Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Phenanthrene cyclocarbonylation – Core post-synthetic modification of phenanthriporphyrin

Kamil Kupietz*, Michał J. Białek, Bartosz Szyszko, Aleksandra Sarwa, and Lechosław Latos-Grażyński*

Supporting Information

Table of contents

Materials	2
Instrumentation	2
NMR spectroscopy	2
Electronic spectroscopy	2
Mass Spectrometry	2
X-ray crystallography	2
DFT calculations	2
Synthesis	3
NMR spectra	5
Schemes	7
DFT figures	8
Mass spectra	10
UV-Vis spectra	11
Tables	12

Materials

Chemicals and solvents like methanol were of at least pure grade and used without further purification unless otherwise specified. Dichloromethane was distilled over CaH₂. Toluene was dried for 48 hours over anhydrous magnesium sulfate. Toluene was filtered through a short (4 cm) column with active, basic Al_2O_3 immediately before use. 5,6-Dimethoxyphenanthriporphyrin **1** and azaacenephenatriporphyrinoid **2** were synthesized according to the previously described procedures.^{1, 2}

Instrumentation

NMR spectroscopy

NMR spectra were measured on Bruker Avance III 500 MHz and Bruker Avance III 600 MHz spectrometers. 1 H and 13 C shifts were referenced to the residual resonances of deuterated dichloromethane – 5.32 ppm, 54.0, and chloroform – 7.24 ppm.

Electronic spectroscopy

UV-Vis absorption spectra were recorded in CH₂Cl₂ solutions on Varian Carry-50 Bio spectrophotometers.

Mass Spectrometry

Mass spectra (High Resolution and Accurate Mass) were recorded on Bruker apex ultra FT-ICR using the electrospray technique.

X-ray crystallography

The X-ray diffraction data for **6** were collected on Xcalibur PX diffractometer with an Onyx detector (Cu-K α radiation, λ = 1.54184 Å). Single crystals suitable for the SC-XRD experiment were obtained by slow solvent evaporation: dichloromethane/methanol. The data were collected at 110(2) K. Data reduction and analysis were carried out with the CrysAlis 'RED' program.³ Structures were solved with direct methods using the SHELXT program and refined using all F^2 data, as implemented by the SHELXL program.⁴

DFT calculations

Geometry optimizations were carried out within unconstrained C_1 symmetry in vacuo, with starting preoptimized models using Gaussian 16 software.⁵ Calculations were performed at the B3LYP/6-31G(d,p) level of theory.^[6,8] Harmonic frequencies were calculated using analytical second derivatives as verification of local minimum achievement with no negative frequencies observed. NMR shifts were calculated for optimized structures using the GIAO method and B3LYP/6-31G(d,p) set with TMS shieldings as a reference. Relative energies were calculated including zero-point correction. Charge distributions were derived from population analysis using the NBO program.⁶ The anisotropy of the Induced Current Density (AICD) plots were produced using the output file from Gaussian 09 calculations, CSGT method, iop(10/93=1).⁷

Synthesis

Ketophenathriporphyrin (7).

In a 120 mL high-pressure vessel equipped with magnetic stirring, a small amount of iodine (ca. 15 mg, 0.059 mmol) was dissolved in dry toluene (30 mL). The solution was degassed by bubbling N_2 for 15 minutes, then 11,16,21-triphenyl-5,6-dimethoxyphenanthriporphyrin **1** (30 mg, 0.032 mmol) and [Fe(CO)₅] (1.5 ml, 11.4 mmol) were added. The solution was then refluxed for 1.5 h. After that, the solution was cooled, filtered through a piece of cotton – residue on the cotton was washed with CHCl₃ (stabilized with EtOH) – and evaporated under reduced pressure. The claret residue was dissolved in a

small amount of dichloromethane and filtered through a short (3 cm) layer of basic, deactivated Al_2O_3 (5 ml $H_2O/100$ g), and the solvent was evaporated. The mixture was purified by column chromatography on silica gel with *n*-hexane/dichloromethane as the eluent (7:3 v/v with 1% of TEA). The first green fraction that eluted was unreacted phenanthriporphyrin **1** (ca. 9.0 mg, 30% recovery). The desired product eluted as the second blue fraction, which subsequently, was recrystallized from dichloromethane/methanol yielding a blue solid. Yield: 19.7 mg (63%).

¹**H NMR** (600 MHz, CD₂Cl₂, 300 K): δ 11.28 (br, 1H, 27-NH), 7.51–7.43 (m, 10H, 11,21-Ph {7.46-*o*-Ph}), 7.41–7.33 (m, 5H, 16-*m*, *p*-Ph and 3,8-H {7.39 (d, 2H, ${}^{3}J$ = 8.8 Hz, 3,8-H}), 7.32–7.29 (m, 2H, 16-*o*-Ph), 6.79 (d, 2H, ${}^{3}J$ = 8.8 Hz, 2,9-H), 6.62 (d, 2H, ${}^{3}J$ = 5.2 Hz, 13,19-H), 6.27 (d, 2H, ${}^{3}J$ = 5.2 Hz, 14,18-H), 3.94 (s, 6H, 5,6-OCH₃). ¹³**C NMR** (151 MHz, CD₂Cl₂, 300 K): δ 201.9 (C=O), 162.5 (12,20), 152.7 (15,17), 147.8 (5,6), 140.9, 138.4, 136.2 (1,10), 133.6 (13,19), 133.5 (4,7), 133.1 (2,9), 132.9, 132.6 (11,21-Ph), 132.0 (16-*o*-Ph), 131.4 (11,21), 129.5 (14,18), 128.7 (11,21-Ph), 128.68 (11,21-Ph), 128.6 (16-*m*-Ph), 127.9 (16-*p*-Ph), 124.9 (3,8), 124.88, 124.4, 114.1 (16), 61.6 (5,6-OCH₃). **HRMS** (ESI) *m/z*: 659.2322 [M+H]⁺, calcd for C₄₆H₃₁N₂O₃⁺: 659.2329. **UV-Vis** (CH₂Cl₂, 298 K), λ_{max} (log ε) 355 (4.7), 360 (4.7), 445 (3.7), 480 (3.65), 555 (3.7), 600 (3.9), 720 (3.8).

Monocationic form of ketophenathriporphyrin (7-H⁺).

7 was dissolved in CD_2Cl_2 in an NMR tube. Then, gaseous hydrogen chloride was bubbled through the solution, which resulted in **7-H**⁺ and a change of color from blue to pale orange. An addition of a nitrogen base (i.e. TEA; 2,4,6-collidine, $NH_{3(g)}$) reversed the reaction.

