **1a** (0.2 mmol), [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (0.002 mmol, 1 mol%) and additive (0.2 mmol, 1.0 equiv.) in toluene (2 mL) irradiated by 3 W blue LEDs for 12 h at room temperature under N₂. ^{*b*}Determined by crude ¹⁹F NMR analysis with trifluoromethoxybenzene as the internal standard. ^{*c*}Isolated yield was given in parentheses. ^{*d*}Na₂CO₃ (10 mg) and 4 Å MS (44 mg) were added as additives.

2.5 Optimization of the amount of 4 Å MS

OSC 1a	D ₂ F [Ir(dFCF ₃ ppy) ₂ dtbbpy]PF ₆ (1 mol%) <u>4 Å MS (x mg)</u> 3 W blue LEDs, N ₂ toluene (0.1 M), rt, 12 h	SO ₂ F
entry ^a	Х	2a/1a (%) ^b
1	22	60/27
2	44	84/<5
3	88	81/9
4	132	72/<5

^{*a*}*Reaction conditions*: **1a** (0.2 mmol), [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (0.002 mmol, 1 mol%) and 4 Å MS in toluene (2 mL) irradiated by 3 W blue LEDs for 12 h at room temperature under N₂. ^{*b*}Determined by crude ¹⁹F NMR analysis with trifluoromethoxybenzene as the internal standard. ^{*c*}Isolated yield was given in parentheses.

2.6 Optimization of reaction time

O <mark>SO₂F</mark> - 1a	[Ir(dFCF ₃ ppy) ₂ dtbbpy]PF ₆ (1 mol%) <u>4 Å MS (44 mg)</u> 3 W blue LEDs, N ₂ toluene (0.1 M), rt, y h	SO ₂ F
entry ^a	у	2a/1a $(\%)^b$
1	3	24/72
2	6	45/36
3	9	57/29

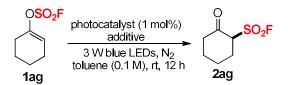
4	12	84 (81) ^c /<5
5	15	78/<5

^{*a*}*Reaction conditions*: **1a** (0.2 mmol), [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (0.002 mmol, 1 mol%) and 4 Å MS (44 mg) in toluene (2 mL) irradiated by 3 W blue LEDs at room temperature under N₂. ^{*b*}Determined by crude ¹⁹F NMR analysis with trifluoromethoxybenzene as the internal standard. ^{*c*}Isolated yield was given in parentheses.

2.7 Optimization of reaction concentration

OSO ₂	F [Ir(dFCF ₃ ppy) ₂ dtbbpy]PF ₆ (1 mol%) <u>4 Å MS (44 mg)</u> 3 W blue LEDs, N ₂ toluene (z M), rt, 12 h	SO ₂ F 2a
entry ^a	Z	2a/1a (%) ^b
1	0.05	72/<5
2	0.1	84 (81) ^c /<5 75/<5
3	0.2	75/<5

^{*a*}*Reaction conditions*: **1a** (0.2 mmol), [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (0.002 mmol, 1 mol%) and 4 Å MS (44 mg) in toluene irradiated by 3 W blue LEDs at room temperature for 12 h under N₂. ^{*b*}Determined by crude ¹⁹F NMR analysis with trifluoromethoxybenzene as the internal standard. ^{*c*}Isolated yield was given in parentheses.

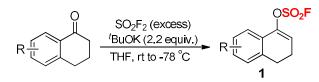

2.8 Control experiments

O <mark>SO</mark> 2		0
	[lr(dFCF ₃ ppy) ₂ dtbbpy]PF ₆ (1 mol%) 4 Å MS (44 mg)	SO ₂ F
	3 W blue LEDs, N ₂ toluene (0.1 M), rt, 12 h	
1a		2a

entry ^a	derivation from the standard conditions	2a/1a (%) ^b
1	none	84 (81) ^c /<5
2	in dark	<5/100
3	in the air	<5/84
4	without photocatalyst	<5/100
5	no additive	45/39
6	10 mol% H ₂ O was added	27/6

^{*a*}*Reaction conditions*: **1a** (0.2 mmol), [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (0.002 mmol, 1 mol%) and 4 Å MS (44 mg) in toluene (2 mL) irradiated by 3 W blue LEDs at room temperature for 12 h under N₂. ^{*b*}Determined by crude ¹⁹F NMR analysis with trifluoromethoxybenzene as the internal standard. ^{*c*}Isolated yield was given in parentheses.

2.9 Optimizations of aliphatic substrate 1ag


entry ^a	photocatalyst	additive	1ag/2ag (%) ^b
1	[Ir(dFCF3ppy)2bbpy]PF6		<5/100
2	<i>fac</i> -Ir(ppy) ₃		<5/100
3	[Ir(dFCF3ppy)2dtbbpy]PF6		<5/100
4	[Ir(ppy)2dtbbpy]PF6		<5/100
5	$[Ru(bpy)_3]Cl_2$		<5/100
6	[Rh(COD)Cl] ₂		<5/100
7	9-fluorenone		<5/100
8	4-CzIPN		<5/100
9	[Ir(dFCF3ppy)2dtbbpy]PF6	4 Å MS (44 mg)	<5/100
10	[Ir(dFCF3ppy)2dtbbpy]PF6	Na ₂ CO ₃ (1.0 equiv)	<5/100
11	[Ir(dFCF3ppy)2dtbbpy]PF6	O_2 (air)	<5/100
12	[Ir(dFCF3ppy)2dtbbpy]PF6	DDQ (10 mol%)	<5/100
13 ^c	[Ir(dFCF3ppy)2dtbbpy]PF6		<5/100

^{*a*}*Reaction conditions*: **1ag** (0.2 mmol) and photocatalyst (0.002 mmol, 1 mol%) in toluene (2 mL) irradiated by 3 W blue LEDs for 12 h at room temperature under N₂. ^{*b*}Determined by crude ¹⁹F NMR analysis with trifluoromethoxybenzene as the internal standard. ^{*c*}Reaction at 80 °C.

3. Synthesis of 1a-1ak

3.1 General procedure A: synthesis of alkenyl fluorosulfonates^[1] (1a-1aa, 1ad and

1af-1ak)

A flame-dried 25 mL round-bottom flask was equipped with a stirring bar, 3 Å MS, 'BuOK (246 mg, 2.2 mmol, 2.2 equiv.) and ketone^[2] (1.0 mmol, 1.0 equiv.). Anhydrous THF (10 mL, 0.1 M) was added and the mixture was stirred at room temperature for 10 mins. Then the reaction was cooled to -78 °C and evacuated until the solvent began boiling. SO_2F_2 gas (approx. 25 mL in size) was introduced with a balloon, and the reaction system was kept stirring at -78 °C for 1.5 h and then warmed

to room temperature. After that, the molecular sieves were removed by filtration and the filtrate was diluted with distilled water (5 mL). The mixture was then extracted with EA (5 mL \times 3), and combined organic layers were washed with brine (5 mL) and dried with Na₂SO₄. The residue was concentrated under vacuum and purified by flash column chromatography on silica gel.

3.2 General procedure B: synthesis of alkenyl fluorosulfonates¹ (1ab, 1ac and 1ae)

To a flame-dried 25 mL round-bottom flask equipped with a stirring bar, anhydrous THF (10 mL, 0.1 M) and ketone^[2] (1.0 mmol, 1.0 equiv.) were added. The mixture was cooled to -78 °C, and LDA (1.2 mmol, 1.2 equiv.) was added dropwise over 5 mins. The headspace was evacuated until THF began boiling, and a balloon containing SO₂F₂ gas (approx. 25 mL in size) was introduced. The reaction was then warmed up to 0 °C and stirred for 1 h. Then, the reaction was quenched with sat. NH₄Cl (15 mL) and extracted with EtOAc (5 mL \times 3). The combined organic layers were washed with brine (5 mL) and dried over Na₂SO₄. The residue was concentrated under vacuum and purified by flash column chromatography on silica gel.

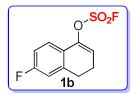
3.3 Characterization of 1a-1ak

3,4-Dihydronaphthalen-1-yl sulfofluoridate (1a)^[1]

According

to

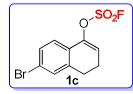
3,4-dihydronaphthalen-1(2H)-one, 1a was purified by flash column chromatography on silica gel using petroleum ether as eluent and obtained in 80% yield (182 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.17 (m, 4H), 6.08 (t, J = 4.6Hz, 1H), 2.88 (t, J = 8.2 Hz, 2H), 2.52 (td, J = 8.2, 4.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 147.1, 136.4, 129.4, 127.9, 127.9, 127.0, 121.2, 117.6, 26.8, 22.2; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.42 (s); HRMS (ESI) calcd. for $C_{10}H_{10}FO_3S^+$ [M+H]⁺: 229.0329, found: 229.0330; IR (neat) v_{max} (cm⁻¹) = 1446, 1264, 1233, 1016, 923, 735, 703, 593.


general

procedure

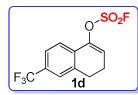
Α

with


6-Fluoro-3,4-dihydronaphthalen-1-yl sulfofluoridate (1b)

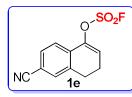
According to general procedure A with 6-fluoro-3,4-dihydronaphthalen-1(2H)-one, **1b** was purified by flash column chromatography on silica gel using petroleum

ether as eluent and obtained in 67% yield (165 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.32 (dd, J = 8.5, 5.5 Hz, 1H), 6.96-6.90 (m, 2H), 6.05 (dt, J = 4.6, 2.4 Hz, 1H), 2.87 (t, J = 8.2 Hz, 2H), 2.52 (td, J = 8.2, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 163.1 (d, J = 249.9 Hz), 146.5, 139.2 (d, J = 8.0 Hz), 124.3 (d, J = 3.0 Hz), 123.2 (d, J = 8.7 Hz), 116.7, 115.5 (d, J = 22.4 Hz), 113.7 (d, J = 22.0 Hz), 27.1, 22.1; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.41 (s), -111.08 (dd, J = 14.3, 8.4 Hz); HRMS (ESI) calcd. for C₁₀H₉F₂O₃S⁺ [M+H]⁺: 247.0235, found: 247.0240; IR (neat) v_{max} (cm⁻¹) = 1495, 1445, 1231, 1062, 1017, 922, 797, 560.


6-Bromo-3,4-dihydronaphthalen-1-yl sulfofluoridate (1c)

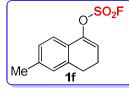
According to general procedure A with 6-bromo-3,4-dihydronaphthalen-1(2H)-one, **1c** was purified by flash column chromatography on silica gel using petroleum

ether as eluent and obtained in 69% yield (211 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.38 (dd, J = 8.3, 2.0 Hz, 1H), 7.33-7.32 (m, 1H), 7.19 (d, J = 8.3 Hz, 1H), 6.11 (td, J = 4.8, 1.5 Hz, 1H), 2.84 (t, J = 8.2 Hz, 2H), 2.50 (td, J = 8.2, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 146.4, 138.4, 131.0, 130.1, 127.0, 123.3, 122.8, 118.2, 26.6, 22.1; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.49 (s); HRMS (ESI) calcd. for C₁₀H₉BrFO₃S⁺ [M+H]⁺: 306.9434, found: 306.9438; IR (neat) v_{max} (cm⁻¹) = 1445, 1232, 1210, 1060, 1018, 911, 793, 570.


6-(Trifluoromethyl)-3,4-dihydronaphthalen-1-yl sulfofluoridate (1d)

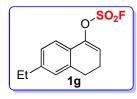
According to general procedure A with 6-(trifluoromethyl)-3,4-dihydronaphthalen-1(2H)-one, **1d** was purified by flash column chromatography on silica gel using

petroleum ether as eluent and obtained in 83% yield (246 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.54-7.52 (m, 1H), 7.46-7.44 (m, 2H), 6.24 (td, *J* = 4.8, 1.4 Hz, 1H), 2.96 (t, *J* = 8.3 Hz, 2H), 2.59 (td, *J* = 8.3, 4.8 Hz, 2H); ¹³C NMR (126 MHz,


CDCl₃) δ 146.1, 137.1, 131.2, 131.2 (q, *J* = 32.5 Hz), 124.8 (q, *J* = 3.7 Hz), 124.2 (q, *J* = 4.0 Hz), 123.9 (q, *J* = 272.2 Hz), 121.6, 120.4, 26.7, 22.1; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.54 (s), -62.76 (s); HRMS (ESI) calcd. for C₁₁H₇F₄O₃S⁻ [M-H]⁻: 295.0058, found: 295.0062; IR (neat) v_{max} (cm⁻¹) = 1449, 1331, 1234, 1124, 1017, 921, 734, 541. *6-Cyano-3,4-dihydronaphthalen-1-yl sulfofluoridate* (**1e**)

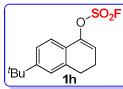
According to general procedure A with 5-oxo-5,6,7,8-tetrahydronaphthalene-2-carbonitrile, **1e** was purified by flash column chromatography on silica gel using

petroleum ether : ethyl acetate (10 : 1) as eluent and obtained in 57% yield (144 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.56 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.48 (s, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 6.32 (td, *J* = 4.8, 1.3 Hz, 1H), 2.95 (t, *J* = 8.3 Hz, 2H), 2.61 (td, *J* = 8.3, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 145.4, 137.2, 131.9, 131.0, 121.8, 121.6, 118.3, 112.5, 26.1, 21.8; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.68 (s); HRMS (ESI) calcd. for C₁₁H₉FNO₃S⁺ [M+H]⁺: 254.0282, found: 254.0273; IR (neat) v_{max} (cm⁻¹) = 2230, 1449, 1264, 1026, 912, 732, 702, 543.


6-Methyl-3,4-dihydronaphthalen-1-yl sulfofluoridate (1f)

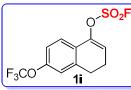
According to general procedure A with 6-methyl-3,4-dihydronaphthalen-1(2H)-one, **1f** was purified by flash column chromatography on silica gel using petroleum

ether as eluent and obtained in 67% yield (162 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.22 (d, *J* = 7.9 Hz, 1H), 7.03 (d, *J* = 7.7 Hz, 1H), 6.97 (s, 1H), 5.98 (td, *J* = 4.8, 1.5 Hz, 1H), 2.79 (t, *J* = 8.2 Hz, 2H), 2.45 (td, *J* = 8.2, 4.8 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 147.4, 139.6, 136.4, 128.9, 127.5, 125.3, 121.2, 116.4, 27.0, 22.3, 21.4; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.30 (s); HRMS (ESI) calcd. for C₁₁H₁₂FO₃S⁺ [M+H]⁺: 243.0486, found: 243.0491; IR (neat) v_{max} (cm⁻¹) = 1449, 1224, 1162, 1049, 866, 757, 617, 535.


6-Ethyl-3,4-dihydronaphthalen-1-yl sulfofluoridate (1g)

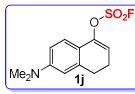
According to general procedure A with 6-ethyl-3,4-dihydronaphthalen-1(2H)-one, **1g** was purified by

flash column chromatography on silica gel using petroleum ether as eluent and obtained in 76% yield (195 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, J = 7.9 Hz, 1H), 7.08 (d, J = 7.2 Hz, 1H), 7.02 (s, 1H), 6.00 (td, J = 4.7, 1.5 Hz, 1H), 2.84 (t, J = 8.2 Hz, 2H), 2.62 (q, J = 7.6 Hz, 2H), 2.49 (td, J = 7.8, 4.8 Hz, 2H), 1.22 (t, J = 7.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 147.4, 145.9, 136.5, 127.7, 126.4, 125.6, 121.3, 116.4, 28.8, 27.0, 22.3, 15.5; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.31 (s); HRMS (ESI) calcd. for C₁₂H₁₄FO₃S⁺ [M+H]⁺: 257.0642, found: 257.0649; IR (neat) v_{max} (cm⁻¹) = 2854, 1444, 1231, 1214, 1013, 921, 796, 561.


6-(tert-Butyl)-3,4-dihydronaphthalen-1-yl sulfofluoridate (1h)

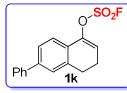
According to general procedure A with 6-(*tert*-butyl)-3,4-dihydronaphthalen-1(2*H*)-one, **1h** was purified by flash column chromatography on silica gel using

petroleum ether as eluent and obtained in 71% yield (201 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, J = 1.5 Hz, 2H), 7.20 (dt, J = 1.4, 0.9 Hz, 1H), 6.01 (td, J = 4.8, 1.5 Hz, 1H), 2.86 (t, J = 8.2 Hz, 2H), 2.49 (td, J = 8.2, 4.8 Hz, 2H), 1.31 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 152.8, 147.4, 136.1, 125.4, 125.2, 123.8, 121.1, 116.6, 34.9, 31.3, 27.3, 22.4; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.21 (s); HRMS (ESI) calcd. for C₁₄H₁₈FO₃S⁺ [M+H]⁺: 285.0955, found: 285.0960; IR (neat) v_{max} (cm⁻¹) = 1446, 1214, 1013, 921, 871, 796, 561.


6-(Trifluoromethoxy)-3,4-dihydronaphthalen-1-yl sulfofluoridate (1i)

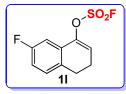
According to general procedure A with 6-(trifluoromethoxy)-3,4-dihydronaphthalen-1(2H)-one, **1i** was purified by flash column chromatography on silica gel

using petroleum ether as eluent and obtained in 38% yield (119 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, J = 8.5 Hz, 1H), 7.10 (d, J = 8.5 Hz, 1H), 7.05 (s, 1H), 6.13 (td, J = 4.7, 1.2 Hz, 1H), 2.90 (t, J = 8.2 Hz, 2H), 2.55 (td, J = 8.2, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 149.6 (q, J = 1.7 Hz), 146.2, 138.7, 126.6, 122.8, 120.5, 120.5 (q, J = 257.8 Hz), 119.1, 118.1, 26.9, 22.0; ¹⁹F NMR (471 MHz, CDCl₃)


δ 39.42 (s), -57.69 (s); HRMS (ESI) calcd. for C₁₁H₉F₄O₄S⁺ [M+H]⁺: 313.0152, found:
313.0158; IR (neat) ν_{max} (cm⁻¹) = 1449, 1263, 1216, 1166, 1018, 733, 703, 556.
6-(Dimethylamino)-3,4-dihydronaphthalen-1-yl sulfofluoridate (1j)

According to general procedure A with 6-(dimethylamino)-3,4-dihydronaphthalen-1(2*H*)-one, **1j** was purified by flash column chromatography on silica gel using

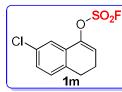
petroleum ether as eluent and obtained in 67% yield (182 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.20 (d, J = 8.3 Hz, 1H), 6.57-6.48 (m, 2H), 5.78 (td, J = 4.6, 1.2 Hz, 1H), 2.97 (s, 6H), 2.81 (t, J = 8.1 Hz, 2H), 2.45 (td, J = 8.1, 4.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 151.0, 147.8, 138.0, 122.4, 116.4, 111.9, 111.7, 109.8, 40.4, 28.0, 22.4; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.08; HRMS (ESI) calcd. for C₁₂H₁₅FNO₃S⁺ [M+H]⁺: 272.0747, found: 272.0751; IR (neat) v_{max} (cm⁻¹) = 1609, 1440, 1366, 1227, 1124, 920, 800, 731.


6-Phenyl-3,4-dihydronaphthalen-1-yl sulfofluoridate (1k)

According to general procedure A with 6-phenyl-3,4-dihydronaphthalen-1(2H)-one, **1k** was purified by flash column chromatography on silica gel using petroleum

ether as eluent and obtained in 51% yield (155 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.58 (dd, J = 8.2, 1.2 Hz, 2H), 7.48 (dd, J = 8.1, 1.8 Hz, 1H), 7.46-7.41 (m, 4H), 7.38-7.34 (m, 1H), 6.10 (td, J = 4.8, 1.4 Hz, 1H), 2.94 (t, J = 8.2 Hz, 2H), 2.56 (td, J = 8.2, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 147.1, 142.3, 140.4, 136.9, 129.0, 127.9, 127.2, 127.0, 126.8, 125.7, 121.8, 117.6, 27.1, 22.4; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.44 (s); HRMS (ESI) calcd. for C₁₆H₁₄FO₃S⁺ [M+H]⁺: 305.0642, found: 305.0649; IR (neat) v_{max} (cm⁻¹) = 1445, 1232, 1015, 925, 797, 731, 698, 573.

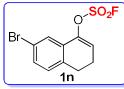
7-Fluoro-3,4-dihydronaphthalen-1-yl sulfofluoridate (11)



According to general procedure A with 7-fluoro-3,4-dihydronaphthalen-1(2H)-one, **11** was purified by flash column chromatography on silica gel using petroleum

ether as eluent and obtained in 83% yield (204 mg, colorless oil). ¹H NMR (500 MHz,

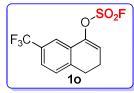
CDCl₃) δ 7.14 (dd, J = 8.3, 5.4 Hz, 1H), 7.05 (dd, J = 9.2, 2.6 Hz, 1H), 6.95 (td, J = 8.4, 2.6 Hz, 1H), 6.16 (t, J = 4.8, 1H), 2.84 (t, J = 8.2 Hz, 2H), 2.53 (td, J = 8.2, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 161.9 (d, J = 244.8 Hz), 146.2 (d, J = 2.5 Hz), 131.8 (d, J = 3.3 Hz), 129.6 (d, J = 8.2 Hz), 129.4 (d, J = 7.9 Hz), 119.0, 115.9 (d, J = 21.4 Hz), 108.8 (d, J = 24.7 Hz), 26.1, 22.4; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.50 (s), -114.77 (dd, J = 14.5, 8.6 Hz); HRMS (ESI) calcd. for C₁₀H₉F₂O₃S⁺ [M+H]⁺: 247.0235, found: 247.0242; IR (neat) ν_{max} (cm⁻¹) = 1584, 1490, 1447, 1229, 1023, 915, 798, 547.


7-Chloro-3,4-dihydronaphthalen-1-yl sulfofluoridate (1m)

According to general procedure A with 7-chloro-3,4-dihydronaphthalen-1(2H)-one, **1m** was purified by flash column chromatography on silica gel using petroleum

ether as eluent and obtained in 67% yield (175 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.32 (dd, J = 8.0, 1.2 Hz, 1H), 7.27 (d, J = 7.4 Hz, 1H), 7.21-7.17 (m, 1H), 6.14 (td, J = 4.8, 1.5 Hz, 1H), 3.00 (t, J = 8.4 Hz, 2H), 2.6 (td, J = 8.4, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 146.0, 134.6, 132.9, 129.5, 129.3, 129.2, 121.4, 119.0, 26.3, 22.2; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.52 (s); HRMS (ESI) calcd. for C₁₀H₇ClFO₃S⁻ [M-H]⁻: 260.9794, found: 260.9797; IR (neat) v_{max} (cm⁻¹) = 1449, 1264, 1233, 1023, 923, 735, 591.

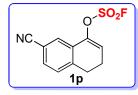
7-Bromo-3,4-dihydronaphthalen-1-yl sulfofluoridate (1n)



According to general procedure A with 7-bromo-3,4-dihydronaphthalen-1(2H)-one, **1n** was purified by flash column chromatography on silica gel using petroleum

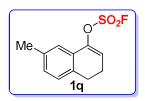
ether as eluent and obtained in 53% yield (162 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 1.8 Hz, 1H), 7.36 (dd, J = 8.0, 1.9 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 6.13 (td, J = 4.8, 1.4 Hz, 1H), 2.81 (t, J = 8.2 Hz, 2H), 2.51 (td, J = 8.2, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 145.8, 135.1, 132.1, 129.7, 129.5, 124.1, 120.6, 119.0, 26.3, 22.1; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.67 (s); HRMS (ESI) calcd. for

 $C_{10}H_9BrFO_3S^+$ [M+H]⁺: 306.9434, found: 306.9440; IR (n eat) v_{max} (cm⁻¹) = 1449, 1264, 1234, 1022, 925, 735, 703, 572.


7-(Trifluoromethyl)-3,4-dihydronaphthalen-1-yl sulfofluoridate (10)

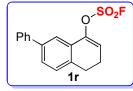
According to general procedure A with 7-(trifluoromethyl)-3,4-dihydronaphthalen-1(2H)-one, **10** was purified by flash column chromatography on silica gel using

petroleum ether as eluent and obtained in 72% yield (213 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.56 (s, 1H), 7.53 (d, *J* = 7.9 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 6.22 (td, *J* = 4.8, 1.5 Hz, 1H), 2.95 (t, *J* = 8.2 Hz, 2H), 2.58 (td, *J* = 8.2, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 146.0, 140.2, 129.7 (q, *J* = 32.9 Hz), 128.8, 128.5, 126.1 (q, *J* = 3.8 Hz), 124.0 (q, *J* = 272.1 Hz), 119.4, 118.1 (q, *J* = 10.9 Hz), 26.8, 21.9; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.61 (s), -62.60 (s); HRMS (ESI) calcd. for C₁₁H₇F₄O₃S⁻ [M-H]⁻: 295.0058, found: 295.0061; IR (neat) v_{max} (cm⁻¹) = 1449, 1321, 1234, 1124, 1075, 921, 734, 541.


7-Cyano-3,4-dihydronaphthalen-1-yl sulfofluoridate (1p)

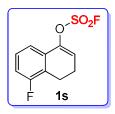
According to general procedure A with 8-oxo-5,6,7,8-tetrahydronaphthalene-2-carbonitrile, **1p** was purified by flash column chromatography on silica gel using

petroleum ether : ethyl acetate (10 : 1) as eluent and obtained in 47% yield (119 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.60 (s, 1H), 7.57 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 6.25 (td, *J* = 4.7, 1.2 Hz, 1H), 2.97 (t, *J* = 8.2 Hz, 2H), 2.60 (td, *J* = 8.2, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 145.1, 141.5, 132.8, 129.2, 128.9, 124.4, 120.2, 118.3, 111.1, 26.8, 21.7; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.68 (s); HRMS (ESI) calcd. for C₁₁H₉FNO₃S⁺ [M+H]⁺: 254.0282, found: 254.0275; IR (neat) v_{max} (cm⁻¹) = 2229, 1446, 1233, 1147, 1026, 912, 798, 629.


7-Methyl-3,4-dihydronaphthalen-1-yl sulfofluoridate (1q)

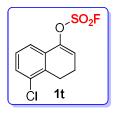
According to general procedure A with 3,4-dihydronaphthalen-1(2H)-one, **1q** was purified by flash column chromatography on silica gel using petroleum ether as

eluent and obtained in 73% yield (177 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.14 (s, 1H), 7.06-7.03 (m, 2H), 6.04 (td, *J* = 4.8, 1.6 Hz, 1H), 2.79 (t, *J* = 8.2 Hz, 2H), 2.46 (td, *J* = 8.2, 4.8 Hz, 2H), 2.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 147.3, 136.7, 133.4, 130.0, 127.8, 127.8, 121.8, 117.4, 26.4, 22.4, 21.2; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.45 (s); HRMS (ESI) calcd. for C₁₁H₁₂FO₃S⁺ [M+H]⁺: 243.0486, found: 243.0493; IR (neat) v_{max} (cm⁻¹) = 1443, 1225, 1149, 1022, 912, 792, 617, 547.


7-Phenyl-3,4-dihydronaphthalen-1-yl sulfofluoridate (1r)

According to general procedure A with 7-methyl-3,4-dihydronaphthalen-1(2H)-one, **1r** was purified by flash column chromatography on silica gel using petroleum

ether as eluent and obtained in 79% yield (240 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 6.8 Hz, 3H), 7.47-7.41 (m, 3H), 7.34 (t, *J* = 7.3 Hz, 1H), 7.22 (d, *J* = 7.8 Hz, 1H), 6.11 (t, *J* = 4.5 Hz, 1H), 2.88 (t, *J* = 8.2 Hz, 2H), 2.51 (td, *J* = 8.2, 4.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 147.1, 140.5, 140.3, 135.4, 129.0, 128.4, 128.4, 128.0, 127.7, 127.1, 119.9, 118.1, 26.6, 22.3; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.61 (s); HRMS (ESI) calcd. for C₁₆H₁₄FO₃S⁺ [M+H]⁺: 305.0642, found: 305.0641; IR (neat) v_{max} (cm⁻¹) = 1445, 1232, 1015, 925, 797, 734, 698, 573.


5-Fluoro-3,4-dihydronaphthalen-1-yl sulfofluoridate (1s)

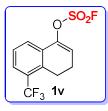
According to general procedure A with 5-fluoro-3,4-dihydronaphthalen-1(2H)-one, **1s** was purified by flash column chromatography on silica gel using petroleum ether as eluent and obtained in 79% yield (194 mg, colorless oil). ¹H

NMR (500 MHz, CDCl₃) δ 7.22 (td, J = 8.3, 5.8 Hz, 1H), 7.15 (d, J = 7.6 Hz, 1H), 7.03 (t, J = 8.6 Hz, 1H), 6.13 (td, J = 4.8, 1.5 Hz, 1H), 2.90 (t, J = 8.3 Hz, 2H), 2.54 (td, J = 8.3, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 159.7 (d, J = 244.8 Hz), 146.3 (d, J = 5.4 Hz), 129.9 (d, J = 5.7 Hz), 127.9 (d, J = 8.6 Hz), 122.8 (d, J = 19.0 Hz), 118.6, 117.1 (d, J = 3.1 Hz), 116.6 (d, J = 22.5 Hz), 21.6, 18.6; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.47 (s), -118.16 (dd, J = 8.9, 5.7 Hz); HRMS (ESI) calcd. for $C_{10}H_9F_2O_3S^+$ [M+H]⁺: 247.0235, found: 247.0244; IR (neat) v_{max} (cm⁻¹) = 1446, 1342, 1229, 1102, 949, 911, 727, 576.

5-Chloro-3,4-dihydronaphthalen-1-yl sulfofluoridate (1t)

According to general procedure A with 5-chloro-3,4-dihydronaphthalen-1(2H)-one, **1t** was purified by flash column chromatography on silica gel using petroleum ether as eluent and obtained in 88% yield (231 mg, colorless oil). ¹H

NMR (500 MHz, CDCl₃) δ 7.32 (dd, J = 8.0, 1.1 Hz, 1H), 7.26 (d, J = 7.5 Hz, 1H), 7.18 (t, J = 7.9 Hz, 1H), 6.14 (td, J = 4.8, 1.5 Hz, 1H), 3.00 (t, J = 8.4 Hz, 1H), 2.54 (td, J = 8.4, 4.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 146.3, 134.0, 133.5, 130.4, 129.8, 127.7, 119.9, 118.5, 23.5, 21.5; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.52 (s); HRMS (ESI) calcd. for C₁₀H₉ClFO₃S⁺ [M+H]⁺: 262.9939, found: 262.9947; IR (neat) v_{max} (cm⁻¹) = 1446, 1264, 1232, 936, 914, 731, 703, 569.


5-Bromo-3,4-dihydronaphthalen-1-yl sulfofluoridate (1u)

According to general procedure A with 5-bromo-3,4-dihydronaphthalen-1(2H)-one, 1u was purified by flash column chromatography on silica gel using petroleum ether as eluent and obtained in 64% yield (196 mg, colorless oil). ¹H NMR

(500 MHz, CDCl₃) δ 7.50 (d, J = 8.1 Hz, 1H), 7.31 (d, J = 7.7 Hz, 1H), 7.12 (t, J = 7.9 Hz, 1H), 6.14 (td, J = 4.8, 1.4 Hz, 1H), 3.01 (t, J = 8.3 Hz, 2H), 2.56 (td, J = 8.4, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 146.3, 135.7, 133.6, 129.9, 128.1, 124.0, 120.5, 118.4, 26.5, 21.6; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.54 (s); HRMS (ESI) calcd. for C₁₀H₉BrFO₃S⁺ [M+H]⁺: 306.9268, found: 306.9270; IR (neat) v_{max} (cm⁻¹) = 1447, 1264, 1230, 1143, 912, 729, 703, 565.

5-(Trifluoromethyl)-3,4-dihydronaphthalen-1-yl sulfofluoridate (1v)

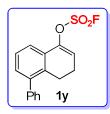
According to general procedure A with 5-(trifluoromethyl)-3,4-dihydronaphthalen-1(2H)-one, **1v** was purified by flash column chromatography on silica gel using petroleum ether as eluent and obtained in 75% yield (222 mg,

colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.37 (t, J = 7.9 Hz, 1H), 6.22 (td, J = 4.8, 1.2 Hz, 1H), 3.05 (t, J = 8.2 Hz, 2H), 2.56 (td, J = 8.2, 4.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 146.0, 135.2 (q, J = 1.7 Hz), 129.7, 128.8 (q, J = 30.3, Hz), 126.9, 126.6 (q, J = 5.6 Hz), 124.7, 124.1 (q, J = 273.9 Hz) 119.1, 23.3 (q, J = 2.2 Hz), 21.7; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.54 (s), -60.49 (s); HRMS (ESI) calcd. for C₁₁H₇F₄O₃S⁻ [M-H]⁻: 295.0058, found: 295.0061; IR (neat) v_{max} (cm⁻¹) = 1449, 1331, 1234, 1124, 1075, 1017, 921, 734.

5-Cyano-3,4-dihydronaphthalen-1-yl sulfofluoridate (1w)

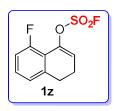
According to general procedure A with 5-0x0-5,6,7,8-tetrahydronaphthalene-1-carbonitrile, **1w** was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate (10 : 1) as eluent and obtained in

44% yield (113 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.59 (dd, J = 7.8, 1.2 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H), 6.25 (td, J = 4.8, 1.5 Hz, 1H), 3.15 (t, J = 8.3 Hz, 2H), 2.64 (td, J = 8.3, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 145.4, 140.1, 132.8, 129.2, 127.6, 125.1, 119.7, 117.0, 112.3, 25.1, 21.4; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.66 (s); HRMS (ESI) calcd. for C₁₁H₉FNO₃S⁺ [M+H]⁺: 254.0282, found: 254.0273; IR (neat) v_{max} (cm⁻¹) = 2228, 1447, 1226, 1095, 946, 911, 794, 570.


