Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Fe^{^{III}}/ TBHP mediated remote C-O bond construction of 8-aminoquinolines: access to methoxylation and cyanomethoxylation

Mengfei Zhao, Kaixin Zhang, Jianxiong Xu, Jizhen Li *a,b

^a Department of Organic Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun,

130021, P. R. China

^b State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry,

Chinese Academy of Sciences, Changchun, 130022, P.R. China

Corresponding author E-mail: <u>ljz@jlu.edu.cn</u>

Contents

1. General information	S3
2. Preparation of starting materials	S4
3. Experimental section	\$5
4 Tolerance of this alkoxylation strategy to heteroaryl carboxamides substrates	S8
5. The single crystal X-ray diffraction data	S9
6. Mechanism investigation	S12
7. Characterization data of products	S15
7. ¹ H and ¹³ C NMR spectra	S23

1. General information¹

All reagents, starting materials, and solvents were purchased from commercial sources and used without treatment unless otherwise indicated. All the solvents were dried and newly distilled. NMR spectra were obtained on a Bruker AMX 400 system using chloroform-d as deuterated solvents. The ¹H-NMR spectra were recorded at 400 MHz in CDCl₃, and the ¹³C-NMR spectra were recorded at 101 MHz in CDCl₃. All shifts were given in ppm. All coupling constants (*J* values) were reported in Hertz (Hz). High-Resolution Liquid Chromatography-Mass Spectrometry was recorded on the Bruker MicrOTOF QII. Column chromatography was performed on silica gel 100-200 mesh or 200-300 mesh. Ethyl acetate and petroleum ether were used for column chromatography.

2. Preparation of starting materials¹

Preparation of starting materials: Aromatic amine (5.0 mmol, 1.0 equiv) was dissolved in 10 mL of dichloromethane and cooled to 0 $^{\circ}$ C using an ice bath. NEt₃ (6.0 mmol, 1.2 equiv) was added to the aniline solution followed by the corresponding acid chloride (6.0 mmol, 1.2 equiv) dropwise. The mixture was stirred for 10 h at room temperature. Then, the mixture was washed with sat. NaHCO₃ (50 mL), and was extracted with dichloromethane three times (3 x 40 mL). The organic layer was dried over Na₂SO₄. After filtration and evaporation, the amides were purified by column chromatography through silica gel.

^a indolin-2-one 1r and 1s were purchased from *Energy Chemical*.

3. Experimental section 3.1 Optimization of reaction conditions

OCH₃ Method A TBHP + Ν Η 2a 1a yield^b t (h) Entry T(℃) catalyst solvent additive 4 1 140 dppf(NiCl₂) PhCF₃ 27 4 2 80 dppf(NiCl₂) PhCF₃ trace 3 100 dppf(NiCl₂) PhCF₃ 4 6 4 120 dppf(NiCl₂) PhCF₃ 4 17 5 4 25 150 PhCF₃ dppf(NiCl₂) 4 6 140 NiCl₂ PhCF₃ n.r. 7 4 140 FeCl₃ PhCF₃ 36 8 4 140 K₃Fe(CN)₆ PhCF₃ n.r. 9 140 FeF₂ PhCF₃ 4 trace PhCF₃ 4 10 140 FeCl₂ 22 140 4 11 Ni(OTf)₂ PhCF₃ n.r. 4 12 140 NiSO₄ PhCF₃ n.r. 13 140 4 Sc(OTf)₃ PhCF₃ n.r. 4 14 140 CeCl₃ PhCF₃ n.r. 15 4 140 DMSO FeCl₃ trace 16 140 FeCl₃ DCM 4 6 17 140 FeCl₃ CH₃CN 4 26/24° 4 18 EtOH 140 FeCl₃ n.r. 4 19 140 FeCl₃ DMF n.r. 20 DCE 4 140 FeCl₃ n.r. 21 140 4 FeCl₃ toluene n.r. 22 140 FeCl₃ TFE 4 45 23 140 TFE 8 47 FeCl₃ 24 12 46 140 FeCl₃ TFE 25^d 39 140 FeCl₃ TFE 8 26^e 140 FeCl₃ TFE 8 46 8 27 140 TFE $PPh_3(2.0 eq)$ 48 FeCl₃ 28 8 140 TFE PivOH(0.2 eq)64 FeCl₃ 8 29 140 FeCl₃ TFE PivOH(0.5 eq)67 30 140 FeCl₃ TFE 8 PivOH (1.0 eq) 69 8 31 140 FeCl₃ TFE PivOH(2.0 eq)61 8 32^f 140 FeCl₃ TFE PivOH(2.0 eq)61 33g 8 61 140 FeCl₃ TFE PivOH(2.0 eq)34 140 8 34 FeCl₃ TFE $NaHCO_3(2.0 eq)$ 35^h 8 140 FeCl₃ TFE PivOH(1.0 eq)16 8 64 36 130 FeCl₃ TFE PivOH(1.0 eq)PivOH(1.0 eq)37 120 FeCl₃ TFE 8 52

Table S1 Optimization for selective methoxylation reaction of 8-aminoquinolines^a

^a Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), TBHP (70% in water, 4.0 equiv), catalyst (5 mol%), solvent (1.5 mL), in sealed tube (10 mL). ^b Isolated yield. ^c24% yield of C-5 cyanomethylation by-product. ^d TBHP (5.0-6.0mol/L in decane, 4.0 eq). ^e FeCl₃ (10 mol%). ^f under N₂. ^g under O₂. ^h DTBP (4.0 eq) instead of TBHP.