¹**H NMR** (600 MHz, CD₂Cl₂, 300 K): δ 14.91 (br, 2H, 26,27-NH), 7.51–7.39 (m, 11H, {7.42 (m(d), 2H, 3,8-H}), 7.37 (m, 4H, 11,21-*o*-Ph), 7.31 (m, 2H, 16-*o*-Ph), 6.66 (d, 2H, ³J = 8.6 Hz, 2,9-H), 6.46 (d, 2H, ³J = 5.4 Hz, ⁴J = 0.9 Hz, 13,19-H),

6.14 (d, 2H, ³*J* = 5.4 Hz, ⁴*J* = 0.9 Hz, 14,18-H), 3.96 (s, 6H, 5,6-OCH₃). ¹³C NMR (151 MHz, CD₂Cl₂, 300 K): δ 201.8 (C=O), 159.0, 147.9, 147.0, 139.5, 138.4, 136.7, 136.1, 133.6 (2,9), 132.6 (11,21-*o*-Ph), 132.5, 132.3 (16-*o*-Ph), 132.2

(13,19), 130.1, 129.7, 129.3 (14,18), 128.9, 128.8, 126.8, 126.0 (3,8), 111.9 (16), 61.5 (5,6-OCH₃). UV-Vis (CH₂Cl₂, 298 K): λ_{max} 373, 462, 595, 830.

Isoketophenanthriporphyrin (7-H₂²⁺).

7 was dissolved in CD₂Cl₂ in NMR tube. The solution was titrated with TFA (or HBF₄·Et₂O) to give 7- H_2^{2+} (the color of the solution changed from blue to khaki). An addition of a nitrogen base (i. e. TEA; 2,4,6-collidine) reversed the reaction.

¹**H** NMR (600 MHz, CD₂Cl₂, 300 K): δ 10.53 (br, 2H, 26,27-NH), 8.53 (d, 2H, ³J = 8.4 Hz, 3,8-H) 7.95 (tt, 2H, ³J = 7.0 Hz, ⁴J = 1.8 Hz, 11,21-*p*-Ph), 7.91 (d, 2H, ³J = 8.4 Hz, 2,9-H), 7.80–7.73 (m, 10H, {7.78 (4H, 11,21-*m*-Ph)}, {7.76 (4H, 11,21-*o*-Ph)}, {7.75

(m(dd), 2H, 13,19-H)}), 7.60–7.52 (m, 5H, 16-Ph, {7.56 (2H, 16-*o*-Ph)}, {7.55 (16-*m*-Ph}), 7.49 (dd, 2H, ${}^{3}J$ = 4.9 Hz, ${}^{4}J$ = 2.0 Hz, 14,18-H), 5.74 (s, 1H, 16-H), 4.34 (s, 6H, 5,6-OCH₃). 13 C NMR (151 MHz, CD₂Cl₂, 300 K): δ 189.7 (C=O), 162.0 (11,21), 158.3 (15,17), 150.1 (5,6), 145.3 (12,20), 144.3 (13,19), 137.9, 137.3 (11,21-*p*-Ph), 137.2 (11,21-*m*-Ph), 137.1, 136.7, 135.0 (2,9), 132.0 (16-*ipso*-Ph), 131.0, 130.8 (11,21-*o*-Ph), 130.4 (16-*o*-Ph), 130.38, 130.35, 128.7 (16-*m*-Ph), 128.0 (3,8), 125.2 (14,18), 63.0 (5,6-OCH₃), 46.7 (16). UV-Vis (CH₂Cl₂, 298 K): λ_{max} 375, 401, 460, 530-710.

Isoazaacenephenatriporphyrinoid (2-H₂²⁺).

2 was dissolved in CD_2Cl_2 in an NMR tube. The solution was titrated with $BF_3 \cdot Et_2O$ to give 2- H_2^{2+} (the color of the solution changed from green to orange). An addition of a nitrogen base (i. e. TEA; 2,4,6-collidine) reversed the reaction.

*2- H_2^{2+} precipitates out of the solution after a few minutes.

¹**H NMR** (600 MHz, CD₂Cl₂, 300 K): δ 11.34 (br, 2H, NH), 9.64 (d, 2H, ³*J* = 8.0 Hz, 3,8-H), 8.89 (AA'BB', 2H), 8.77 (br, 2H, 22,25-H), 8.48 (AA'BB', 2H), 8.12 (d, 2H, ³*J* = 8.4 Hz, 2,9-H), 8.00 (t, 2H, ³*J* = 7.3 Hz, 11,21-*p*-Ph), 7.90–7.85 (m, 6H, {7.88 (2H, 14,18-H)}, {7.86 (4H,

11,21-*o*- Ph)}), 7.81 (m(t), 4H, 11,21-*m*-Ph), 7.59 (d, 2H, ³*J* = 4.3 Hz, 13,19-H), 7.57–7.49 (m, 5H,16-Ph), 6.12 (br, 1H, 16-H). ¹³**C NMR** (151 MHz, CD₂Cl₂, 300 K, based on HSQC and HMBC correlations): δ 168.6 (11,21), 144.6 (14,18), 142.8 (16-Ph), 137.5 (11,21-*p*-Ph), 137.3 (AA'BB', second spin system has not been detected), 136.8 (11,21-*o*-Ph), 135.3 (22,25), 134.1 (2,9), 130.7 (11,21-*m*-Ph), 130.2 (16-Ph), 129.0 (16-Ph), 127.9 (3,8), 126.6 (13,19), 46.4 (16).

NMR spectra

Figure S1. ¹³C NMR spectrum of **7-H**₂²⁺ (151HMz, CD₂Cl₂, 300 K).

Figure S2. Part of the $^{1}H^{-1}H$ COSY spectrum of 7-H₂²⁺ (600 MHz, CD₂Cl₂, 300 K).

Figure S3. ¹H-¹H NOESY spectrum of **7-H**2²⁺ (600 MHz, CD₂Cl₂, 300 K).

Figure S4. Part of the ${}^{1}H{}^{-13}C$ HSQC spectrum of 7-H₂²⁺ (600 MHz, CD₂Cl₂, 300 K).

Figure S5. Paramagnetic ¹H NMR spectrum for a crude mixture in the reaction of 1 with Fe(CO)₅.

Schemes

Scheme S1. Considered neutral structures of 1-iso, 2-iso, 7-iso, and 9 treated as standards for modification of charge distribution due to protonation.

DFT figures

Figure S6. AICD plots of 1-iso, $1-H_2^{2+}$, 2-iso, $2-H_2^{2+}$, 7-iso, $7-H_2^{2+}$, 9, and $9-H_2^{2+}$ at an isosurface value of 0.06 e/a.u.³.

Figure S7. Partial charge distribution (NBO) of **1-iso**, **1-H** $_2^{2+}$, **2-iso**, **2-H** $_2^{2+}$, **7-iso**, **7-H** $_2^{2+}$, **9**, and **9-H** $_2^{2+}$. Color range from -0.3 e (red) to 0.3 e (green).

Figure S8. Dihedral angles between planes defined by dipyrromethene and phenanthrene units for $1 (11.9^{\circ})$ (left - DFT) and $7 (36.1^{\circ})$ (right - X-ray structure).

Mass spectra

Figure S9. HRMS (ESI) of **7**: *m/z*: 659.2322 [M+H]⁺, calcd for C₄₆H₃₁N₂O₃⁺: 659.2329.

UV-Vis spectra

Figure S10. Electronic absorption spectra recorded during titration of **7** with a diluted solution of TFA (in dichloromethane – v/v 1:300, 298 K): black – **7**, red – **7**-H⁺, turquoise – **7**-H₂²⁺.

X-ray structure

Fig. S11 Molecular structure of 7 (ORTEP plot).