3,4-Dihydronaphthalene-1,5-diyl disulfofluoridate (1x)

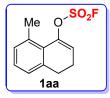
According to general procedure A with 5-hydroxy-3,4-dihydronaphthalen-1(2*H*)-one, 1x was purified by flash column chromatography on silica gel using petroleum ether as eluent and obtained in 43% yield (140 mg, colorless oil). ¹H NMR

(500 MHz, CDCl₃) δ 7.49-7.30 (m, 3H), 6.24 (td, J = 4.8, 1.3 Hz, 1H), 2.99 (t, J = 8.3 Hz, 2H), 2.60 (td, J = 8.3, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 147.5, 145.6, 130.7, 128.9, 128.5, 122.1, 121.6, 119.7, 21.3, 20.3; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.72 (s), 39.30 (s); HRMS (ESI) calcd. for C₁₀H₉F₂O₆S₂⁺ [M+H]⁺: 326.9803, found: 326.9801; IR (neat) v_{max} (cm⁻¹) = 1711, 1444, 1231, 1209, 1012, 912, 797, 708.


5-Phenyl-3,4-dihydronaphthalen-1-yl sulfofluoridate (1y)

According to general procedure A with 5-phenyl-3,4-dihydronaphthalen-1(2H)-one, **1y** was purified by flash column chromatography on silica gel using petroleum ether as eluent and obtained in 57% yield (173 mg, colorless oil). ¹H NMR

(500 MHz, CDCl₃) δ 7.48-7.34 (m, 4H), 7.37-7.19 (m, 4H), 6.13 (td, *J* = 4.8, 1.3 Hz, 1H), 2.82 (t, *J* = 8.1 Hz, 2H), 2.42 (td, *J* = 8.1, 4.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 147.4, 141.3, 140.7, 133.7, 131.3, 129.3, 128.4, 128.4, 127.4, 126.5, 120.6, 117.8, 24.4, 22.2; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.53 (s); HRMS (ESI) calcd. for C₁₆H₁₄FO₃S⁺ [M+H]⁺: 305.0642, found: 305.0641; IR (neat) v_{max} (cm⁻¹) = 1232, 1209, 1015, 925, 797, 734, 698, 573.


8-Fluoro-3,4-dihydronaphthalen-1-yl sulfofluoridate (1z)

According to general procedure A with 8-fluoro-3,4-dihydronaphthalen-1(2H)-one, **1z** was purified by flash column chromatography on silica gel using petroleum ether as eluent and obtained in 39% yield (96 mg, colorless oil). ¹H NMR

(500 MHz, CDCl₃) δ 7.21 (td, J = 8.0, 5.2 Hz, 1H), 6.98 (d, J = 7.4 Hz, 1H), 6.95 (dd, J = 11.6, 3.1 Hz, 1H), 6.14 (td, J = 4.9, 1.4 Hz, 1H), 2.86 (t, J = 8.1 Hz, 2H), 2.48 (td, J = 8.1, 5.0 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 157.7 (d, J = 253.7 Hz), 144.5, 139.4 (d, J = 1.6 Hz), 130.6 (d, J = 9.1 Hz), 123.7 (d, J = 3.3 Hz), 120.7 (d, J = 1.4 Hz), 115.8 (d, J = 8.7 Hz), 115.4 (d, J = 22.7 Hz), 27.3 (d, J = 2.5 Hz), 22.0; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.18 (d, J = 9.2 Hz), -(116.62-116.67) (m); HRMS (ESI) calcd. for C₁₀H₉F₂O₃S⁺ [M+H]⁺: 247.0235, found: 247.0241; IR (neat) v_{max} (cm⁻¹) = 1654, 1446, 1232, 1213, 993, 886, 785, 559.

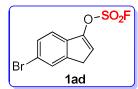
8-Methyl-3,4-dihydronaphthalen-1-yl sulfofluoridate (1aa)

According to general procedure A with 8-methyl-3,4-dihydronaphthalen-1(2H)-one, **1aa** was purified by flash column chromatography on silica gel using etroleum ether as eluent and obtained in 74% yield (179 mg, colorless oil). ¹H NMR

(500 MHz, CDCl₃) δ 7.14 (t, *J* = 7.5 Hz, 1H), 7.05 (d, *J* = 7.4 Hz, 2H), 6.18 (t, *J* = 5.1 Hz, 1H), 2.81 (t, *J* = 7.5 Hz, 2H), 2.49 (s, 3H), 2.40 (td, *J* = 7.4, 2.2 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 148.7, 138.5, 133.2, 131.1, 129.0, 127.0, 125.8, 120.3, 28.8, 22.2, 22.1; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.11 (s); HRMS (ESI) calcd. for C₁₁H₁₂FO₃S⁺ [M+H]⁺: 243.0486, found: 243.0491; IR (neat) v_{max} (cm⁻¹) = 1443, 1225, 1149, 1022, 912, 792, 617, 547.

4-Methyl-3,4-dihydronaphthalen-1-yl sulfofluoridate (1ab)

According to general procedure B with 4-methyl-3,4-dihydronaphthalen-1(2H)-one, **1ab** was purified by flash column chromatography on silica gel using petroleum ether as eluent and obtained in 71% yield (172 mg, colorless oil). ¹H NMR


(500 MHz, CDCl₃) δ 7.36 (d, J = 7.7 Hz, 1H), 7.32-7.24 (m, 2H), 7.21 (d, J = 7.3 Hz, 1H), 6.03-6.01 (m, 1H), 3.01 (h, J = 6.9 Hz, 1H), 2.71-2.64 (m, 1H), 2.31 (ddd, J = 17.3, 6.9, 5.4 Hz, 1H), 1.27 (d, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 146.5, 141.5, 129.7, 127.1, 126.9, 126.8, 121.4, 116.2, 31.6, 30.0, 20.3; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.49 (s); HRMS (ESI) calcd. for C₁₁H₁₂FO₃S⁺ [M+H]⁺: 243.0486, found: 243.0487; IR (neat) v_{max} (cm⁻¹) = 1702, 1494, 1406, 1203, 1161, 789, 706, 585.

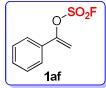
1H-Inden-3-yl sulfofluoridate (1ac)

According to general procedure B with 2,3-dihydro-1*H*-inden-1-one **1ac** was purified by flash column chromatography on silica gel using petroleum ether as eluent and

obtained in 76% yield (163 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, J = 7.3 Hz, 1H), 7.44 (d, J = 7.1 Hz, 1H), 7.37 (d, J = 7.4 Hz, 1H), 7.33 (td, J = 7.3, 1.2 Hz, 1H), 6.40 (dd, J = 3.8, 2.3 Hz, 1H), 3.47 (d, J = 2.3 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 148.4, 141.4, 136.0, 127.1, 124.6, 118.2, 118.0, 118.0, 34.8; ¹⁹F NMR (471 MHz, CDCl₃) δ 38.28 (s); HRMS (ESI) calcd. for C₉H₈FO₃S⁺ [M+H]⁺: 215.0173, found: 215.0178; IR (neat) v_{max} (cm⁻¹) = 1449, 1224, 1162, 1049, 868, 807, 757, 535. *6-Bromo-1H-inden-3-yl sulfofluoridate* (1ad)

According to general procedure with А 5-bromo-2,3-dihydro-1H-inden-1-one, 1ad was purified by flash column chromatography on silica gel using petroleum

ether as eluent and obtained in 69% yield (201 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, J = 1.0 Hz, 1H), 7.51 (dd, J = 8.1, 1.7 Hz, 1H), 7.30 (d, J = 8.1 Hz, 1H), 6.41 (dd, J = 2.0, 1.5 Hz, 1H), 3.47 (d, J = 2.4 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 147.9, 143.3, 135.1, 130.4, 128.0, 121.5, 119.5, 118.3, 34.8. ¹⁹F NMR (471 MHz, CDCl₃) δ 38.45 (s); HRMS (ESI) calcd. for C₉H₅BrFO₃S⁻ [M-H]⁻: 290.9132, found: 290.9135; IR (neat) v_{max} (cm⁻¹) = 1465, 1222, 1102, 1049, 886, 807, 757, 556.


2H-Chromen-4-yl sulfofluoridate (1ae)

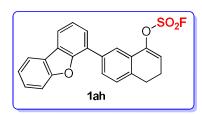
According to general procedure B with chroman-4-one, lae was purified by flash column chromatography on silica gel using petroleum ether as eluent and obtained in 67% yield (154 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.26-7.22 (m, 2H),

6.96 (td, J = 7.6, 1.1 Hz, 1H), 6.84 (d, J = 8.1 Hz, 1H), 5.80 (td, J = 3.9, 1.4 Hz, 1H), 4.97 (d, J = 3.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 155.2, 143.8, 131.8, 121.9, 121.8, 116.7, 116.4, 109.9, 65.1; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.99 (s); HRMS (ESI) calcd. for C₉H₈FO₄S⁺ $[M+H]^+$: 231.0122, found: 231.0123; IR (neat) v_{max} (cm⁻¹) = 1666, 1446, 1350, 1229, 1189, 1043, 737, 560.

1-Phenylvinyl sulfofluoridate (1af)^[1]

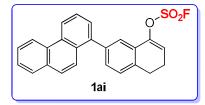
According to general procedure A with acetophenone, 1af was purified by flash column chromatography on silica gel using petroleum ether as eluent and obtained in 45% yield (91 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, J = 1.9 Hz, 1H), 7.54 (d, J = 4.3

Hz, 1H), 7.42 (d, J = 2.0 Hz, 2H), 7.41 (d, J = 1.7 Hz, 1H), 5.64 (d, J = 4.1 Hz, 1H), 5.45 (dd, J =4.0, 1.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 154.2, 131.2, 130.5, 129.0, 125.5, 103.9; ¹⁹F NMR (471 MHz, CDCl₃) δ 40.08.


Cyclohex-1-en-1-yl sulfofluoridate (1ag)^[1]

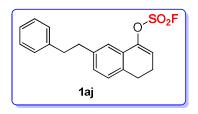
According to general procedure A with cyclohexanone, **1ag** was purified by flash column chromatography on silica gel using petroleum ether as eluent and obtained in 71% yield (128 mg, colorless oil). ¹H

NMR (500 MHz, CDCl₃) ¹H NMR (500 MHz, CDCl₃) δ 5.83-5.81 (m, 1H), 2.35-2.31 (m, 2H), 2.21-2.16 (m, 2H), 1.82-1.77 (m, 2H), 1.63-1.59 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 150.1, 118.2, 26.4, 23.8, 22.6, 21.0; ¹⁹F NMR (471 MHz, CDCl₃) δ 38.87.


7-(Dibenzo[b,d]furan-4-yl)-3,4-dihydronaphthalen-1-yl sulfofluoridate (1ah)

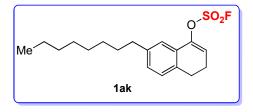
According to general procedure A with 7-(dibenzo[b,d]furan-4-yl)-3,4-dihydronaphthalen-1(2 H)-one, **1ah** was purified by flash column chromatography on silica gel using petroleum ether :

ethyl acetate (20 : 1) as eluent and obtained in 54% yield (213 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.99-7.97 (m, 1H), 7.95-7.93 (m, 2H), 7.81 (dd, J = 7.8, 1.8 Hz, 1H), 7.61-7.58 (m, 2H), 7.48-7.44 (m, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.36 (td, J = 7.5, 1.0 Hz, 1H), 7.35 (d, J = 7.8 Hz, 1H), 6.17 (td, J = 4.7, 1.2 Hz, 1H), 2.96 (t, J = 8.2 Hz, 2H), 2.59 (td, J = 8.2, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 156.3, 153.4, 147.2, 135.9, 135.3, 129.6, 128.3, 128.3, 127.5, 126.5, 125.2, 125.0, 124.2, 123.4, 123.0, 121.7, 120.8, 120.1, 118.2, 112.0, 26.7, 22.4; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.77 (s); HRMS (ESI) calcd. for C₂₂H₁₆FO₄S⁺ [M+H]⁺: 395.0748, found: 395.0757; IR (neat) v_{max} (cm⁻¹) = 1446, 1228, 1189, 1008, 923, 727, 703, 560.


7-(Phenanthren-1-yl)-3,4-dihydronaphthalen-1-yl sulfofluoridate (1ai)

According to general procedure A with 7-(phenanthren-3-yl)-3,4-dihydronaphthalen-1(2H)-o ne, **1ai** was purified by flash column chromatography on silica gel using petroleum ether as eluent and

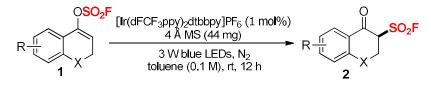
obtained in 48% yield (194 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.66 (dd, *J* = 3.2, 8.2 Hz, 2H), 7.88 (d, *J* = 7.9 Hz, 1H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.62-7.57 (m, 3H), 7.55-7.48 (m, 3H), 7.36 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.19 (d, *J* = 7.6 Hz, 1H), 6.06 (t, J = 4.5 Hz, 1H), 2.84 (t, J = 8.2 Hz, 2H), 2.45 (td, J = 8.2, 4.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 147.0, 139.6, 137.9, 135.5, 131.5, 131.0, 130.8, 130.1, 128.8, 128.8, 128.0, 128.0, 127.7, 127.7, 127.0, 126.9, 126.7, 126.7, 123.1, 122.8, 122.6, 118.2, 26.6, 22.3; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.70 (s); HRMS (ESI) calcd. for C₂₄H₁₅FO₃S⁻ [M-H]⁻: 403.0810, found: 403.0821; IR (neat) v_{max} (cm⁻¹) = 1446, 1264, 1233, 1059, 921, 735, 703, 563.


7-Phenethyl-3,4-dihydronaphthalen-1-yl sulfofluoridate (1aj)

According to general procedure A with 7-phenethyl-3,4-dihydronaphthalen-1(2H)-one, **1aj** was purified by flash column chromatography on silica gel using petroleum ether as eluent and obtained in 61%

yield (203 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.26 (m, 2H), 7.23-7.14 (m, 4H), 7.12-7.04 (m, 2H), 6.08 (td, J = 4.8, 1.5 Hz, 1H), 2.91 (s, 4H), 2.84 (t, J = 8.2 Hz, 2H), 2.51 (td, J = 8.2, 4.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 147.3, 141.5, 140.7, 134.0, 129.5, 128.6, 128.5, 128.0, 127.9, 126.1, 121.3, 117.5, 37.9, 37.6, 26.5, 22.4; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.58 (s); HRMS (ESI) calcd. for C₁₈H₁₆FO₃S⁻ [M-H]⁻: 331.0810, found: 331.0812; IR (neat) v_{max} (cm⁻¹) = 1689, 1447, 1407, 1264, 1205, 731, 701, 579.

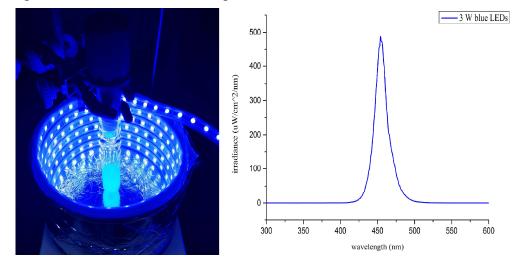
7-Octyl-3,4-dihydronaphthalen-1-yl sulfofluoridate (1ak)



According to general procedure A with 7-octyl-3,4-dihydronaphthalen-1(2H)-one, **1ak** was purified by flash column chromatography on silica gel using petroleum ether as eluent and

obtained in 67% yield (228 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.15 (s, 1H), 7.07 (d, J = 1.1 Hz, 2H), 6.05 (td, J = 4.8, 1.4 Hz, 1H), 2.82 (t, J = 8.2 Hz, 2H), 2.58 (td, J = 7.8 Hz, 2H), 2.48 (td, J = 8.2, 4.8 Hz, 2H), 1.60-1.56 (m, 2H), 1.32-1.26 (m, 10H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 147.4, 141.9, 133.6, 129.4, 127.9, 127.8, 121.3, 117.4, 35.8, 32.0, 31.7, 29.6, 29.4, 27.1, 26.6, 22.8, 22.4, 14.2; ¹⁹F NMR (471 MHz, CDCl₃) δ 39.44 (s); HRMS (ESI) calcd. for C₁₈H₂₆FO₃S⁺

 $[M+H]^+$: 341.1581, found: 341.1589; IR (neat) v_{max} (cm⁻¹) = 2925, 1446, 1233, 1149, 1022, 913, 795, 548.


4. General procedure C: synthesis of 2a-2ak

To a 10 mL sealed tube equipped with a rubber septum and magnetic stirring bar, 1 (0.2 mmol), $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ (2 mg, 0.002 mmol, 1 mol%) and 4 Å MS (44 mg) were added. The tube was evacuated and backfilled with N₂ for three times, and added with toluene (2.0 mL, 0.1 M). The mixture was stirred and irradiated by 3 W blue LEDs for 12 hours at room temperature. After the reaction complet (monitored by TLC), the crude mixture was purified directly by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v) as eluent to give **2**.

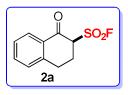
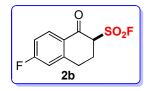

Photoinduced reactor were conducted in circular photo-reactors, which was 3 watts per 30 centimeters. The emission spectra of the blue LEDs were recorded on an Ocean Optics HR4000CG-UVNIR spectrometer. The spectra was normalised to 1.0 at the maximum (453 nm) (Fig. S1).

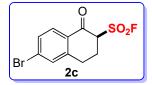
Fig. S1 photo-reactor and reaction setup.

4.1 Characterization of 2a-2ah

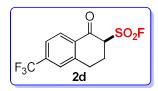

1-Oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2a)

According to general procedure C with 1a: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v) to

afford **2a** in 81% yield (37 mg, yellow oil). ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 7.8 Hz, 1H), 7.59 (td, J = 7.6, 1.3 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 7.7 Hz, 1H), 4.53 (dd, J = 9.7, 4.9 Hz, 1H), 3.29 (dt, J = 17.2, 5.4 Hz, 1H), 3.14 (ddd, J = 17.1, 9.2, 4.8 Hz, 1H), 2.87-2.66 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 185.4, 142.8, 135.3, 130.9 (d, J = 2.7 Hz), 129.1, 128.6, 127.7, 67.7 (d, J = 10.9 Hz), 26.9, 25.5; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.44 (s); HRMS (ESI) calcd. for C₁₀H₁₀FO₃S⁺ [M+H]⁺: 229.0329, found: 229.0333; IR (neat) v_{max} (cm⁻¹) = 1687, 1600, 1404, 1264, 777, 733, 593, 546.

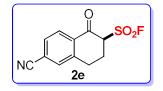

6-Fluoro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2b)

According to general procedure C with **1b**: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v)


to afford **2b** in 79% yield (39 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.12 (dd, J = 8.7, 5.9 Hz, 1H), 7.08 (td, J = 8.5, 2.2 Hz, 1H), 7.00 (d, J = 8.8 Hz, 1H), 4.55 (dd, J = 9.5, 5.0 Hz, 1H), 3.28 (dt, J = 17.2, 5.5 Hz, 1H), 3.14 (ddd, J = 17.2, 8.8, 4.8 Hz, 1H), 2.83-2.71 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 184.0, 166.7 (d, J = 259.3 Hz), 146.1 (d, J = 9.7 Hz), 131.9 (d, J = 10.3 Hz), 127.6 (dd, J = 5.0, 2.5 Hz), 115.7 (d, J = 13.2 Hz), 115.6 (d, J = 12.8 Hz), 67.3 (d, J = 11.1 Hz), 26.9, 25.3; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.80 (s), -100.50 (dd, J = 14.6, 8.4 Hz); HRMS (ESI) calcd. for C₁₀H₉F₂O₃S⁺ [M+H]⁺: 247.0235, found: 247.0236; IR (neat) v_{max} (cm⁻¹) = 1687, 1607, 1584, 1405, 1253, 1203, 785, 538.

6-Bromo-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2c)

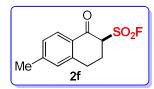
According to general procedure C with 1c: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v) to afford **2c** in 86% yield (53 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.4 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 1H), 7.50 (s, 1H), 4.50 (dd, *J* = 8.8, 5.3 Hz, 1H), 3.28 (dt, *J* = 17.3, 5.9 Hz, 1H), 3.10 (ddd, *J* = 17.3, 8.3, 5.1 Hz, 1H), 2.82-2.71 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 184.5, 144.2, 132.0, 131.4, 131.0, 130.2, 129.7 (d, *J* = 2.5 Hz), 67.1 (d, *J* = 11.2 Hz), 26.4, 25.2; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.95 (s); HRMS (ESI) calcd. for C₁₀H₇BrFO₃S⁻ [M-H]⁻: 304.9289, found: 304.9290; IR (neat) v_{max} (cm⁻¹) = 1687, 1587, 1405, 1205, 778, 603, 557.


1-Oxo-6-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2d)

According to general procedure C with **1d**: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v :

v) to afford **2d** in 72% yield (43 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 8.7 Hz, 1H), 7.60 (s, 1H), 4.56 (dd, J = 8.9, 5.2 Hz, 1H), 3.38 (dt, J = 17.4, 5.8 Hz, 1H), 3.20 (ddd, J = 17.4, 8.4, 5.1 Hz, 1H), 2.86-2.78 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 184.6, 143.3, 136.3 (q, J = 32.9 Hz), 133.3-133.2 (m), 129.4, 126.3 (q, J = 3.7 Hz), 124.5 (q, J = 3.5 Hz), 123.3 (q, J = 273.2 Hz), 67.2 (d, J = 11.7 Hz), 26.7, 25.2; ¹⁹F NMR (471 MHz, CDCl₃) δ 57.06 (s), -63.43 (s); HRMS (ESI) calcd. for C₁₁H₇F₄O₃S⁻ [M-H]⁻: 295.0058, found: 295.0062; IR (neat) v_{max} (cm⁻¹) = 1686, 1603, 1405, 1202, 1189, 921, 781, 609, 544.

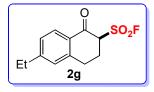
6-Cyano-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2e)



According to general procedure C with 1e: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (5 : 1 : 0.2, v : v)

to afford **2e** in 59% yield (30 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.21 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 8.2 Hz, 1H), 7.66 (s, 1H), 4.57 (dd, J = 8.6, 5.3 Hz, 1H), 3.37 (dt, J = 17.4, 5.9 Hz, 1H), 3.18 (ddd, J = 17.5, 7.9, 5.3 Hz, 1H), 2.89-2.73 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 184.3, 143.2, 133.6 (d, J = 2.3 Hz), 133.0 (d, J = 3.6 Hz), 131.0, 129.4, 118.4, 117.5, 66.9 (d, J = 11.9 Hz), 26.3, 24.9; ¹⁹F NMR (471

MHz, CDCl₃) δ 57.20 (s); HRMS (ESI) calcd. for C₁₁H₇FNO₃S⁻ [M-H]⁻: 252.0136, found: 252.0138; IR (neat) v_{max} (cm⁻¹) = 2228, 1685, 1603, 1405, 1202, 1189, 781, 609.


6-Methyl-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2f)

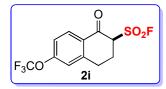
According to general procedure C with **1f**: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v :

v) to afford **2f** in 85% yield (41 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 8.1 Hz, 1H), 7.19 (d, J = 8.1 Hz, 1H), 7.10 (s, 1H), 4.49 (dd, J = 9.4, 5.0 Hz, 1H), 3.23 (dt, J = 17.1, 5.6 Hz, 1H), 3.10 (ddd, J = 17.1, 8.9, 4.9 Hz, 1H), 2.81-2.67 (m, 2H), 2.41 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 184.9, 146.8, 142.8, 129.5, 128.8, 128.7, 128.6 (d, J = 2.6 Hz), 67.7 (d, J = 10.6 Hz), 26.8, 25.6, 22.0; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.54 (s); HRMS (ESI) calcd. for C₁₁H₁₀FO₃S⁻ [M-H]⁻: 241.0340, found: 241.0342; IR (neat) v_{max} (cm⁻¹) = 1683, 1607, 1403, 1235, 1201, 780, 610, 552.


6-Ethyl-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2g)

According to general procedure C with 1g: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v :

v) to afford **2g** in 72% yield (37 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 7.9 Hz, 1H), 7.21 (d, J = 7.8 Hz, 1H), 7.12 (s, 1H), 4.50 (dd, J = 9.1, 5.0 Hz, 1H), 3.24 (dt, J = 15.9, 4.9 Hz, 1H), 3.10 (ddd, J = 12.2, 9.1, 4.5 Hz, 1H), 2.80-2.76 (m, 1H), 2.71-2.67 (m, 3H), 1.26 (t, J = 7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 185.0, 152.8, 143.0, 128.8 (d, J = 2.7 Hz), 128.7, 128.3, 127.6, 67.8 (d, J = 10.5 Hz), 29.2, 26.9, 25.6, 15.0; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.41 (s); HRMS (ESI) calcd. for C₁₂H₁₄FO₃S⁺ [M+H]⁺: 257.0642, found: 257.0637; IR (neat) v_{max} (cm⁻¹) = 1685, 1603, 1405, 1202, 1189, 781, 609, 544.


6-(Tert-butyl)-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2h)

According to general procedure C with **1h**: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v :

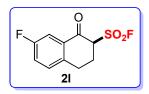
v) to afford **2h** in 87% yield (49 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 8.4 Hz, 1H), 7.42 (dd, J = 8.4, 1.8 Hz, 1H), 7.27 (d, J = 9.6 Hz, 1H), 4.50 (dd, J = 9.5, 5.0 Hz, 1H), 3.27 (dt, J = 17.0, 5.5 Hz, 1H), 3.11 (ddd, J = 17.0, 9.0, 4.8 Hz, 1H), 2.81-2.71 (m, 2H), 1.34 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 184.9, 159.6, 142.7, 128.7, 128.6 (d, J = 2.7 Hz), 125.8, 125.2, 67.7 (d, J = 10.4 Hz), 35.5, 31.0, 27.1, 25.7; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.50 (s); HRMS (ESI) calcd. for C₁₄H₁₆FO₃S⁻ [M-H]⁻: 283.0810, found: 283.0813; IR (neat) v_{max} (cm⁻¹) = 1685, 1603, 1405, 1202, 815, 781, 609, 545.


1-Oxo-6-(trifluoromethoxy)-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2i)

According to general procedure C with **1i**: The crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 :

1 : 0.2, v : v) to afford **2i** in 68% yield (42 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 8.7 Hz, 1H), 7.21 (d, J = 9.1 Hz, 1H), 7.14 (s, 1H), 4.56 (dd, J = 9.3, 5.0 Hz, 1H), 3.31 (dt, J = 17.4, 5.6 Hz, 1H), 3.16 (ddd, J = 17.4, 8.8, 4.9 Hz, 1H), 2.85-2.79 (m, 1H), 2.78-2.71 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 184.1, 154.0 (q, J = 1.7 Hz), 145.3, 131.2, 129.1 (d, J = 2.6 Hz), 120.3 (q, J = 259.9 Hz), 119.9 (q, J = 1.0 Hz), 119.5 (q, J = 3.3 Hz), 67.2 (d, J = 11.3 Hz), 26.9, 25.3; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.68 (s), -57.35 (s); HRMS (ESI) calcd. for C₁₁H₇F₄O₄S⁻ [M-H]⁻: 311.0007, found: 311.0014; IR (neat) v_{max} (cm⁻¹) = 1691, 1609, 1141, 1253, 1201, 1117, 810, 567.

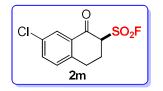
1-Oxo-6-phenyl-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2k)



According to general procedure C with 1k: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v :

v) to afford 2k in 69% yield (42 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ

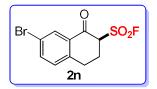
8.16 (d, J = 8.2 Hz, 1H), 7.66-7.56 (m, 3H), 7.53-7.39 (m, 4H), 4.54 (dd, J = 9.2, 5.1 Hz, 1H), 3.35 (dt, J = 17.0, 5.6 Hz, 1H), 3.18 (ddd, J = 17.0, 8.7, 4.9 Hz, 1H), 2.95-2.71 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 185.0, 148.0, 143.2, 139.3, 129.7 (d, J = 2.4 Hz), 129.3, 129.2, 129.0, 128.9, 127.4, 126.6, 67.6 (d, J = 10.7 Hz), 27.0, 25.5; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.71 (s); HRMS (ESI) calcd. for C₁₆H₁₂FO₃S⁻[M-H]⁻: 305.0642, found: 305.0650; IR (neat) v_{max} (cm⁻¹) = 1685, 1603, 1405, 1202, 815, 781, 609, 544.


7-Fluoro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (21)

According to general procedure C with 11: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v)

to afford **21** in 70% yield (34 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 8.7 Hz, 1H), 7.32-7.30 (m, 2H), 4.53 (dd, J = 9.4, 5.0 Hz, 1H), 3.27 (dt, J = 17.1, 5.6 Hz, 1H), 3.11 (ddd, J = 17.0, 8.7, 4.8 Hz, 1H), 2.84-2.78 (m, 1H), 2.77-2.69 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 184.6, 161.9 (d, J = 248.7 Hz), 138.6 (d, J = 2.9 Hz), 132.4 (dd, J = 6.7, 2.6 Hz), 131.1 (d, J = 7.3 Hz), 122.9 (d, J = 22.3 Hz), 114.5 (d, J = 22.6 Hz), 67.2 (d, J = 11.4 Hz), 26.1, 25.5; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.79 (s), -112.90 (dd, J = 13.5, 7.1 Hz); HRMS (ESI) calcd. for C₁₀H₇F₂O₃S⁻ [M-H]⁻: 245.0089, found: 245.0090; IR (neat) v_{max} (cm⁻¹) = 1702, 1494, 1406, 1242, 1203, 1161, 789, 585.

7-Chloro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2m)



According to general procedure C with **1m**: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v :

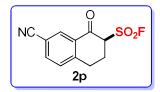
v) to afford **2m** in 83% yield (44 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 2.3 Hz, 1H), 7.54 (dd, J = 8.3, 2.3 Hz, 1H), 7.28 (d, J = 8.3 Hz, 1H), 4.52 (dd, J = 9.3, 5.0 Hz, 1H), 3.27 (dt, J = 17.3, 5.7 Hz, 1H), 3.10 (ddd, J = 17.3, 8.7, 4.9 Hz, 1H), 2.84-2.78 (m, 1H), 2.27-2.69 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 184.4, 141.0, 135.3, 134.1, 132.1 (d, J = 2.5 Hz), 130.7, 128.1, 67.2 (d, J = 11.3 Hz), 26.2,

25.3; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.86 (s); HRMS (ESI) calcd. for C₁₀H₇ClFO₃S⁻ [M-H]⁻: 260.9794 found: 260.9796; IR (neat) v_{max} (cm⁻¹) = 1690, 1477, 1406, 1308, 1202, 850, 781, 577.

7-Bromo-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2n)

According to general procedure C with 1n: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v :

v) to afford **2n** in 63% yield (39 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 2.2 Hz, 1H), 7.69 (dd, J = 8.2, 2.2 Hz, 1H), 7.21 (d, J = 8.2 Hz, 1H), 4.51 (dd, J = 9.0, 5.1 Hz, 1H), 3.25 (dt, J = 17.3, 5.8 Hz,1H), 3.07 (ddd, J = 17.3, 8.5, 4.9 Hz, 1H), 2.83-2.77 (m, 1H), 2.76-2.70 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 184.2, 141.5, 138.1, 132.3 (d, J = 2.5 Hz), 131.3, 130.9, 121.8, 67.1 (d, J = 11.3 Hz), 26.3, 25.2; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.97 (s); HRMS (ESI) calcd. for C₁₀H₇BrFO₃S⁻[M-H]⁻: 304.9289, found: 304.9297; IR (neat) v_{max} (cm⁻¹) = 1687, 1587, 1405, 1202, 1186, 778, 603, 557.


1-Oxo-7-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (20)

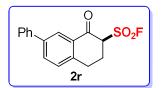
According to general procedure C with **10**: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v :

v) to afford **20** in 59% yield (35 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.36 (s, 1H), 7.82 (dd, J = 8.1, 1.7 Hz, 1H), 7.48 (d, J = 8.1 Hz, 1H), 4.57 (dd, J = 8.6, 5.2 Hz, 1H), 3.38 (dt, J = 17.5, 5.9 Hz, 1H), 3.20 (ddd, J = 17.6, 7.8, 5.4 Hz, 1H), 2.87-2.75 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 184.3, 146.2, 131.4 (q, J = 3.4 Hz), 131.2 (d, J = 2.6 Hz), 130.6 (q, J = 33.6 Hz), 130.1, 125.8 (q, J = 3.9 Hz), 123.4 (q, J = 272.4 Hz), 67.0 (d, J = 11.5 Hz), 26.6, 25.0; ¹⁹F NMR (471 MHz, CDCl₃) δ 57.11 (s), -62.91 (s); HRMS (ESI) calcd. for C₁₁H₇F₄O₃S⁻ [M-H]⁻: 295.0058, found: 295.0061; IR (neat) v_{max} (cm⁻¹) = 1694, 1620, 1407, 1203, 1123, 1073, 784, 570.

7-Cyano-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2p)

According to general procedure C with 1p: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (5 : 1 : 0.2, v : v)

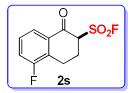
to afford **2p** in 57% yield (29 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.40 (s, 1H), 7.84 (dd, J = 8.0, 1.6 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 4.55 (dd, J = 7.7, 5.9 Hz, 1H), 3.40 (dt, J = 17.7, 6.0 Hz, 1H), 3.19 (dt, J = 17.8, 6.3 Hz, 1H), 2.89-2.74 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 183.6, 147.1, 137.3, 132.8, 131.6 (d, J = 2.4 Hz), 130.4, 117.4, 112.5, 66.7 (d, J = 11.8 Hz), 26.7, 24.7; ¹⁹F NMR (471 MHz, CDCl₃) δ 57.44 (s); HRMS (ESI) calcd. for C₁₁H₇FNO₃S⁻ [M-H]⁻: 252.0136, found: 252.0141; IR (neat) v_{max} (cm⁻¹) = 2230, 1699, 1581, 1410, 1203, 808, 772, 550.


