Fine-Tuning Macrocycle Cavity to Selectively Bind Guests in Water for Near-Infrared Photothermal Conversion

Fei Yang, ${ }^{a}$ Yunong Li, ${ }^{a}$ Ran Li, ${ }^{b}$ Xiaolin Wang, ${ }^{a}$ Xiangkun Cui, ${ }^{b}$ Wei Wei ${ }^{b}$ and Yanqing Xu*a

${ }^{\text {a }}$ Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China. E-mail: xyq@bit.edu.cn
${ }^{b}$ Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China.

Table of Contents

1. Method and Synthesis S1
1.1 General Method S1
1.2 Synthetic Routes of TBox-4 ${ }^{2+}$ S1
1.3 Synthetic Routes of TBox- $\mathbf{5}^{\mathbf{2 +}}$ S9
1.4 Synthetic Routes of TBox-6 ${ }^{\mathbf{2 +}}$ S13
2. Determination of Rotational Barrier of Atropisomer Precursor S18
3. Single Crystal X-Ray Crystallography S19
4. Theoretical calculations for $\mathbf{T B o x}-\mathbf{6}^{\mathbf{2 +}}$ S23
5. Characterization of Host-Guest Properties S24
6. Near-infrared photothermal conversion S41
7. Photothermal Antibacterial Results S43
8. References S44

1. Method and Synthesis

1.1 General Method.

All the reagents involved in this research were commercially available and used without further purification unless otherwise noted. Solvents were either employed as purchased or dried prior to use by standard laboratory procedures. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVANCE III 600 spectrometer. All chemical shifts are reported in ppm with residual solvents or TMS (tetramethylsilane) as the internal standards. High-resolution electrospray-ionization mass spectrometry (HRMS) experiments were conducted on a Thermo Fisher Q Exactive mass spectrometer. UV-vis spectroscopy studies were performed on a Shimadzu UV-2550 spectrophotometer. 808 nm NIR laser (MDL-III-808-2.5W) was purchased from Changchun New Industries Optoelectronics Technology Co., Ltd. Thermal imaging was recorded by FOTRIC 326C camera.

1.2 Synthetic Routes of TBox-4 ${ }^{2+}$.

Synthesis of 1:

The solution of 2-bromo-4-methylaniline ($1.861 \mathrm{~g}, 10 \mathrm{mmol}$) in DMF (30 mL) was degassed with nitrogen for 15 min followed by addition of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($20 \mathrm{~mL}, 2 \mathrm{M}$) under continuous flow of nitrogen. After 10 min , pyridine-4-boronic acid ($1.476 \mathrm{~g}, 12 \mathrm{mmol}$) and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $(0.490 \mathrm{~g}, 0.7 \mathrm{mmol})$ were added to the reaction mixture under a nitrogen atmosphere. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 5 h . The solution was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and then the product was extracted three times with EtOAc $(80 \mathrm{~mL})$. The combined organic layer was dried over MgSO_{4} and the solvent was removed in vacuo. The crude product was purified
on a silica gel column using petroleum ether/ethyl acetate $(1: 1, \mathrm{v} / \mathrm{v})$ as eluent to afford the product as yellow solids ($1.56 \mathrm{~g}, 85 \%$). 1: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta(\mathrm{ppm})=8.666(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.432(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.026(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.947(\mathrm{~s}, 1 \mathrm{H}), 6.706(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.284(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta(\mathrm{ppm})=150.20,147.75,140.81$, 130.42, 130.32, 128.24, 124.45, 123.86, 116.27 (C of aromatic rings), 20.33 (C of methyl). HRMS (ESI) m / z calcd for $[\mathbf{1}+\mathrm{H}]^{+}: 185.1079$, found: 185.1072.