Tables

	7				$7-H_2^{2+}$			
Position	¹ H N	IMR	¹³ C NMR		¹ H NMR		¹³ C NMR	
	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.
2,9	6.56	6.79	128.9	133.1	8.05	7.91	132.4	135.0
3,8	7.19	7.39	119.8	124.9	8.90	8.53	127.1	128.0
5,6-OCH ₃	3.81	3.94	56.0	61.6	4.50	4.34	57.9	63.0
13,19	6.38	6.62	128.3	133.6	7.81	7.75	139.3	144.3
14,18	6.03	6.27	123.7	129.5	7.93	7.49	117.7	125.2
16	-	-	114.6	114.1	3.86	5.74	51.5	46.7
CO	-	-	196.9	201.9	-	-	185.6	189.7
26,27 (NH)	12.22	11.28	-	-	6.66	10.53	-	-

Table S1. Comparison of chemical shifts for 7 and $7-H_2^{2+}$ (600 MHz, CD₂Cl₂, 300 K).

Table S2. ¹H NMR chemical shifts (ppm) of the porphyrin skeleton for $(1, 1-H_2^{2+}, 2, 1-H_2^{2+}, 7 \text{ and } 7-H_2^{2+})$ using the GIAO method (Calc. - calculated, Exp. – experimental, ND – not detected).

Position	1	8	1-H	[2 ^{2+ 8}	2	2	2-E	1 2 ²⁺	7	7	7-F	H_2^{2+}	8	9**			
1 0511011	Calc.	Exp.	Calc.	^(a) Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.			
2,9	5.42	5.94	8.42	8.09	6.79	6.87	8.28	8.12	6.56	6.79	8.05	7.91	7.60 (2)	7.65 (2)			
													8.00 (9)	8.07 (9)			
3.8	6.54	6.94	9.36	8.76	8.58	8.51	10.42	9.64	7.19	7.39	8.90	8.53	8.46 (3)	8.33 (3)			
0,0	0.01	0.7 .	7.00	0170	0.00	0.01	10112		/11/		0.70	0.00	8.63 (8)	8.38 (8)			
5,6- OCH3	3.53	3.71	4.57	4.31	-	-	-	-	3.81		4.50	4.34	4.14	4.16			
12 10	5.00	5 50	7.96	7.05	(29	C 41	7 70	7.50	(20	(())	7.01	7 75	5.97 (13)	6.94 (13)			
15,19	5.09	5.59	/.80	7.85	0.28	0.41	1.18	1.39	0.38 0.02	0.38 0.0	0.38	0.02	0.02	/.81 /	7.75	7.08 (19)	7.11 (19)
14,18	4.70	5.24	7.60	7.63	5.94	6.10	7.84	7.88	6.03	6.27	7.93	7.49	6.91 (14)	6.19 (14)			
,													6.85 (18)	6.56 (18)			
16	-	-	6.22	5.50	-	-	4.41	6.12	-	6.12	3.86	5.74	-	-			
22.25	20.10	1670	6.00	7.00	12.05	12.01	0.00	0.77					8.62 (22)	8.65 (22)			
22,25	20.18	16.70	6.88	7.23	12.85	12.01	8.22	8.77	-	-	-	-	9.11 (25)	8.99 (25)			
26,27 (NH)	20.28	16.70	7.00	10.00	13.15	ND	7.50	11.34	12.22	11.28	6.66	10.53	11.04	11.12			

*Standard measurement in CDCl₃ or CD₂Cl₂ at 300 K [(a) CD₂Cl₂, 250 K].

**The original numbering of the compound is different, and the comparison takes into account the change in the numbering and shows the same type of atom.

 Table S3. Crystal data and structure refinement for 7.

Identification code	7
Empirical formula	$C_{46}H_{30}N_2O_3$
Formula weight	658.72
Temperature/K	110(2)
Crystal system	triclinic
Space group	$P\overline{1}$
a/Å	11.109(3)
b/Å	11.704(3)
c/Å	13.820(4)
α/°	81.76(4)
β/°	71.15(3)
γ/°	75.07(3)
Volume/Å ³	1639.5(9)
Z	2
$\rho_{calc}g/cm^3$	1.334
µ/mm ⁻¹	0.660
F(000)	688.0
Crystal size/mm ³	$0.200\times0.110\times0.090$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
20 range for data collection/°	6.774 to 157.082
Index ranges	$-14 \le h \le 13, -14 \le k \le 13, -15 \le l \le 17$
Reflections collected	12222
Independent reflections	6771 [$R_{int} = 0.0622$, $R_{sigma} = 0.0999$]
Data/restraints/parameters	6771/0/466
Goodness-of-fit on F ²	0.963
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0893$, $wR_2 = 0.2353$
Final R indexes [all data]	$R_1 = 0.1315, wR_2 = 0.2593$
Largest diff. peak/hole / e Å-3	0.86/-0.45

Table S4. DFT calculated Cartesian coordinates for 1-iso.

С	-0.99777800	-4.57667900	0.93899500
С	0.37855300	-4.65797300	0.96452800
С	1.19762500	-3.55479800	0.54005000
С	-1.66438300	-3.36621900	0.54098900
С	-0.88230600	-2.27236800	0.08200200
С	0.56585500	-2.37314700	0.06727400
С	-1.53054200	-1.08746700	-0.28920200
С	1.36476300	-1.29188900	-0.32683700
0	-1.78359700	-5.62772400	1.35894500
0	1.01953200	-5.80555400	1.37703200
С	-1.76638200	-6.77616700	0.49914700
С	0.89876800	-6.09543800	2.77821800
С	-3.07231200	-3.21503600	0.61465400
С	-3.67849600	-2.01990600	0.28207400
С	-2.90632800	-0.90987900	-0.16065600
С	2.61367200	-3.59384800	0.60130200
С	2.75245600	-1.29838300	-0.20593500
С	3.37233100	-2.49576500	0.24780000
С	-3.49433300	0.40725600	-0.46587700
С	3.50864600	-0.07440600	-0.52812900
С	-2.77178700	1.57496100	-0.28994900
Ν	-1.54550700	1.62338900	0.39567700
С	-1.08349100	2.84246800	0.25770000
С	-1.99416300	3.68377000	-0.52346700
С	-3.05956200	2.89827700	-0.84037800
С	2.95167300	1.17987600	-0.34682600
Ν	1.75470600	1.39356600	0.35946500
С	1.46278900	2.66523200	0.23112600
С	3.40784100	2.45242900	-0.90280900
С	2.46620600	3.37569200	-0.56638600
С	0.22990100	3.22912600	0.94636500