7-Methyl-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2q)

According to general procedure C with 1q: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v :

v) to afford **2q** in 77% yield (37 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.86 (s, 1H), 7.39 (dd, J = 7.8, 1.7 Hz, 1H), 7.19 (d, J = 7.8 Hz, 1H), 4.51 (dd, J = 9.8, 4.9 Hz, 1H), 3.22 (dt, J = 17.1, 5.5 Hz, 1H), 3.08 (ddd, J = 17.0, 9.2, 4.8 Hz, 1H), 2.81-2.75 (m, 1H), 2.72-2.65 (m, 1H), 2.37 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 185.6, 140.0, 137.6, 136.4, 130.7 (d, J = 2.5 Hz), 129.0, 128.5, 67.8 (d, J = 10.6 Hz), 26.4, 25.6, 21.0; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.40 (s); HRMS (ESI) calcd. for C₁₁H₁₁FO₃SNa⁺ [M+Na]⁺: 265.0305, found: 265.0309; IR (neat) v_{max} (cm⁻¹) = 1447, 1225, 1078, 945, 910, 792, 732, 569.

1-Oxo-7-phenyl-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2r)



According to general procedure C with 1r: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v :

v) to afford 2r in 79% yield (48 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.15 (dd, J = 7.9, 1.5 Hz, 1H), 7.55 (dd, J = 7.5, 1.5 Hz, 1H), 7.48-7.41 (m, 4H), 7.30-7.28 (m, 2H), 4.54 (dd, J = 9.8, 4.9 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.01-2.94 (ddd, J = 9.8, 4.9 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.01-2.94 (ddd, J = 9.8, 4.9 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.01-2.94 (ddd, J = 9.8, 4.9 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.01-2.94 (ddd, J = 9.8, 4.9 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.01-2.94 (ddd, J = 9.8, 4.9 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.01-2.94 (ddd, J = 9.8, 4.9 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.01-2.94 (ddd, J = 9.8, 4.9 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.01-2.94 (ddd, J = 9.8, 4.9 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.01-2.94 (ddd, J = 9.8, 4.9 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.01-2.94 (ddd, J = 9.8, 4.9 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.01-2.94 (ddd, J = 9.8, 4.9 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.01-2.94 (ddd, J = 17.5, 5.4 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.01-2.94 (ddd, J = 17.5, 5.4 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 3.01-2.94 (ddd, J = 17.5, 5.4 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz), 3.14

J = 17.5, 9.2, 4.7 Hz, 1H), 2.73-2.66 (m, 1H), 2.65-2.58 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 185.7, 142.4, 140.3, 139.5, 136.5, 131.4 (d, J = 2.5 Hz), 129.1, 128.7, 128.1, 128.0, 127.5, 67.5 (d, J = 10.9 Hz), 25.6, 25.4; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.56 (s); HRMS (ESI) calcd. for C₁₆H₁₂FO₃S⁻ [M-H]⁻: 303.0497, found: 303.0504; IR (neat) v_{max} (cm⁻¹) = 1684, 1406, 1264, 1202, 780, 732, 700, 560.


5-Fluoro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2s)

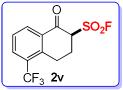
According to general procedure C with 1s: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v) to

afford **2s** in 71% yield (35 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 7.6 Hz, 1H), 7.41-7.33 (m, 2H), 4.54 (dd, *J* = 9.3, 4.9 Hz, 1H), 3.32 (dt, *J* = 17.8, 5.6 Hz, 1H), 3.08 (ddd, *J* = 17.8, 8.5, 5.8 Hz, 1H), 2.86-2.80 (m, 1H), 2.80-2.71 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 184.5 (d, *J* = 3.5 Hz), 159.8 (d, *J* = 248.0 Hz), 132.5 (dd, *J* = 3.3, 3.1 Hz), 129.8 (d, *J* = 18.2 Hz), 128.6 (d, *J* = 8.0 Hz), 124.2 (d, *J* = 3.5 Hz), 121.8 (d, *J* = 21.6 Hz), 67.1 (d, *J* = 11.5 Hz), 24.6, 19.6 (d, *J* = 4.1 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ 56.71 (s), -115.94 (dd, *J* = 8.4, 5.8 Hz); HRMS (ESI) calcd. for C₁₀H₇F₂O₃S⁻ [M-H]⁻: 245.0089, found: 245.0089; IR (neat) v_{max} (cm⁻¹) = 1692, 1610, 1407, 1263, 1201, 793, 734, 702.

5-Chloro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2t)

According to general procedure C with 1t: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v) to

afford **2t** in 87% yield (46 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 7.4 Hz, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 4.54 (dd, *J* = 9.8, 4.8 Hz, 1H), 3.39 (dt, *J* = 18.1, 5.6 Hz, 1H), 3.13 (ddd, *J* = 18.1, 8.9, 5.2 Hz, 1H), 2.87-2.81 (m, 1H), 2.77-2.70 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 184.9, 140.2, 135.8, 134.4, 132.6 (d, *J* = 2.7 Hz), 128.4, 127.2, 66.8 (d, *J* = 11.8 Hz), 24.6, 24.4; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.50 (s); HRMS (ESI) calcd. for C₁₀H₇ClFO₃S⁻ [M-H]⁻:


260.9794, found: 260.9797; IR (neat) v_{max} (cm⁻¹) = 1685, 1588, 1403, 1199, 1140, 766, 731, 561.

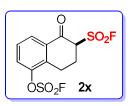
5-Bromo-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2u)

According to general procedure C with 1u: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v) to

afford **2u** in 58% yield (35 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.09 (dd, J = 7.8, 1.1 Hz, 1H), 7.86 (dd, J = 7.9, 1.2 Hz, 1H), 7.30 (t, J = 7.9 Hz, 1H), 4.52 (dd, J = 9.7, 4.9 Hz, 1H), 3.37 (dt, J = 18.1, 5.6 Hz, 1H), 3.12 (ddd, J = 18.1, 8.8, 5.2 Hz, 1H), 2.94-2.61 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 184.9, 141.8, 139.1, 132.8 (d, J = 2.6 Hz), 128.8, 127.9, 124.9, 66.7 (d, J = 11.9 Hz), 27.5, 24.5; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.50 (s); HRMS (ESI) calcd. for C₁₀H₉BrFO₃S⁺ [M+H]⁺: 306.9434, found: 306.9439; IR (neat) v_{max} (cm⁻¹) = 1694, 1588, 1404, 1199, 1127, 730, 611, 555. *1-Oxo-5-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride* (**2**v)

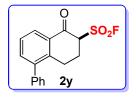
According to general procedure C with 1v: the crude product was purified by flash column chromatography on silica gel using petroleum ether: ethyl acetate : AcOH (10 : 1 : 0.2, v : v) to

afford **2v** in 60% yield (36 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, *J* = 7.9 Hz, 1H), 7.95 (d, *J* = 7.7 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 1H), 4.56 (dd, *J* = 9.8, 4.9 Hz, 1H), 3.51 (dt, *J* = 18.0, 5.4 Hz, 1H), 3.27 (ddd, *J* = 18.0, 9.1, 4.7 Hz, 1H), 2.92-2.65 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 184.5, 141.1 (q, *J* = 1.3 Hz), 132.5 (q, *J* = 1.7 Hz), 132.4 (d, *J* = 5.6 Hz), 132.3 (q, *J* = 33.7 Hz), 129.4 (q, *J* = 30.7 Hz), 127.7, 123.7 (q, *J* = 274.1 Hz), 66.9 (d, *J* = 12.1 Hz), 24.7, 23.5 (q, *J* = 2.5 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ 56.76 (s), -61.03 (s); HRMS (ESI) calcd. for C₁₁H₈F₄O₃SNa⁺ [M+Na]⁺: 319.0022, found: 319.0013; IR (neat) v_{max} (cm⁻¹) = 1694, 1410, 1329, 1307, 1175, 787, 737, 552.


5-Cyano-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2w)

According to general procedure C with **1w**: the crude product was purified by flash column chromatography on silica gel using

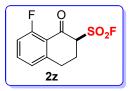
petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v) to afford **2w** in 62% yield (31 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, *J* = 7.9 Hz, 1H), 7.94 (d, *J* = 7.6 Hz, 1H), 7.57 (t, *J* = 7.8 Hz, 1H), 4.60 (dd, *J* = 9.1, 5.1 Hz, 1H), 3.55 (dt, *J* = 18.0, 5.7 Hz, 1H), 3.33 (ddd, *J* = 18.0, 8.4, 5.1 Hz, 1H), 2.97-2.74 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 184.0, 145.7, 138.8, 132.8, 131.8 (d, *J* = 2.5 Hz), 128.3, 116.2, 113.4, 66.7 (d, *J* = 12.1 Hz), 25.3, 24.4; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.98 (s); HRMS (ESI) calcd. for C₁₁H₇FNO₃S⁻ [M-H]⁻: 252.0136, found: 252.0139; IR (neat) v_{max} (cm⁻¹) = 2230, 1699, 1581, 1410, 1203, 808, 772, 550.


6-(*Fluorosulfonyl*)-5-oxo-5,6,7,8-tetrahydronaphthalen-1-yl sulfofluoridate (2x)

According to general procedure C with 1x: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v) to afford 2x in 49% yield (32 mg, colorless oil). ¹H NMR (500 MHz,

CDCl₃) δ 8.19 (dd, J = 7.9, 1.2 Hz, 1H), 7.68 (dt, J = 8.2, 1.4 Hz, 1H), 7.56 (t, J = 8.0 Hz, 1H), 4.58 (dd, J = 9.6, 4.9 Hz, 1H), 3.41 (dt, J = 17.9, 5.6 Hz, 1H), 3.18 (ddd, J = 18.1, 9.0, 5.1 Hz, 1H), 2.92-2.82 (m, 1H), 2.81-2.73 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 183.9, 147.6, 135.2, 133.2 (d, J = 2.6 Hz), 129.1, 129.0, 127.6, 66.7 (d, J = 12.2 Hz), 24.4, 21.0; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.81 (s), 40.05 (s); HRMS (ESI) calcd. for C₁₀H₇F₂O₆S₂⁻ [M-H]⁻: 324.9658, found: 324.9666; IR (neat) v_{max} (cm⁻¹) = 1447, 1232, 1199, 1180, 956, 910, 729, 553.

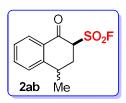
1-Oxo-5-phenyl-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2y)



According to general procedure C with 1y: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v) to

afford **2y** in 57% yield (35 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.15 (dd, J = 7.9, 1.2 Hz, 1H), 7.55 (dd, J = 7.5, 1.3 Hz, 1H), 7.50-7.39 (m, 4H), 7.30-7.28 (m, 2H), 4.54 (dd, J = 9.8, 4.9 Hz, 1H), 3.14 (dt, J = 17.5, 5.4 Hz, 1H), 2.97 (ddd, J = 17.5, 9.1, 4.7 Hz, 1H), 2.73-2.66 (m, 1H), 2.65-2.58 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 185.7, 142.4, 140.3, 139.5, 136.5, 131.4 (d, J = 2.5 Hz), 129.1, 128.7, 128.0, 127.9,

127.5, 67.5 (d, J = 10.9 Hz), 25.6, 25.4; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.56 (s); HRMS (ESI) calcd. for C₁₆H₁₄FO₃S⁺ [M+H]⁺: 305.0642, found: 305.0635; IR (neat) v_{max} (cm⁻¹) = 1702, 1494, 1406, 1203, 1161, 889, 789, 585.


8-Fluoro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2z)

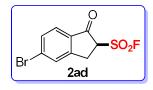
According to general procedure C with 1z: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v) to

afford **2z** in 33% yield (16 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.55 (td, J = 8.0, 5.1 Hz, 1H), 7.11 (d, J = 7.7 Hz, 1H), 7.06 (dd, J = 10.9, 8.3 Hz, 1H), 4.52 (dd, J = 9.0, 5.3 Hz, 1H), 3.32 (dt, J = 17.3, 5.8 Hz, 1H), 3.13 (ddd, J = 17.3, 8.6, 5.0 Hz, 1H), 2.82-2.69 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 182.8, 162.9 (d, J = 269.6 Hz), 144.7, 136.5 (d, J = 10.7 Hz), 124.8 (d, J = 4.0 Hz), 120.0 (dd, J = 5.2, 2.6 Hz), 116.0 (d, J = 21.3 Hz), 68.3 (d, J = 10.9 Hz), 26.9 (d, J = 2.1 Hz), 25.0; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.97 (s), -108.65 (dd, J = 11.0, 5.2 Hz); HRMS (ESI) calcd. for C₁₀H₇F₂O₃S⁻ [M-H]⁻: 245.0089, found: 245.0093; IR (neat) v_{max} (cm⁻¹) = 1687, 1607, 1405, 1253, 1201, 785, 614, 538.


4-Methyl-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2ab)

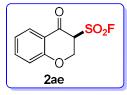
According to general procedure C with **1ab**: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v) to afford **2ab** in 51% yield (25 mg, colorless oil, major : minor = 1.5 :

1 as determined by crude ¹⁹F NMR). ¹H NMR (500 MHz, CDCl₃) major: δ 8.06 (td, J = 7.4, 6.8, 1.4 Hz, 1H), 7.62 (td, J = 7.5, 1.4 Hz, 1H), 7.38-7.35 (m, 2H), 4.62 (dd, J = 14.1, 4.3 Hz, 1H), 3.27 (dp, J = 11.9, 6.6 Hz, 1H), 2.83-2.78 (m, 1H), 2.34 (dt, J = 14.0, 12.6 Hz, 1H), 1.47 (d, J = 7.2 Hz, 3H); minor: δ 8.06 (td, J = 7.4, 6.8, 1.4 Hz, 1H), 7.65 (td, J = 8.0, 1.3 Hz, 1H), 7.45 (d, J = 7.9 Hz, 1H), 7.41-7.38 (m, 1H), 4.70 (dd, J = 10.7, 4.9 Hz, 1H), 3.46 (td, J = 12.5, 6.5 Hz, 1H), 2.82-2.79 (m, 1H), 2.57 (dtd, J = 13.7, 5.2, 2.2 Hz, 1H), 1.54 (d, J = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 186.2 (185.4), 147.7 (146.7), 135.6 (135.5), 130.7 (d, J = 3.5 Hz) (129.9 (d, J = 2.7


Hz)), 128.6 (128.4), 128.2 (127.6), 127.6 (126.7), 68.2 (d, J = 11.5 Hz) (65.1 (d, J = 10.8 Hz)), 33.8 (32.0) 31.9 (30.8), 21.3 (20.0); ¹⁹F NMR (471 MHz, CDCl₃) minor: 56.28 (s), major: 54.68 (s); HRMS (ESI) calcd. for C₁₁H₁₀FO₃S⁻ [M-H]⁻: 241.0340, found: 241.0343; IR (neat) v_{max} (cm⁻¹) = 1690, 1600, 1402, 1264, 1191, 732, 702, 589. *1-Oxo-2,3-dihydro-1H-indene-2-sulfonyl fluoride* (**2ac**)

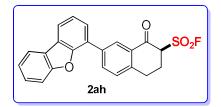
According to general procedure C with **1ac**: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v) to

afford **2ac** in 90% yield (42 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 7.8 Hz, 1H), 7.74 (dd, J = 7.5, 1.0 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 4.58 (ddd, J = 7.6, 5.2, 1.4 Hz, 1H), 3.75 (dd, J = 6.3, 4.1 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 190.7, 150.9, 137.0, 134.4 (d, J = 3.0 Hz), 129.0, 126.7, 125.6, 64.4 (d, J = 13.9 Hz), 29.2; ¹⁹F NMR (471 MHz, CDCl₃) δ 54.17 (s); HRMS (ESI) calcd. for C₉H₆FO₃S⁻ [M-H]⁻: 231.0021, found: 213.0027; IR (neat) v_{max} (cm⁻¹) = 1721, 1403, 1366, 1180, 816, 734, 699, 586.


5-Bromo-1-oxo-2,3-dihydro-1H-indene-2-sulfonyl fluoride (2ad)

According to general procedure C with **1ad**: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 :

0.2, v : v) to afford **2ad** in 76% yield (44 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.80-7.71 (m, 2H), 7.65 (d, *J* = 8.3 Hz, 1H), 4.54 (td, *J* = 6.4, 0.9 Hz, 1H), 3.73 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 189.5, 152.2, 133.3 (d, *J* = 3.0 Hz), 132.8, 132.7, 130.1, 126.7, 64.3 (d, *J* = 14.4 Hz), 28.9; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.95 (s); HRMS (ESI) calcd. for C₉H₅BrFO₃S⁻ [M-H]⁻: 290.9132, found: 290.9137; IR (neat) v_{max} (cm⁻¹) = 1721, 1594, 1403, 1203, 998, 811, 789, 582.


4-Oxochroman-3-sulfonyl fluoride (2ae)

According to general procedure C with **1ae**: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v)

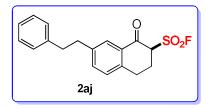
to afford **2ae** in 57% yield (26 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.98 (dd, J = 8.0, 1.7 Hz, 1H), 7.61 (ddd, J = 8.7, 7.2, 1.8 Hz, 1H), 7.16-7.13 (m, 1H), 7.08 (d, J = 8.1 Hz, 1H), 5.09 (dd, J = 12.8, 4.7 Hz, 1H), 4.86 (ddd, J = 12.8, 5.1, 4.2 Hz, 1H), 4.51 (td, J = 4.4, 2.3 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 179.1, 161.1, 138.1, 128.3, 123.2, 119.8 (d, J = 1.3 Hz), 118.5, 66.2, 64.7 (d, J = 12.6 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ 59.80 (s); HRMS (ESI) calcd. for C₉H₈FO₄S⁺ [M+H]⁺: 231.0122, found: 231.0114; IR (neat) v_{max} (cm⁻¹) = 1684, 1478, 1413, 1264, 1208, 731, 702, 586.

7-(*Dibenzo*[*b*,*d*]*furan*-4-*yl*)-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2ah)

According to general procedure C with **1ah**: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (8 : 1 : 0.2, v : v) to afford **2ah**

in 40% yield (32 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.62 (d, *J* = 1.6 Hz, 1H), 8.19 (dd, *J* = 8.0, 1.8 Hz, 1H), 8.02-7.97 (m, 2H), 7.64-7.59 (m, 2H), 7.53-7.43 (m, 3H), 7.41-7.36 (m, 1H), 4.59 (dd, *J* = 9.3, 5.1 Hz, 1H), 3.39 (dt, *J* = 17.1, 5.4 Hz, 1H), 3.21 (ddd, *J* = 17.2, 8.8, 5.0 Hz, 1H), 2.93-2.75 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 185.3, 156.3, 153.3, 142.0, 136.3, 135.6, 131.3 (d, *J* = 2.2 Hz), 129.5, 128.5, 127.6, 126.7, 125.3, 124.1, 124.0, 123.5, 123.2, 120.9, 120.7, 112.1, 67.7 (d, *J* = 10.8 Hz), 26.7, 25.5; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.66 (s); HRMS (ESI) calcd. for C₂₂H₁₆FO₄S⁺ [M+H]⁺: 395.0748, found: 395.0749; IR (neat) v_{max} (cm⁻¹) = 1719, 1609, 1446, 1264, 1233, 730, 703, 581.

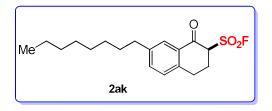
1-Oxo-7-(phenanthren-1-yl)-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2ai)



According to general procedure C with **1ai**: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (8 : 1 : 0.2, v : v) to afford **2ai**

in 48% yield (39 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.77 (d, J = 8.3 Hz,

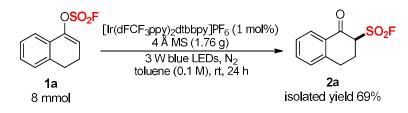
1H), 8.71 (d, J = 8.3 Hz, 1H), 8.29 (d, J = 1.9 Hz, 1H), 7.87 (s, 1H), 7.77 (d, J = 8.2 Hz, 1H), 7.75 (dd, J = 7.8, 2.0 Hz, 1H), 7.71-7.65 (m, 2H), 7.65-7.60 (m, 2H), 7.53 (t, J = 1.2 Hz, 1H), 7.42 (d, J = 7.9 Hz, 1H), 4.56 (dd, J = 9.2, 5.2 Hz, 1H), 3.38 (dt, J = 17.1, 5.5 Hz, 1H), 3.20 (ddd, J = 17.1, 8.6, 5.0 Hz, 1H), 2.91-2.76 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 185.3, 141.8, 140.6, 137.0, 136.8, 131.4, 131.0 (d, J = 2.2 Hz), 130.8, 130.6, 130.3, 129.7, 129.2, 128.9, 128.1, 127.2, 127.2, 126.9, 126.9, 126.4, 123.2, 122.7, 67.7 (d, J = 10.8 Hz), 26.7, 25.5; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.81 (s); HRMS (ESI) calcd. for C₂₄H₁₈FO₃S⁺ [M+H]⁺: 405.0955, found: 405.0949; IR (neat) v_{max} (cm⁻¹) = 1655, 1445, 1264, 1231, 1023, 727, 703, 563.


1-Oxo-7-phenethyl-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2aj)

According to general procedure C with **1aj**: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v) to afford **2aj**

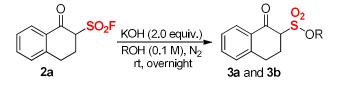
in 65% yield (43 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 1.6 Hz, 1H), 7.34 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.27 (t, *J* = 7.4 Hz, 2H), 7.21-7.15 (m, 4H), 4.49 (dd, *J* = 9.6, 5.0 Hz, 1H), 3.23 (dt, *J* = 17.1, 5.5 Hz, 1H), 3.07 (ddd, *J* = 17.0, 9.0, 4.8 Hz, 1H), 2.97-2.88 (m, 4H), 2.81-2.66 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 185.5, 141.5, 141.1, 140.5, 135.8, 130.8 (d, *J* = 2.4 Hz), 129.1, 128.6, 128.5, 128.0, 126.3, 67.7 (d, *J* = 10.7 Hz), 37.6, 37.3, 26.5, 25.6; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.56 (s); HRMS (ESI) calcd. for C₁₈H₁₆FO₃S⁻ [M-H]⁻: 331.0810, found: 331.0817; IR (neat) v_{max} (cm⁻¹) = 1655, 1446, 1233, 1218, 1013, 923, 735, 563.

7-Octyl-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonyl fluoride (2ak)


According to general procedure C with **1ak**: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 :

1 : 0.2, v : v) to afford **2ak** in 57% yield (39 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 1.7 Hz, 1H), 7.40 (dd, J = 7.8, 1.9 Hz, 1H), 7.21 (d, J = 7.9 Hz,

1H), 4.51 (dd, J = 9.8, 4.9 Hz, 1H), 3.23 (dt, J = 17.0, 5.4 Hz, 1H), 3.09 (ddd, J = 17.0, 9.3, 4.7 Hz, 1H), 2.81-2.75 (m, 1H), 2.73-2.68 (m, 1H), 2.63 (t, J = 7.8 Hz, 2H), 1.63-1.57 (m, 2H), 1.30-1.26 (m, 10H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 185.6, 142.7, 140.2, 135.8, 130.7 (d, J = 2.4 Hz), 129.0, 127.9, 67.8 (d, J = 10.6 Hz), 35.4, 32.0, 31.3, 29.5, 29.3, 29.2, 26.5, 25.6, 22.8, 14.2; ¹⁹F NMR (471 MHz, CDCl₃) δ 56.41 (s); HRMS (ESI) calcd. for C₁₈H₂₄FO₃S⁻ [M-H]⁻: 339.1436 found: 339.1444; IR (neat) v_{max} (cm⁻¹) = 1695, 1610, 1243, 1120, 1095, 873, 733, 703.


5. Gram-scale synthesis and derivatizations of 2a

5.1 Gram-scale experiment

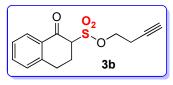
To a 150 mL sealed tube equipped with a rubber septum and a magnetic stirring bar, **1a** (1.82 g, 8 mmol, 1.0 equiv.), $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ (93 mg, 0.08 mmol, 1 mol%) and 4 Å MS (1.76 g) were added. The tube was evacuated and backfilled with N₂ for three times, and toluene (80 mL, 0.1 M) were added. The mixture was stirred and irradiated by 3 W blue LEDs for 24 hours at room temperature. After the reaction was complete (monitored by TLC), the crude mixture was concentrated under vacuum and purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate : AcOH (10 : 1 : 0.2, v : v) as eluent to give **2a** in 69% yield (1.26 g, colorless oil).

5.2 General procedure D: synthesis of 3a and 3b

To a solution of **2a** (46 mg, 0.2 mmol) in alcohols (2 mL, 0.1 M) was added KOH (22 mg, 0.4 mmol, 2.0 equiv.). After stirring at room temperature overnight, the

resulting mixture was concentrated in vacuo and the residue was purified by flash column chromatography to afford the corresponding sulfonate.

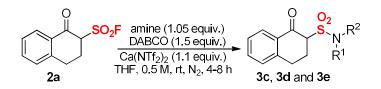
5.3 Characterization of 3a and 3b


Methyl 1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonate (**3a**)

O₂ ОМе 3a

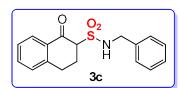
According to general procedure D with methanol: the crude product was filter with silica gel pad without purification to afford **3a** in 95% yield (43.2 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, J = 7.9 Hz, 1H), 7.55 (td, J = 7.6, 1.3 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 7.7 Hz, 1H), 4.24 (dd, J = 6.5, 5.3 Hz, 1H), 4.03 (s, 3H), 3.39

(ddd, J = 17.0, 9.2, 4.8 Hz, 1H), 3.01 (dt, J = 17.1, 5.6 Hz, 1H), 2.81-2.55 (m, 2H);¹³C NMR (126 MHz, CDCl₃) δ 187.7, 143.5, 134.8, 131.4, 129.0, 128.2, 127.3, 65.7, 57.6, 26.3, 25.2; HRMS (ESI) calcd. for C₁₁H₁₃O₄S⁺ [M+H]⁺: 241.0529, found: 241.0519; IR (neat) v_{max} (cm⁻¹) = 1685, 1599, 1355, 1302, 1171, 985, 780, 703.


But-3-yn-1-yl 1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonate (**3b**)

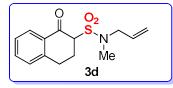
According to general procedure D with but-3-yn-1-ol: the purified crude product was by flash column chromatography on silica gel using petroleum ether :

ethyl acetate (10 : 1, v : v) to afford **3b** in 72% yield (40.0 mg, colorless oil). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 8.05 \text{ (d}, J = 7.9 \text{ Hz}, 1\text{H}), 7.54 \text{ (td}, J = 7.5, 1.2 \text{ Hz}, 1\text{H}), 7.34 \text{ (t}, J = 7.5, 1.2 \text{ Hz}, 100 \text{$ = 7.5 Hz, 1H), 7.28 (d, J = 7.7 Hz, 1H), 4.46 (dt, J = 9.8, 6.9 Hz, 1H), 4.39 (dt, J = 9.8, 6.9 Hz, 1H), 4.26 (dd, *J* = 6.9, 5.5 Hz, 1H), 3.34 (ddd, *J* = 17.0, 8.0, 5.2 Hz, 1H), 3.01 $(dt, J = 17.1, 5.9 \text{ Hz}, 1\text{H}), 2.72-2.63 \text{ (m, 4H)}, 2.03 \text{ (t, } J = 2.7 \text{ Hz}, 1\text{H}); {}^{13}\text{C} \text{ NMR} (126)$ MHz, CDCl₃) δ 187.7, 143.4, 134.8, 131.4, 129.0, 128.2, 127.3, 78.6, 71.0, 69.2, 66.4, 26.5, 25.3, 19.9; HRMS (ESI) calcd. for C₁₄H₁₅O₄S⁺ [M+H]⁺: 279.0686, found: 279.0693; IR (neat) v_{max} (cm⁻¹) = 1683, 1599, 1357, 1170, 971, 891, 732, 590.

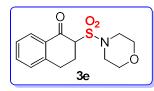

5.4 General procedure E:³ synthesis of **3c**, **3d** and **3e**

To a flame-dried 25 mL round-bottom-flask equipped with a stirring bar, $Ca(NTf_2)_2$ (132 mg, 0.22 mmol, 1.1 equiv.), DABCO (34 mg, 0.3 mmol, 1.5 equiv.) and **2a** (46 mg, 0.2 mmol, 1.0 equiv.) were added and the flask was evacuated and backfilled with N₂ for three times. The amine (0.21 mmol, 1.05 equiv.) was added followed with dry THF (0.3 mL, 0.5 M). The solution was stirred at room temperature and monitored by TLC. Once full consumption of the starting material was reached, NH₄Cl (sat. 5 mL) was added and the resulting mixture was extracted using EtOAc (15 mL × 3). The combined organic phases were washed with brine and dried over MgSO₄. The residue was concentrated under vacuum and purified by flash column chromatography to afford the corresponding sulfonamide.

5.5 Characterization of 3c, 3d and 3e

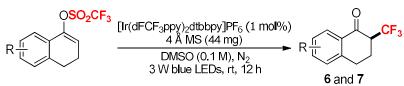

N-Benzyl-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonamide $(3c)^{[1]}$

According to general procedure E with phenylmethanamine: the crude product was purified flash column chromatography on by silica gel using petroleum


ether : ethyl acetate (20 : 1, v : v) to afford **3c** in 92% yield (58 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.00 (dd, J = 7.9, 1.2 Hz, 1H), 7.52 (td, J = 7.5, 1.4 Hz, 1H), 7.39-7.37 (m, 2H), 7.34-7.30 (m, 3H), 7.29-7.24 (m, 2H), 5.51 (dd, J = 7.0, 6.3 Hz, 1H), 4.42 (dd, J = 13.9, 7.4 Hz, 1H), 4.32 (dd, J = 13.9, 5.5 Hz, 1H), 3.88 (dd, J = 9.3, 5.2 Hz, 1H), 3.24 (ddd, J = 16.8, 6.4, 4.7 Hz, 1H), 2.94 (ddd, 16.8, 9.2, 4.7 Hz, 1H), 2.69-2.56 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 190.8, 144.0, 136.6, 134.8, 131.5, 129.0, 128.9, 128.2, 128.1, 128.0, 127.3, 65.7, 47.8, 27.2, 24.4.

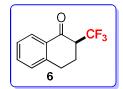
N-Allyl-N-methyl-1-oxo-1,2,3,4-tetrahydronaphthalene-2-sulfonamide (3d)

According to general procedure E with *N*-methylprop-2-en-1-amine: the crude product was purified flash column chromatography on by silica gel using petroleum ether : ethyl acetate (10 : 1, v : v) to afford **3d** in 55% yield (44 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.04 (dd, J = 7.9, 1.3 Hz, 1H), 7.52 (td, J = 7.5, 1.4 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 7.7 Hz, 1H), 5.81 (ddt, J = 16.6, 10.1, 6.2 Hz, 1H), 5.29 (dq, J = 17.1, 1.5 Hz, 1H), 5.23 (dq, J = 10.2, 1.3 Hz, 1H), 4.07 (t, J = 4.8 Hz, 1H), 3.93 (dd, J = 15.3, 5.9 Hz, 1H), 3.73 (dd, J = 15.3, 6.5 Hz, 1H), 3.52 (ddd, J = 16.5, 11.3, 4.7 Hz, 1H), 2.90 (s, 4H), 2.85-2.71 (m, 1H), 2.56 (ddt, J = 14.4, 11.2, 5.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 190.2, 144.2, 134.6, 133.2, 131.7, 129.1, 127.9, 127.0, 118.8, 65.5, 53.6, 34.8, 26.2, 25.4; HRMS (ESI) calcd. for C₁₄H₁₈NO₃S⁺ [M+H]⁺: 280.1002, found: 280.1009; IR (neat) v_{max} (cm⁻¹) = 1678, 1599, 1453, 1330, 1141, 987, 920, 732.


2-(Morpholinosulfonyl)-3,4-dihydronaphthalen-1(2H)-one (3e)

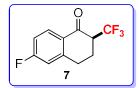
According to general procedure E with morpholine: the crude product was purified flash column chromatography on by silica gel using petroleum ether : ethyl acetate (20 : 1, v :

v) to afford **3e** in 79% yield (47 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 7.9 Hz, 1H), 7.54-7.51 (td, J = 7.6, 1.2 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 4.04 (t, J = 5.0 Hz, 1H), 3.77-3.69 (m, 4H), 3.51-3.42 (m, 3H), 3.39-3.34 (m, 2H), 2.93 (dt, J = 17.1, 4.8 Hz, 1H), 2.77 (dq, J = 14.1, 4.7 Hz, 1H), 2.60-2.53 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 189.9, 143.9, 134.6, 131.7, 129.1, 128.0, 127.1, 66.9, 65.7, 46.5, 26.3, 25.6; HRMS (ESI) calcd. for C₁₄H₁₈NO4S⁺ [M+H]⁺: 291.0951, found: 291.0958; IR (neat) v_{max} (cm⁻¹) = 1678, 1341, 1263, 1148, 956, 730, 702, 572.