		H H H H H	BHP Method B			CH ₂ CN
Entry		cotalvet	solvent	additive	t (b)	vieldb
1 Linu y	70	Eacl	CUCN	auditive	12	yielu-
1	70	FeCl ₂	CH ₃ CN		12	0
2	70 80	FeCla	CH ₂ CN		12	0 17
3	85	FeCla	CH ₂ CN		12	17
3 1	00	FeCla	CH ₂ CN		12	10 18/6¢
- 1 5	100	FeCla	CH ₂ CN		12	$\frac{10}{0}$
6	80	FeEa	CH ₂ CN		12	$\frac{2\pi}{10}$
0 7	80	NiCla	CH ₂ CN		12	n r
8	80	NiSO	CH ₂ CN		12	n r
9	80	CoCla	CH ₂ CN		12	n r
10	80	FeCl ₂	CH ₃ CN/TFE		12	6
10	00	i eerj	(1/1)		12	Ũ
11	80	FeCl ₃	CH ₃ CN /PhCF ₃		12	8
			(1/1)			
12	80	FeCl ₃	CH ₃ CN		8	14
13	80	FeCl ₃	CH ₃ CN		24	33
14	80	FeCl ₃	CH ₃ CN		48	32
15 ^d	80	FeCl ₃	CH ₃ CN		24	42
16 ^d	80	FeCl ₃	CH ₃ CN		24	16
		(5 mol%)				
17 ^d	80	FeCl ₃	CH ₃ CN	PivOH (2.0 eq)	24	35
18 ^d	80	FeCl ₃	CH ₃ CN	$NaHCO_3$ (2.0 eq)	24	trace
19 ^d	80	FeCl ₃	CH ₃ CN	N_2	24	37
20 ^d	80	FeCl ₃	CH ₃ CN	O_2	24	38
21 ^d	80	FeCl ₃ /FeCl ₂	CH ₃ CN		24	41
		(5/5 mol%)				
22 ^d	80	FeCl ₃	CH ₃ CN		24	39
		(20 mol%)				
23 ^{d, e}	80	FeCl ₃	CH ₃ CN		24	trace
24 ^{d, f}	80	FeCl ₃	CH ₃ CN		24	41
24g	80	FeCl ₃	CH ₃ CN		24	25
24 ^h	80	FeCl ₃	CH ₃ CN		24	39
24 ^g	85	FeCl ₃	CH ₃ CN (3 mL)		24	50

Table S2 Optimization for cyanomethoxylation reaction of quinoline amides^a

^a Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), TBHP (70% in water, 0.4 mmol, 4.0 equiv), catalyst (10 mol%), solvent (1.5 mL), in sealed tube (10 mL). ^b Isolated yield. ^c yield of C-5 methoxylation by-product. ^d TBHP (5.0-6.0 mol/L in decane, 4.0 eq). ^e DTBP (4.0 eq) instead of TBHP. ^f **1a** (0.5 mmol, 1.0 equiv). ^g TBHP (5.0-6.0 mol/L in decane, 8.0 eq). ^h TBHP (5.0-6.0 mol/L in decane, 2.0 eq).

3.2 General procedure3.2.1 General procedure for C-5 methoxylation

1 (0.20 mmol, 1.0 equiv), TBHP (4.0 equiv, 70% in water), FeCl₃ (5 mol%), PivOH (1.0 eq) were mixed in TFE (1.5 mL) and stirred in a dried sealed tube (10 mL) at 140 °C for 8 h. After completion of the reaction (TLC monitored), it was cooled to room temperature and quenched with 1 mol/L Na₂SO₃ solution (10 mL, for removal of excess TBHP). Then the mixture was extracted with ethyl acetate (3 x 5 mL) and the organic layer was transferred to a round bottom flask after being dried over anhydrous Na₂SO₄. The solvent was concentrated under reduced pressure and further purified by flash chromatography (SiO₂, petroleum ether/ethyl acetate gradient), yielding the target products **2**.

3.2.2 General procedure for C-5 cyanomethoxylation

1 (0.20 mmol, 1.0 equiv), TBHP (8.0 equiv, 5-6 mol/L in decane), FeCl₃ (10 mol%) were mixed in CH₃CN (3.0 mL) and stirred in a dried sealed tube (10 mL) at 85 °C for 24 h. After completion of the reaction (TLC monitored), it was cooled to room temperature and quenched with with 1 mol/L Na₂SO₃ solution (10 mL, for removal of excess TBHP). Then the mixture was extracted with ethyl acetate (3 x 5 mL) and the organic layer was transferred to a round bottom flask after being dried over anhydrous Na₂SO₄. The solvent was concentrated under reduced pressure and further purified by flash column chromatography (SiO₂, petroleum ether/ethyl acetate gradient), yielding the target products **2**.

3.2.3 General procedure for gram-scale reaction of cyanomethoxylation

1 m (5.0 mmol, 1.0 equiv), TBHP (5-6 mol/L in decane, 2.0 mL), FeCl₃ (10 mol%) were mixed in CH₃CN (10.0 mL) and stirred in a dried sealed tube at 85 °C for 12 h. After completion of the

reaction (TLC monitored), it was cooled to room temperature and quenched with with 1 mol/L Na₂SO₃ solution (20 mL, for removal of excess TBHP). Then the mixture was extracted with ethyl acetate (3 x 20 mL) and the organic layer was transferred to a round bottom flask after being dried over anhydrous Na₂SO₄. The solvent was concentrated under reduced pressure and further purified by flash column chromatography (SiO₂, petroleum ether/ethyl acetate gradient), yielding the target product 3m 0.65g.