С	0.33621800	4.71010700	1.28489700
С	0.39581400	5.71117600	0.30219400
С	0.37653700	5.10552500	2.62826600
С	0.49207500	7.05815400	0.65227300
С	0.53096000	7.43433800	1.99584100
С	0.47278200	6.45170100	2.98373100
С	4.88078100	-0.21119700	-1.07308500
С	5.93447700	0.59141300	-0.59809500
С	5.16274800	-1.15886200	-2.07534100
С	7.22048000	0.46288300	-1.12052000
С	7.47993500	-0.46865500	-2.12683900
С	6.44607600	-1.27896300	-2.60232000
С	-4.87971800	0.46067400	-0.99217600
С	-5.80964100	1.39182900	-0.49411200
С	-7.10823700	1.44271900	-0.99851100
С	-7.50374100	0.56606100	-2.00980800
C	-6.59425200	-0.36968700	-2.50858200
C	-5.29946400	-0.42872100	-1.99950800
H	-2.44860100	-7.50094200	0.94764400
Н	-2.12348800	-6 51396000	-0.50382100
Н	-0.76211000	-7.20377100	0.43001400
Н	1 47663000	-7.00564200	2,94980700
н	1.31825600	-5.27969000	3.37839800
Н	-0.14526800	-6 25807400	3.05992000
н	-3 66306200	-4 05009600	0.97324300
н	-4 75326700	-1 91666900	0 38840400
н	3 09071500	-4 50194900	0.95163300
н	4 45236100	-2 53741300	0.34233700
н	-1 85672600	4 72587400	-0 77298600
н	-3 91793000	3 16545000	-1 44034300
н	4 28387400	2 60096600	-1 51814000
н	2 46869800	4 42748800	-0.81299500
н	0.36677600	5 43801400	-0.74834600
н	0.33173000	4 34700200	3 40530400
н	0.53665700	7 81420700	-0 12662200
н	0.60584300	8 48289900	2 26871000
н	0.50213200	6 73056900	4.03322100
н	5 73887800	1 29965500	0.19994200
н	4 36168600	-1 78773200	-2 45034700
П Ц	8.02220800	1.08535800	-2.43034700
и П	8.02220800	0.56854700	2 53312000
н ц	6.4008000	-0.50854700	2 28577200
п u	5 50076700	-2.00308200	-3.38377300
п	-3.30970700	2.03802400	0.50/2/500
п	-7.81592500	2.10239000	-0.39433000
п	-0.31303200	1.05427200	-2.40210000
п u	-0.09430000	-1.0343/300	-3.29044900
п	-4.3946/100	-1.13446000	-2.39211300
п	0.200/1/00	2.0/004200	1.880//900
н	-0.95244600	-0.25380800	-0.64/19300
н	0.90190800	-0.395/3400	-0./0142200

 Table S5. DFT calculated Cartesian coordinates for 2-iso.

С	2.94183300	1.45407000	0.13678900	
С	4.17449600	0.72336600	0.43355200	
С	4.17448000	-0.72338800	0.43359900	
С	2.94180700	-1.45408800	0.13686100	
С	1.77903100	-0.73400700	-0.21859900	
С	1.77903700	0.73398900	-0.21861300	
С	2.88107500	2.86073700	0.21478600	
С	1.69854500	3.54026200	-0.02384400	
С	0.52061100	2.83276700	-0.36919500	
С	0.60742200	1.44563400	-0.49881500	
С	2.88103400	-2.86075200	0.21491500	
С	1.69850400	-3.54027200	-0.02372600	
С	0.52059300	-2.83277600	-0.36915700	
С	0.60742300	-1.44565300	-0.49883600	
Ν	5.27597000	1.41154700	0.71000100	
С	6.40240300	0.71709000	0.98967700	
С	6.40238700	-0.71712300	0.98972800	
Ν	5.27593900	-1.41157400	0.71009800	
С	-0.78019500	3.50189600	-0.57709900	
С	-1.97148400	2.86370200	-0.28732500	

С	-0.78394100	4.87975800	-1.12518500
С	-1.59867000	5.88131100	-0.56572700
Ċ	-1.60331200	7.17260400	-1.09096200
Ĉ	-0.79600800	7.48877300	-2.18452500
Č	0.02514000	6.50731600	-2.74492700
Č	0.03930800	5 21950300	-2 21555600
N	2.04060300	1 64604300	0.41301700
C	3 20758700	1.04004300	0.41391700
C	-3.29738700	2.24659500	0.40403000
C	-4.14310000	2.24038300	-0.29810700
C	-5.51927200	3.24011900	-0.70859100
C	-3./1351000	0.00003100	1.14227700
C V	-3.29/58/00	-1.2//4/200	0.40459000
N	-2.04061400	-1.64603000	0.41392800
C	-1.9/149/00	-2.8636/600	-0.28/35500
С	-3.31927600	-3.24603200	-0.70850000
C	-4.14509600	-2.24648700	-0.29827600
С	-0.78021500	-3.50189900	-0.57709300
С	-0.78396300	-4.87974800	-1.12519300
С	-1.59875600	-5.88129100	-0.56580600
С	-1.60339400	-7.17257400	-1.09105800
С	-0.79601900	-7.48875200	-2.18456800
С	0.02519700	-6.50731100	-2.74489500
С	0.03935900	-5.21950500	-2.21550700
С	-5.16477700	0.00001000	1.60431600
С	-6.24575600	-0.00005400	0.70836800
Ċ	-7.56225700	-0.00008100	1.16984200
Ĉ	-7.82663400	-0.00004700	2.54039200
Č	-6.76346100	0.00000900	3 44288900
Č	-5 44813500	0.00003400	2 97618300
н	3 78189900	3 39664400	0.49073700
и и	1 66810100	4 61040600	0.08146500
и и	0.28662400	4.01949000	0.08140500
п п	2 78184500	3 20665500	-0.78202300
п u	1 66802600	-3.39003300	0.49091400
п 11	0.28650100	-4.01930000	0.08103000
п	-0.28039100	-0.91904000	-0.78214900
н	-2.20894200	5.64277400	0.29881000
H	-2.23182100	7.93429900	-0.63898300
H	-0./9985/00	8.49502900	-2.59300300
H	0.65604100	6./4591900	-3.59608500
Н	0.67697000	4.45977200	-2.65599000
H	-5.21431600	2.1852/600	-0.43950400
Н	-3.58089900	4.11878200	-1.28965100
Н	-3.58089800	-4.11865700	-1.28981900
Н	-5.21430100	-2.18512700	-0.43968100
H	-2.20907800	-5.64275100	0.29869500
Н	-2.23195600	-7.93425800	-0.63913400
Н	-0.79986500	-8.49500300	-2.59305800
Н	0.65615700	-6.74592100	-3.59600800
Н	0.67707300	-4.45978800	-2.65588700
Н	-6.05954300	-0.00008200	-0.36151000
Н	-8.38194500	-0.00013200	0.45688100
Н	-8.85139900	-0.00006300	2.90000800
Н	-6.95522300	0.00003200	4.51208100
Н	-4.62625200	0.00007100	3.68728900
С	7.60529100	-1.41290500	1.28888800
С	7.60532400	1.41286900	1.28878400
С	8.75228600	-0.71091300	1.57412200
Ĉ	8.75230300	0.71087000	1.57406900
H	7.57952500	-2,49768600	1.28292800
н	7 57958300	2 49764900	1 28274500
н	9 67112500	-1 24242000	1 80299200
н	9 67115400	1.24242000	1.80299200
н	-3 07676700	-0.00000300	2 03266700
**	5.07070700	5.0000000000000000000000000000000000000	2.05200700

 Table S6. DFT calculated Cartesian coordinates for 2-H2²⁺.