6. General procedure F: synthesis of 6 and 7

To a 10 mL sealed tube equipped with a rubber septum and a magnetic stirring bar, 3,4-dihydronaphthalen-1-yl triflate⁴ (0.2 mmol), $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ (2 mg, 0.002 mmol, 1 mol%) and 4 Å MS (44 mg) were added. The tube was evacuated and

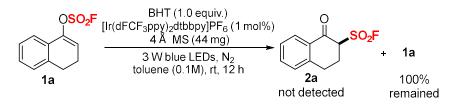
backfilled with N_2 for three times, and DMSO (2 mL, 0.1 M) were added. The mixture was stirred and irradiated by 3 W blue LEDs for 12 hours at room temperature. After the reaction was complete (monitored by TLC), the crude mixture was purified directly by flash column chromatography on silica gel using petroleum ether : ethyl acetate (40 : 1, v : v) as eluent to give **6** and **7**.


2-(Trifluoromethyl)-3,4-dihydronaphthalen-1(2H)-one (6)^[5]

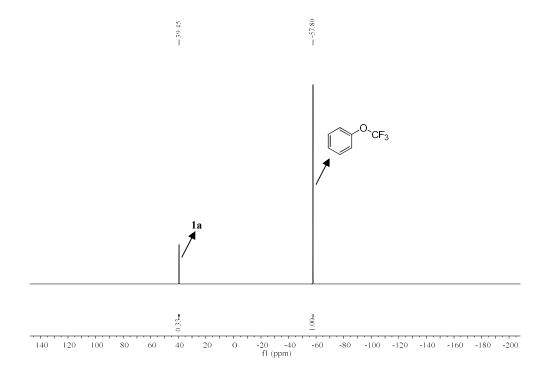
According to general procedure F: the crude product was purified by flash column chromatography on silica gel using petroleum ether : ethyl acetate (40 : 1, v : v) to afford **6** in 67% yield (32 mg,

colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.07 (dd, J = 7.9, 1.2 Hz, 1H), 7.53 (td, J = 7.5, 1.4 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 7.7 Hz, 1H), 3.27 (dtd, J = 17.7, 8.8, 4.5 Hz, 1H), 3.15-3.04 (m, 2H), 2.50 (dt, J = 13.7, 4.6 Hz, 1H), 2.32-2.25 (m, 1H); ¹⁹F NMR (471 MHz, CDCl₃) δ -67.42 (d, J = 8.6 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 190.4, 143.2, 134.3, 132.0 (q, J = 1.7 Hz), 128.9, 127.8, 127.1, 125.2 (q, J = 279.7 Hz), 50.9 (q, J = 25.6 Hz), 27.6, 23.5; IR (neat) v_{max} (cm⁻¹) = 1692, 1598, 1328, 1178, 1079, 1011, 751, 553.

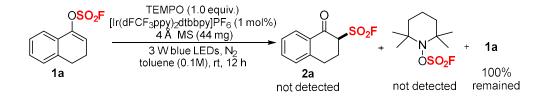
6-Fluoro-2-(trifluoromethyl)-3,4-dihydronaphthalen-1(2H)-one (7)

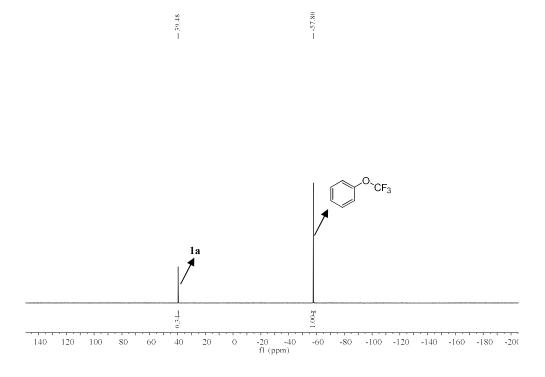

According to general procedure F: the crude product was purified flash column chromatography on by silica gel using petroleum ether : ethyl acetate (40 : 1, v : v) to afford 7 in 78%

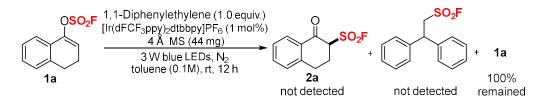
yield (38 mg, colorless oil). ¹H NMR (500 MHz, CDCl₃) δ 8.06 (dd, J = 8.8, 5.9 Hz, 1H), 7.01 (td, J = 8.5, 2.5 Hz, 1H), 6.95 (dd, J = 9.0, 2.5 Hz, 1H), 3.27 (dtd, J = 17.6, 8.8, 4.5 Hz, 1H), 3.15-3.04 (m, 2H), 2.50 (dt, J = 13.8, 4.7 Hz, 1H), 2.31-2.23 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 188.9, 166.2 (d, J = 257.1 Hz), 146.4 (d, J = 9.3 Hz), 131.1 (d, J = 10.1 Hz), 128.6 (q, J = 2.5 Hz), 125.1 (q, J = 279.9 Hz), 115.2 (d, J =21.6 Hz), 115.0 (d, J = 22.2 Hz), 50.7 (q, J = 25.7 Hz), 27.7, 23.3 (q, J = 2.5 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -67.42 (d, J = 8.9 Hz), -103.02 (dd, J = 14.5, 7.8 Hz); HRMS (ESI) calcd. for C₁₁H₈F₄ONa⁺ [M+Na]⁺: 255.0403 found: 255.0397; IR (neat) v_{max} (cm⁻¹) = 1702, 1494, 1406, 1203, 1161, 900, 789, 585.


7. Mechanism studies

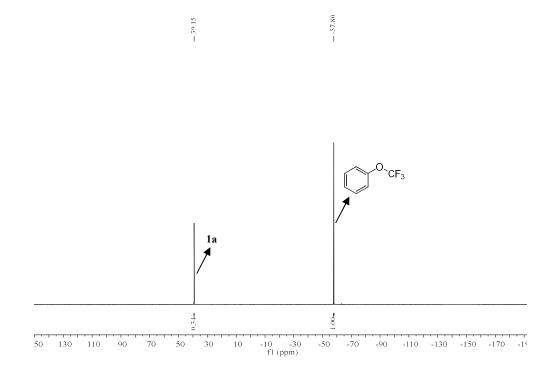
7.1 Radical capture experiments


7.1.1 Radical capture experiment with BHT

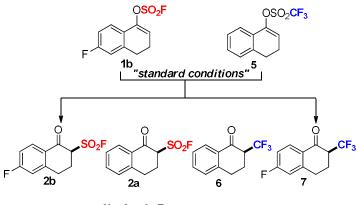

To a 10 mL sealed tube equipped with a rubber septum and magnetic stirring bar, **1a** (46 mg, 0.2 mmol), [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (2 mg, 0.002 mmol, 1 mol%), BHT (44 mg, 0.2 mmol, 1.0 equiv.) and 4 Å MS (44 mg) were added. The tube was evacuated and backfilled with N₂ for three times, and added with toluene (2.0 mL, 0.1 M). The mixture was stirred and irradiated by 3 W blue LEDs for 12 hours at room temperature. After that, the system was detected by crude ¹⁹F NMR with trifluoromethoxybenzene (32.4 mg, 0.2 mmol) as the internal standard.


7.1.2 Radical capture experiment with TEMPO

To a 10 mL sealed tube equipped with a rubber septum and magnetic stirring bar, **1a** (46 mg, 0.2 mmol), $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ (2 mg, 0.002 mmol, 1 mol%), TEMPO (31 mg, 0.2 mmol, 1.0 equiv.) and 4 Å MS (44 mg) were added. The tube was evacuated and backfilled with N₂ for three times, and added with toluene (2.0 mL, 0.1 M). The mixture was stirred and irradiated by 3 W blue LEDs for 12 hours at room temperature. After that, the system was detected by crude ¹⁹F NMR with trifluoromethoxybenzene (32.4 mg, 0.2 mmol) as the internal standard.

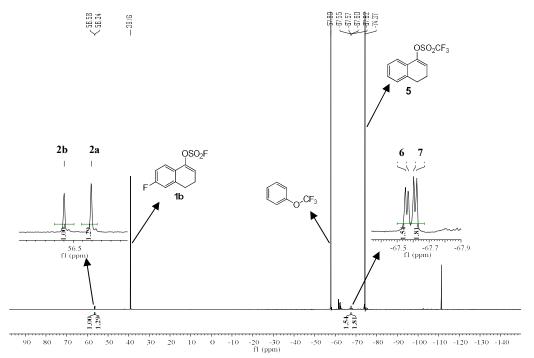


7.1.3 Radical capture experiment with 1,1-diphenylethylene



To a 10 mL sealed tube equipped with a rubber septum and magnetic stirring bar, **1a** (46 mg, 0.2 mmol), [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (2 mg, 0.002 mmol, 1 mol%),

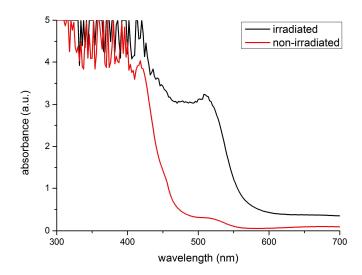
1,1-diphenylethylene (36 mg, 0.2 mmol, 1.0 equiv.) and 4 Å MS (44 mg) were added. The tube was evacuated and backfilled with N_2 for three times, and added with toluene (2.0 mL, 0.1 M). The mixture was stirred and irradiated by 3 W blue LEDs for 12 hours at room temperature. After that, the system was detected by crude ¹⁹F NMR with trifluoromethoxybenzene (32.4 mg, 0.2 mmol) as the internal standard.


7.2 Cross-over reaction

2b : **2a** : **6** : **7** = 1 : 1.3 : 0.5 : 0.6

To a 10 mL sealed tube equipped with a rubber septum and a magnetic stirring bar, **1b** (25 mg, 0.1 mmol), 5^4 (28 mg, 0.1 mmol), $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ (2 mg, 0.002 mmol, 1 mol%) and 4 Å MS (44 mg) were added. The tube was evacuated and backfilled with N₂ for three times, and added with toluene (2.0 mL, 0.1 M). The

mixture was stirred and irradiated by 3 W blue LEDs for 12 hours at room temperature. The ratio of **2b** to **2a** to **6** to **7** (1:1.3:0.5:0.6) were determined by crude ¹⁹F NMR with trifluoromethoxybenzene (32.4 mg, 0.2 mmol) as the internal standard.



7.3 Determination of the photon quantum yield^[6]

Determination of the light intensity at 436 nm: the photon flux of the spectrophotometer was determined by standard ferrioxalate actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving 2.21 g of potassium ferrioxalate hydrate in 30 mL of 0.05 M H₂SO₄. A buffered solution of phenanthroline was prepared by dissolving 50 mg of phenanthroline and 11.25 g of sodium acetate in 50 mL of 0.5 M H₂SO₄. Both solutions were stored in the dark. To determine the photon flux of the spectrophotometer, 2.0 mL of the ferrioxalate solution was placed in a cuvette and irradiated for 90.0 seconds at $\lambda = 436$ nm with an emission slit width at 10.0 nm. After irradiation, 0.35 mL of the phenanthroline solution was added to the cuvette. The solution was then allowed to rest for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm (Fig. S2). A non-irradiated sample was also prepared and the absorbance at 510 nm measured. Conversion was calculated using eq 1.

mol
$$\operatorname{Fe}^{2^+} = \frac{V \cdot \triangle A}{1 \cdot \varepsilon}$$
 (1)

Fig. S2 Absorbance of the ferrioxalate actinometer solution.

Where V is the total volume (0.00235 L) of the solution after addition of phenanthroline, ΔA is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, 1 is the path length (1.000 cm), and ε is the molar absorptivity at 510 nm (11,100 L mol⁻¹ cm⁻¹). The photon flux can be calculated using eq 2.

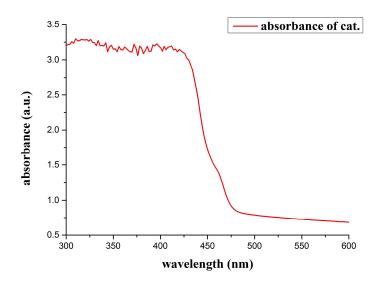
photo flux =
$$\frac{\text{mol } \text{Fe}^{2+}}{\Phi \cdot t \cdot f}$$
 (2)

Where Φ is the quantum yield for the ferrioxalate actinometer (1.01 for a 0.15 M solution at $\lambda = 436$ nm), t is the time (90.0 s), and *f* is the fraction of light absorbed at $\lambda = 436$ nm (0.9998, *vide infra*). The photon flux was calculated (average of three experiments) to be 6.81×10^{-9} einstein s⁻¹.

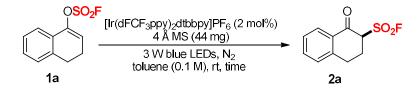
Sample calculation:

mol Fe²⁺ =
$$\frac{0.00235 \text{L} \cdot 2.92206}{1.000 \text{ cm} \cdot 11100 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}} = 6.19 \times 10^{-7} \text{ mol}$$

photo flux = $\frac{6.19 \times 10^{-7} \text{ mol}}{1.01 \cdot 90.0 \text{ s} \cdot 0.9998} = 6.81 \times 10^{-9}$ einstein s⁻¹


Determination of fraction of light absorbed at 436 nm for the ferrioxalate solution: the absorbance of the above ferrioxalate solution at 436 nm was measured to

be 2.92206. The fraction of light absorbed f by this solution was calculated using eq 3, where A is the measured absorbance at 436 nm.


$$f = 1 - 10^{-A}$$
(3)

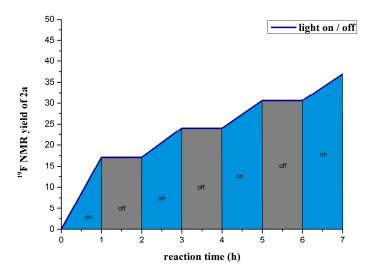
The absorbance at 436 nm for a 2.0×10^{-4} M solution is >3 indicating the fraction of light absorbed is >0.999 (Fig. S3).

Fig. S3 Absorbance of catalyst.

Determination of reaction time

The tube was charged with **1a** (46 mg, 0.2 mmol, 1.0 equiv.), 4 Å MS (44 mg), [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (4 mg, 0.004 mmol, 2 mol%) and toluene (2.0 mL, 0.1 M). The sample was stirred at room temperature and irradiated (λ = 436 nm) for 7200 s (2 h). After irradiation, trifluoromethoxybenzene (32 mg, 0.2 mmol, 1.0 equiv.) was added as the internal standard. Yield of product formed was determined by ¹⁹F NMR is 21%. The quantum yield was determined. Essentially all incident light (*f* > 0.999, vide infra) is absorbed by the [Ir(dFCF₃ppy)₂dtbbpy]PF₆ at the reaction conditions described above.

$$\Phi = \frac{\text{product}}{\text{flux} \cdot t \cdot f}$$
(4)


Sample quantum yield calculation:

$$\Phi = \frac{4.2 \times 10^{-5} \text{ mol}}{6.81 \times 10^{-9} \text{ einstein } \text{s}^{-1} \cdot 7200 \text{ s} \cdot 1.00} = 0.8611$$

7.4 Light on-off experiments

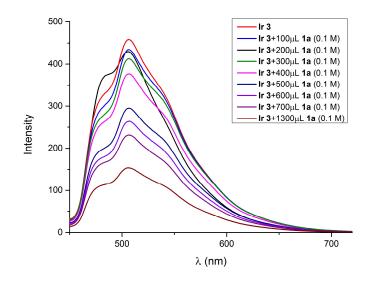
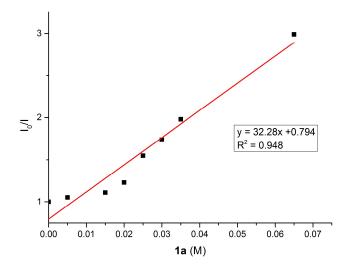

A tube was equipped with a stirring bar and charged with **1a** (46 mg, 0.2 mmol, 1.0 equiv.), [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (2 mg, 0.002 mmol, 1 mol%), 4 Å MS (44 mg) trifluoromethoxybenzene (32 mg, 0.2 mmol, 1.0 equiv.) and toluene (2.0 mL, 0.1 M). The reaction was stirred at room temperature and the reaction was alternatively irradiated with 3 W blue LEDs and kept in the dark in 1 hour intervals. Yield of **2a** was determined by crude ¹⁹F NMR with trifluoromethoxybenzene as the internal standard (Fig. S4).

Fig. S4 Line chart of light on-off experiments.



7.5. Luminescence quenching of [Ir(dFCF₃ppy)₂dtbbpy]PF₆ by 1a

Fig. S5 Emission quenching of $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ by **1a** (0.1 M) after irradiation at 460 nm. [Ir] = 0.001M in toluene.

Fig. S6 Stern-Volmer plot for the emission quenching of [Ir(dFCF₃ppy)₂dtbbpy]PF₆ by **1a** (0.1 M).

Fig. S7 Emission quenching of [Ir(dFCF₃ppy)₂dtbbpy]PF₆ and 4 Å MS by **1a** (0.1 M) after irradiation at 460 nm. [Ir] = 0.001M, 4 Å MS (44 mg) in toluene.

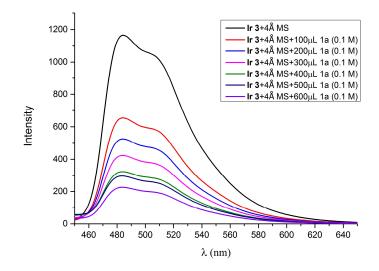
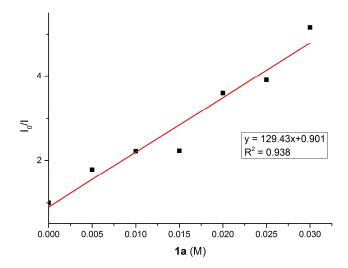
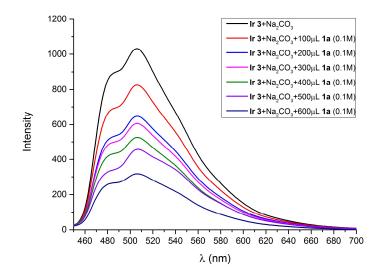
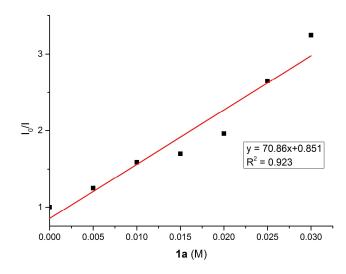


Fig. S8 Stern-Volmer plot for the emission quenching of $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ and 4 Å MS by 1a (0.1 M).

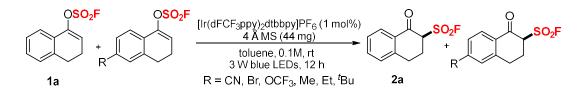
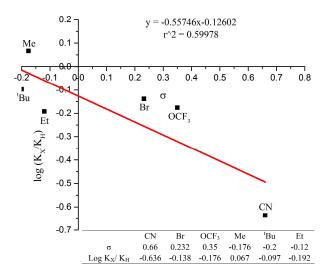
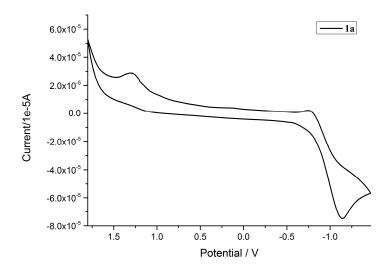

Fig. S9 Emission quenching of $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ and Na₂CO₃ by 1a (0.1 M) after irradiation at 460 nm. [Ir] = 0.001 M, Na₂CO₃ = 0.1 M toluene.

Fig. S10 Stern-Volmer plot for the emission quenching of [Ir(dFCF₃ppy)₂dtbbpy]PF₆ and Na₂CO₃ by **1a** (0.1 M).



7.6 Hammett equation

To a flame dried sealing tube equipped with a stirring bar, 4 Å MS (44 mg) and $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ (2 mg, 0.002 mmol, 1 mol%), **1a** (22 mg, 0.1 mmol) and other substrates (0.1 mmol) (R = CN, Br, OCF₃, Me, Et, ^{*t*}Bu) were added respectively. Toluene (2 mL) was added afterwards. The mixture were irradiated by 3 W blue LEDs for 12 h at room temperature, and then monitored by crude ¹⁹F NMR. The electronic effect on the aromatic ring of styrene is significant and a negative ρ value (-0.55746) in Hammett plot was given in below, which means a cation or radical cation intermediate formed during the reaction process (Fig. S11).


Fig. S11 Hammett plot of para-substituents in aromatic rings.

7.7 Cyclic voltammetry experiment

General information: cyclic voltammetry (CV) experiments were conducted in a 10 mL glass vial fitted with a glassy carbon working electrode (3 mm in diameter), a platinum wire auxiliary electrode and SCE reference electrode. Current was reported in A, while all potentials were reported in V against the Fc⁺/Fc redox couple. The scan rate was 0.1 V/s.

Fig. S12 Cyclic voltammetry curve of substrate 1a

Cyclic voltammograms of **1a** (0.1 mmol) in acetonitrile (MeCN) containing 5 mmol "Bu₄NPF₆ as the electrolyte.

7.8 DFT Calculations on the triplet energies of substrate $1a^{[7]}$

In order to clarify the initiation mechanism, we applied DFT calculations on the triplet energy of enol fluorosulflate **1a**. The reported triplet energy of $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ is 251 kJ/mol.^[8] The calculated triplet energy of **1a**, in which the two SOMOs are mainly localized on the C=C (Fig. S12) is 100 kJ/mol. The calculated decomposition energy of vinyl fluorosulfate **1a** into enol radical and fluorosulfinyl radical is 134 kJ/mol, which are much lower than the triplet energy of $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ (Scheme S1). The DFT calculations show that the energy transfer from the excited photocatalyst to substrate is possible.

Scheme S1 Triplet energy of 1a and [Ir(dFCF₃ppy)₂dtbbpy]PF₆.

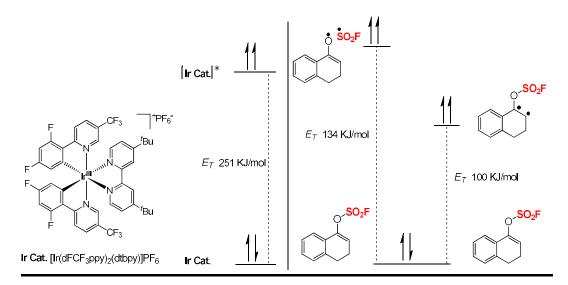
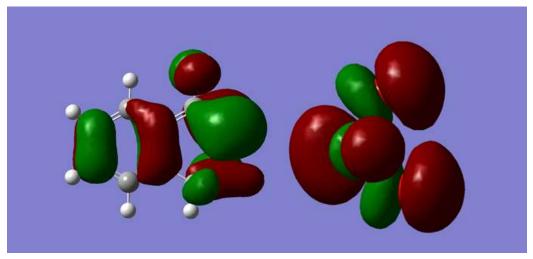



Fig. S13 SOMOs of the triplet state of 1a by B3LYP/ 6-31+g(d,p).guess=(mix,always)

nosymm

Computational methods:

All calculations were calculated using the Gaussian 09 package^[9]. The geometries of catalyst and substrate were optimized, without imposing symmetry constraints, at the B3LYP density functional level using the 6-31+g(d,p) basis set. The minima were confirmed with all real frequencies.

Energies and Cartesian coordinates of all structures:

3,4-dihydronaphthalen-1-yl sofluoroulfate **1a** Ground state: singlet Opt at B3LYP/6-31-31+g(d,p) nosymm

SCF Done: E(RB3LY	(P) = -1110.146	288 A.U.	
С	-5.13800000	-2.63700000	-0.41200000
С	-6.16200000	-3.04700000	-1.14100000
С	-7.19000000	-2.23700000	-1.33300000
С	-7.20100000	-1.01500000	-0.78100000
С	-6.18400000	-0.52700000	-0.02300000
С	-5.15300000	-1.41000000	0.11200000
С	-8.40000000	-0.05000000	-1.08200000
С	-8.60300000	1.00400000	0.01200000
С	-7.30800000	1.48000000	0.55000000
С	-6.17600000	0.70100000	0.50100000
F	-5.50300000	3.99800000	0.54900000
Н	-4.28600000	-3.30300000	-0.25200000
Н	-6.15300000	-4.04300000	-1.58800000
Н	-8.02100000	-2.57500000	-1.95600000
Н	-4.27600000	-1.13400000	0.70900000
Н	-9.35400000	-0.59800000	-1.24600000
Н	-8.18200000	0.43900000	-2.05900000
Н	-9.20500000	1.85300000	-0.38500000
Н	-9.19200000	0.60100000	0.86600000
Н	-7.53700000	2.49500000	0.97400000
0	-5.02000000	1.26900000	1.06700000
0	-3.67800000	3.16000000	2.21100000
0	-5.98900000	2.87800000	2.85700000
S	-5.02900000	2.79600000	1.72200000

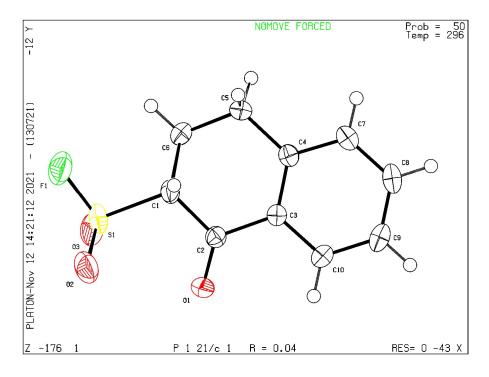
Triplet at Opt B3LYP/6-31+g(d,p) guess=(mix,always) nosymm

SCF Done: E(RB3LY	(P) = -1110.1082	260 A.U.	
С	-5.13800000	-2.63700000	-0.41200000

С	-6.16200000	-3.04700000	-1.14100000
С	-7.19000000	-2.23700000	-1.33300000
С	-7.20100000	-1.01500000	-0.78100000
С	-6.18400000	-0.52700000	-0.02300000
С	-5.15300000	-1.41000000	0.11200000
С	-8.40000000	-0.05000000	-1.08200000
С	-8.60300000	1.00400000	0.01200000
С	-7.30800000	1.48000000	0.55000000
С	-6.17600000	0.70100000	0.50100000
F	-5.50300000	3.99800000	0.54900000
Н	-4.28600000	-3.30300000	-0.25200000
Н	-6.15300000	-4.04300000	-1.58800000
Н	-8.02100000	-2.57500000	-1.95600000
Н	-4.27600000	-1.13400000	0.70900000
Н	-9.35400000	-0.59800000	-1.24600000
Н	-8.18200000	0.43900000	-2.05900000
Н	-9.20500000	1.85300000	-0.38500000
Н	-9.19200000	0.60100000	0.86600000
Н	-7.53700000	2.49500000	0.97400000
0	-5.02000000	1.26900000	1.06700000
0	-3.67800000	3.16000000	2.21100000
0	-5.98900000	2.87800000	2.85700000
S	-5.02900000	2.79600000	1.72200000

Enol radical

Doublet Opt at B3LYI	P/6-31+g(d,p) gu	uess=(mix,always)) nosymm
SCF Done: E(RB3LY	P) = -461.70472	0 A.U.	
С	-5.13800000	-2.63700000	-0.41200000
С	-6.16200000	-3.04700000	-1.14100000


С	-7.19000000	-2.23700000	-1.33300000
С	-7.20100000	-1.01500000	-0.78100000
С	-6.18400000	-0.52700000	-0.02300000
С	-5.15300000	-1.41000000	0.11200000
С	-8.40000000	-0.05000000	-1.08200000
С	-8.60300000	1.00400000	0.01200000
С	-7.30800000	1.48000000	0.55000000
С	-6.17600000	0.70100000	0.50100000
Н	-4.28600000	-3.30300000	-0.25200000
Н	-6.15300000	-4.04300000	-1.58800000
Н	-8.02100000	-2.57500000	-1.95600000
Н	-4.27600000	-1.13400000	0.70900000
Н	-9.35400000	-0.59800000	-1.24600000
Н	-8.18200000	0.43900000	-2.05900000
Н	-9.20500000	1.85300000	-0.38500000
Н	-9.19200000	0.60100000	0.86600000
Н	-7.53700000	2.49500000	0.97400000
0	-5.02000000	1.26900000	1.06700000

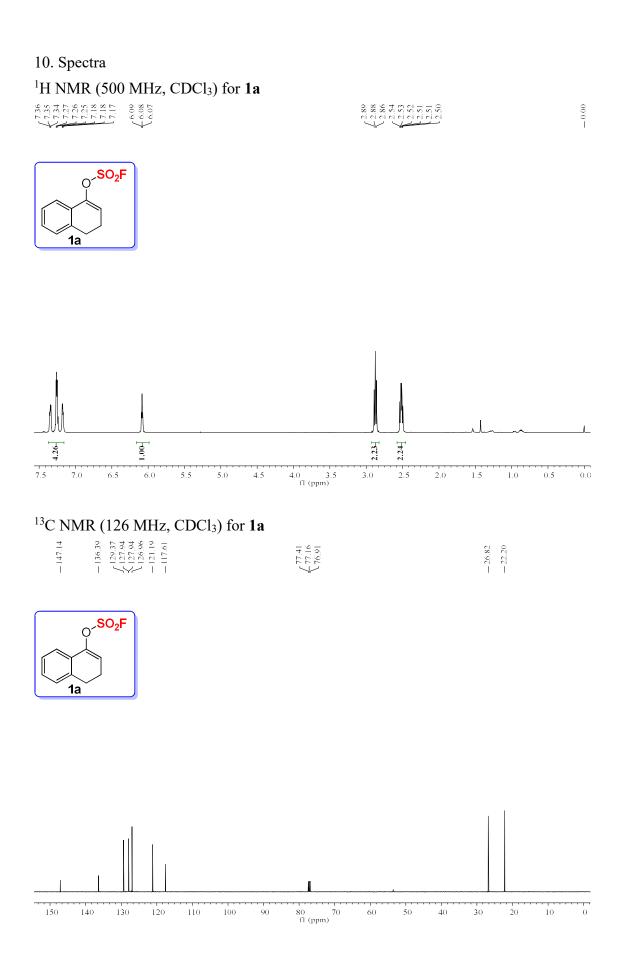
Fluorosulfonyl radical

Doublet Opt at B3LYP/6-31+g(d,p) guess=(mix,always) nosymm

SCF Done: E(RB3LY	(P) = -648.390661	A.U.	
F	-5.50300000	3.99800000	0.54900000
0	-3.67800000	3.16000000	2.21100000
0	-5.98900000	2.87800000	2.85700000
S	-5.02900000	2.79600000	1.72200000

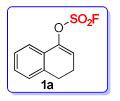
8. X-ray crystal data for 2a

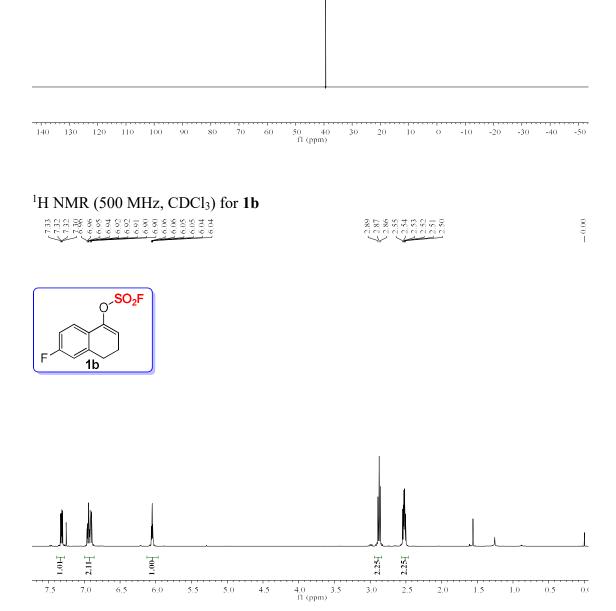
Thermal ellipsoids are set at 50% probability. Crystal data and structure refinement for **2a** (CCDC: 2142067)


Crystal data allu structure r	$\begin{array}{c} \text{efficient for } \mathbf{2a} \ (\text{CCDC}, \ 2142007) \end{array}$
Empirical formula	$C_{10}H_9FO_3S$
Formula weight	228.23
Temperature/K	296
Cryst Crystal system al system	monoclinic
Identification code	2a
Space group	$P2_1/c$
a/Å	10.2088(6)
b/Å	11.1724(5)
c/Å	8.9589(5)
α/\circ	90
β/°	108.436(2)
γ/°	90
Volume/Å ³	969.38(9)
Z	4
$\rho_{calcg}g/cm^3$	1.564
μ/mm^{-1}	0.331
F(000)	472.0
Crystal size/mm ³	0.1 imes 0.1 imes 0.1
Radiation	MoK\ α ($\lambda = 0.71073$)
2Θ range for data collection/°	2.78 to 24.99
Index ranges	-12<=h<=12; -12<=k<=12; -10 <l=10< td=""></l=10<>

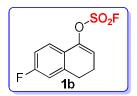
Reflections collected	15025
Independent reflections	1711 [R _{int} = 0.0332, Rsigma = 0.0193]
Data/restraints/parameters	1711/0/136
Goodness-of-fit on F ²	1.044
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0367, wR_2 = 0.0935$
Final R indices (all data)	$R_1 \!=\! 0.0444, wR_2 \!=\! 0.0976$
Largest diff. peak/hole / e Å ⁻³	0.453/-0.335

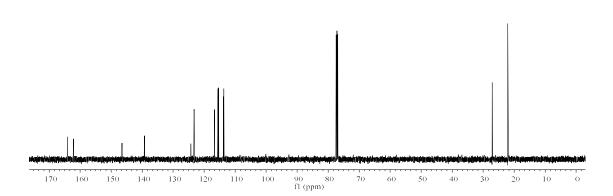
9. Reference

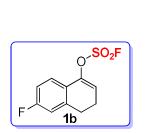

- [1] F. C. Sousa e Silva, K. Doktor and Q. Michaudel, Modular Synthesis of Alkenyl Sulfamates and β-Ketosulfonamides via Sulfur(VI) Fluoride Exchange (SuFEx) Click Chemistry and Photomediated 1,3-Rearrangement, *Org. Lett.*, 2021, 23, 5271-5276.
- [2] (a) J. Yu, H. Zhao, S. Liang, X. Bao and C. Zhu, A Facile and Regioselective Synthesis of 1-Tetralones via Silver-catalyzed Ring Expansion, *Org. Biomol. Chem.*, 2015, 13, 7924-7927; (b) J. Fang, L. Li, C. Yang, J. Chen, G. J. Deng and H. Gong, Tandem Oxidative Ring-Opening/Cyclization Reaction in Seconds in Open Atmosphere for the Synthesis of 1-Tetralones in Water-Acetonitrile, *Org. Lett.*, 2018, 20, 7308-7311.
- [3] (a) T. S. Lou, S. W. Bagley and M. C. Willis, Cyclic Alkenylsulfonyl Fluorides: Palladium-Catalyzed Synthesis and Functionalization of Compact Multifunctional Reagents, *Angew. Chem., Int. Ed.*, 2019, 58, 18859-18863; (b) Y. Zhang, W. Chen, T. Tan, Y. Gu, S. Zhang, J. Li, Y. Wang, W. Hou, G. Yang, P. Ma and H. Xu, Palladium-catalyzed One-pot Phosphorylation of Phenols Mediated by Sulfuryl Fluoride, *Chem. Commun.*, 2021, 57, 4588-4591.
- [4] Y.-J. Ping, Y.-M. Zhou, L.-L. Wu, Z.-R. Li, X. Gu,; X.-L. Wan, Z.-J. Xu and C.-M. Che, Fe-BPsalan Complex Catalyzed Highly Enantioselective Diels-Alder Reaction of Alkylidene β-Ketoesters, Org. Chem. Front., 2021, 8, 1910-1917.
- [5] V. A. Vil, V. M. Merkulova, A. I. Ilovaisky, S. A. Paveliev, G. I. Nikishin, and A.
 O. Terent'ev, Electrochemical Synthesis of Fluorinated Ketones from Enol Acetates and Sodium Perfluoroalkyl Sulfinates, *Org. Lett.*, 2021, 23, 5107-5112.
- [6] (a) Handbook of Photochemistry (third edition), written by Marco Montalti, Alberto Credi, Luca Prodi, M. Teresa Gandolfi; (b) M. A. Cismesia and T. P. Yoon, Characterizing Chain Processes in Visible Light Photoredox Catalysis, *Chem. Sci.*, 2015, 6, 5426-5434.