3.2.4 General procedure for the transformation of cyanomethoxylation compound

3c (0.5 mmol), NaOH (2 mmol, dissolved in 0.5 mL CH₃OH) were mixed in dioxane (4.5 mL) and the mixture was refluxed at 80 °C for 1 h. The course of the reaction was monitored by TLC analysis. Then the reaction mixture was cooled and evaporated to dryness, diluted with ethyl acetate and washed with water. The organic phase was concentrated after being dried over anhydrous Na₂SO₄ and purified by column chromatography chromatography (SiO₂, petroleum ether/ethyl acetate gradient), yielding amide 6 with 149 mg.

4 Tolerance of this alkoxylation strategy to heteroaryl carboxamides substrates

3p, n.r.

5. The single crystal X-ray diffraction data

5.1 Methoxylation product N-[5-(methoxyl)-8-quinolinyl]-2- phenylpropionamide 21

Table S3 Crystal data and structure refinement for 21

Bond precision	n: $C-C = 0.00$	51 A Wavelength = $26.474(3)$
Cell: $a = 5.2$	3192(6) b = 10.	9600(14) $c = 26.474(3)$
al	pha = 90 beta =	=90 gamma = 90
Temperature:	180 K	
	Calculated	Reported
Volume	1543.4(3)	1543.4(3)
Space group	P 21/c	P 1 21/c 1
Hall group	-P 2ybc	-P 2ybc
Moiety formul	la C ₁₉ H ₁₈ N ₂ O ₂	$C_{19} H_{18} N_2 O_2$
Sum formula	C ₁₉ H ₁₈ N ₂ O ₂	c C ₁₉ H ₁₈ N ₂ O ₂
Mr 30	06.35 306	35
$Dx (g \cdot cm^{-3})$	1.318	1.318
Z 4	4	
Mu (mm ⁻¹)	0.087	0.087
F000	648.0	648.0
F000'	648.27	

h, k, lmax 6,13,31 6,13,31 Nref 2798 2204 0.978,0.989 0.542,0.745 Tmin, Tmax Tmin' 0.978 Correction method = # Reported T Limits: Tmin = 0.542, Tmax = 0.745, AbsCorr = MULTI-SCAN Data completeness = 0.788 Theta(max) = 25.234R(reflections) = 0.0705(1575)wR2(reflections)= 0.1949(2204) S = 1.025 Npar = 209

5.2 Cyanomethoxylation product N-[5-(cyanomethoxyl)-8-quinolinyl]-2,2dimethyl- propionamide 3m

Table S4 Crystal data and structure refinement for 3m

Bond precision: C-C = 0.0024 A Wavelength = 0.71073 Cell: a=7.8041(6) b=21.7738(13) c=9.3578(8) alpha=90 beta=112.022(3) gamma=90 Temperature: 180 K

 Calculated
 Reported

 Volume
 1474.11(19)
 1474.11(19)

 Space group
 P 21/c
 P 1 21/c 1

Hall group	-P 2ybc	-P 2ybc		
Moiety formula	$C_{16} H_{17} N_3$	$O_2 C_{16} H_{17} N_3 O_2$		
Sum formula	$C_{16}H_{17}N_3O_2$	C ₁₆ H ₁₇ N ₃ O ₂		
Mr	283.33	283.32		
$Dx (g \cdot cm^{-3})$	1.277	1.277		
Ζ	4	4		
Mu (mm ⁻¹)	0.086	0.086		
F000	600.0	600.0		
F000'	600.25			
h,k,lmax	9,25,11	9,25,11		
Nref	2621	2607		
Tmin,Tmax	0.983,0.987	0.638,0.745		
Tmin'	0.981			
Correction method= # Reported T Limits: Tmin=0.638, Tmax=0.745				
AbsCorr = MULTI-SCAN				
Data completeness= 0.995 Theta(max)= 25.068				
R(reflections) = 0.0405(2005) wR2(reflections) = 0.1197(2607)				
S = 1.079 Npar= 193				

6. Mechanism investigation6.1 Control experiments

- (1) 1a (0.10 mmol, 1.0 equiv), TBHP (4.0 equiv, 70% in water), FeCl₃ (5 mol%), PivOH (2.0 equiv), Tempo (3.0 equiv) were mixed in TFE (1.5 mL) and stirred in a dried sealed tube (10 mL) at 140 °C for 8 h. After completion of the reaction (TLC monitored), it was cooled to room temperature and quenched with a saturated solution of Na₂SO₃ (10 mL, for removal of excess TBHP). Then the mixture was extracted with ethyl acetate (3 x 5 mL) and the organic layer was transferred to a round bottom flask after being dried over anhydrous Na₂SO₄. The mixture was then filtered by flash chromatography (SiO₂, petroleum ethyl acetate gradient) and detected by LC-HRMS.
- (2) 1a (0.10 mmol, 1.0 equiv), TBHP (4.0 equiv, 5-6 mol/L in decane), FeCl₃ (10 mol%), Tempo (3.0 equiv) were mixed in CH₃CN (1.5 mL) and stirred in a dried sealed tube (10 mL) at 80 °C for 24 h. After completion of the reaction (TLC monitored), it was cooled to room temperature and quenched with a saturated solution of Na₂SO₃ (10 mL, for removal of excess TBHP). Then the mixture was extracted with ethyl acetate (3 x 5 mL) and the organic layer was transferred to a round bottom flask after being dried over anhydrous Na₂SO₄. The mixture was then filtered by flash chromatography (SiO₂, petroleum ethyl acetate gradient) and detected by LC-HRMS.