С	-2.92261000	-1.44960000	0.09291400
С	-4.13814700	-0.71775000	0.44049900
С	-4.13818100	0.71758400	0.44049300
С	-2.92267200	1.44949300	0.09291000
С	-1.77339400	0.73611100	-0.33465200
С	-1.77337400	-0.73616200	-0.33467600
С	-2.86837000	-2.85661100	0.19531000
С	-1.70518800	-3.55190900	-0.07343500

С	-0.53861000	-2.85691100	-0.49004100
С	-0.62304800	-1.46338100	-0.65250400
С	-2.86850500	2.85650700	0.19532700
С	-1.70535000	3.55185900	-0.07339100
C	-0.53872800	2.85691300	-0.48995300
C	-0.62307700	1.46337800	-0.65240300
N	-5.22370700	-1.41191100	0.76832000
C	-6.33638900	-0.72340000	1.09102000
C N	-0.33042100	0.72313800	0.76821000
C	-3.22377100	3 53807800	0.70631000
C	1 94886000	-2 86888400	-0.41357500
Č	0.77700400	-4.89513500	-1.22764400
Č	1.76559500	-5.81716200	-0.80004500
С	1.79405000	-7.10654000	-1.31388700
С	0.85296500	-7.49991600	-2.27187400
С	-0.13075400	-6.60343700	-2.70609600
С	-0.18143200	-5.31937600	-2.18239900
N	2.04126500	-1.73324100	0.40490000
C	3.306/0100	-1.24877900	0.42299200
C	4.08359600	-2.06/13600	-0.42095700
C	3.23897700	-3.00033000	-0.92301400
C	3 30671000	1 24898800	0.42301900
N	2.04123100	1.73339300	0.40497700
C	1.94875600	2.86904100	-0.41351000
С	3.25884700	3.06675000	-0.92357100
С	4.08352500	2.06737300	-0.42093200
С	0.73968900	3.53815500	-0.70678300
С	0.77678000	4.89520100	-1.22759200
C	1.76537800	5.81725300	-0.80005100
C	1.79378500	7.10662700	-1.31390100
C	0.85264200	7.49998200	-2.2/184100
C	-0.1310/800	0.00348000 5 21041000	-2.70601200
C	5 06424200	0.00008200	1 80414900
C	5 21839400	0.00000200	3 19572400
č	6.48944300	-0.00007400	3.77086000
С	7.62342800	-0.00008100	2.95902900
С	7.48092600	0.00001200	1.57034100
С	6.21060300	0.00008900	0.99471800
Н	1.29284500	1.43220800	1.01256400
H	-3.76026600	-3.37517400	0.52707200
H	-1.669/6/00	-4.62507400	0.07531300
H U	0.23599600	-0.95276200	-1.06331200
н	-3.70043200	4 62502400	0.07536200
н	0.23605300	0.95278800	-1.06305400
Н	2.46564500	-5.53003400	-0.02335500
Н	2.53767800	-7.81283500	-0.96027600
Н	0.88076000	-8.50759200	-2.67423000
Н	-0.85240100	-6.90985400	-3.45584900
Н	-0.92846000	-4.61932200	-2.53984700
H	5.13341600	-1.93664300	-0.62909900
H	3.53224300	-3.82745000	-1.63963300
H	5.12222500	3.82/68000	-1.63959200
н	2 46547000	5 5301/1800	-0.02920700
н	2 53742100	7 81293700	-0.96033600
Н	0.88039500	8.50765800	-2.67420200
Н	-0.85276600	6.90987900	-3.45573400
Н	-0.92872100	4.61934600	-2.53974300
Н	4.34223800	0.00003900	3.83940100
Н	6.59080400	-0.00014000	4.85121400
H	8.61290000	-0.00018200	3.40425900
H	8.35917900	0.00003600	0.93282100
н u	0.12/53000	0.00013600	-0.08//3500
п H	2.90490400	0.00008800	2.08945800
C	-7 52460500	1 42048400	1 43930800
č	-7.52454500	-1.42079900	1,43930000
Ċ	-8.65479400	-0.71290200	1.76901000
С	-8.65482400	0.71253500	1.76901500
Н	-7.50482000	-2.50498400	1.43319500
Н	-7.50492800	2.50467000	1.43321000
Н	-9.56543600	1.23961200	2.03452200

 Table S7. DFT calculated Cartesian coordinates for 7.

С	4.89387700	0.39126000	-0.89606600	
С	4.80408000	-0.99389800	-0.88542600	
Ĉ	3 61400600	-1 66548800	-0.40899300	
C C	2 78241600	1 21846000	0.47499900	
C C	3.78341000	0.55464000	-0.47400000	
C	2.6/360300	0.55464600	0.03400100	
C	2.59223700	-0.85537800	0.06698900	
С	1.46118100	1.13376600	0.45746600	
С	1.31736300	-1.27030000	0.50393900	
0	6.01612200	1.03571800	-1.36975900	
0	5 84450800	-1 78812200	-1 31422800	
č	7 18516700	0.89/12700	-0.5/1983000	
C	6 12011400	171566900	2 71046000	
C	0.12911400	-1./1500800	-2.71940000	
C	3.645/1800	2.62953300	-0.55668200	
С	2.44676400	3.22250200	-0.20367800	
С	1.28642600	2.50724900	0.27361700	
С	3.31523000	-3.05580700	-0.41517100	
С	0.98216500	-2.62473000	0.38819500	
Ċ	2,05935500	-3 49134400	-0.03725200	
Ĉ	0.02621600	3 26436000	0 39123700	
Č	-0.35728600	-3 22029300	0.50636400	
C C	1 22075400	2 77228800	0.00000400	
C N	-1.22973400	1.47(29500	0.07894100	
IN C	-1.55/51200	1.47638500	-0.32362100	
C	-2.86/3/500	1.43194500	-0.4/351300	
С	-3.47425000	2.75263100	-0.24301000	
С	-2.46830600	3.56771500	0.13707800	
С	-1.54338700	-2.59471800	0.16308500	
N	-1.74316300	-1.29388200	-0.28246000	
С	-3.07412700	-1.03582200	-0.49871400	
С	-2.87155700	-3.20152800	0.15576900	
Č	-3.77483200	-2.28719500	-0.27789800	
Č	-3 62572500	0.22850500	-0.68597700	
C C	5.00520800	0.22650500	0.05/08100	
C	-5.09529800	0.30033400	-0.93408100	
C	-3.99833800	0.78129900	0.01197000	
C	-5.60/86000	-0.12/98000	-2.1868/900	
C	-7.36692600	0.831/3500	-0.25247400	
С	-7.86144600	0.40077000	-1.48508700	
С	-6.97765300	-0.08260600	-2.45042100	
С	-0.41409600	-4.65539700	0.92232300	
С	-0.92373600	-5.66049400	0.08303800	
С	0.08316200	-5.03004400	2.18290200	
С	-0.95579700	-6.99240600	0.49891200	
С	-0 47324300	-7.34610800	1.75931800	
Ĉ	0.04844800	-6 35947000	2 59912600	
C C	0.16632200	4 69676700	0.701/0500	
C	0.10032200	5 74008700	0.79149500	
C	-0.23400700	3.74998700	-0.03797400	
C	-0.10216500	7.07845400	0.30120000	
C	0.4/463500	1.3/92/900	1.59551800	
С	0.90814200	6.34243900	2.42509400	
С	0.76486400	5.01616900	2.02320100	
Н	7.96828400	1.48111600	-1.03363700	
Н	7.00302200	1.29051400	0.45605900	
Н	7.49473900	-0.15262200	-0.47868000	
Н	6.94100600	-2.42270900	-2.90037800	
н	5 25196300	-2.01147300	-3.30686100	
н	6 43947700	-0.70831700	-3.01038600	
н	4 46062900	3 23545200	-0.93828900	
и и	2 35244800	4 20371000	0.33807500	
и П	4.05000000	2 77044200	0.55007500	
п	4.03900000	-3.77000300	-0.73109300	
п	1.84010900	-4.55115/00	-0.11283900	
Н	-4.52391600	2.99206900	-0.32/31600	
Н	-2.54137400	4.60035800	0.44250900	
Н	-3.07310700	-4.21527300	0.46479000	
Н	-4.84174600	-2.41481100	-0.38325500	
Н	-5.62127000	1.09822700	0.97963800	
Н	-4.92051100	-0.49541800	-2.94325300	
Н	-8.04861000	1.19882600	0.50954200	
Н	-8.92742900	0.43883300	-1.68960000	
Н	-7.35242400	-0.42091500	-3.41229400	
Н	-1.28111400	-5.39338300	-0.90682400	
	0 407 42700	4 26518000	2 82012700	