- [7] L. Xie, X. Zhen, S. Huang, X. Su, M. Lin and Y. Li, Photoinduced Rearrangement of Vinyl Tosylates to β-Ketosulfones, *Green Chem.*, 2017, **19**, 3530-3534.
- [8] (a) J. I. Day, K. Teegardin, J. Weaver and J. Chan, Advances in Photocatalysis: A Microreview of Visible Light Mediated Ruthenium and Iridium Catalyzed Organic Transformations, *Org. Pro. Res. Dev.*, 2016, 20, 1156-1163; (b) M. R. Becker, E. R. Wearing and C. S. Schindler, Synthesis of Azetidines via Visible-light-mediated Intermolecular [2+2] Photocycloadditions, *Nat. Chem.*, 2020, 12, 898-905.
- [9] Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

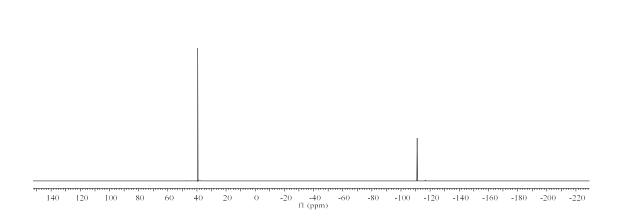
¹⁹F NMR (471 MHz, CDCl₃) for 1a


- 39.42

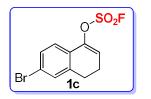


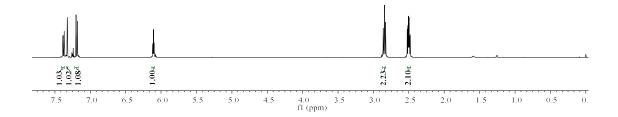

¹³C NMR (126 MHz, CDCl₃) for **1b**

-164.12 -162.14 -146.51 -146.51 -139.27 -139.23 -124.26 -124.26 -123.329 -10.655 -115.655 -113.63	- 27.10
--	---------

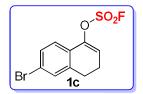


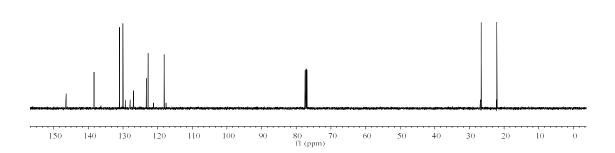
$^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 1b

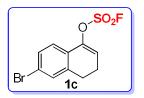


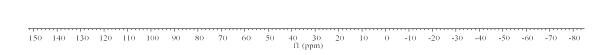

5	\sim	∞	0
0	0	Ö.	_
_	_	_	_
-	-	-	
-	-	-	_
÷.	- X.	- i .	- i -
-	-	\checkmark	_
		-	

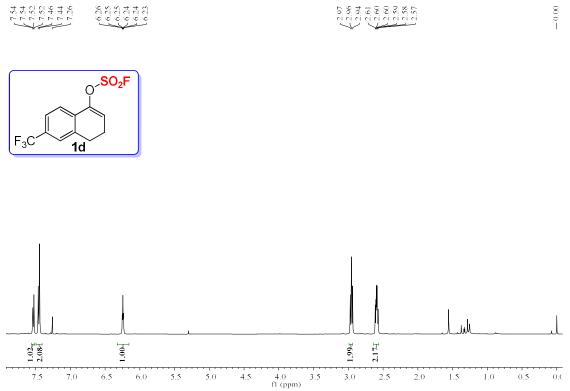
¹H NMR (500 MHz, CDCl₃) for **1**c

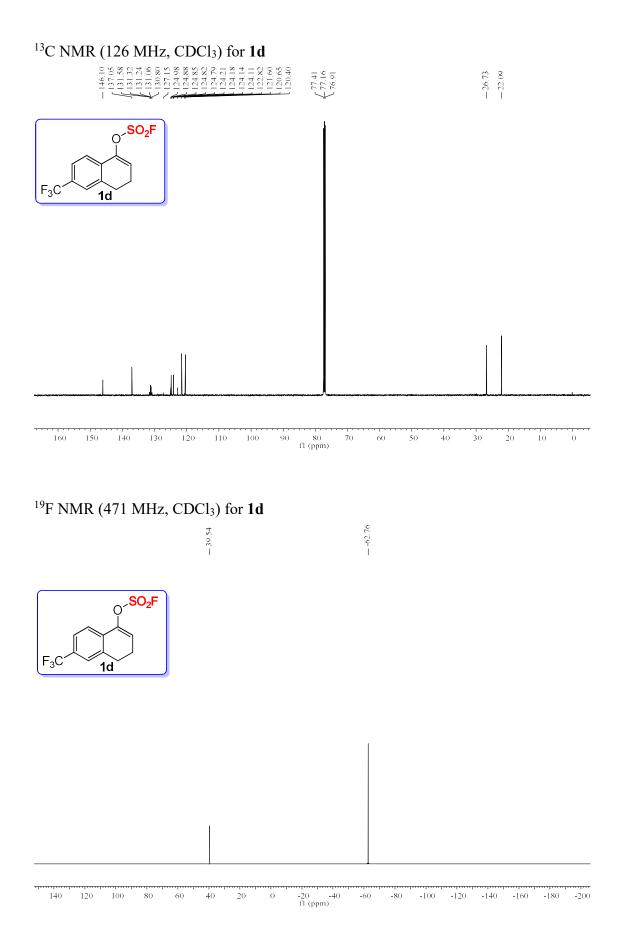

2.84 2.51 2.51 2.48 2.52 2.53 2.54 2.54 2.48 - 0.00



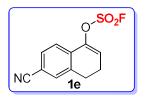

^{13}C NMR (126 MHz, CDCl₃) for 1c

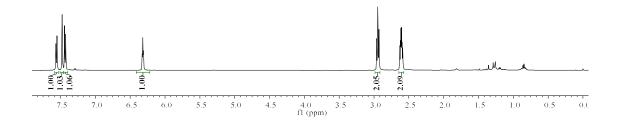

0	-	010000		
4	ŝ	000000	292	0 0
Ú.	×	-09678	4 <u>- 0</u>	- 19
4	2	E 2 2 2 2 2	222	52 6
_				9.9




- 39.49

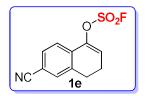
$^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for 1d

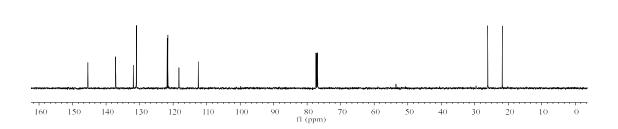




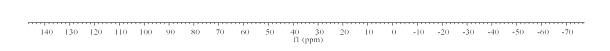
¹H NMR (500 MHz, CDCl₃) for **1e**

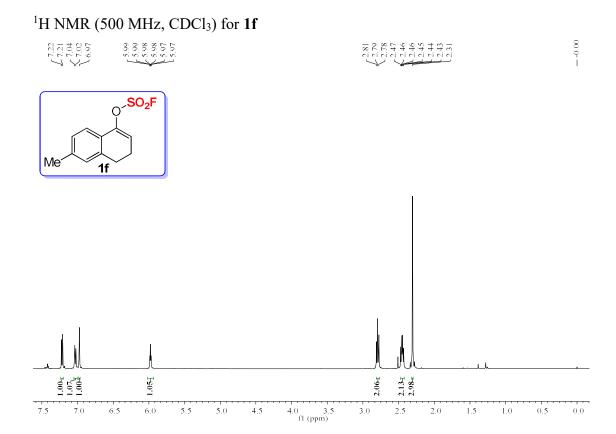
55 55 44 43 43	31 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 3 3 2 8
	000000	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

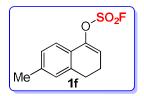

---0.00

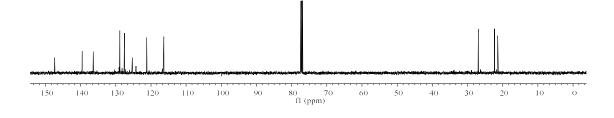


¹³C NMR (126 MHz, CDCl₃) for 1e

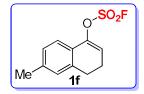

44	20 95 95	79 28 48	916	13
145	137 131 130 130	121	77.1	26.1
1	$\langle \lor \lor$	\vee / 1		ΪĨ



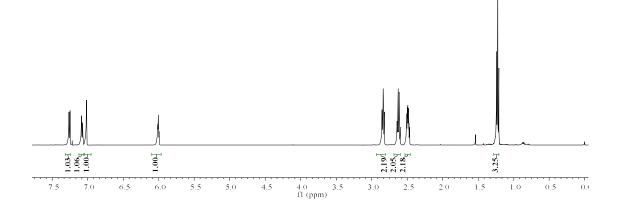




^{13}C NMR (126 MHz, CDCl₃) for 1f

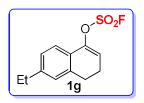

- 147.37	- 139.57 - 136.43	-128.85 -127.52 -127.53 -125.33 -121.22	- 77.41 - 77.16 - 76.91	-26.95 -22.32 -21.42
		1/// \	\searrow	

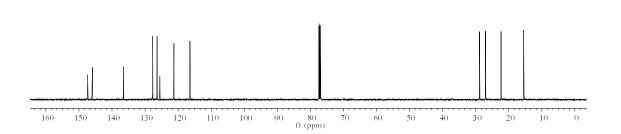
 $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 1f

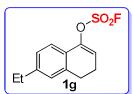


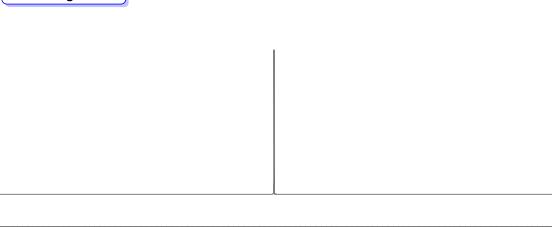
150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 fl (ppm)

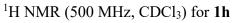
1 H NMR (500 MHz, CDCl₃) for **1g**

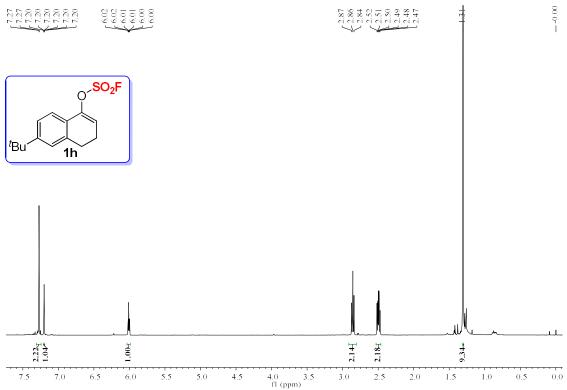

7.26 7.25 7.09 7.02 7.02	6.01 6.01 6.00 5.99	55552555555555555555555555555555555555	1.24 1.22 1.21	0.00
\checkmark			\searrow	ļ



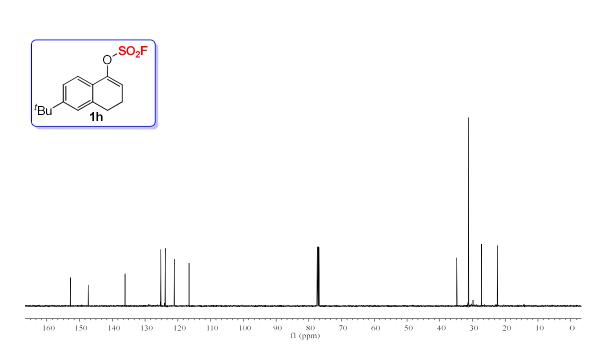

^{13}C NMR (126 MHz, CDCl₃) for 1g

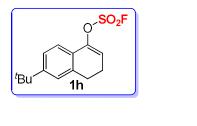

> 147.37> 145.92	— 136.49	- 127.70 - 126.35 - 116.42 - 116.42	77.41 77.16 76.91	~ 28.84 ~ 27.02 ~ 22.34 ~ 15.50	
------------------	----------	--	-------------------------	--	--


^{19}F NMR (471 MHz, CDCl₃) for 1g



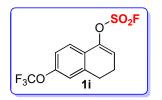
— 39.31

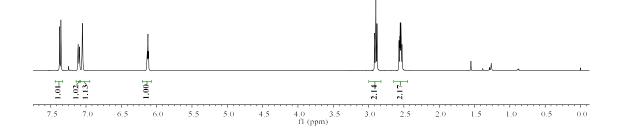

80 75 70 65 60 55 50 4	15 40 35	30	25	20	15	10	5	0	5
80 75 70 05 00 55 50 -		50	20	20	1.5	10	2	0	-2
	fl (ppm)								


¹³C NMR (126 MHz, CDCl₃) for **1h**

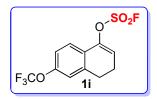
-152.76 -147.35 -136.13 -136.13 -136.13 -136.13 -125.236 -116.55 -116.55 -77.41 -77.41 -77.41 -77.41 -77.48 -27.28 -27.28	121.0 116.5 77.16 76.91 33.38 5 33.28 5 22.41
---	---

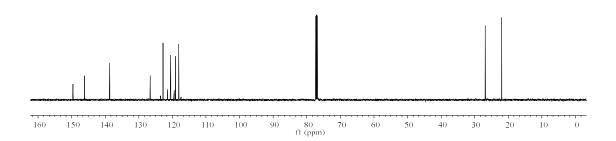
$^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 1h

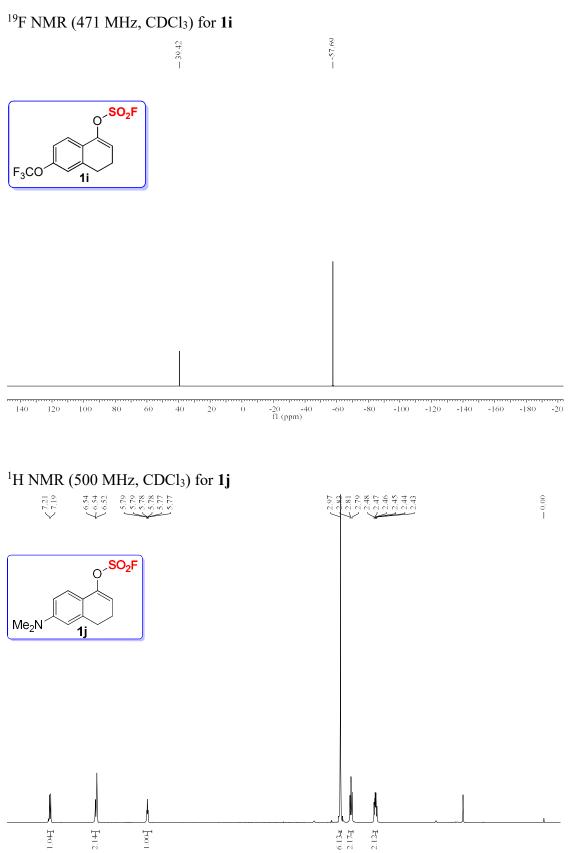


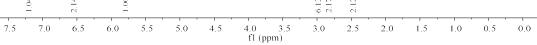

150	140	130	120	110	100	- 90	80	70	60	50	40	- 30	20	10	- 0	-10	-20	-30	-40	-5
									f	l (ppm)										

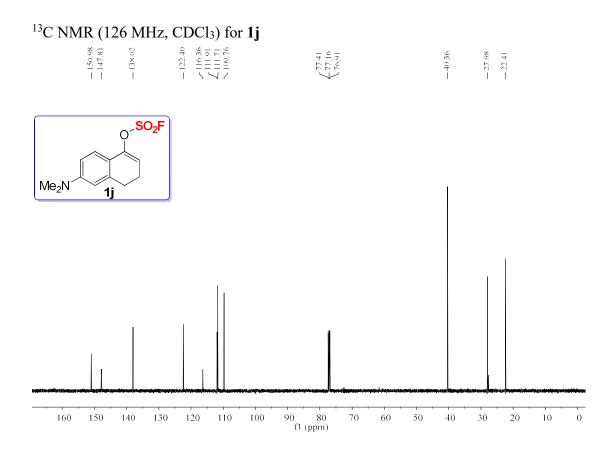
¹H NMR (500 MHz, CDCl₃) for 1i

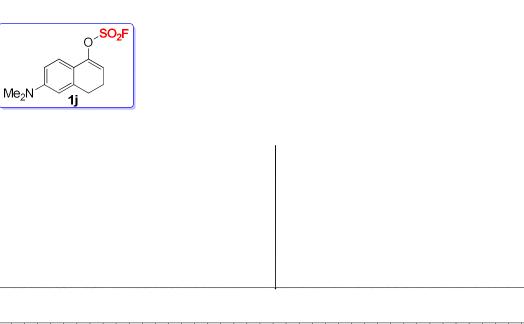

- 0.00

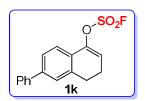


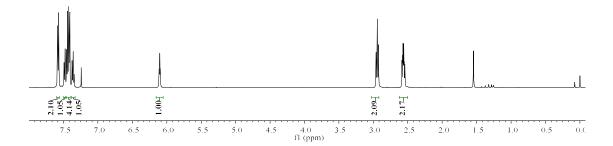



¹³C NMR (126 MHz, CDCl₃) for 1i


$\int_{117,40}^{149,60} \frac{149,50}{146,15} = -138,67$ $= $	
---	--



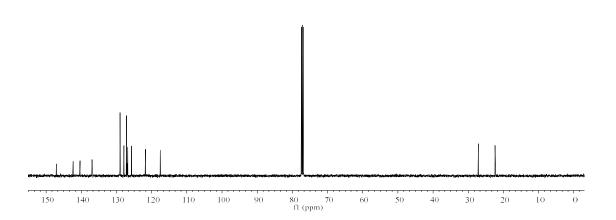

 ^{19}F NMR (471 MHz, CDCl₃) for 1j

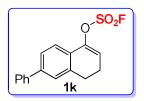


- 39.08

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 fl (ppm)

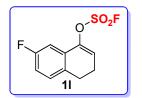
¹H NMR (500 MHz, CDCl₃) for 1k

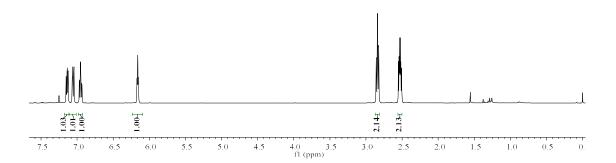



---0.00

¹³C NMR (126 MHz, CDCl₃) for 1k

0-1-08080-1-0		
-232-22-22-22-22-22-22-22-22-22-22-22-22	- 0 -	s m
71-200	4 – 0	
4440 NNNNNNN	0 1 1	- C
		0 0
	\checkmark	

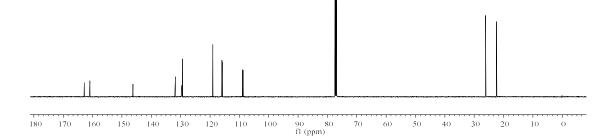




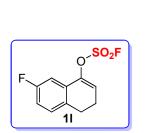
150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 fl (ppm)

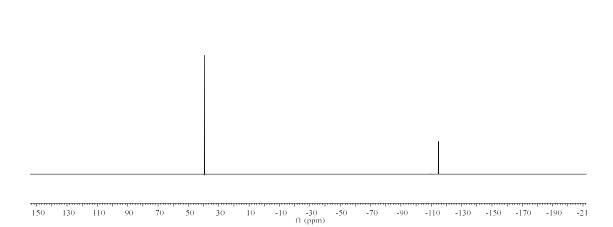
— 39.44


¹H NMR (500 MHz, CDCl₃) for **1**I



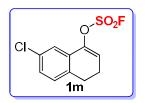
^{13}C NMR (126 MHz, CDCl₃) for 11

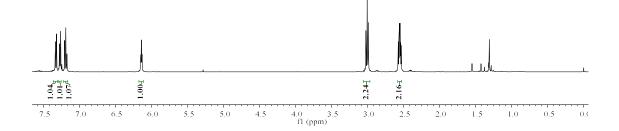

✓ 162.86✓ 160.91	$ \begin{array}{c} (146.25) \\ (146.25) \\ (146.23) \\ (146.29) \\ (129.39) \\ (129.39) \\ (129.39) \\ (129.39) \\ (129.39) \\ (129.39) \\ (129.39) \\ (119.04) \\ (115.94) \\ (11$	$\left\{ \frac{77.41}{76.91} \right\}$	
------------------	---	--	--