6.2¹⁸O₂ Isotope labeling experiments

Detected by HRLC-MS! ([M+H]⁺ found 281.1174)

- Scheme S1 Investigation of the radical pathway
- (3) 1a (0.10 mmol, 1.0 equiv), TBHP (4.0 equiv, 70% in water), FeCl₃ (5 mol%), were mixed in TFE (1.5 mL) under ¹⁸O₂ and stirred in a dried schelenk tube (10 mL) at 140 °C for 8 h. After completion of the reaction (TLC monitored), it was cooled to room temperature and quenched with a saturated solution of Na₂SO₃ (10 mL, for removal of excess TBHP). Then the mixture was **extracted** with ethyl acetate (3 x 5 mL) and the organic layer was transferred to a round bottom flask after being dried over anhydrous Na₂SO₄. The mixture was then filtered by flash

chromatography (SiO₂, petroleum ethyl acetate gradient) and detected by LC-HRMS (**2a**: **2a**' = 1:1).

(4) **1a** (0.10 mmol, 1.0 equiv), TBHP (4.0 equiv, 5-6 mol/L in decane), FeCl₃ (10 mol%), Tempo (3.0 equiv) were mixed in CH₃CN (1.5 mL) under ¹⁸O₂ and stirred in a dried schelenk tube (10 mL) at 80 °C for 24 h. After completion of the reaction (TLC monitored), it was cooled to room temperature and quenched with a saturated solution of Na₂SO₃ (10 mL, for removal of excess TBHP). Then the mixture was extracted with ethyl acetate (3 x 5 mL) and the organic layer was transferred to a round bottom flask after being dried over anhydrous Na₂SO₄. The mixture was then filtered by flash chromatography (SiO₂, petroleum ethyl acetate gradient) and detected by LC-HRMS (**3m**: **3m**' = 2.5:1).

7. Characterization data of products

White solid, isolated yield: 69%; ¹H NMR (400 MHz, CDCl₃) δ 10.51 (s, 1H), 8.87 (dd, J = 4.9, 3.7 Hz, 2H), 8.61 (dd, J = 8.4, 1.2 Hz, 1H), 8.10 – 8.05 (m, 2H), 7.58 – 7.51 (m, 3H), 7.47 (dd, J = 8.4, 4.2 Hz, 1H), 6.90 (d, J = 8.6 Hz, 1H), 4.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.13 (s), 150.44 (s), 148.75 (s), 139.47 (s), 135.37 (s), 131.61 (s), 131.32 (s), 128.75 (s), 128.01 (s), 127.20 (s), 120.80 (s), 120.52 (s), 116.72 (s), 104.39 (s), 55.80 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₇H₁₅N₂O₂: 279.1128, found: 279.1134.

2b

White solid, isolated yield: 71%; ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 8.86 (d, J = 8.5 Hz, 1H), 8.78 (dd, J = 4.2, 1.7 Hz, 1H), 8.59 (dd, J = 8.4, 1.7 Hz, 1H), 7.67 (d, J = 7.6 Hz, 1H), 7.44 (dd, J = 8.4, 4.2 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.31 (t, J = 7.4 Hz, 2H), 6.90 (d, J = 8.6 Hz, 1H), 4.02 (s, 3H), 2.60 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.89 (s), 150.50 (s), 148.72 (s), 139.33 (s), 136.89 (s), 136.57 (s), 131.30 (d, J = 1.5 Hz), 130.13 (s), 128.19 (s), 127.25 (s), 125.97 (s), 120.78 (s), 120.52 (s), 116.70 (s), 104.33 (s), 55.84 (s), 20.21 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₈H₁₇N₂O₂: 293.1285, found: 293.1284.

2c

White solid, isolated yield: 70%; ¹H NMR (400 MHz, CDCl₃) δ 12.14 (s, 1H), 8.97 (d, J = 8.6 Hz, 1H), 8.89 (dd, J = 4.1, 1.5 Hz, 1H), 8.60 (dd, J = 8.4, 1.5 Hz, 1H), 8.36 (dd, J = 7.8, 1.7 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.45 (dd, J = 8.4, 4.2 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 7.08 (d, J = 8.3 Hz, 1H), 6.90 (d, J = 8.6 Hz, 1H), 4.20 (s, 3H), 4.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.69 (s), 150.27 (d, J = 4.2 Hz), 148.73 (s), 139.95 (s), 132.86 (s), 132.25 (s), 131.10 (s), 129.19 (s), 121.27 (s), 120.56 (s), 117.47 (s), 111.56 (s), 104.61 (s), 56.12 (s), 55.78 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₈H₁₇N₂O₃: 309.1234, found: 309.1243.

2d

White solid, isolated yield: 71%; ¹H NMR (400 MHz, CDCl₃) δ 10.49 (s, 1H), 8.87 – 8.82 (m, 2H), 8.59 (dd, J = 8.4, 1.7 Hz, 1H), 7.62 (dd, J = 4.3, 2.4 Hz, 2H), 7.47 – 7.42 (m, 2H), 7.10 (dd, J = 7.9, 2.5 Hz, 1H), 6.89 (d, J = 8.6 Hz, 1H), 4.01 (s, 3H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.94 (s), 159.95 (s), 150.46 (s), 148.77 (s), 139.46 (s), 136.86 (s), 131.30 (s), 129.73 (s), 127.98 (s), 120.81 (s), 120.51 (s), 118.99 (s), 117.80 (s), 116.71 (s), 112.56 (s), 104.36 (s), 55.80 (s), 55.51 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₈H₁₇N₂O₃: 309.1234, found: 309.1238.