Н	-1.35037800	-7.75416200	-0.16748400
Η	-0.49767600	-8.38250100	2.08288800
Η	0.42703500	-6.62527600	3.58189500
Η	-0.68811500	5.52026700	-1.00618900
Η	-0.42899700	7.87801900	-0.29737800
Η	0.59181500	8.41321300	1.90647700
Н	1.35894400	6.56708300	3.38743500
Η	1.10400400	4.21265200	2.67000900
С	0.63781500	-0.01300300	1.00960100
0	-0.29888500	0.04549000	1.78709400
Н	-1.10883000	-0.50174100	-0.26066000

 Table S8. DFT calculated Cartesian coordinates for 7-iso.

С	-4.56222400	0.47194300	1.46996400
С	-4.48487300	-0.91818100	1.48124000
С	-3.36642600	-1.61957500	0.89494600
С	-3.50287800	1.28520100	0.91942000
С	-2.43157100	0.59436600	0.35377100
С	-2.36985100	-0.82243800	0.33284100
Ċ	-1.29140900	1.15906800	-0.22544300
Č	-1.18288300	-1.26805500	-0.25625300
õ	-5.63325700	1.13111500	2.03087500
õ	-5 49202500	-1 68410900	2 02422000
č	-6 87901100	0.97092400	1 33610700
C	-5 62329700	-1 59/1/200	3 45159700
C	3 30/78300	2 60076100	0.87624300
C	2 26566100	2.09970100	0.37024500
C	1 16202700	2 54765700	0.32411300
C	-1.10293700	2.34703700	-0.21723400
C	-3.12639900	-3.01700900	0.82410000
C	-0.92576600	-2.03842000	-0.2/320900
C	-1.95343500	-3.48/40100	0.25555800
C	0.056/9500	3.25522400	-0.66314800
C	0.35363900	-3.2216/200	-0./3230000
С	1.29582700	2.76636700	-0.32314200
N	1.45028700	1.68868100	0.56157900
C	2.71413400	1.35692100	0.52128400
С	3.48608100	2.23303400	-0.37043700
С	2.60129500	3.12907000	-0.87806600
С	1.54281100	-2.62825200	-0.38093300
Ν	1.59865800	-1.55965000	0.52632600
С	2.82714300	-1.11352100	0.49521300
С	2.87572700	-2.85871000	-0.94125500
С	3.67538500	-1.89686900	-0.41329000
С	3.17939400	0.13198400	1.30632300
С	4.60859500	0.19221900	1.82643700
С	5.73179600	0.25166200	0.98642000
С	4.82541600	0.18919800	3.21125200
С	7.02253200	0.30590800	1.51358600
С	7.21965100	0.30201200	2.89487900
С	6.11407300	0.24335400	3.74316100
Ċ	0.30901100	-4.45156200	-1.55403700
Ċ	1,19579900	-5.51963800	-1.32181100
Č	-0.64271100	-4.58482200	-2.58284600
Ĉ	1 14727500	-6 66970000	-2.10761600
Č	0.21133100	-6 77817300	-3 13743100
Ĉ	-0.68402000	-5 73169000	-3 37120600
Č	-0.10123900	4 49242400	-1 45960900
C	0.68285800	5 63288700	-1 20358500
C	0.52806100	6 78962600	-1.96552700
C	-0.41366200	6.83230900	-2 99/88500
C	1 20800200	5 71228700	2 25228200
C	-1.20800200	1 55820800	-3.23226300
C U	-1.000/9/00	4.33820800	-2.46/01900
п	-7.00809900	1.37345100	1.8/890000
Н	-6./9/02/00	1.33848600	0.30642800
H	-/.19591800	-0.0/5/1100	1.32625800
H	-6.42//2100	-2.2/962100	3.72479800
H	-4.69555800	-1.90674600	3.94461800
H	-5.87781200	-0.57/17100	3.76271900
Н	-4.18191800	3.31781800	1.29455200
Н	-2.18923000	4.37021100	0.33243900
Н	-3.85703200	-3.71339800	1.22518300
Н	-1.77839600	-4.55852600	0.23985700
Н	4.54630400	2.17886500	-0.57100800

Н	2.79139200	3.90327500	-1.60744200
Н	3.13535800	-3.59680100	-1.68644700
Н	4.72623600	-1.74232000	-0.61075400
Н	5.60399100	0.25595700	-0.09105100
Н	3.97039700	0.14382100	3.88054600
Н	7.87509700	0.35135900	0.84179500
Н	8.22446800	0.34430700	3.30484800
Н	6.25225800	0.23966700	4.82063700
Н	1.90466300	-5.44918500	-0.50368800
Н	-1.33594900	-3.77137400	-2.77130000
Н	1.83442500	-7.48661800	-1.90740400
Н	0.17340100	-7.67537400	-3.74820000
Н	-1.41561900	-5.80917800	-4.17010100
Н	1.39515100	5.61133100	-0.38568900
Н	1.13650800	7.66235300	-1.74701600
Н	-0.53441100	7.73462600	-3.58707800
Н	-1.94318000	5.73826100	-4.05125100
Н	-1.67531000	3.68789800	-2.69435800
С	-0.50013900	-0.01418500	-0.81536900
0	0.33602800	0.03427100	-1.68887500
Н	2.50301000	0.09211300	2.16466000

Table S9. DFT calculated Cartesian coordinates for $7-H_2^{2+}$.