^{19}F NMR (471 MHz, CDCl₃) for 11

-39.50

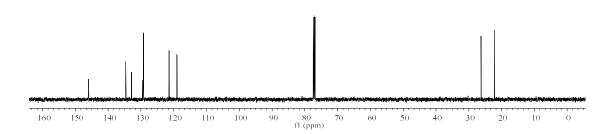




1 H NMR (500 MHz, CDCl₃) for 1m

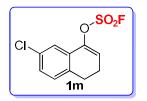
~~~~~~	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	00044343434
, , , , , , , , , , , , , , , , , , ,	n'n' a l'a l'a l'a l'a l'a l'a l'a l'a l'a

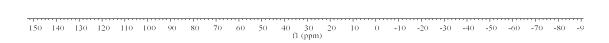
-----



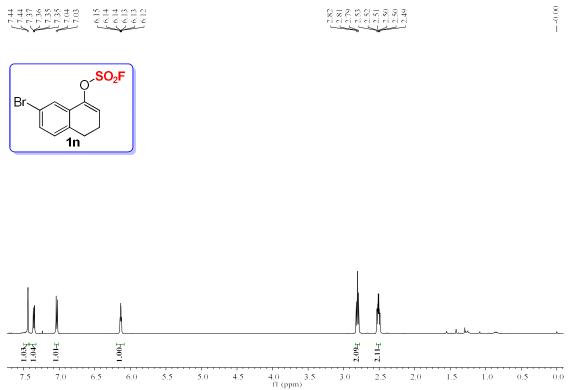



## $^{13}\mathrm{C}$ NMR (126 MHz, CDCl₃) for 1m

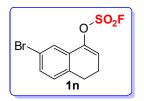

98	21 21 25 25 20 20 20	- 0 -	5 6
45.	161 266233	7.1	2.1
<u> </u>		<u> </u>	A A
1	$\sim$ $\sim$ $\sim$ $\sim$ $\sim$	$\searrow$	

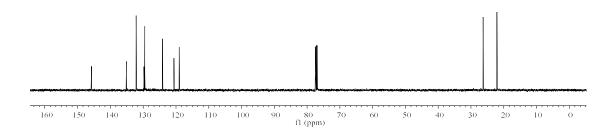






#### $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 1m

- 39.52




#### $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for 1n



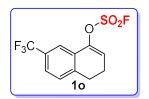
#### $^{13}\mathrm{C}$ NMR (126 MHz, CDCl₃) for 1n

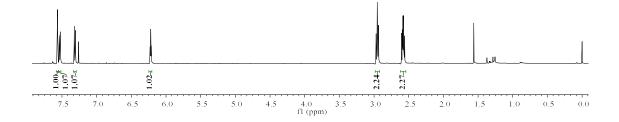




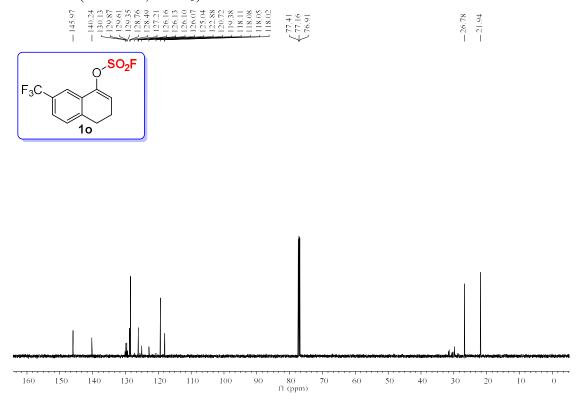
 $^{19}\mathrm{F}$  NMR (471 MHz, CDCl₃) for 1n

— 39.67

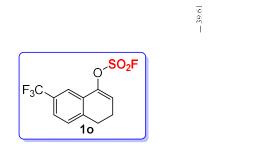




150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 fl (ppm)

#### 1 H NMR (500 MHz, CDCl₃) for **10**


54 54 32 31 26	555555	560 557 560 577 560 577 560 577 560 577 560 577 560 577 560 577 560 577 577 577 577 577 577 577 577 577 57
	0000	

- 0.00

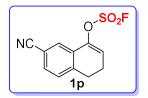


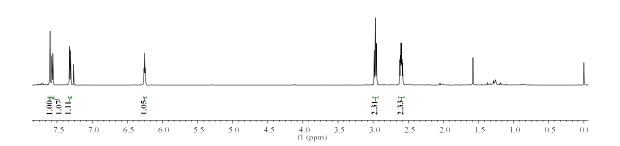



#### $^{13}\text{C}$ NMR (126 MHz, CDCl₃) for 10



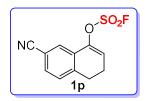
# $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 10

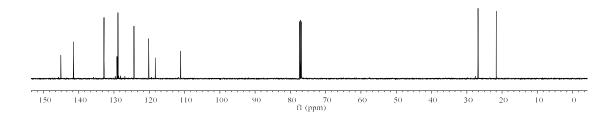



150 -19 130 90 70 50 30 110 10 -10 -30 fl (ppm) -50 -70 -90 -110 -130 -150 -170

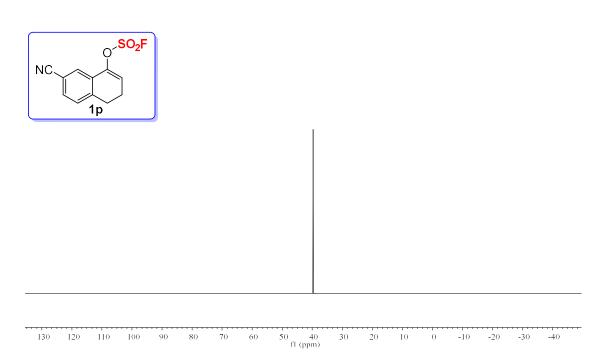
# ¹H NMR (500 MHz, CDCl₃) for **1p**

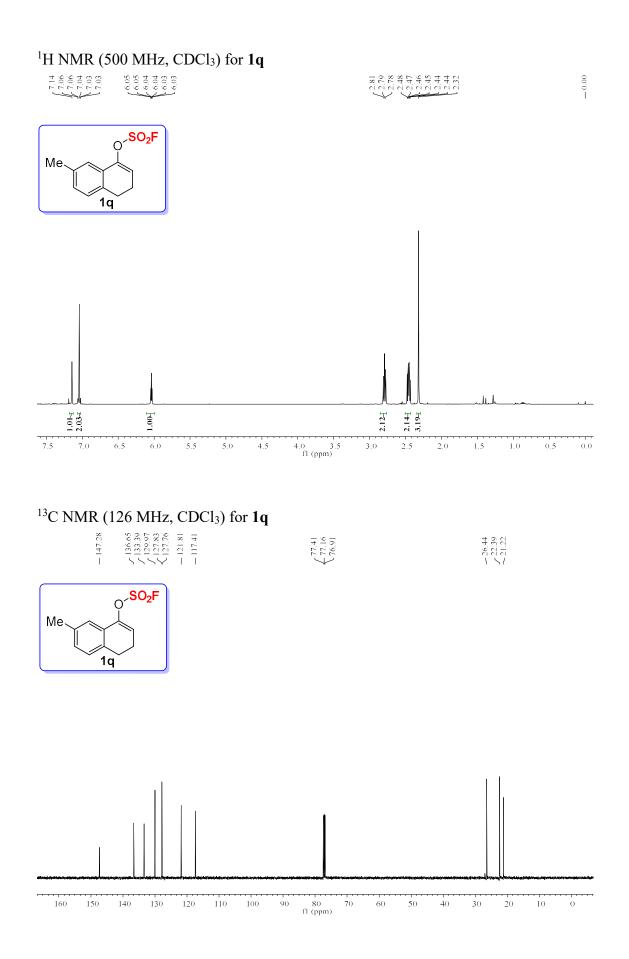

2.99 2.62 2.62 2.61 2.66 2.56 2.56 2.58 2.58 2.58 2.58 - 0.00






#### ¹³C NMR (126 MHz, CDCl₃) for 1p

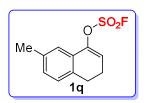

145.08 141.52	132.83 129.18 128.89 124.35 120.19 118.32	111.12	77.41 77.16 76.91	26.83	21.65
	$/   /   \rangle$	1	$\checkmark$		1

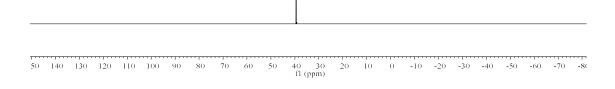





¹⁹F NMR (471 MHz, CDCl₃) for 1p

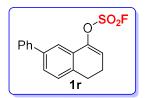
- 39.68

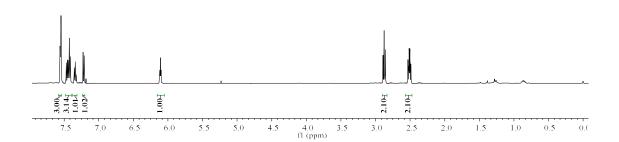



#### S87

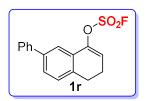
## $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 1q


- 39.45





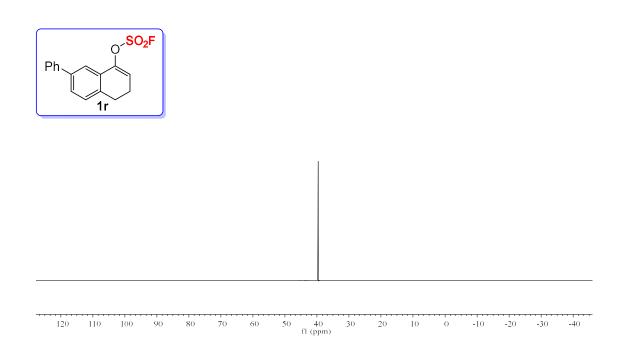

# ¹H NMR (500 MHz, CDCl₃) for **1r**


- 0.00





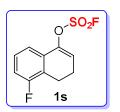
## $^{13}\mathrm{C}$ NMR (126 MHz, CDCl₃) for 1r

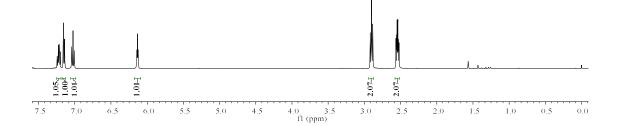






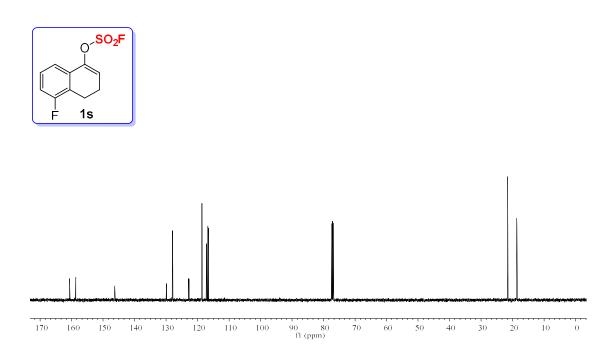

 $^{19}\mathrm{F}$  NMR (471 MHz, CDCl₃) for 1r



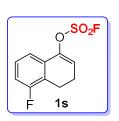

#### ¹H NMR (500 MHz, CDCl₃) for 1s

22222222222222222222222222222222222222	918 9902 5547 5317 531 531 531
	55 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5


---0.000






## $^{13}\text{C}$ NMR (126 MHz, CDCl₃) for 1s

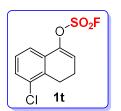
160.62 158.68	146.32 146.27	129.91 129.86 127.97 127.90 127.90 127.90 127.90 117.13 117.13 117.13 116.53 116.53	77.41 77.16 76.91	21.55 18.63
57	$\overline{\mathbf{v}}$		$\checkmark$	11

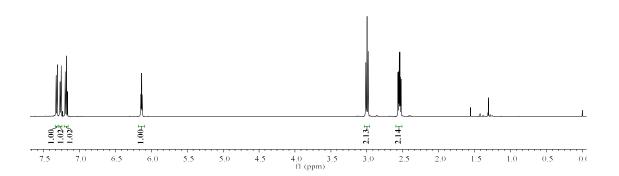


#### ¹⁹F NMR (471 MHz, CDCl₃) for 1s



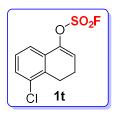


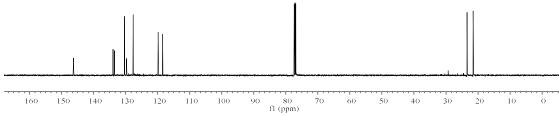

 L	


150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 fl (ppm)

#### ¹H NMR (500 MHz, CDCl₃) for 1t

2557


----






#### ¹³C NMR (126 MHz, CDCl₃) for 1t

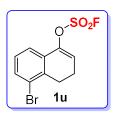
$-\frac{146.32}{133.53}$ $-\frac{133.96}{2120.57}$ $-\frac{133.53}{1290.57}$ $-\frac{133.53}{127.67}$ $-\frac{119.88}{118.46}$ $-\frac{77.41}{118.46}$	3.4 0.9
--------------------------------------------------------------------------------------------------------------------------------------------------------	---------

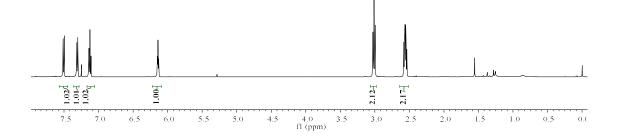




- 39.52

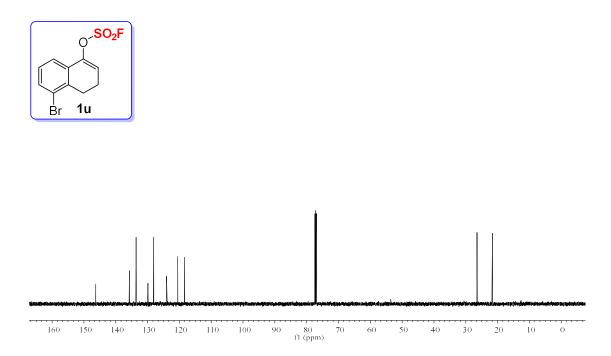
## $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 1t



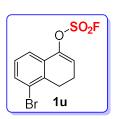


140 130 120 110 100 90 80 70 60 50 40 30 20 fl (ppm) 10 0 -20 -30 -40 -50 -60 -10

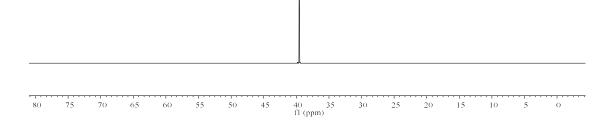
#### $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for 1u

-04044-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\omega - 2 \infty \omega \omega 4$
$\vec{v}$ , $\vec{v}$ , $\vec{u}$ , $\vec{u}$ =		$\odot$ $\odot$ $\odot$ $\acute{o}$ $\acute{o}$ $\acute{o}$ $\acute{o}$ $\acute{o}$ $\acute{o}$ $\acute{o}$ $\acute{o}$ $\acute{o}$
	မှမှမှမှမှ	<u> </u>


----0.00



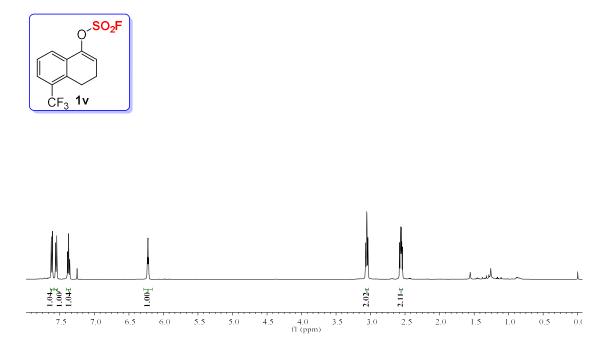




## ¹³C NMR (126 MHz, CDCl₃) for **1u**

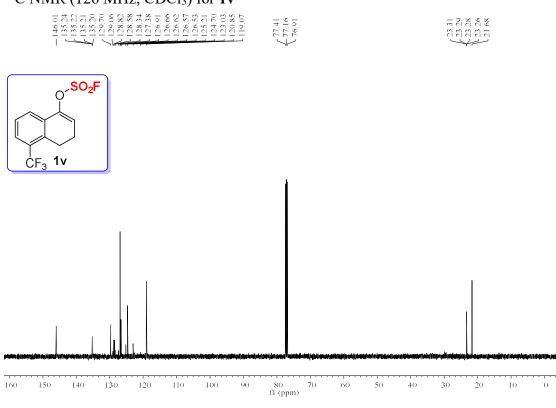
26	$69 \\ 51 \\ 20 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 2$	- 0 -	5	3
46.	35. 29.28.233.	4. 77 1. 1 76. 9	26.4	21.6
ī	1717171	$\checkmark$		Ĩ



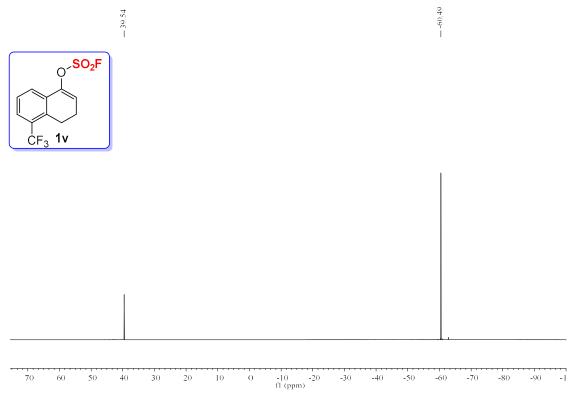
#### $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 1u







— 39.54

#### $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for 1v

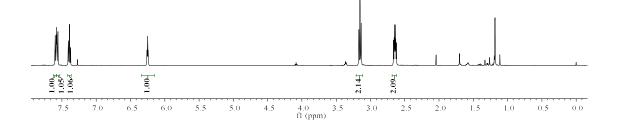

7.62 7.56 7.55 7.39 7.39 7.37 7.37	6.24 6.23 6.23 6.22 6.21	23.07 2.3.07 2.3.07 2.3.07 2.3.07 2.3.04 2.3.05 2.3.04 2.3.05 2.3.04 2.3.05 2.3.04 2.3.5.5 2.3.04 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.3.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5	- 0.00





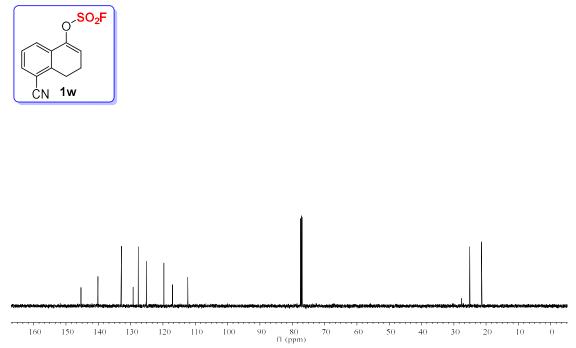



 $^{19}\mathrm{F}$  NMR (471 MHz, CDCl₃) for 1v




#### $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for 1w

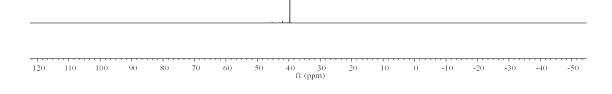
222226 339-0 222226 339-0 222226 339-0 24427266 339-0 244272766 339-0 24427777777777777777777777777777777777	1   1   1   1   1   1   1   1   1   1
000000	n'n'n' d'd'd'd'd


----0.00





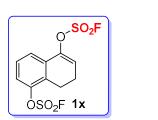
## $^{13}\text{C}$ NMR (126 MHz, CDCl₃) for 1w

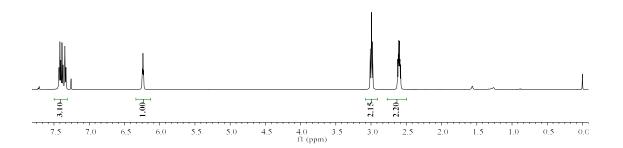

- 145.3 - 140.1 - 140.1 - 140.1 - 140.1 - 140.1 - 140.1 - 140.1 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 112.3 - 11	4 4		N N V	v -
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----	--	-------	-----



#### $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 1w

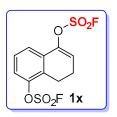
- 39.66

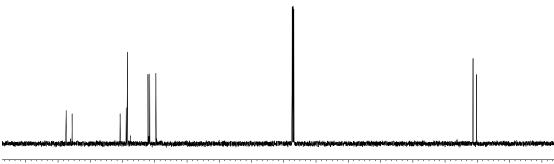



## ¹H NMR (500 MHz, CDCl₃) for 1x

2.59

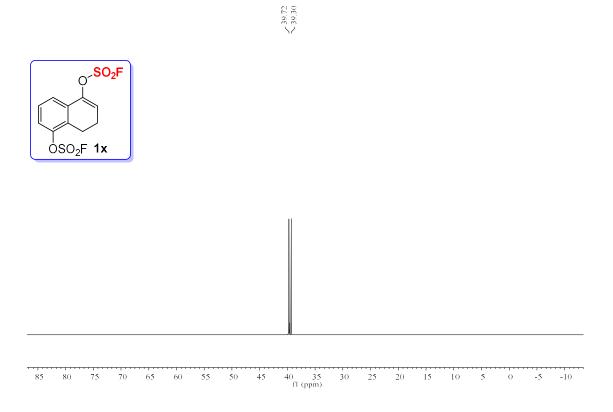

-----





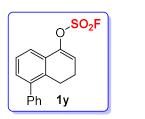

#### ¹³C NMR (126 MHz, CDCl₃) for 1x

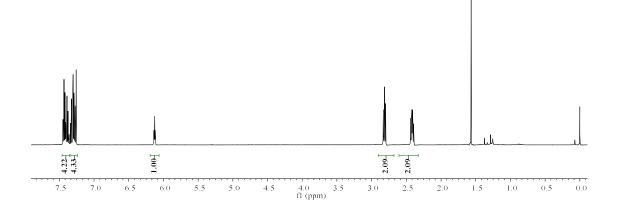
147.47 145.60	130.74 128.86 128.49 122.07 121.55 119.65	77.41 77.16 76.91	
57	$\langle \vee \rangle$	$\rightarrow$	





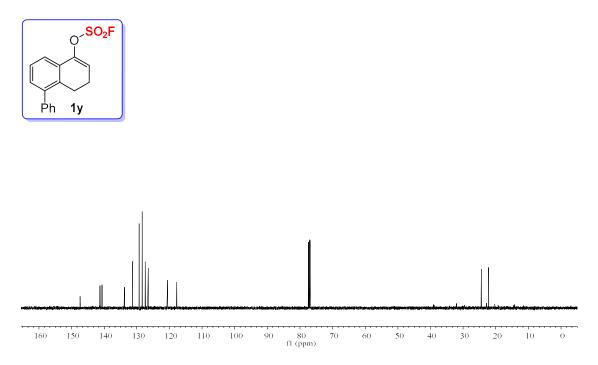

 $< \frac{21.33}{20.29}$ 


90 80 fl (ppm) 


#### $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 1x

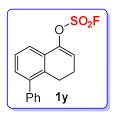


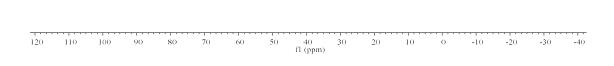
#### $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for 1y





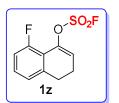


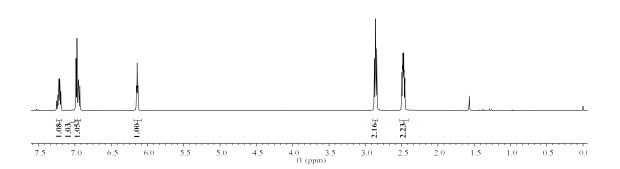


#### $^{13}\text{C}$ NMR (126 MHz, CDCl₃) for 1y


5 98495582985 2 984955	- 0 -	00
200000000000000000000000000000000000000	4 6 6	42
4 4488222222	0.7	4.6
		0.0
	$\checkmark$	17



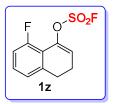
#### $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 1y

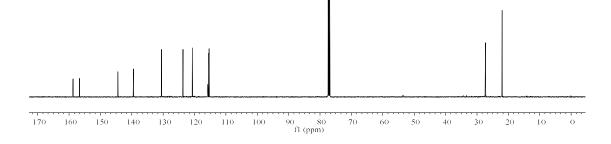

- 39.53






# ¹H NMR (500 MHz, CDCl₃) for **1z**


- 0.00






#### $^{13}\text{C}$ NMR (126 MHz, CDCl₃) for 1z

~ 158.70 ~ 156.69 ~ 144.45 ~ 139.45	139.4 130.5 130.5 130.5 130.5 130.5 120.6 112.8 115.8 115.5 115.5	4.77.1 4.77.1 76.9 27.2	√27.27 →21.99
----------------------------------------------	-------------------------------------------------------------------------------------------------	----------------------------------	------------------

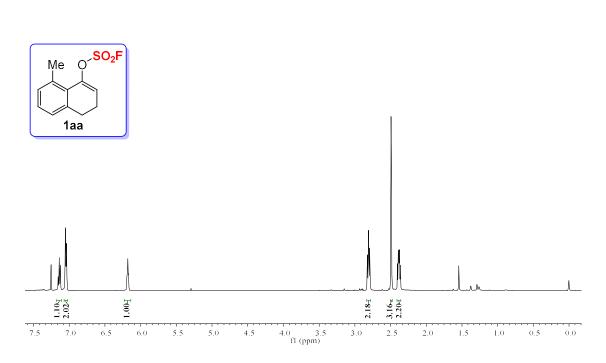




#### $^{19}\text{F}$ NMR (471 MHz, CDCl₃) for 1z

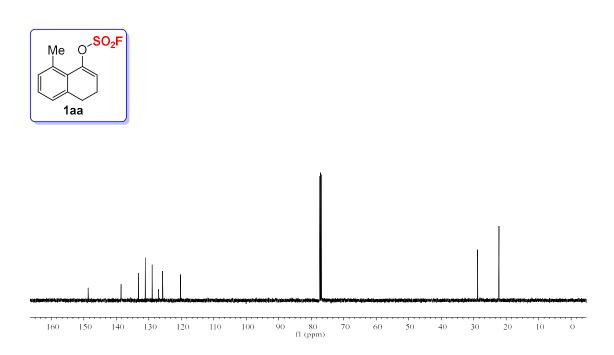






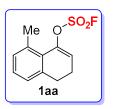


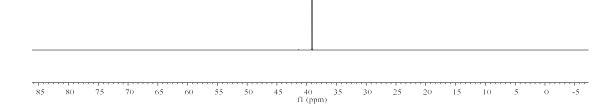
110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -1 fl (ppm)


#### ¹H NMR (500 MHz, CDCl₃) for 1aa

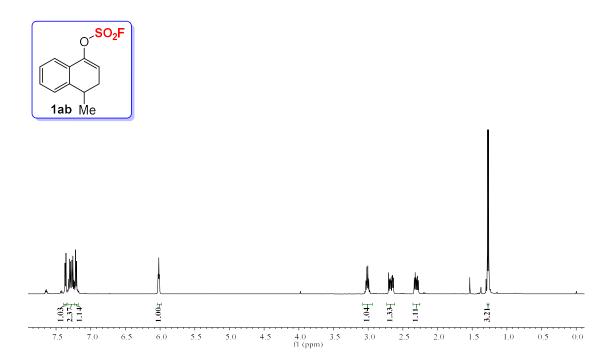




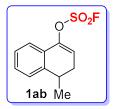

#### ¹³C NMR (126 MHz, CDCl₃) for 1aa

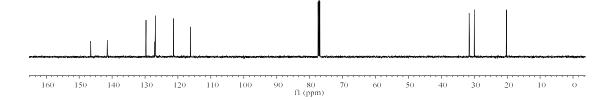

.65	54 25 7 8 9 7 8 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 3 4	- 0 -	0 = 0
8	20,55,68,13,38	4.0.0	2.7 8
<u> </u>			0 0 0
1	$1 \leq 1 \leq 1$	$\checkmark$	$\mid \lor$




## ¹⁹F NMR (471 MHz, CDCl₃) for 1aa

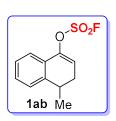
— 39.11



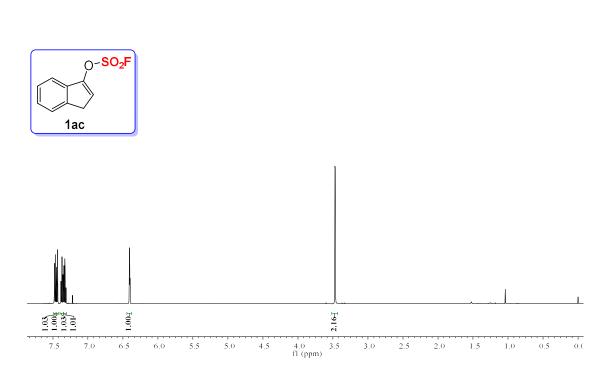

#### $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for 1ab




#### ¹³C NMR (126 MHz, CDCl₃) for 1ab





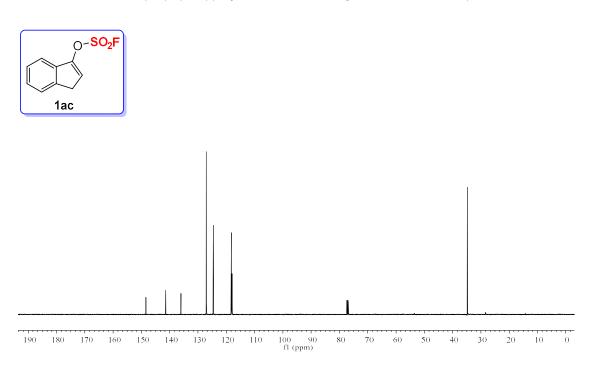

— 39.49

#### $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 1ab



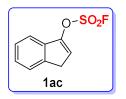
150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 fl (ppm)

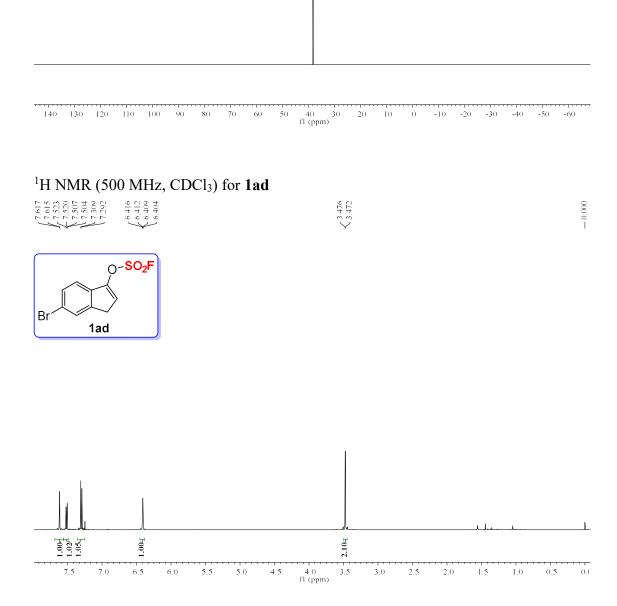
#### ¹H NMR (500 MHz, CDCl₃) for 1ac




 $\xi_{3.47}^{3.47}$ 

- 0.01

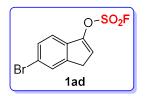

## $^{13}\mathrm{C}$ NMR (126 MHz, CDCl₃) for 1ac

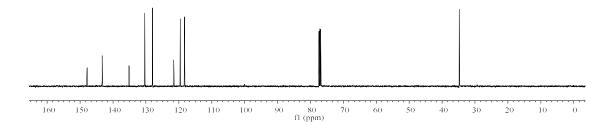

148.40	141.41	136.04	127.06 124.61 118.20 117.95 117.95	77.41 77.16 91	34.83
1			$\gamma\gamma\gamma\gamma$	$\checkmark$	



## $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 1ac

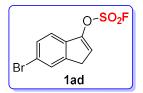
- 38.28




#### ¹³C NMR (126 MHz, CDCl₃) for 1ad

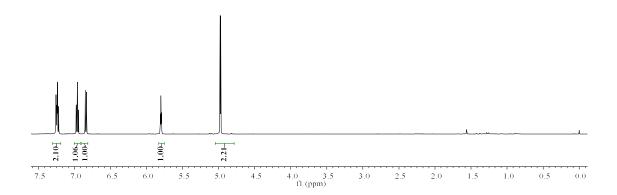
	143.2	$\sim$ 135.10 $\sim$ 130.36 $\sim$ 128.03	∠ 121.53 → 119.54 √118.27	$\left\{ \frac{77.41}{77.16} \right\}$
--	-------	-------------------------------------------------	---------------------------------	----------------------------------------


-34.79





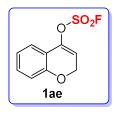
# ¹⁹F NMR (471 MHz, CDCl₃) for 1ad

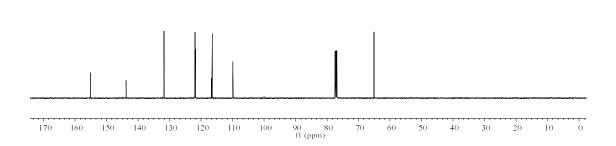





140	130	120	110			60		20	10					

## ¹H NMR (500 MHz, CDCl₃) for 1ae

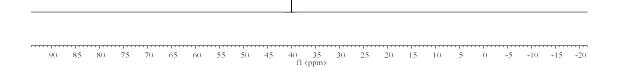