Synthesis of syn-A:

1,4,5,8-Naphthalenetetracarboxylic dianhydride ($72 \mathrm{mg}, 0.27 \mathrm{mmol}$) and $1(124 \mathrm{mg}, 0.675$ mmol) were stirred in acetic acid (3 mL) under microwave irradiation ($100 \mathrm{~W}, 30 \mathrm{~min}, 120^{\circ} \mathrm{C}$). After the solution was extracted three times with CHCl_{3}, the combined organic layer was dried over MgSO_{4} and the solvent was removed in vacuo to give a brown solid. The crude product was purified on a silica gel column using petroleum ether/ethyl acetate ($1: 1, \mathrm{v} / \mathrm{v}$) as eluent to afford the lower R_{f} Syn-A as light yellow solids ($64 \mathrm{mg}, 40 \%$). syn-A: ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}, $298 \mathrm{~K}): \delta(\mathrm{ppm})=8.582(\mathrm{~s}, 4 \mathrm{H}), 8.395(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.480(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.423(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.352(\mathrm{~s}, 2 \mathrm{H}), 7.171(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.445(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta(\mathrm{ppm})=162.83,149.75,146.76,140.06,138.45,131.39,131.15,130.63$, 129.50, 128.84, 127.02, 126.47, 123.03 (C of aromatic rings), 21.29 (C of methyl). HRMS (ESI) m / z calcd for $[\mathrm{syn}-\mathbf{A}+\mathrm{H}]^{+}: 601.1876$, found: 601.1863 .

Synthesis of TBox-4 ${ }^{2+}$:

Syn-A ($156 \mathrm{mg}, 0.26 \mathrm{mmol}$) and p-xylylene dibromide ($68 \mathrm{mg}, 0.26 \mathrm{mmol}$) were stirred in dry $\mathrm{CH}_{3} \mathrm{CN}$ at $60^{\circ} \mathrm{C}$ for 4 h under nitrogen protection. The yellow precipitate was collected by vacuum filtration and dissolved in $\mathrm{H}_{2} \mathrm{O}$. When a satd aqueous solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added to the reaction mixture, the resulting precipitate was filtered off and then washed with deionized $\mathrm{H}_{2} \mathrm{O}$. The precipitate was dried to afford pure TBox-4 $2 \mathrm{PF}_{6}(219 \mathrm{mg}, 85 \%)$ as yellowish solids without further purification. TBox-4 $2 \mathrm{PF}_{6}:{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}_{6}, 298 \mathrm{~K}$): $\delta(\mathrm{ppm})=$ $8.820(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 8.597(\mathrm{~s}, 4 \mathrm{H}), 7.984$ (d, $J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.645$ (s, 4H), 7.554 ($\mathrm{s}, 2 \mathrm{H}$), $7.051(\mathrm{~s}, 4 \mathrm{H}), 5.793(\mathrm{~s}, 4 \mathrm{H}), 2.535(\mathrm{~s}, 6 \mathrm{H}) ;$ TBox-4•2Br: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$): δ $(\mathrm{ppm})=8.550(\mathrm{~s}, 4 \mathrm{H}), 8.539(\mathrm{~s}, 4 \mathrm{H}), 7.780(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.577(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.537$
($\mathrm{s}, 2 \mathrm{H}$), 7.399 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.008$ (s, 4H), 5.599 (s, 4H), 2.431 (s, 6H); ${ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{DMSO}_{6}, 298 \mathrm{~K}\right): \delta(\mathrm{ppm})=162.86,155.94,145.47,140.15,135.29,135.19,132.51$, $131.30,130.49,130.22,130.04,129.31,127.77,126.49,126.43$ (C of phenyl and pyridyl), 62.57 (C of methylene), 21.19 (C of methyl). HRMS (ESI) m / z calcd for [TBox-4] ${ }^{2+}: 352.1207$, found: 352.1200; m / z calcd for $\left[\mathbf{T B o x}-4+\mathrm{PF}_{6}\right]^{+}: 849.2060$, found: 849.2037. Single crystals were grown by slow diffusion of ethyl acetate into an DMF solution of TBox-4 $2 \mathrm{PF}_{6}$ over 7 days.