С	-4.62400000	0.53531200	1.38773200
С	-4.54874700	-0.86832300	1.43386300
C	-3.42366700	-1.57410700	0.86256500
C	-3.52672800	1.32453400	0.87670600
Č	-2.44343700	0.62604900	0.34160100
Ĉ	-2.40130200	-0.79605800	0.31868200
Č	-1.28658700	1.17732000	-0.20574500
Č	-1 20995400	-1 25863800	-0 23759200
õ	-5.68823000	1.22598100	1.86410400
õ	-5 52986100	-1 64009800	1 95876800
č	-6 97485800	0.98443100	1 23724600
Č	-5 88740600	-1 43211800	3 34925200
C	-3 /1011100	2 73950000	0.83289200
C	-2 26699000	3 32507700	0.30901300
C	-1.15424700	2 57911900	-0.21134700
C	-3 20562900	-2.97667100	0.80886000
C	-3.20302900	2 64708100	0.30330000
C	2 03325600	3 47525000	0.26010100
C	-2.05325000	2 28801400	0.20019100
C	0.03274300	2 26502400	0.72740200
C	0.27009800	-3.20392400	-0.72740500
C N	1.52201800	2.70417400	-0.57576000
N C	1.55425200	1.75788800	0.30391200
C	2.82504400	1.30033000	0.48099400
C	3.48049/00	2.05218/00	-0.51/98100
C	2.56/51800	2.95439100	-1.038/0800
C	1.50169200	-2.66246900	-0.433/5100
N	1.00/90300	-1.0052/000	0.52941900
C	2.90558100	-1.12638100	0.46017000
C	2.75579000	-2.75396500	-1.10154300
C	3.60/32900	-1.80430100	-0.56159200
C	3.26646700	0.09419400	1.29683500
C	4.70614300	0.13653900	1.80207600
C	5.81550000	0.18213400	0.94440100
С	4.92111800	0.129/6100	3.18593600
C	7.10876600	0.21991000	1.46501500
C	7.31176600	0.212/9300	2.84590700
С	6.21481100	0.16763600	3.70596800
C	0.22613300	-4.50487800	-1.48774800
С	1.23781600	-5.48761500	-1.34449300
С	-0.83644400	-4.74893400	-2.39323300
С	1.19031400	-6.65915300	-2.08797200
С	0.14615900	-6.87149600	-2.99502500
C	-0.86399200	-5.91401800	-3.14651200
С	-0.07131700	4.53759600	-1.39723000
С	0.86872000	5.58449800	-1.22504400
С	0.74609600	6.76506100	-1.94548900
С	-0.30268100	6.92317100	-2.85813700
С	-1.24258500	5.90133100	-3.03835800
С	-1.14062200	4.72587800	-2.30783000

Н	-7.68131300	1.61547200	1.77452000
Н	-6.93407300	1.28265500	0.18571600
Η	-7.26602600	-0.06436700	1.31564600
Н	-6.69349900	-2.13681600	3.54794800
Н	-5.02883800	-1.66010400	3.98767100
Н	-6.22255900	-0.40966800	3.52853000
Η	-4.20542400	3.36074100	1.22908200
Н	-2.18638400	4.40609500	0.32635700
Η	-3.94980800	-3.65612300	1.20876600
Н	-1.87762900	-4.54822700	0.26163700
Н	4.50562900	1.92488000	-0.82674000
Н	2.72735300	3.62922500	-1.86626500
Н	2.95874800	-3.39791300	-1.94412200
Н	4.62095400	-1.60176000	-0.86810800
Н	5.68919600	0.18893700	-0.13323000
Н	4.07435000	0.09479800	3.86697800
Н	7.95777700	0.25498300	0.79002900
Н	8.31914900	0.24231800	3.24785900
Н	6.36283900	0.16182000	4.78089200
Н	2.01988700	-5.34815400	-0.60633900
Н	-1.60763300	-3.99882500	-2.52993300
Н	1.95506700	-7.41653200	-1.95223400
Н	0.11369400	-7.78746700	-3.57637800
Н	-1.66789600	-6.08007500	-3.85570000
Н	1.65296700	5.48399400	-0.48288400
Н	1.45544700	7.57051100	-1.78747900
Н	-0.39374500	7.84631100	-3.42164700
Н	-2.04982900	6.02565000	-3.75229500
Н	-1.85649900	3.92691300	-2.46677300
С	-0.49283100	-0.00965800	-0.76764000
0	0.45129800	0.03000700	-1.52501600
Н	0.97136800	-1.43961900	1.22479700
Н	0.87368700	1.47303400	1.25473400
Η	2.62264500	0.06299600	2.18616800

Table S10. DFT calculated Cartesian coordinates for 9.

С	-0.61823500	3.75053000	-0.44647300
С	0.75187800	3.71580600	-0.52383700
С	1.46464700	2.47232700	-0.41926900
С	-1.38258000	2.53742100	-0.34180200
С	-0.71483200	1.27823300	-0.28818000
С	0.74464700	1.24836700	-0.28603300
С	-1.49850400	0.10942100	-0.22992100
С	1.47744900	0.05493500	-0.14569200
0	-1.31248900	4.93797500	-0.51871500
0	1.49366300	4.87045000	-0.64548800
С	-1.14288300	5.80906500	0.60899100
С	1.37024900	5.53384600	-1.91282700
С	-2.79506000	2.58027100	-0.29504700
С	-3.53213700	1.42184800	-0.19725600
С	-2.89383500	0.15416600	-0.18478800
С	2.87820800	2.44998500	-0.43104500
С	2.87542300	0.03374700	-0.14329400
С	3.56633300	1.26653000	-0.28853000
С	-3.70963700	-1.07516900	-0.11070900
С	3.63885900	-1.21797900	0.02978500
С	-3.37530400	-2.22636500	-0.78649100
Ν	-2.33528100	-2.27362100	-1.73801400
С	-2.29787900	-3.51491300	-2.14650500
С	-3.28497100	-4.36756400	-1.49640000
С	-3.97059100	-3.55655900	-0.64644100
С	3.19129100	-2.44507000	-0.40714600
Ν	2.03427400	-2.60631600	-1.19665900
С	1.91055200	-3.89633700	-1.37072200
С	3.76819500	-3.75907700	-0.11540600
С	2.95594000	-4.67045400	-0.71539800
С	4.95648600	-1.12446900	0.71522600
С	6.11172600	-1.69322700	0.15112000

С	5.07313800	-0.45325400	1.94629200
С	7.34066000	-1.60735600	0.80516200
С	7.43695600	-0.95666800	2.03560300
С	6.29826500	-0.38081300	2.60445100
С	-4.93537800	-1.03035100	0.72746800
С	-6.16761600	-1.50826400	0.24645700
С	-7.30943500	-1.46595800	1.04578600
С	-7.24188100	-0.94863800	2.33996700
С	-6.02670900	-0.46141400	2.82756400
С	-4.88822900	-0.49048200	2.02641700
Н	-1.76713000	6.68295600	0.41298200
Н	-1.48218200	5.31979700	1.52968000
Н	-0.09872800	6.11447800	0.71997700
Н	2.02767400	6.40404900	-1.86439600
Н	1.69675900	4.87600700	-2.72659300
Н	0.34024500	5.85480700	-2.09213300
Н	-3.28421400	3.54562200	-0.34703700
Н	-4.61503900	1.47338900	-0.16370600
Н	3.40824200	3.38878100	-0.53908500
Н	4.65049500	1.27237100	-0.29994900
Н	-3.42740200	-5.42780100	-1.66284100
Н	-4.75973300	-3.83024800	0.03866200
Н	4.63707300	-3.94869100	0.49771000
Н	3.05006600	-5.74888400	-0.71167300
Н	6.04076200	-2.18515300	-0.81322900
Н	4.19122100	-0.00250300	2.39022300
Н	8.22394300	-2.04447500	0.34876000
Н	8.39367700	-0.89174200	2.54544200
Н	6.36528900	0.12718400	3.56203600
Н	-6.22605200	-1.89115500	-0.76678700
Н	-8.25406400	-1.83053200	0.65296200
Н	-8.13135000	-0.91711400	2.96231900
Н	-5.96658200	-0.05658700	3.83355700
Н	-3.94617700	-0.10994100	2.40798300
Н	-1.02310900	-0.86069900	-0.23679700
Н	0.96081000	-0.88627500	-0.03646500
Н	-1.59194300	-3.82925700	-2.91081300
Н	1.09386700	-4.30292100	-1.96091200