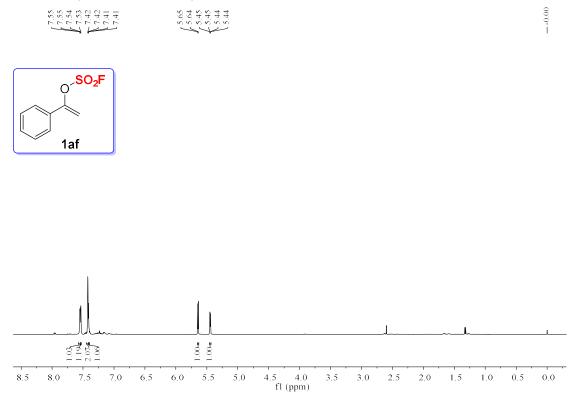

----0.00

#### ¹³C NMR (126 MHz, CDCl₃) for 1ae

155.15	143.80	131.76	121.91 121.76 116.72 116.43	109.93	77.41 77.16 76.91	65.08
1		1	$\lor$ $\lor$	1	$\checkmark$	- I



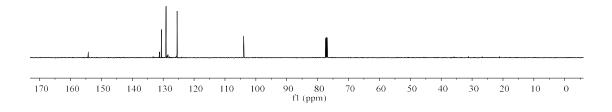




#### ¹⁹F NMR (471 MHz, CDCl₃)for 1ae

- 39.99






#### $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for 1af

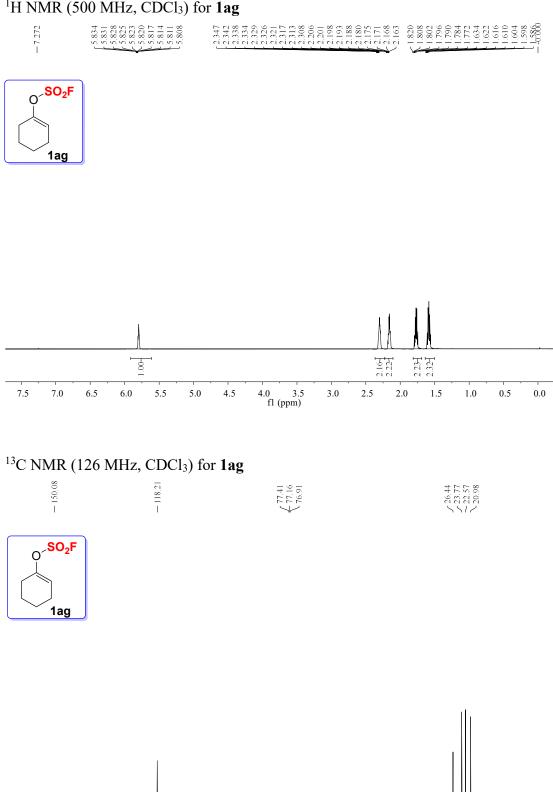


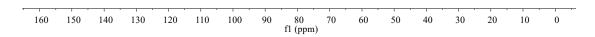
## $^{13}\mathrm{C}$ NMR (126 MHz, CDCl₃) for 1af








-40.08


#### ¹⁹F NMR (471 MHz, CDCl₃) for 1af

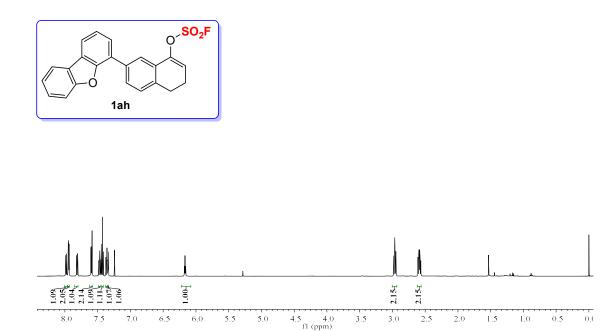


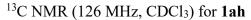
 $56\ 55\ 54\ 53\ 52\ 51\ 50\ 49\ 48\ 47\ 46\ 45\ 44\ 43\ 42\ 41\ 40\ 39\ 38\ 37\ 36\ 35\ 34\ 33\ 32\ 31\ 30\ 29\ 28\ 27\ 26\ 25\ 24\ 23\ 22\ 2 \ fl\ (ppm)$ 

#### ¹H NMR (500 MHz, CDCl₃) for 1ag

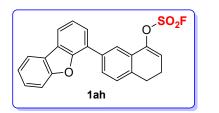


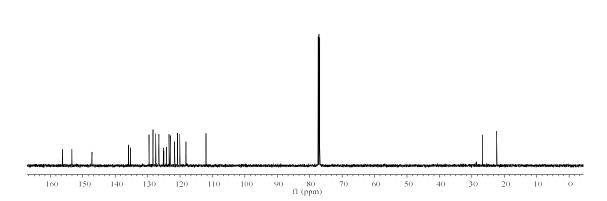



## $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 1ag


— 38.87

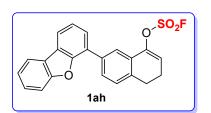


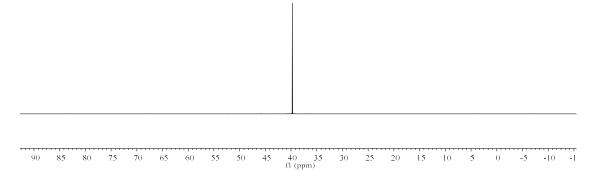

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 fl (ppm)


# ¹H NMR (500 MHz, CDCl₃) for **1ah**



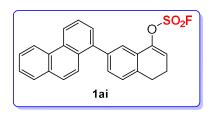


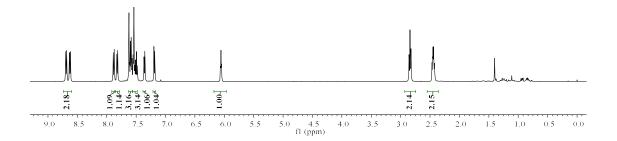


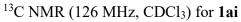





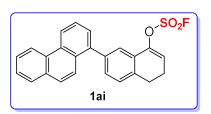

— 39.77

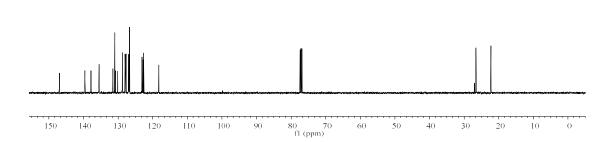

## ¹⁹F NMR (471 MHz, CDCl₃) for 1ah



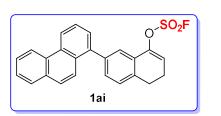

#### ¹H NMR (500 MHz, CDCl₃) for 1ai

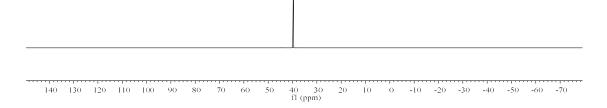

**—** 0.00



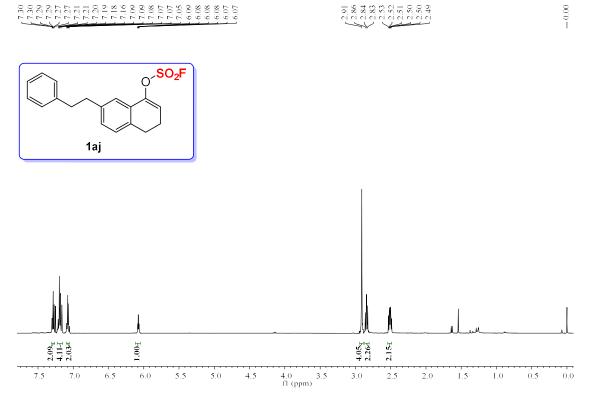






x - x - x x x - x x x x - x x x x x x x		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- o -	o x
8777396666777778800001777966	4-0	5 C
	C C O	ં ગં
		0 0
	$\leq \sim$	1 1

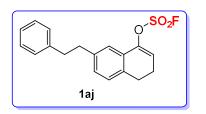


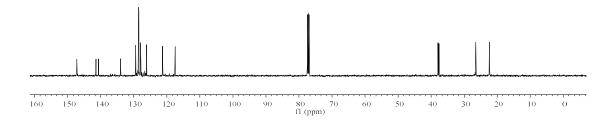




## ¹⁹F NMR (471 MHz, CDCl₃) for 1ai

-39.70

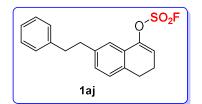


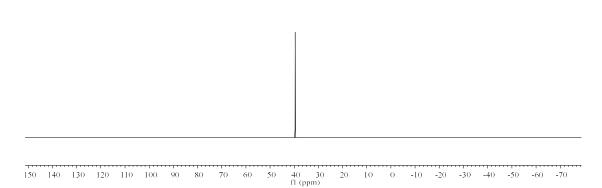




### $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for 1aj $\begin{array}{c} 7.30\\ 7.29\\ 7.29\\ 7.29\\ 7.22\\ 7.22\\ 7.22\\ 7.22\\ 7.22\\ 7.22\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\ 7.20\\$



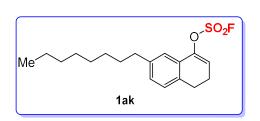
## ¹³C NMR (126 MHz, CDCl₃) for 1aj

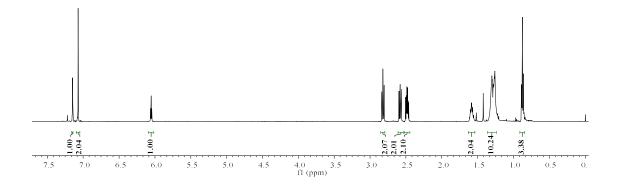

147.26 141.46 140.65 133.98 133.98 128.55 128.55 128.45 127.88 127.88 127.88 121.28 121.28	77,41 77,16 76,91	37.92 37.64	26.51 22.37
		$\sim$	Î Î





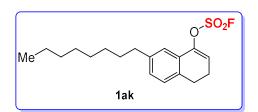

¹⁹F NMR (471 MHz, CDCl₃) for 1aj

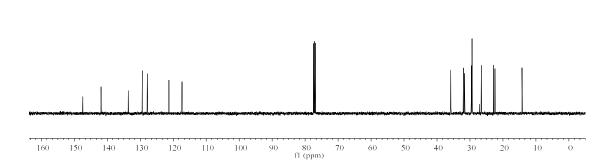


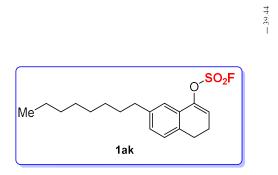


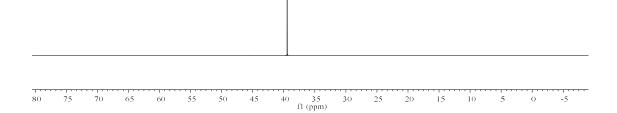

#### ¹H NMR (500 MHz, CDCl₃) for 1ak



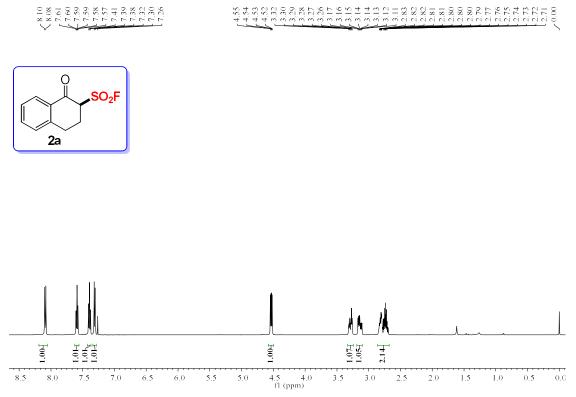







#### ¹³C NMR (126 MHz, CDCl₃) for 1ak

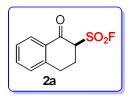

= 147.4 - 147.4 - 147.4 - 147.4 - 147.4 - 147.8 - 133.5 - 127.3 - 127.3 - 127.3 - 127.3 - 127.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 117.3 - 1
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

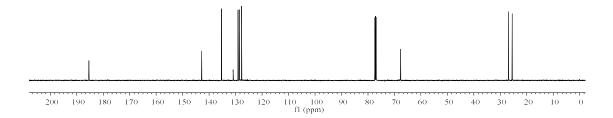





¹⁹F NMR (471 MHz, CDCl₃) for **1ak** 

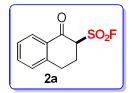


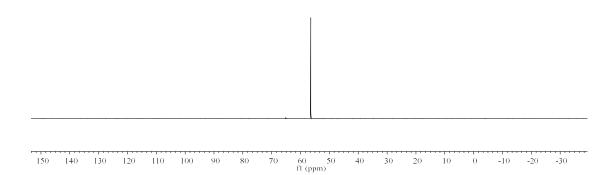




#### ¹H NMR (500 MHz, CDCl₃) for 2a



## ¹³C NMR (126 MHz, CDCl₃) for 2a

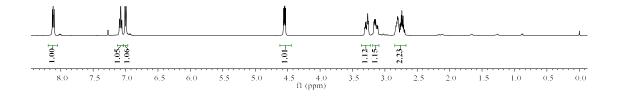




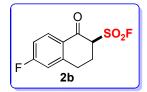

## $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 2a

— 56.44





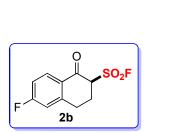

#### 1 H NMR (500 MHz, CDCl₃) for **2b**


10 11 13	01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00
ဆ်ဆဲဆ်	~~~~~~~
$\sim$	





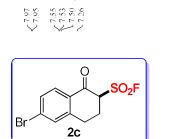
## $^{13}C$ NMR (126 MHz, CDCl₃) for $\mathbf{2b}$

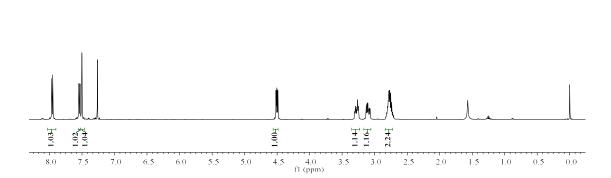

184.01	167.76 165.70	146.09 146.01 131.94 131.85 127.55 127.55 127.55 127.55 115.69 115.69 115.62 115.52	77.41 77.16 76.91 67.33 67.24	26.88 25.30
1	5.7	$\vee \vee \vee \vee \vee$	$\checkmark$ $\checkmark$	57



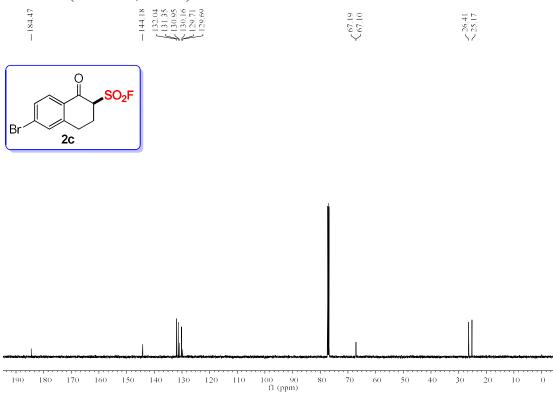
		1	
1			

## $^{19}\text{F}$ NMR (471 MHz, CDCl₃) for 2b


-56.80

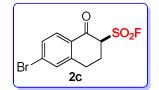


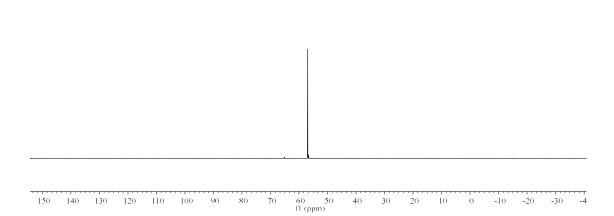

· · · ·	 


-100.47 -100.49 -100.51 -100.52

#### $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for 2c



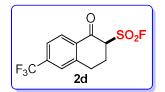


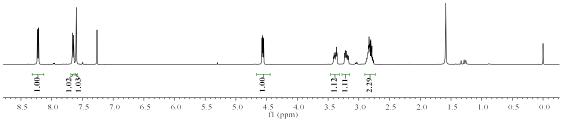


#### $^{13}\text{C}$ NMR (126 MHz, CDCl₃) for 2c

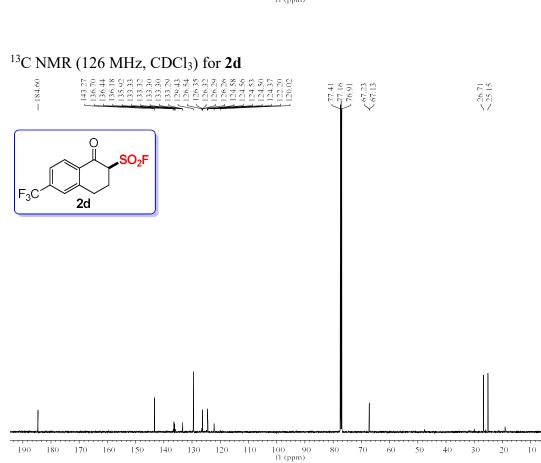


 $^{19}\text{F}$  NMR (471 MHz, CDCl₃) for 2c

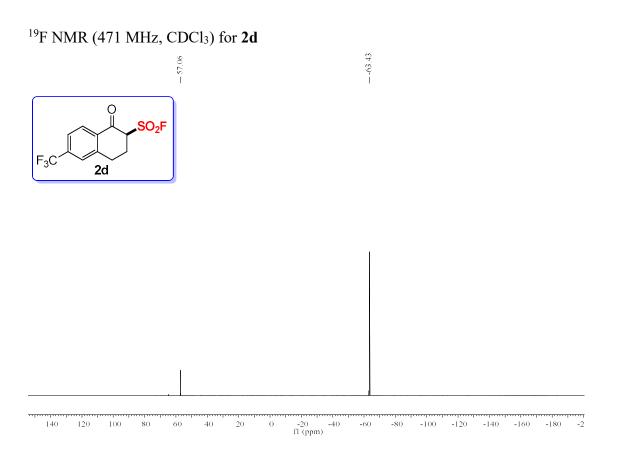


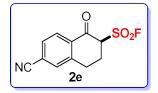


#### ¹H NMR (500 MHz, CDCl₃) for 2d

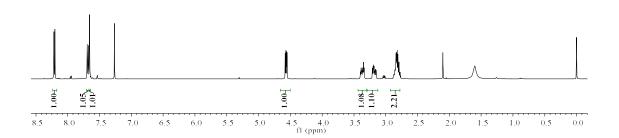


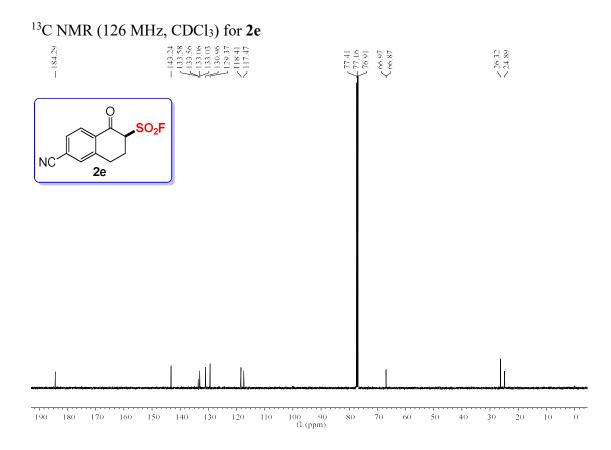








0



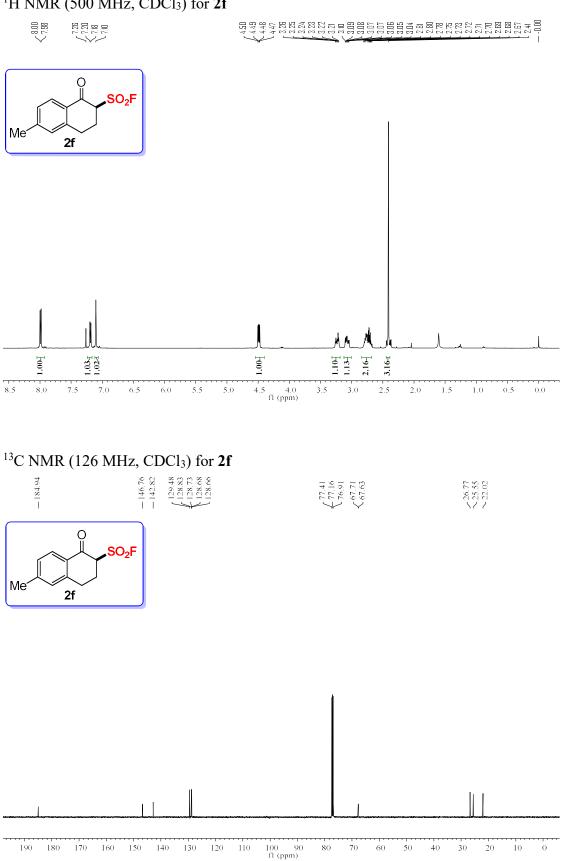

¹H NMR (500 MHz, CDCl₃) for 2e





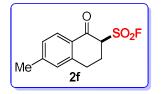


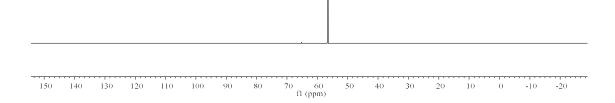



-57.20

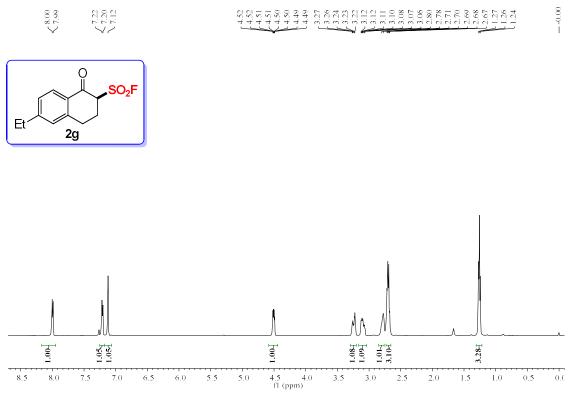
#### ¹⁹F NMR (471 MHz, CDCl₃) for 2e

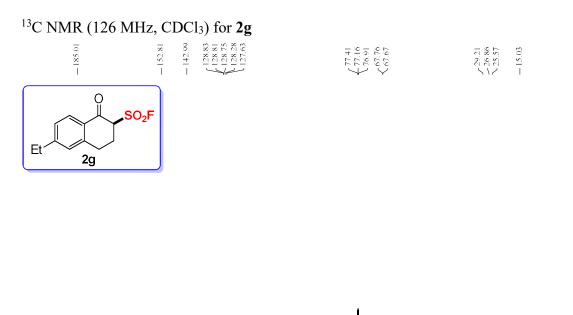


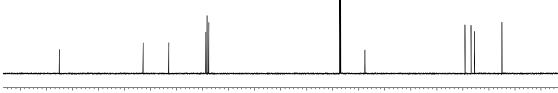

125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -2 fl (ppm)


#### 1 H NMR (500 MHz, CDCl₃) for **2f**




#### $^{19}\text{F}$ NMR (471 MHz, CDCl₃) for 2f

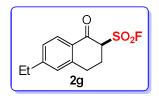

- 56.54

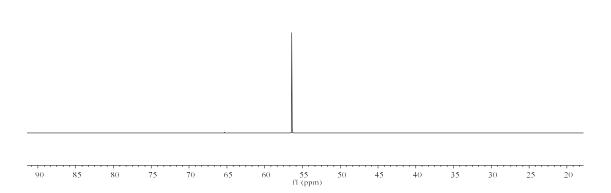





## $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for $\mathbf{2g}$





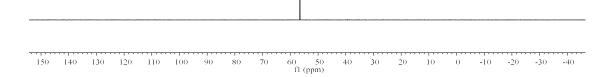




200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

- 56.41

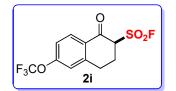
 $^{19}\text{F}$  NMR (471 MHz, CDCl₃) for 2g

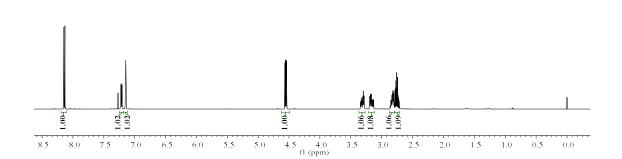


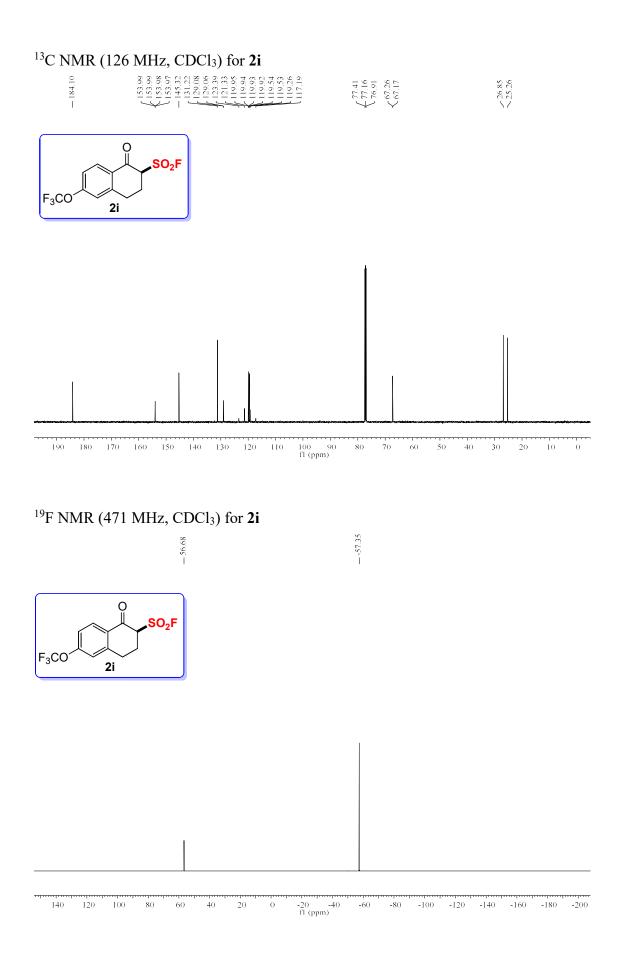





## $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 2h


-56.50

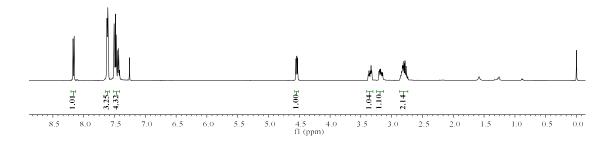



#### ¹H NMR (500 MHz, CDCl₃) 2i

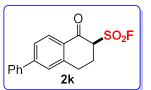
#### 

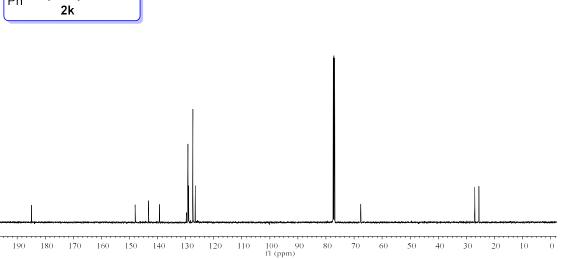







#### $^1\text{H}$ NMR (500 MHz, CDCl₃) for 2k

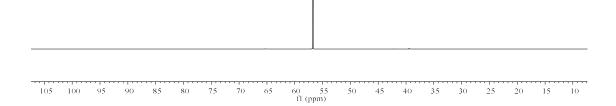


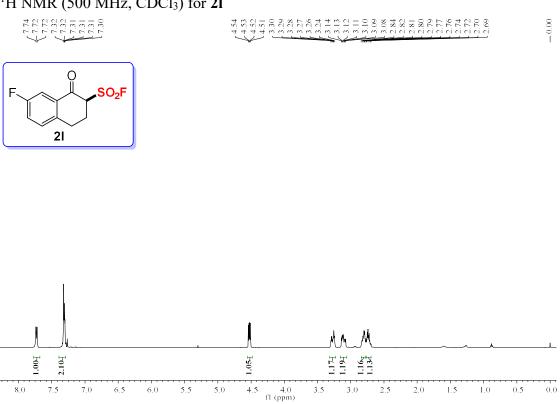


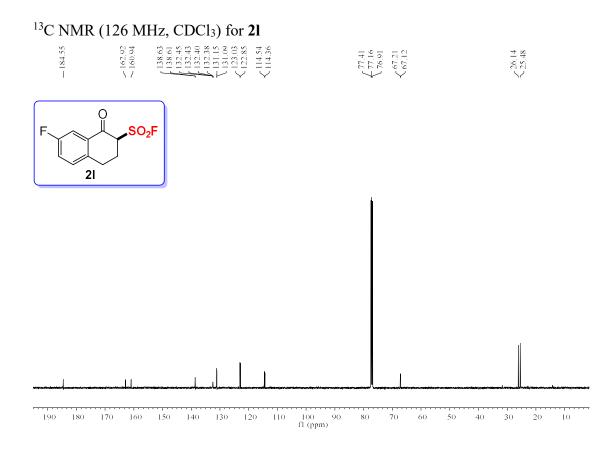

## $^{13}\text{C}$ NMR (126 MHz, CDCl₃) for 2k


- 184.95	<ul> <li>148.00</li> <li>143.24</li> <li>139.330</li> <li>139.330</li> <li>139.330</li> <li>139.330</li> <li>129.20</li> <li>129.20</li> <li>129.33</li> <li>129.30</li> <li>1</li></ul>	$\begin{cases} 77.41 \\ 77.16 \\ 76.91 \\ 67.58 \\ 67.58 \end{cases}$	$< \frac{27.00}{25.51}$
----------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------	-------------------------

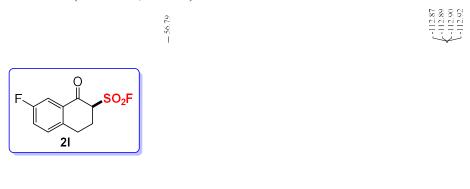






#### $^{19}\text{F}$ NMR (471 MHz, CDCl₃) for 2k


- 56.71

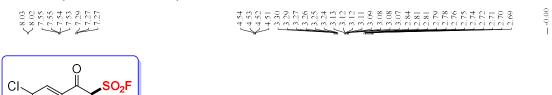


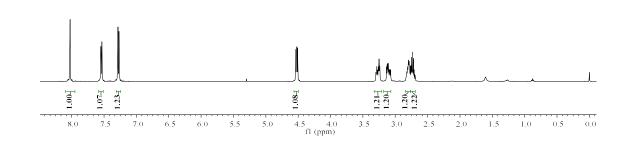



#### $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for 2l



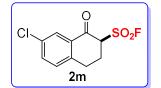


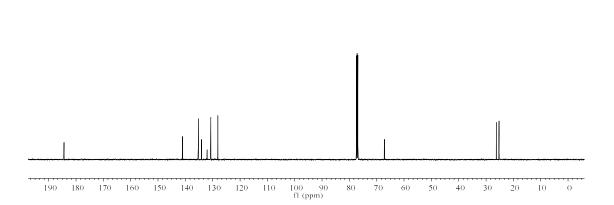

 $^{19}\text{F}$  NMR (471 MHz, CDCl₃) for 2l




													1			
140	120	100	80	60	40	20	0 f	-20 1 (ppm)	-40	-60	-80	-100	-120	-140	-160	-180

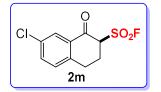
#### ¹H NMR (500 MHz, CDCl₃) for **2m**

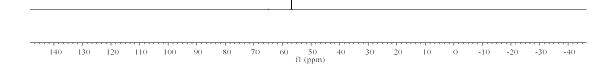

2m



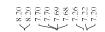




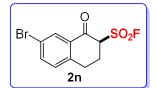


184.40	141.03 135.27 135.20 132.06 132.06 132.04 130.69 130.69	77.41 77.16 76.91 67.11 67.11	26.23 25.25
		$\checkmark$	52

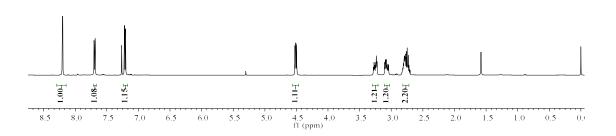




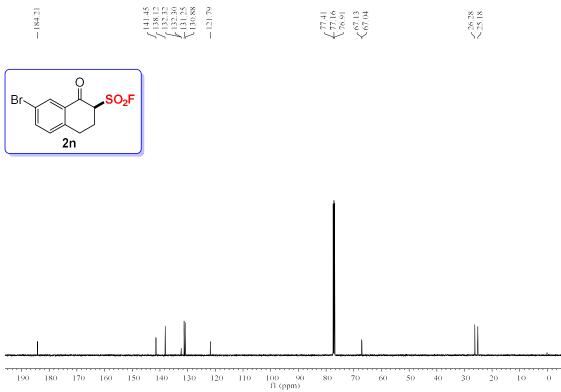


## $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 2m

- 56.86



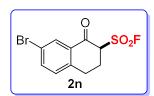



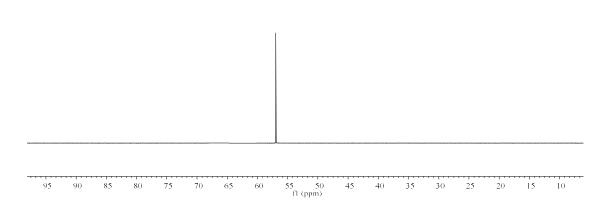

#### $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for 2n




## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

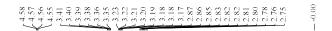




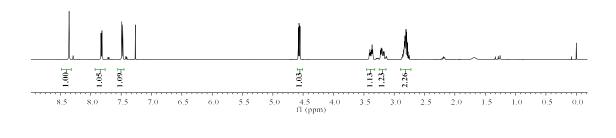


## ¹³C NMR (126 MHz, CDCl₃) for **2n**

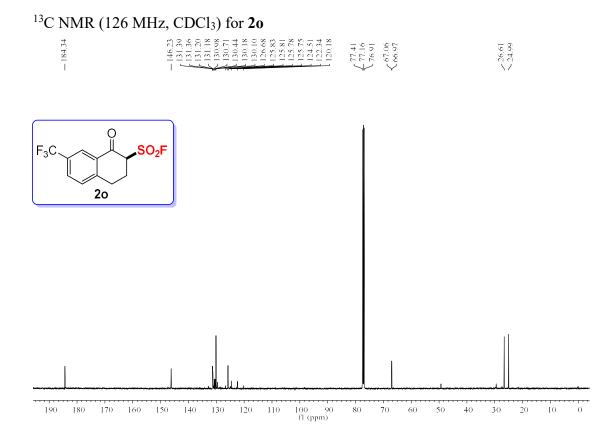


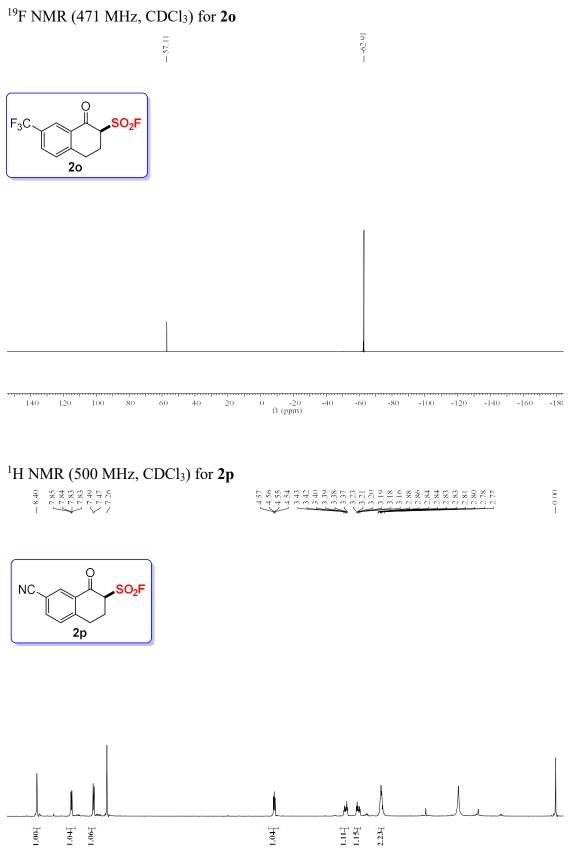
-56.97

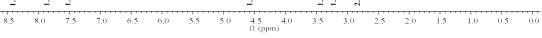

 $^{19}\text{F}$  NMR (471 MHz, CDCl₃) for 2n

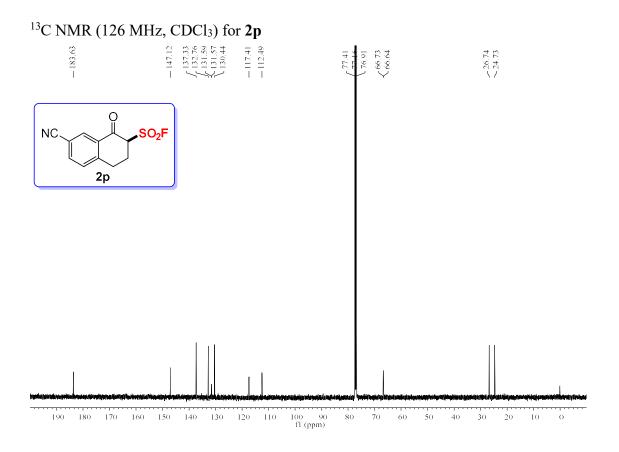




## $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for $\mathbf{2o}$



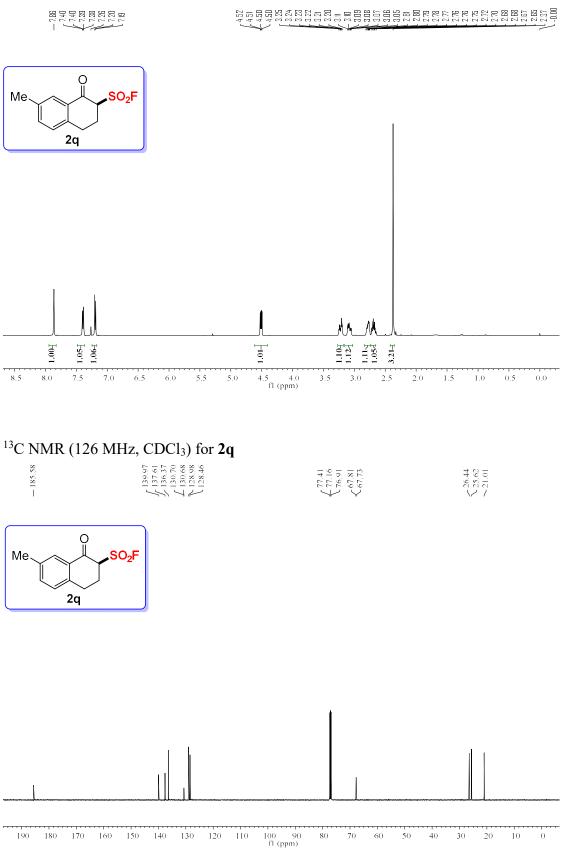




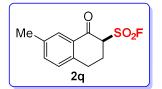


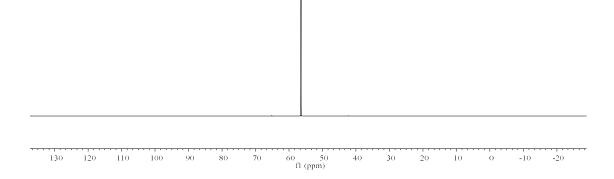




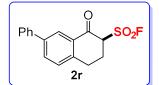


 $^{19}\text{F}$  NMR (471 MHz, CDCl₃) for 2p

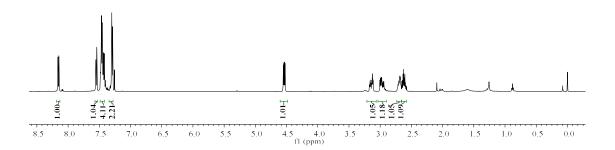


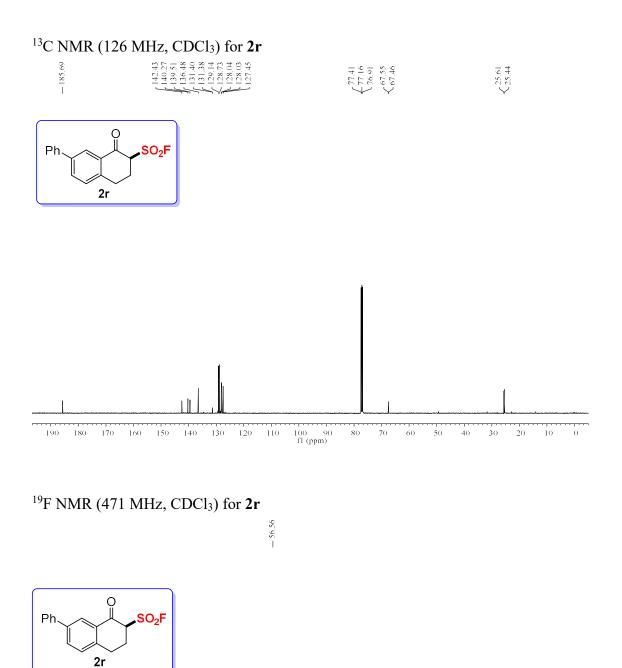

-	 		 					 	 		 	 	 	
150		120	100	90	80	70	60	40 ppm)		10				-60

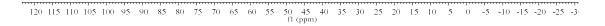

- 57.44

#### $^1\text{H}$ NMR (500 MHz, CDCl₃) for 2q



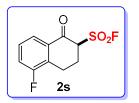


-56.40

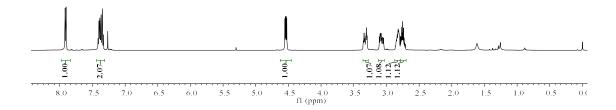



#### $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for 2r

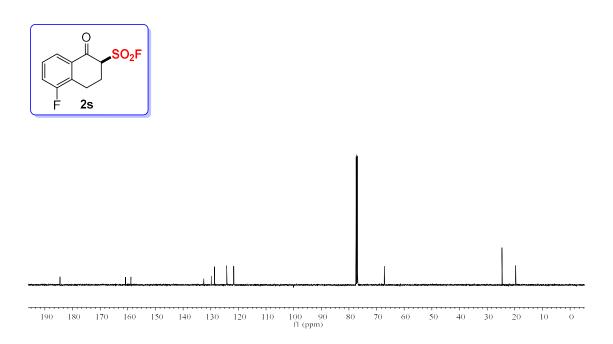


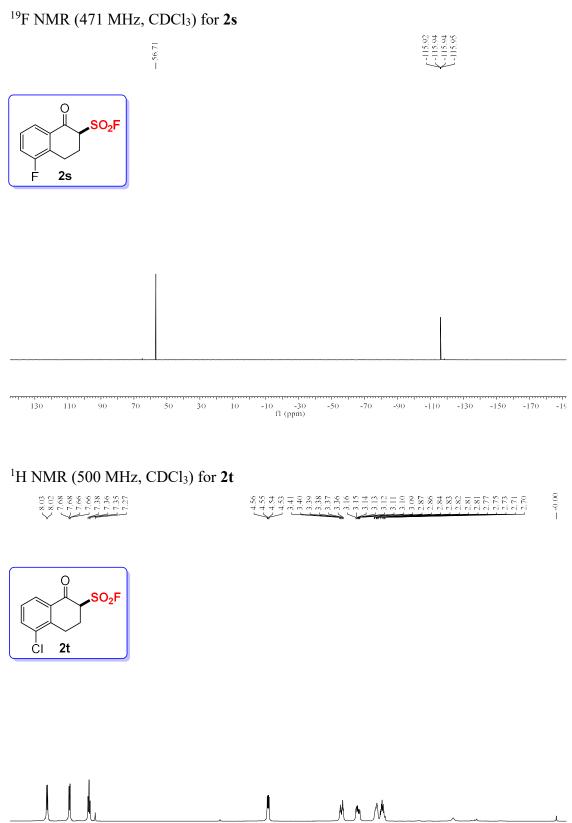


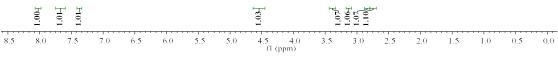






#### ¹H NMR (500 MHz, CDCl₃) for 2s

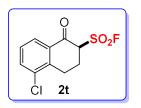


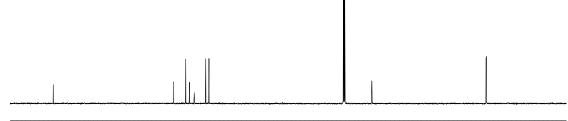




## $^{13}\text{C}$ NMR (126 MHz, CDCl₃) for 2s

84.55	160.83	132.52 132.50 132.47 129.80 128.66 128.66 128.66 124.22 121.78 121.61	77.41 77.16 76.91 67.20 67.11	24.62 19.69
$\overline{\checkmark}$	57		$\rightarrow$ $\rightarrow$	ς

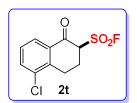


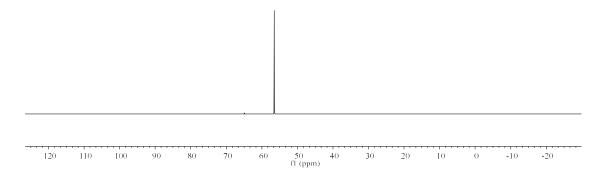






### ¹³C NMR (126 MHz, CDCl₃) for 2t

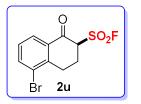
84.8 35.7 35.7	$\bigvee_{127,16}^{77,41}$
----------------------	----------------------------

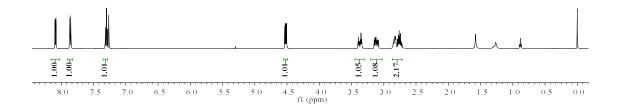



200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

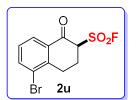
-56.50

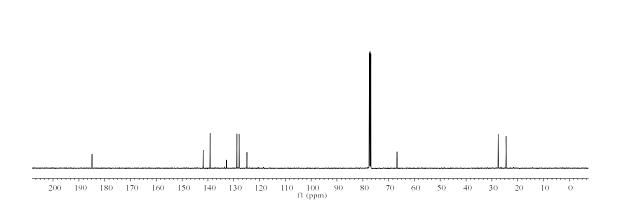

## $^{19}\text{F}$ NMR (471 MHz, CDCl₃) for 2t



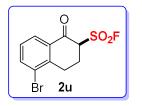


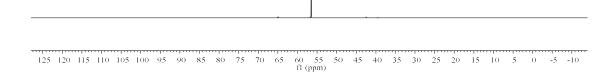