2e

White solid, isolated yield: 73%; ¹H NMR (400 MHz, CDCl₃) δ 10.47 (s, 1H), 8.88 – 8.83 (m, 2H), 8.60 (dd, J = 8.4, 1.7 Hz, 1H), 7.97 (d, J = 8.2 Hz, 2H), 7.46 (dd, J = 8.4, 4.2 Hz, 1H), 7.34 (d, J = 7.9 Hz, 2H), 6.89 (d, J = 8.6 Hz, 1H), 4.01 (s, 3H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.14 (s), 150.33 (s), 148.71 (s), 142.05 (s), 139.47 (s), 132.55 (s), 131.31 (s), 129.41 (s), 128.13 (s), 127.21 (s), 120.77 (s), 120.53 (s), 116.65 (s), 104.44 (s), 55.80 (s), 21.55 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₈H₁₇N₂O₂: 293.1285, found: 293.1284.

2f

White solid, isolated yield: 70%; ¹H NMR (400 MHz, CDCl₃) δ 10.48 (s, 1H), 8.86 (dd, J = 5.0, 3.5 Hz, 2H), 8.60 (dd, J = 8.4, 1.5 Hz, 1H), 8.00 (d, J = 8.1 Hz, 2H), 7.46 (dd, J = 8.4, 4.2 Hz, 1H), 7.36 (d, J = 8.1 Hz, 2H), 6.90 (d, J = 8.6 Hz, 1H), 4.01 (d, J = 7.6 Hz, 3H), 2.75 (q, J = 7.6 Hz, 2H), 1.29 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.17 (s), 150.33 (s), 150.11 (s), 148.69 (s), 148.26 (s), 139.49 (s), 132.83 (s), 131.30 (s), 128.20 (d, J = 4.9 Hz), 127.30 (s), 120.75 (s), 116.64 (s), 104.46 (s), 55.81 (s), 28.86 (s), 15.36 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₉H₁₉N₂O₂: 307.1442, found: 307.1441.

2g

White solid, isolated yield: 53%; ¹H NMR (400 MHz, CDCl₃) δ 10.49 (s, 1H), 8.90 – 8.83 (m, 2H), 8.63 (dd, J = 8.4, 1.2 Hz, 1H), 7.91 (d, J = 8.3 Hz, 2H), 7.81 (d, J = 8.3 Hz, 2H), 7.50 (dd, J = 8.4, 4.2 Hz, 1H), 6.92 (d, J = 8.6 Hz, 1H), 4.04 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.80 (s), 139.42 (s),

137.96 (s), 134.81 (s), 131.40 (s), 128.79 (s), 120.86 (s), 116.84 (s), 104.36 (s), 55.81 (s). HRMS (ESI): m/z: calcd for $[M+H]^+ C_{17}H_{14}IN_2O_2$: 405.0094, found: 405.0091.

2h Br O OCH₃ H N N

White solid, isolated yield: 57%; ¹H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H), 8.87 (d, J = 8.5 Hz, 1H), 8.79 (dd, J = 4.2, 1.7 Hz, 1H), 8.59 (dd, J = 8.4, 1.7 Hz, 1H), 7.69 (ddd, J = 10.1, 7.8, 1.4 Hz, 2H), 7.46 – 7.41 (m, 2H), 7.36 – 7.31 (m, 1H), 6.91 – 6.88 (m, 1H), 4.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.77 (s), 148.81 (s), 133.63 (s), 131.32 (d, J = 2.5 Hz), 129.53 (s), 127.69 (d, J = 14.8 Hz), 120.84 (s), 120.51 (s), 119.77 (s), 117.12 (s), 104.29 (s), 55.85 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₇H₁₄BrN₂O₂: 357.0233, 359.0213, found: 357.0238, 359.0217.

2i

White solid, isolated yield: 81%; ¹H NMR (400 MHz, CDCl₃) δ 10.43 (s, 1H), 8.83 (ddd, J = 13.6, 6.8, 5.1 Hz, 2H), 8.59 (dt, J = 8.4, 1.8 Hz, 1H), 8.07 (dd, J = 8.3, 5.5 Hz, 2H), 7.46 (ddd, J = 8.4, 4.2, 1.8 Hz, 1H), 7.21 (dd, J = 12.7, 4.6 Hz, 2H), 6.88 (dd, J = 8.6, 1.8 Hz, 1H), 4.00 (d, J = 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.85 (d, J = 252.9 Hz), 164.00 (s), 150.51 (s), 148.76 (s), 139.40 (s), 131.53 (d, J = 3.2 Hz), 131.38 (s), 129.53 (d, J = 9.0 Hz), 127.83 (s), 120.84 (s), 120.53 (s), 116.73 (s), 115.78 (d, J = 21.9 Hz), 104.35 (s), 55.80 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₇H₁₄FN₂O₂: 297.1034, found: 297.1035.

2j

White solid, isolated yield: 48%; ¹H NMR (400 MHz, CDCl₃) δ 9.60 (s, 1H), 8.84 (dd, J = 4.2, 1.6 Hz, 1H), 8.73 (d, J = 8.5 Hz, 1H), 8.61 (dd, J = 8.4, 1.6 Hz, 1H), 7.47 (dd, J = 8.4, 4.2 Hz, 1H), 6.87 (d, J = 8.6 Hz, 1H), 4.02 (s, 3H), 2.60 (q, J = 7.6 Hz, 2H), 1.36 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.12 (s), 148.54 (s), 131.30 (s), 128.00 (s), 120.67 (s), 116.56 (s), 104.38 (s), 55.76 (s), 31.17 (s), 9.88 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₃H₁₅N₂O₂: 231.1129, found: 231.1126.