Fig. S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in CDCl_{3}. The signals of small amounts of impurities are marked with *.

Fig. S2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ in CDCl_{3}.

Fig. S3. ${ }^{1} \mathrm{H}$ NMR spectrum of syn-A in DMSO- d_{6}. The signals of small amounts of impurities are marked with *.

Fig. S4. ${ }^{13} \mathrm{C}$ NMR spectrum of syn- \mathbf{A} in CDCl_{3}.

Fig. S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{T B o x}-4 \cdot 2 \mathrm{PF}_{6}$ in $\mathrm{DMSO}-\mathrm{d}_{6}$. Top: full spectrum; bottom: partial spectrum. The signals of small amounts of impurities are marked with *.

Fig. S6. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{T B o x}-4 \cdot 2 \mathrm{Br}$ in $\mathrm{D}_{2} \mathrm{O}$. Top: full spectrum; bottom: partial spectrum. The signals of small amounts of impurities are marked with *.

$\operatorname{ppm}(\mathrm{t} 1) \mathrm{l})$
ppm (t1)
Fig. S7. ${ }^{13} \mathrm{C}$ NMR spectrum of TBox-4 $\cdot 2 \mathrm{PF}_{6}$ in DMSO- d_{6}.

Fig. S8. HRMS of TBox-4 $2 \mathrm{PF}_{6}$.

1.3 Synthetic Routes of TBox-5 ${ }^{2+}$.

Syn-A (156 mg, 0.26 mmol) and 2,6-bis(bromomethyl)naphthalene ($82 \mathrm{mg}, 0.26 \mathrm{mmol}$) were stirred in dry $\mathrm{CH}_{3} \mathrm{CN}$ at $55^{\circ} \mathrm{C}$ for 5 h under nitrogen protection. The yellow precipitate was collected by vacuum filtration and dissolved in $\mathrm{H}_{2} \mathrm{O}$. When a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added to the reaction mixture, the resulting precipitate was filtered off and then washed with deionized $\mathrm{H}_{2} \mathrm{O}$. The precipitate was dried to afford pure TBox-5•2 PF_{6} (203 mg , 75%) as yellowish solids without further purification. TBox-5 $2 \mathrm{PF}_{6}$: ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO-d $\left._{6}, 298 \mathrm{~K}\right): \delta(\mathrm{ppm})=8.887(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.629(\mathrm{~s}, 4 \mathrm{H}), 8.043(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H})$, 7.627 (s, 2H), 7.613 (s, 6H), 7.557 (s, 2H), 7.236 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.005 (s, 4H), 2.532 ($\mathrm{s}, 6 \mathrm{H}$); TBox-5•2Cl: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$): $\delta(\mathrm{ppm})=8.687(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 8.515(\mathrm{~s}$, 4H), 7.841 (d, $J=6.6 \mathrm{~Hz}, 4 \mathrm{H}$), 7.574 ($\mathrm{s}, 2 \mathrm{H}$), 7.536 (s, 2H), 7.527 (s, 2H), 7.514 (s, 2H), 7.277 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.225(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.790(\mathrm{~s}, 4 \mathrm{H}), 2.421(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO-d $\left._{6}, 298 \mathrm{~K}\right): \delta(\mathrm{ppm})=162.89,155.87,145.82,140.18,135.42,134.13,132.67,132.59$, 131.33, 130.73, 130.63, 130.32, 129.31, 127.91,127.59,126.77 (C of phenyl and pyridyl), 63.21 (C of methylene), 21.14 (C of methyl). HRMS (ESI) m / z calcd for [TBox-5] ${ }^{2+}: 377.1285$, found: 377.1287. Single crystals were grown by slow diffusion of diethyl ether into an MeCN solution of TBox-5•2 PF_{6} over 3 days.