#### ¹H NMR (500 MHz, CDCl₃) for **2u**


 $\begin{array}{c} 8.10\\ 8.10\\ 8.08\\ 8.08\\ 8.08\\ 8.08\\ 8.08\\ 8.08\\ 7.85\\ 7.85\\ 7.85\\ 7.32\\ 7.32\\ 7.32\\ 7.28\\ 7.32\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\$ 



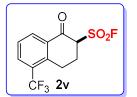


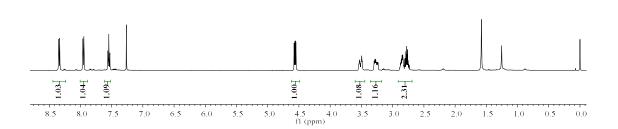


#### ¹³C NMR (126 MHz, CDCl₃) for **2u**

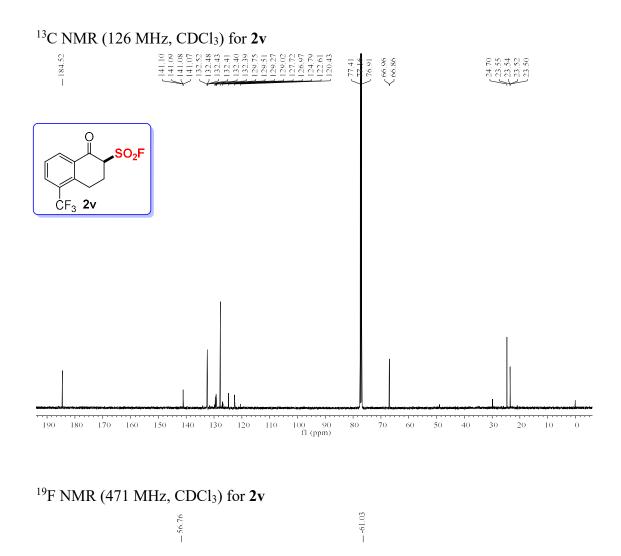

184.89	141.83 139.12 132.80 132.78 132.78 124.87 124.87	77.41 77.16 76.91 66.79 66.69	27.53 24.49
1	ノノイン	$\checkmark$ $\checkmark$	1.1

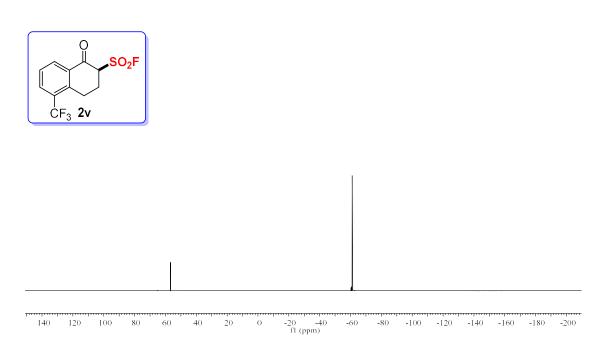





- 56.50



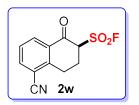



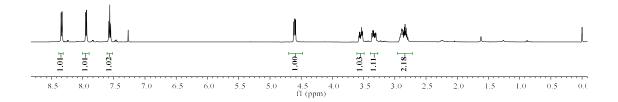


### $^1\text{H}$ NMR (500 MHz, CDCl₃) for 2v

Construction of the second s





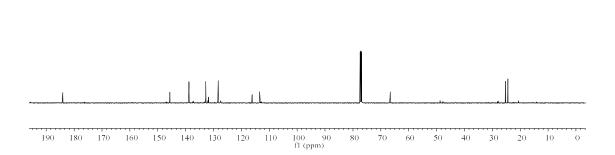



#### 1 H NMR (500 MHz, CDCl₃) for **2w**

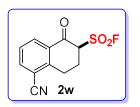


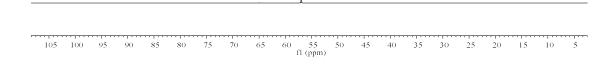
7802222884200000000000000000000000000000	-0.00
	- i



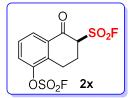


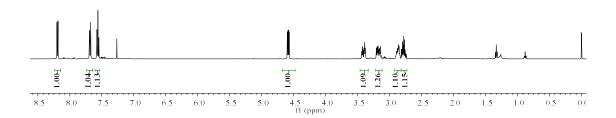

## $^{13}\text{C}$ NMR (126 MHz, CDCl₃) for 2w


184.03	145.65 138.83 138.83 132.76 131.77 131.77 131.77	116.15 113.41	77.41 77.16 76.91 66.72 66.62	25.32 24.42
I.	$  \setminus \lor \lor \rangle$	1.7	$\checkmark$ $\checkmark$	52



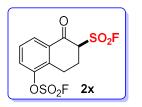


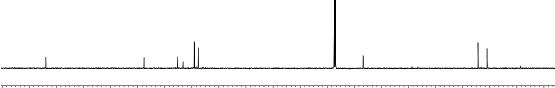


## $^{19}\text{F}$ NMR (471 MHz, CDCl₃) for 2w


— 56.98





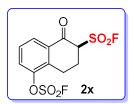

### ¹H NMR (500 MHz, CDCl₃) for 2x






### ¹³C NMR (126 MHz, CDCl₃) for 2x

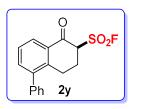
183.88	147.62 135.22 135.22 133.18 133.18 127.58	77.41 77.46 76.91 66.75 66.65	24.35 20.97
1			ΪΪ

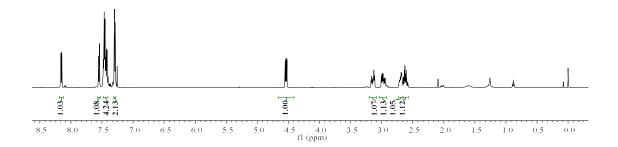





00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

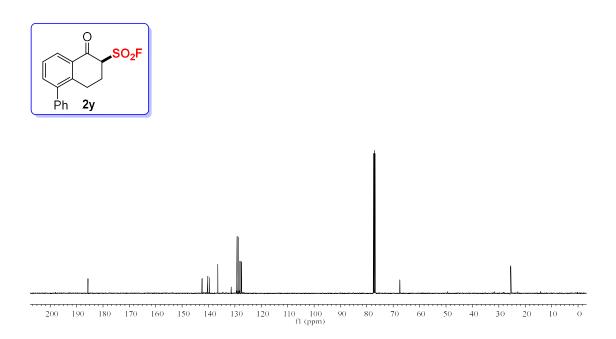
### $^{19}\text{F}$ NMR (471 MHz, CDCl₃) for 2x



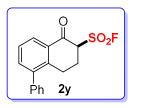

150 140 130 120 110 100 90 80 70 60	50 40 30 20 fl (ppm)	-40 -50 -60 -70 -80 -90

### $^1\text{H}$ NMR (500 MHz, CDCl₃) for 2y


-----







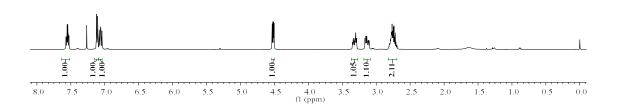

185.69	142,43 140,27 139,51 136,48 131,40 131,40 131,40 128,73 128,73 127,45 127,45	77.41 76.16 67.46 67.46	25.61
1		$\checkmark$	$\checkmark$



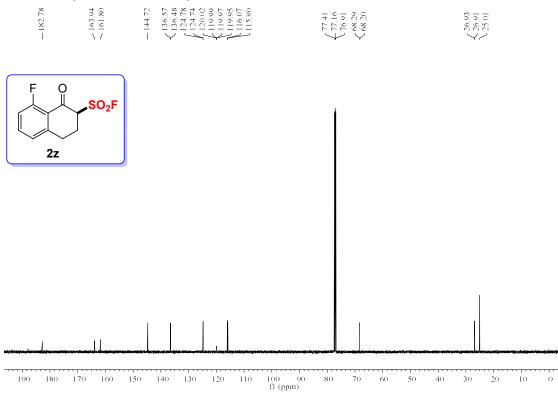
## $^{19}\text{F}$ NMR (471 MHz, CDCl₃) for 2y

- 56.56

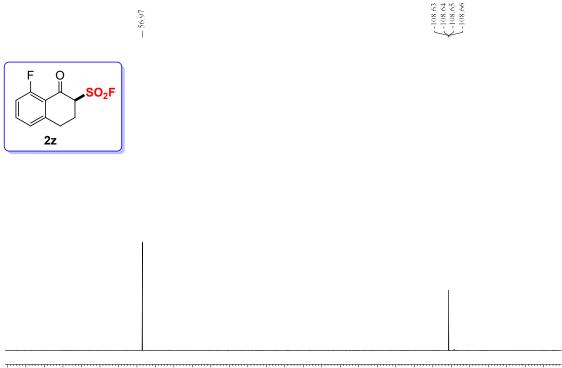



140					50			-10			-60

- 0.00


### $^1\text{H}$ NMR (500 MHz, CDCl₃) for 2z

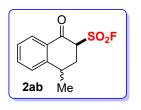
4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 44444
4444 4444
4444 4444
4444 4444
4444 4444
4444 

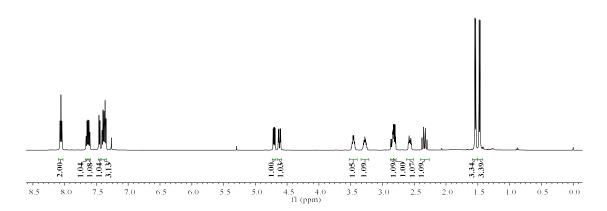





### 13 C NMR (126 MHz, CDCl₃) for **2z**

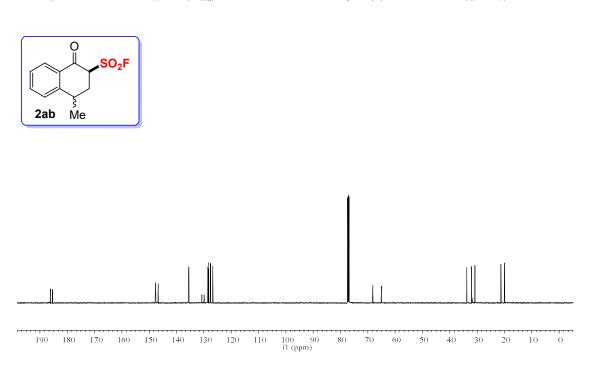



## $^{19}\text{F}$ NMR (471 MHz, CDCl₃) for 2z



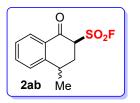

30 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 fl (ppm)

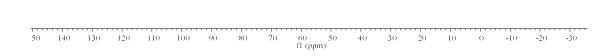
#### ¹H NMR (500 MHz, CDCl₃) for **2ab**


88.88 88.07 88.89 88.07 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 88.80 89.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80 80.80






## ¹³C NMR (126 MHz, CDCl₃) for **2ab**

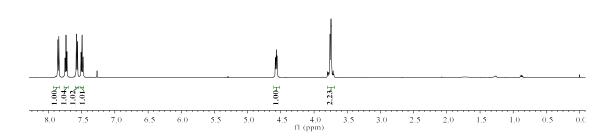

6.15 5.37	6.74 6.74 9.99 0.72 5.847 9.88 8.855 6.74 6.74 6.74	16 42 16 91 18 10 10 01	
<u>s</u> <u>s</u>	4466666666666666	77 68 65 65	33 30 20 20
52		Y Y K	



### $^{19}\text{F}$ NMR (471 MHz, CDCl₃) for 2ab

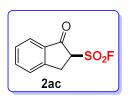
 $\sim 56.28$  $\sim 54.68$ 

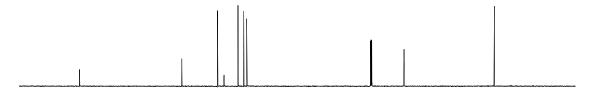





-----

### $^1\text{H}$ NMR (500 MHz, CDCl₃) for 2ac

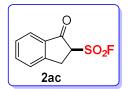

2ac


7.275	4558 4557 3755 3755 3755 3755 3755 3755 3755	
SOF		



## $^{13}\mathrm{C}$ NMR (126 MHz, CDCl₃) for **2ac**



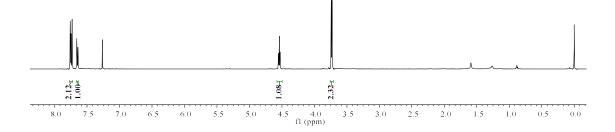





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

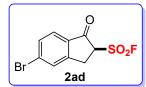
### ¹⁹F NMR (471 MHz, CDCl₃) for 2ac

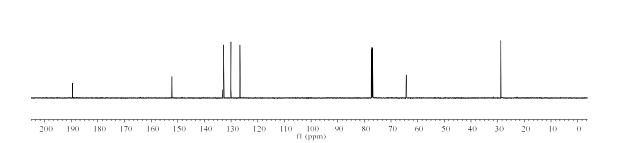
-54.17




									ļ									
40	130	120	110	100	90	80	70	60	50 fl (ppm)	40	30	20	10	0	-10	-20	-30	-4(

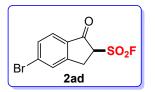
### $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for $\mathbf{2ad}$






### ¹³C NMR (126 MHz, CDCl₃) for 2ad


189.49	152.22	133.32 133.30 132.84 132.73 130.08 130.08 126.72	77.41 77.16 76.91	64.33 64.22	28.85
1			$\checkmark$	$\sim$	1

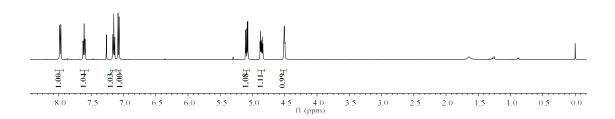




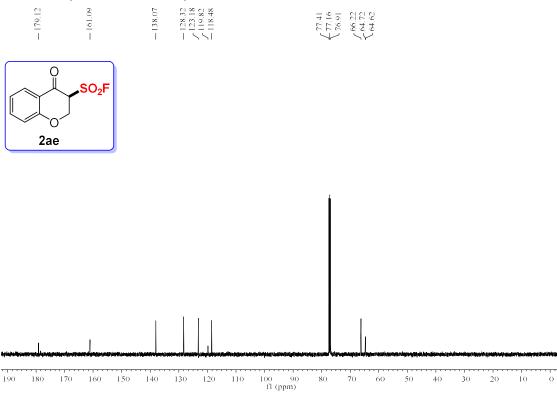
### $^{19}\text{F}$ NMR (471 MHz, CDCl₃) for 2ad

- 56.95

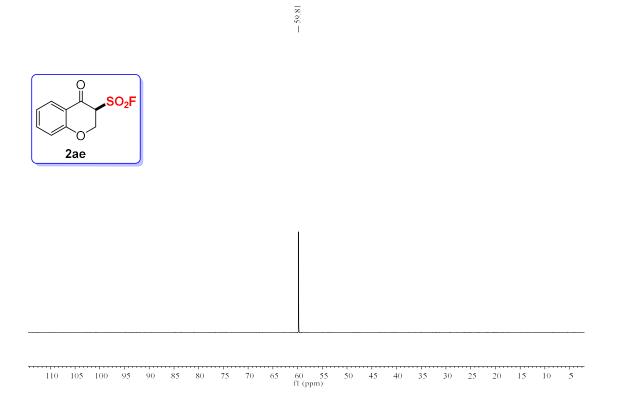





-----

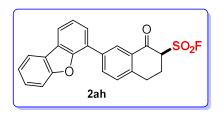

### ¹H NMR (500 MHz, CDCl₃) for 2ae

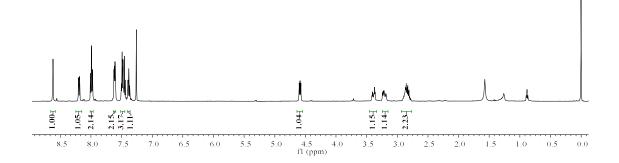
 $\begin{array}{c} & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\ & (2,2) \\$ 



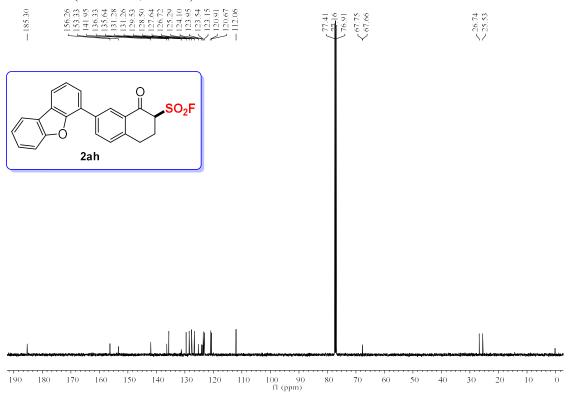



#### ¹³C NMR (126 MHz, CDCl₃) for 2ae

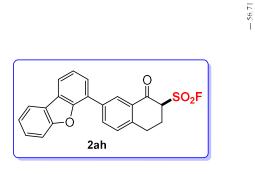


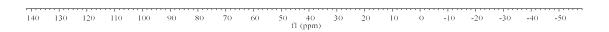


## ¹⁹F NMR (471 MHz, CDCl₃) for 2ae



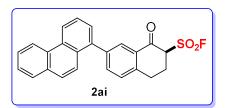

#### ¹H NMR (500 MHz, CDCl₃) for 2ah

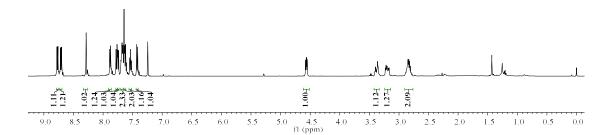
7.8.62
7.8.62
7.8.62
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.8.20
7.9.20
7.9.20
7.9.20
7.0.00
7.0.00

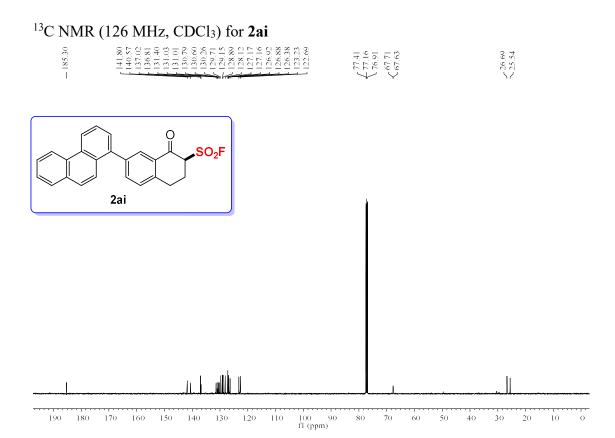


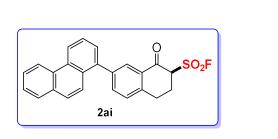

#### ¹³C NMR (126 MHz, CDCl₃) for 2ah

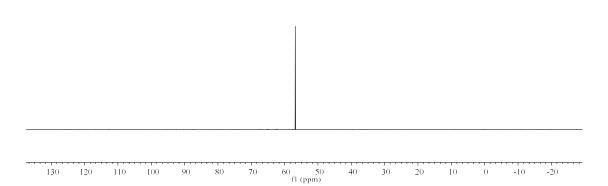




 $^{19}\mathrm{F}$  NMR (471 MHz, CDCl₃) for 2ah



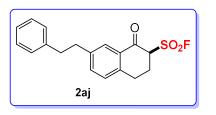


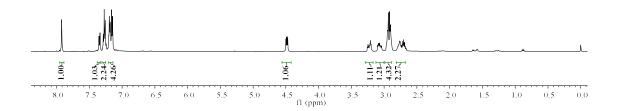


# ¹H NMR (500 MHz, CDCl₃) for **2ai**





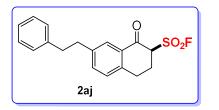


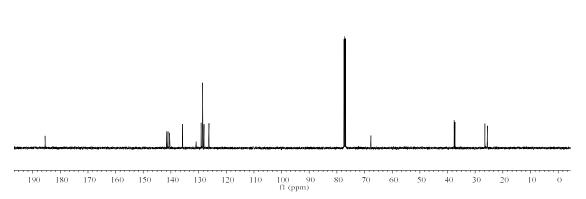


 $^{19}\text{F}$  NMR (471 MHz, CDCl₃) for 2ai





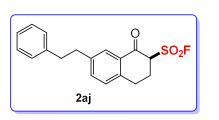

-56.81

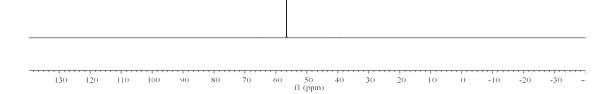

#### ¹H NMR (500 MHz, CDCl₃) for 2aj



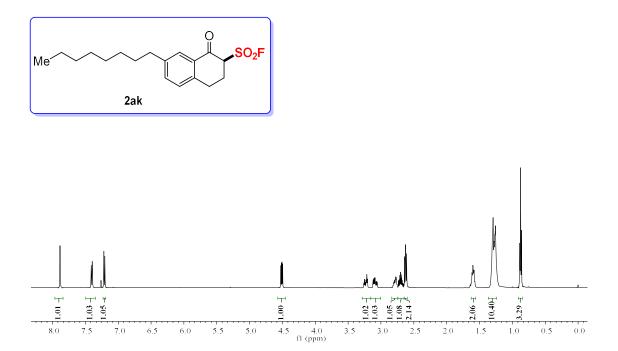


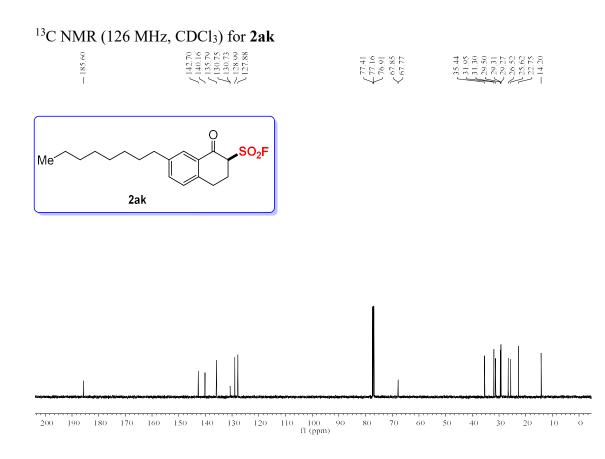

## ¹³C NMR (126 MHz, CDCl₃) for **2aj**


185.49	141.50 141.50 141.05 140.47 135.84 130.85 129.06 128.55 128.55 128.55 128.55 128.55 128.55 128.55 128.55	77.41 77.16 76.90 67.76 67.68	37.58 37.31 26.50 25.57
1		$\checkmark$ $\checkmark$	$\vee$ $\vee$



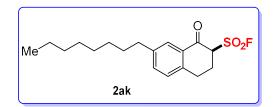


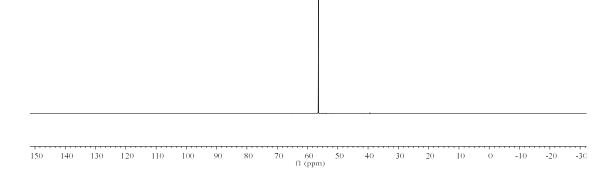


¹⁹F NMR (471 MHz, CDCl₃) for 2aj


- 56.56



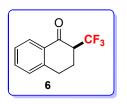


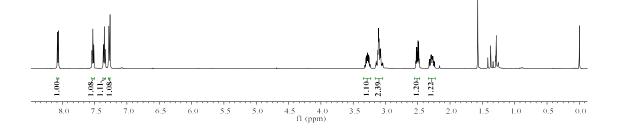

## $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for 2ak






¹⁹F NMR (471 MHz, CDCl₃) for 2ak



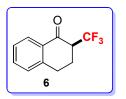






#### ¹H NMR (500 MHz, CDCl₃) for 6

----0.00

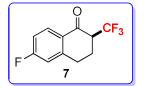


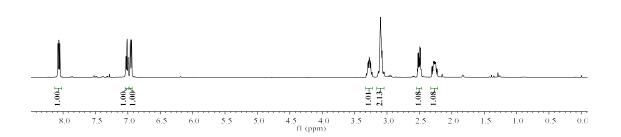



#### ¹³C NMR (126 MHz, CDCl₃) for 6

- 190.34	- 143 21 134,29 131,96 131,96 131,96 131,95 131,95 123,90 122,84 122,84 122,84 124,07 124,07 124,07 124,07 124,07 124,07	$\left\{\frac{77.41}{77.16}\right\}$	$\begin{cases} 51.24 \\ 51.04 \\ 50.83 \\ 50.63 \end{cases}$	27.59 23.54 23.52 23.50 23.47	
O CF ₃ 6					
1		i	1		
200 190 180 170 160	150 140 130 120 110 100 150 140 130 120 110 100 11 (ppm)	90 80 70	• 1 • 1 • 1 60 50 <	10 20 20 10	

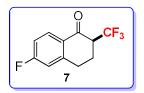
## $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for $\mathbf{6}$

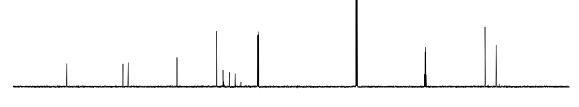

 $<^{-67.41}_{-67.43}$ 




70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)




#### 

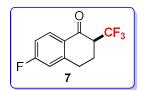





### $^{13}\text{C}$ NMR (126 MHz, CDCl₃) for 7

- 188.88	<ul><li>167.21</li><li>165.16</li></ul>	<pre>[146.40] [146.40] [131.14 [131.14 [131.16] [131.16] [131.28,65] [131.28,64] [131.28,64] [121.35,77] [121.35,17] [121.35,17] [114.89] [114.89]</pre>	$\left\{ \frac{77.41}{77.16} \right\}$	50.98 50.77 50.37 50.36	27.67 23.38 23.38 23.36 23.34 23.34
1	17		$\sim$		$\sim$

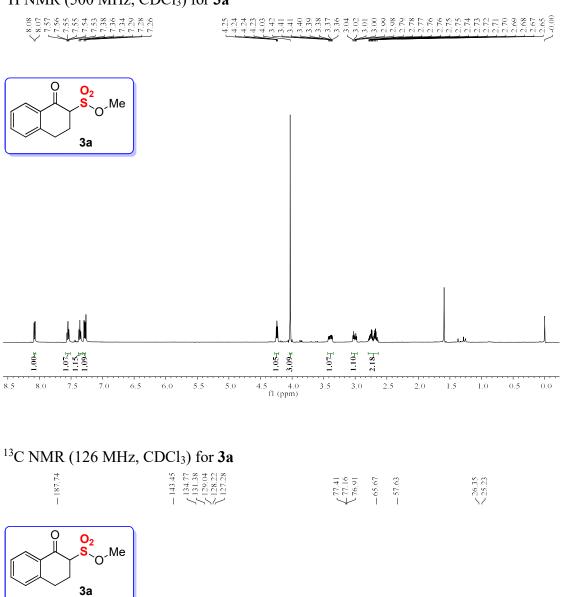


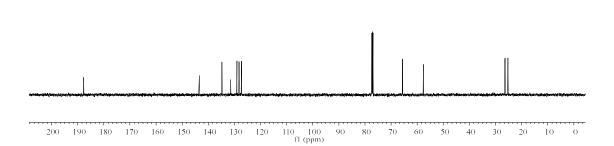




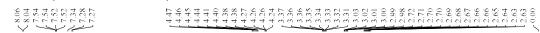
200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

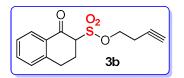
## $^{19}\mathrm{F}$ NMR (471 MHz, CDCl₃) for 7

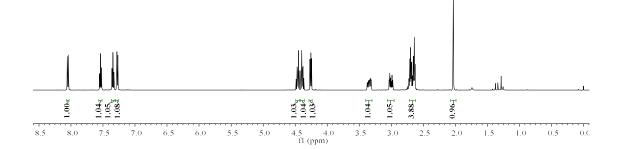




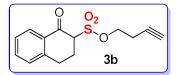



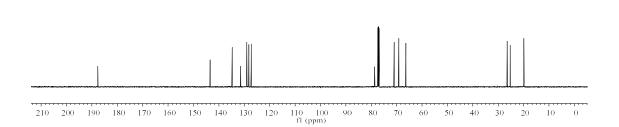


#### ¹H NMR (500 MHz, CDCl₃) for **3a**





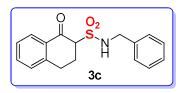

#### ¹H NMR (500 MHz, CDCl₃) for **3b**

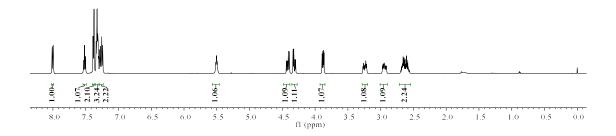





#### ¹³C NMR (126 MHz, CDCl₃) for **3b**

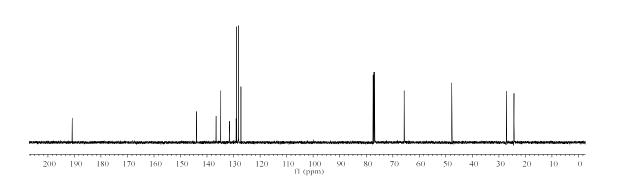

87.65	43.41 34.76 31.39 31.39 22.002 22.19	8.63 7.41 6.91 6.91 5.38 5.38	6.45 5.28 9.90
<u> </u>	2 2 2 2 2 2 2	5577777	- 13 S
			121





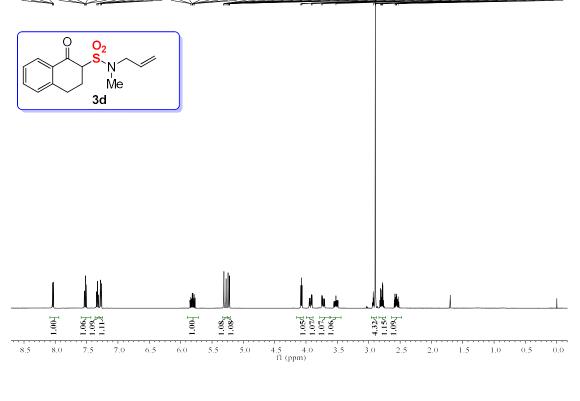

## $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) for 3c


28.80 29.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.000



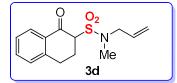


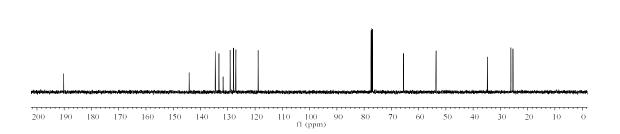

#### ¹³C NMR (126 MHz, CDCl₃) for 3c


190.80	143.96 134.83 134.83 134.83 134.83 134.83 134.83 128.85 128.85 128.85 128.10 128.85 127.25	77.41 77.16 76.91	65.70	47.79	27.22 24.35
		$\checkmark$			17

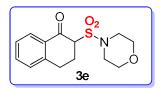


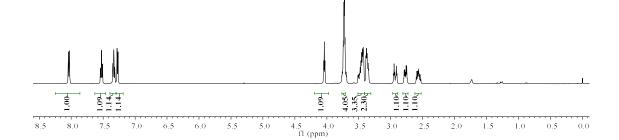



#### ¹H NMR (500 MHz, CDCl₃) for **3d**


8,8,05 8,8,05 8,8,04 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55 1,7,55

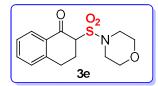


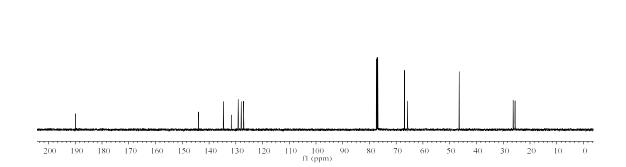

#### ¹³C NMR (126 MHz, CDCl₃) for 3d


7 182229.1.2 188.0 188.0	$\left\{ \begin{array}{c} 77.41 \\ 77.16 \\ 76.91 \end{array} \right.$	- 65.54	- 53.60	- 34.78	< 25.40
--------------------------------	------------------------------------------------------------------------	---------	---------	---------	---------






#### ¹H NMR (500 MHz, CDCl₃) for **3e**






#### ¹³C NMR (126 MHz, CDCl₃) for **3e**

- 189.89	= 143.94 $= 143.94$ $= 134.64$ $= 1.05$ $= 1.05$ $= 1.05$ $= 1.05$ $= 1.05$	$\underbrace{ \begin{array}{c} 77.41 \\ 77.16 \\ 76.91 \\ 76.91 \\ 65.72 \end{array} }_{65.72}$	— 46.46	26.26
----------	-----------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------	---------	-------