2k

White solid, isolated yield: 64%; ¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1H), 8.70 (dd, J = 4.3, 1.7 Hz, 1H), 8.67 (d, J = 8.5 Hz, 1H), 8.53 (dd, J = 8.4, 1.7 Hz, 1H), 7.45 – 7.37 (m, 5H), 7.35 – 7.30 (m, 1H), 6.81 (d, J = 8.6 Hz, 1H), 3.97 (s, 3H), 3.87 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.10 (s), 150.32 (s), 148.61 (s), 134.89 (s), 131.17 (s), 129.55 (s), 128.93 (s), 127.83 (s), 127.25 (s), 120.64 (s), 120.35 (s), 116.53 (s), 104.25 (s), 55.75 (s), 45.26 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₈H₁₇N₂O₂: 293.1285, found: 293.1283.

White solid, isolated yield: 62%; ¹H NMR (400 MHz, CDCl₃) δ 9.57 (s, 1H), 8.81 (dd, *J* = 4.2, 1.5 Hz, 1H), 8.73 (d, *J* = 8.5 Hz, 1H), 8.60 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.46 (dd, *J* = 8.4, 4.2 Hz, 1H), 7.32 (d, *J* = 4.4 Hz, 4H), 7.23 (dq, *J* = 8.8, 4.2 Hz, 1H), 6.87 (d, *J* = 8.6 Hz, 1H), 4.02 (s, 3H), 3.20 – 3.14 (m, 2H), 2.91 – 2.86 (m, 2H). ¹³CNMR (101 MHz, CDCl₃) δ 170.34 (s), 150.23 (s), 148.55 (s), 144.90 (s), 140.90 (s), 131.27 (s), 128.47 (d, *J* = 12.8 Hz), 127.89 (s), 126.19 (s), 120.68 (s), 120.43 (s), 116.68 (s), 104.37 (s), 55.78 (s), 39.68 (s), 31.61 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₉H₁₉N₂O₂: 307.1442, found: 307.1442.

2m

White solid, isolated yield: 74%; ¹H NMR (400 MHz, CDCl₃) δ 10.03 (s, 1H), 8.82 (dd, J = 4.2, 1.7 Hz, 1H), 8.71 (d, J = 8.5 Hz, 1H), 8.56 (dd, J = 8.4, 1.7 Hz, 1H), 7.43 (dd, J = 8.4, 4.3 Hz, 1H), 6.83 (d, J = 8.6 Hz, 1H), 3.98 (s, 3H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 176.85 (s), 150.06 (s), 148.67 (s), 131.19 (s), 120.64 (s), 116.28 (s), 104.36 (s), 55.76 (s), 40.18 (s), 27.79 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₅H₁₉N₂O₂: 259.1441, found: 259.1440.

2n

White solid, isolated yield: 67%; ¹H NMR (400 MHz, CDCl₃) δ 9.64 (s, 1H), 8.82 (dd, J = 4.2, 1.7 Hz, 1H), 8.72 (d, J = 8.5 Hz, 1H), 8.57 (dd, J = 8.4, 1.6 Hz, 1H), 7.44 (dd, J = 8.4, 4.2 Hz, 1H), 6.84 (d, J = 8.6 Hz, 1H), 3.98 (d, J = 8.0 Hz, 3H), 2.45 (tt, J = 11.7, 3.5 Hz, 1H), 2.07 (d, J = 13.3 Hz, 2H), 1.91 – 1.84 (m, 2H), 1.76 – 1.60 (m, 3H), 1.34 (ddd, J = 22.0, 12.5, 9.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.51 (s), 150.05 (s), 148.56 (s), 139.17 (s), 131.26 (s), 128.09 (s), 120.66 (s), 120.42 (s), 116.52 (s), 104.38 (s), 55.77 (s), 46.85 (s, 2C), 29.82 (s), 25.82 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₇H₂₁N₂O₂: 285.1598, found: 285.1605.

yellow solid, isolated yield: 54%; ¹H NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 8.82 (d, J = 8.5 Hz, 1H), 8.46 (d, J = 8.5 Hz, 1H), 7.69 (d, J = 7.4 Hz, 1H), 7.39 (d, J = 7.5 Hz, 1H), 7.35 – 7.29 (m, 3H), 6.83 (d, J = 8.5 Hz, 1H), 4.00 (s, 3H), 2.68 (s, 3H), 2.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.70 (s), 157.79 (s), 150.61 (s), 138.82 (s), 136.55 (s), 131.33 (s), 131.30 (s), 130.10 (s), 127.67 (s), 127.43 (s), 126.22 (s), 126.00 (s), 121.51 (s), 118.51 (s), 116.64 (s), 103.50 (s), 55.75 (s), 25.24 (s), 20.34 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₉H₁₉N₂O₂: 307.1442, found: 307.1440.

3a

White solid, isolated yield: 50%; ¹H NMR (400 MHz, CDCl₃) δ 10.56 (s, 1H), 8.91 (dd, J = 5.0, 3.4 Hz, 2H), 8.58 (dd, J = 8.5, 1.6 Hz, 1H), 8.08 (dd, J = 7.8, 1.5 Hz, 2H), 7.60 – 7.53 (m, 4H), 7.03 (d, J = 8.6 Hz, 1H), 5.00 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.72 (s), 149.26 (s), 146.98 (s), 140.26 (s), 131.86 (s), 130.91 (s), 130.30 (s), 129.55 (s), 128.83 (s), 127.24 (s), 121.84 (s), 121.60 (s), 120.48 (s), 115.84 (s), 106.75 (s), 54.13 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₈H₁₄N₃O₂: 304.1081, found: 304.1076.