Table S11. DFT calculated Cartesian coordinates for $9\text{-}\text{H}_2{}^{2+}\text{.}$

С	-0.61685700	3.74176200	-0.52005500
С	0.75849400	3.70303300	-0.65261700
С	1.46411700	2.45550200	-0.52121500
С	-1.36961200	2.52214300	-0.39562500
С	-0.71032300	1.25313700	-0.37357900
С	0.75254800	1.22222200	-0.39195400
С	-1.51008000	0.09870100	-0.29506200
С	1.50440000	0.04049400	-0.25740900
0	-1.32557300	4.89975900	-0.54674000
0	1.51436100	4.81864000	-0.81555700
С	-1.04390600	5.87163300	0.49178000
С	1.26798800	5.61888900	-1.99891600
С	-2.77872700	2.58699100	-0.27006200
С	-3.53037700	1.44667900	-0.11800800
С	-2.90662000	0.16997900	-0.15230800
С	2.87995000	2.46045600	-0.49352100
С	2.90806200	0.05657300	-0.18363600
С	3.58823400	1.29980300	-0.29517100
С	-3.72378500	-1.04067000	-0.01086800
С	3.67553500	-1.17252600	0.04831200
С	-3.50271800	-2.14684300	-0.84782500
Ν	-2.83424300	-2.05852300	-2.07671400
С	-2.83115000	-3.26075900	-2.68266300
С	-3.44466500	-4.19882000	-1.83838100
С	-3.87054500	-3.51363100	-0.70680200
С	3.35844000	-2.35237300	-0.64487400
Ν	2.62721400	-2.36954400	-1.84036000
С	2.53176000	-3.63187800	-2.29937300
С	3.66735600	-3.71174000	-0.36261900
С	3.14577300	-4.49846000	-1.38269500
С	4.78799700	-1.15550600	0.98549300
С	5.94981300	-1.93864800	0.76599500

С	4.72765000	-0.34036500	2.14414400
С	6.99681000	-1.91552900	1.67750300
С	6.90644500	-1.12539600	2.82859100
С	5.77009200	-0.34076300	3.05964400
С	-4.78639500	-1.07572500	0.98163600
С	-5.99605600	-1.77698200	0.74474000
С	-6.99370400	-1.80535600	1.70988100
С	-6.80619900	-1.14894400	2.93112500
С	-5.62156200	-0.44558800	3.18069000
С	-4.62734600	-0.39359500	2.21441800
Н	-1.69882600	6.71660400	0.28335200
Н	-1.28427000	5.44800200	1.47145300
Н	0.00059500	6.18687300	0.46932900
Н	1.95570900	6.46048400	-1.92796400
Н	1.49021600	5.03283700	-2.89564300
Н	0.23652800	5.97342400	-2.03218100
Н	-3.25141700	3.56084900	-0.29430300
Н	-4.60755800	1.51344600	-0.01593700
Н	3.39188400	3.40808400	-0.60478500
Н	4.67127800	1.32271100	-0.25477400
Н	-3.55521000	-5.25302700	-2.04610800
Н	-4.34611400	-3.93496200	0.16636700
Н	4.16953100	-4.05507700	0.52958300
Н	3.19225900	-5.57410400	-1.46933300
Н	6.04630500	-2.50971600	-0.15041000
Н	3.83994700	0.25188900	2.33610600
Н	7.89204100	-2.49769900	1.48642800
Н	7.72599500	-1.11190500	3.54010700
Н	5.70242200	0.26620400	3.95620800
Н	-6.16728300	-2.24025600	-0.22027900
Н	-7.92576200	-2.32242400	1.50795000
Н	-7.58757000	-1.17540900	3.68402500
Н	-5.47889800	0.05767200	4.13106400
Н	-3.70230000	0.13418100	2.41805500
Н	-1.04471400	-0.88033800	-0.27197800
Н	0.99768900	-0.90767600	-0.11700100
Н	2.36799300	-1.53784700	-2.35205900
Н	-2.55524500	-1.18611100	-2.50351100
Н	-2.41773700	-3.39138900	-3.67327300
Н	2.05638900	-3.85343300	-3.24487800

Reference List

- 1 B. Szyszko, L. Szterenberg, A. Białońska, L. Latos-Grażyński, Phenanthriporphyrin: An Antiaromatic Aceneporphyrinoid as a Ligand for a Hypervalent Organophosphorus(V) Moiety. *Angew.Chem.Int.Ed.*, 2015, **54**, 4932-4936.
- 2 B. Szyszko, D. Dróżdż, A. Sarwa, S. G. Mucha, A. Białońska, M. J. Białek, K. Matczyszyn, L. Latos-Grażyński, Exocyclic p-System Extension of Phenanthriporphyrin Framework: Towards Azaaceneporphyrinoids. Org. Chem. Front., 2020, 7, 1430-1436.
- 3 CrysAlis RED: Oxford Diffraction (Poland).
- 4 G. M. Sheldrick, A short history of SHELX. Acta Cryst. A, 2008, 64, 112-122.
- 5 GAUSSIAN 16, Revision C.01

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. 2016. Wallingford CT, Gaussian, Inc.

- 6 Glendening, E. D., Reed, A. E., Carpenter, I. J., and Weinhold, F. The NBO 3.0 program, University of Wisconsin: Madison USA, 1996. 2011.
- 7 D. Geuenich, K. Hess, F. Kohler, R. Herges, Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. *Chem. Rev.*, 2005, **105**, 3758-3772.
- 8 K. Kupietz, M. J. Białek, A. Białońska, B. Szyszko, L. Latos-Grażyński, Aromaticity Control via Modifications of a Macrocyclic Frame: 5,6-Dimethoxyphenanthriporphyrin and 5,6-Dioxophenanthriporphyrin. *Org. Chem. Front.*, 2018, **5**, 3068-3076.
- 9 K. Kupietz, M. J. Białek, K. Hassa, A. Białońska, L. Latos-Grażyński, Oxygenation of Phenanthriporphyrin and Copper(III) Phenanthriporphyrin An Efficient Route to Phenanthribilinones. *Inorg. Chem.*, 2019, **58**, 12446-12456.