Fig. S9. ${ }^{1} \mathrm{H}$ NMR spectrum of TBox-5•2 PF_{6} in $\mathrm{DMSO}_{\mathrm{d}}$. Top: full spectrum; bottom: partial spectrum.

Fig. S10. ${ }^{1} \mathrm{H}$ NMR spectrum of TBox-5 2 Cl in $\mathrm{D}_{2} \mathrm{O}$. Top: full spectrum; bottom: partial spectrum.

Fig. S11. ${ }^{13} \mathrm{C}$ NMR spectrum of TBox-5 $2 \mathrm{PF}_{6}$ in $\mathrm{DMSO}-\mathrm{d}_{6}$.

Fig. S12. HRMS of TBox-5 $2 \mathrm{PF}_{6}$.

1.4 Synthetic Routes of TBox-6 ${ }^{\mathbf{2 +}}$.

Syn-A ($156 \mathrm{mg}, 0.26 \mathrm{mmol}$) and 4,4'-bis(bromomethyl) diphenyl ($88 \mathrm{mg}, 0.26 \mathrm{mmol}$) were stirred in dry $\mathrm{CH}_{3} \mathrm{CN}$ at $55^{\circ} \mathrm{C}$ for 10 h under nitrogen protection. The yellow precipitate was collected by vacuum filtration and dissolved in $\mathrm{H}_{2} \mathrm{O}$. When a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added to the reaction mixture, the resulting precipitate was filtered off and then washed with deionized $\mathrm{H}_{2} \mathrm{O}$. The precipitate was dried to afford pure TBox-6$\cdot 2 \mathrm{PF}_{6}(180 \mathrm{mg}$, 65%) as yellowish solids without further purification. TBox-6 $2 \mathrm{PF}_{6}$: ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO-d $\left._{6}, 298 \mathrm{~K}\right): \delta(\mathrm{ppm})=8.909(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.571(\mathrm{~s}, 4 \mathrm{H}), 8.042(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, 4H), $7.688(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.585(\mathrm{~s}, 4 \mathrm{H}), 7.524(\mathrm{~s}, 4 \mathrm{H}), 7.502(\mathrm{~s}, 2 \mathrm{H}), 5.844(\mathrm{~s}, 4 \mathrm{H})$; TBox6•2Cl: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$): $\delta(\mathrm{ppm})=8.365(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.875(\mathrm{~s}, 4 \mathrm{H})$, 7.678 (d, $J=9.6 \mathrm{~Hz}, 4 \mathrm{H}$), 7.644 (d, $J=12.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.602 (s, 2H), 7.293 (s, 2H), 7.274 (s, 4H), $7.255(\mathrm{~s}, 4 \mathrm{H}), 5.565(\mathrm{~s}, 4 \mathrm{H}), 2.505(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO-d $_{6}, 298 \mathrm{~K}$): $\delta(\mathrm{ppm})$ $=163.53,155.37,145.17,140.27,139.47,135.54,134.43,132.81,131.86,131.20,131.16$, 130.94, 130.60, 127.55, 127.30, 127.20 (C of phenyl and pyridyl), 63.25 (C of methylene), 21.08 (C of methyl). HRMS (ESI) m / z calcd for [TBox-6] ${ }^{2+}: 390.1363$, found: $390.1359, m / z$ calcd for [TBox-6+PF $\left.{ }_{6}\right]^{+}: 925.2373$, found: 925.2350. Single crystals were grown by slow diffusion of ethyl acetate into an MeCN solution of TBox-6 $2 \mathrm{PF}_{6}$ over 3 days.

Fig. S13. ${ }^{1} \mathrm{H}$ NMR spectrum of TBox-6 $\cdot 2 \mathrm{PF}_{6}$ in $\mathrm{DMSO}_{-} \mathrm{d}_{6}$. Top: full spectrum; bottom: partial spectrum. The signals of small amounts of impurities are marked with *.