3b

White solid, isolated yield: 46%; ¹H NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 8.91 (d, J = 8.5 Hz, 1H), 8.83 (dd, J = 4.2, 1.4 Hz, 1H), 8.56 (dd, J = 8.4, 1.4 Hz, 1H), 7.67 (d, J = 7.4 Hz, 1H), 7.52 (dd, J = 8.5, 4.3 Hz, 1H), 7.41 (t, J = 6.8 Hz, 1H), 7.32 (t, J = 7.4 Hz, 2H), 7.02 (d, J = 8.6 Hz, 1H), 5.00 (s, 2H), 2.60 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.07 (s), 149.23 (s), 140.05 (s), 139.27 (s), 136.69 (s), 136.54 (s), 135.71 (s), 134.74 (s), 131.39 (s), 130.85 (s), 130.44 (s), 130.36 (s), 127.25 (s), 126.03 (s), 121.57 (s), 115.80 (s), 106.68 (s), 54.13 (s), 20.23 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₉H₁₆N₃O₂: 318.1237, found: 318.1232.

3c

White solid, isolated yield: 46%; ¹H NMR (400 MHz, CDCl₃) δ 12.25 (s, 1H), 9.02 (d, J = 8.6 Hz, 1H), 8.96 (dd, J = 4.1, 1.5 Hz, 1H), 8.59 (dd, J = 8.5, 1.6 Hz, 1H), 8.38 (dd, J = 7.8, 1.6 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.18 (t, J = 7.6 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 7.03 (d, J = 8.6 Hz, 1H), 5.01 (s, 2H), 4.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.45 (s), 157.71 (s), 149.21 (s), 146.81 (s), 139.87 (s), 133.16 (s), 132.33 (s), 131.43 (s), 130.69 (s), 122.21 (s), 121.35 (s), 120.48 (s), 120.29 (s), 116.55 (s), 115.39 (s), 111.59 (s), 106.91 (s), 56.15 (s), 54.15 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₉H₁₆N₃O₃: 334.1186, found: 334.1189.

3d

White solid, isolated yield: 44%; ¹H NMR (400 MHz, CDCl₃) δ 10.54 (s, 1H), 8.89 (d, *J* = 8.3 Hz, 2H), 8.57 (dd, *J* = 8.5, 1.4 Hz, 1H), 7.63 (d, *J* = 6.3 Hz, 2H), 7.54 (dd, *J* = 8.5, 4.2 Hz, 1H), 7.46 (t, *J* = 8.1 Hz, 1H), 7.13 (dd, *J* = 8.2, 2.2 Hz, 1H), 7.02 (d, *J* = 8.6 Hz, 1H), 5.00 (s, 2H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.17 (s), 156.45 (s), 153.60 (s), 149.28 (s), 136.54 (s), 132.51 (s), 130.89 (s), 130.26 (s), 129.81 (s), 128.58 (s), 121.61 (s), 118.89 (d, *J* = 24.3 Hz), 118.67 – 118.22 (m), 118.02 (s), 115.83 (s), 112.62 (s), 106.70 (s), 55.54 (s), 54.11 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₉H₁₆N₃O₃: 334.1186, found: 334.1191.

3e

White solid, isolated yield: 44%; ¹H NMR (400 MHz, CDCl₃) δ 10.52 (s, 1H), 8.90 (dd, J = 7.0, 4.7 Hz, 2H), 8.57 (dd, J = 8.5, 1.5 Hz, 1H), 7.97 (d, J = 8.1 Hz, 2H), 7.54 (dd, J = 8.4, 4.1 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 8.6 Hz, 1H), 4.99 (s, 2H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.35 (s), 149.21 (s), 146.87 (s), 142.37 (s), 139.40 (s), 130.89 (s), 129.48 (s), 127.76 (s), 127.29 (d, J = 8.6 Hz), 121.56 (s), 115.75 (s), 106.77 (s), 54.13 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₉H₁₆N₃O₂: 318.1237, found: 318.1220.

White solid, isolated yield: 45%; ¹H NMR (400 MHz, CDCl₃) δ 10.12 (s, 1H), 8.92 (d, J = 8.6 Hz, 1H), 8.85 (d, J = 2.7 Hz, 1H), 8.57 (d, J = 7.0 Hz, 1H), 7.70 (t, J = 6.8 Hz, 2H), 7.53 (dd, J = 8.5, 4.2 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 6.9 Hz, 1H), 7.02 (d, J = 8.6 Hz, 1H), 5.00 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.22 (s), 149.32 (s), 147.27 (s), 136.44 (s), 133.71 (s), 131.54 (s), 130.96 (d, J = 19.3 Hz), 130.18 – 130.11 (m), 129.80 (d, J = 42.1 Hz), 127.82 (d, J = 26.3 Hz), 121.63 (s), 118.98 (s),

116.21 (s), 111.91 (s), 106.57 (s), 54.10 (s). HRMS (ESI): m/z: calcd for $[M+H]^+ C_{18}H_{13}BrN_3O_2$: 382.0186, 384.0165, found: 382.0188, 384.0173.

3i

White solid, isolated yield: 46%; ¹H NMR (400 MHz, CDCl₃) δ 10.50 (s, 1H), 8.90 (dd, J = 14.8, 6.4 Hz, 2H), 8.58 (d, J = 8.5 Hz, 1H), 8.09 (dd, J = 7.4, 5.3 Hz, 2H), 7.56 (dd, J = 8.5, 4.3 Hz, 1H), 7.22 (d, J = 7.8 Hz, 2H), 7.03 (d, J = 8.5 Hz, 1H), 5.00 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 164.99 (d, J = 252.5 Hz), 164.23 (s), 149.28 (s), 147.05 (s), 139.35 (s), 131.21 (d, J = 3.1 Hz), 130.97 (s), 130.09 (s), 129.61 (d, J = 9.0 Hz), 121.64 (s), 120.48 (s), 115.89 (d, J = 22.0 Hz), 115.87 (s), 114.75 (s), 106.69 (s), 54.10 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₈H₁₃FN₃O₂: 322.0986, found: 322.0989. **3j**

White solid, isolated yield: 43%; ¹H NMR (400 MHz, CDCl₃) δ 9.63 (s, 1H), 8.86 (dd, J = 4.2, 1.7 Hz, 1H), 8.75 (d, J = 8.6 Hz, 1H), 8.54 (dd, J = 8.5, 1.7 Hz, 1H), 7.51 (dd, J = 8.5, 4.2 Hz, 1H), 6.96 (d, J = 8.6 Hz, 1H), 4.96 (s, 2H), 2.59 (q, J = 7.6 Hz, 2H), 1.34 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.34 (s), 149.05 (s), 146.67 (s), 130.84 (s), 130.28 (s), 126.08 (s), 121.46 (s), 120.39 (s), 115.64 (s), 114.78 (s), 106.78 (s), 54.13 (s), 31.17 (s), 9.78 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₄H₁₄N₃O₂: 256.1081, found: 256.1082.

3k

White solid, isolated yield: 36%; ¹H NMR (400 MHz, CDCl₃) δ 9.71 (s, 1H), 8.74 (dd, J = 4.2, 1.4 Hz, 1H), 8.71 (d, J = 8.6 Hz, 1H), 8.49 (dd, J = 8.5, 1.4 Hz, 1H), 7.45 (dt, J = 13.7, 5.6 Hz, 5H), 7.34 (d, J = 6.5 Hz, 1H), 6.93 (d, J = 8.6 Hz, 1H), 4.94 (s, 2H), 3.88 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.10 (s), 150.32 (s), 148.61 (s), 134.89 (s), 131.17 (s), 129.55 (s), 129.55 (s), 128.93 (s), 127.83 (s), 127.25 (s), 120.64 (s), 120.35 (s), 116.53 (s), 104.25 (s), 55.75 (s), 45.26 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₉H₁₆N₃O₂: 318.1237, found: 318.1235.

3m

White solid, isolated yield: 59%; ¹H NMR (400 MHz, CDCl₃) δ 10.08 (s, 1H), 8.87 (dd, J = 4.2, 1.7 Hz, 1H), 8.75 (d, J = 8.6 Hz, 1H), 8.54 (dd, J = 8.5, 1.7 Hz, 1H), 7.51 (dd, J = 8.5, 4.2 Hz, 1H), 6.96 (d, J = 8.6 Hz, 1H), 4.96 (s, 2H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 177.12 (s), 149.17 (s), 146.63 (s), 139.40 (s), 130.78 (s), 121.43 (s), 115.41 (s), 114.81 (s), 106.75 (s), 54.12 (s), 40.26 (s), 27.74 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₆H₁₈N₃O₂: 284.1394, found: 284.1392.

White solid, isolated yield: 34%; ¹H NMR (400 MHz, CDCl₃) δ 10.07 (s, 1H), 8.86 (d, *J* = 8.6 Hz, 1H), 8.42 (d, *J* = 8.6 Hz, 1H), 7.69 (d, *J* = 7.5 Hz, 1H), 7.38 (ddd, *J* = 18.1, 15.0, 7.1 Hz, 4H), 6.94 (d, *J* = 8.6 Hz, 1H), 4.97 (s, 2H), 2.71 (s, 3H), 2.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.38 (s), 158.49 (s), 147.17 (s), 138.79 (s), 136.66 (s), 131.42 (s), 130.86 (s), 130.24 (d, *J* = 14.4 Hz), 129.86 (s), 127.41 (s), 126.07 (s), 122.35 (s), 118.50 (s), 115.80 (s), 114.87 (s), 105.79 (s), 54.11 (s), 25.30 (s), 20.34 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₀H₁₈N₃O₂: 332.1394, found: 332.1392.

6

White solid, isolated yield: 85%; ¹H NMR (400 MHz, CDCl₃) δ 12.22 (s, 1H), 9.02 – 8.96 (m, 2H), 8.60 (d, J = 8.2 Hz, 1H), 8.38 (d, J = 7.6 Hz, 1H), 7.58 – 7.54 (m, 2H), 7.20 – 7.16 (m, 1H), 7.12 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 8.7 Hz, 1H), 6.55 (s, 1H), 5.68 (s, 1H), 4.76 (s, 2H), 4.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.21 (s), 163.42 (s), 157.62 (s), 149.36 (s), 146.89 (s), 139.81 (s), 133.16 (s), 132.27 (s), 131.30 (s), 130.81 (s), 122.21 (s), 121.35 (s), 120.48 (s), 120.29 (s), 116.40 (s), 111.41 (s), 106.21 (s) 67.95 (s), 54.15 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₉H₁₈N₃O₄: 352.1292, found: 352.1290.

7. ¹H and ¹³C NMR spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

2c

2i

b

3d

3i