Fig. S14. ${ }^{1} \mathrm{H}$ NMR spectrum of TBox-6 2 Cl in $\mathrm{D}_{2} \mathrm{O}$. Top: full spectrum; bottom: partial spectrum. The signals of small amounts of impurities are marked with *.

Fig. S15. ${ }^{13} \mathrm{C}$ NMR spectrum of TBox-6 $\cdot 2 \mathrm{PF}_{6}$ in $\mathrm{DMSO}-\mathrm{d}_{6}$.

Fig. S16. Temperature-dependent ${ }^{1} \mathrm{H}$ NMR spectra for TBox-6 $\cdot 2 \mathrm{Cl}$ in $\mathrm{D}_{2} \mathrm{O}$. The measurements were performed in the range of $288-363 \mathrm{~K}$

1251-1 \#305 RT: 2.91 AV: 1 NL: 1.33E10 T: FTMS + p ESI Full ms [100.00-1500.00]

Fig. S17. HRMS of TBox-6 $2 \mathrm{PF}_{6}$.

2. Determination of Rotational Barrier of Atropisomer Precursor

Syn-A (12 mg) was dissolved in DMSO-d $\mathrm{d}_{6}(0.6 \mathrm{~mL})$, and was kept at $80^{\circ} \mathrm{C}$. The ratio of the two isomers was determined by standard deconvolution of the pyridyl protons at 8.415 ppm for syn-A and 8.380 ppm for anti-A. The $\ln \left[\left(\mathrm{R}-\mathrm{R}_{\mathrm{e}}\right) /(\mathrm{R}+1)\right.$ of was plotted versus time (s), where R_{e} is the ratio of syn/anti isomers at equilibrium and R the ratio of syn/anti at time t seconds. The slope of this plot corresponds to the observed rate $\mathrm{k}_{\mathrm{obs}}$, where $\mathrm{k}_{\mathrm{obs}}$ is equal to 4 k , and k is the rate of rotation of a single rotor for a reversible reaction. The 4 accounts for the reversibility of the system (the forward and the reverse rate constants) and the two rotors. Then using the Eyring equation $k=\frac{k_{\mathrm{B}} T}{h} \mathrm{e}^{-\frac{\Delta G^{\ddagger}}{R T}}$, the rotational barrier can be determined. The energy of rotation was calculated to be $27.42 \mathrm{kcal} / \mathrm{mol}$ at $80^{\circ} \mathrm{C}$. The half-life $\mathrm{t}_{1 / 2}$ equals $(\ln 2) /(4 \mathrm{k})$. Thus, $\mathrm{t}_{1 / 2}$ at $80^{\circ} \mathrm{C}$ is 38 min , while $\mathrm{t}_{1 / 2}$ at $60^{\circ} \mathrm{C}$ is 416 min .

b)

Fig. S18. a) ${ }^{1} \mathrm{H}$ NMR signals of the pyridyl protons for syn-A and anti-A at $80^{\circ} \mathrm{C}$. b) Rotational barrier determination via isomeric equilibration.

3. Single Crystal X-Ray Crystallography

Data collections for syn-A, TBox- $\mathbf{4}^{2+}$, TBox- $\mathbf{5}^{2+}$ were performed on a Rigaku XtaLAB PRO MM007 diffractometer equipped with a graphite monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.54184$ \AA). An absorption correction was applied using the SADABS program. ${ }^{[51]}$ The structures were solved by direct methods and refined on F^{2} by full-matrix least-squares using the SHELXTL-97 program package. ${ }^{[52]}$ The ordered atoms in each structure were refined with anisotropic displacement parameters, while the hydrogen atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms. A summary of the crystallographic data was presented in Table S1. CCDC-2107206 (syn-A), CCDC-1875218 (TBox-4 ${ }^{2+}$) and CCDC1875217 (TBox-5 ${ }^{2+}$) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

The water molecule near Mg^{2+} in the crystal of syn-A was disordered and refined in two split positions with reduced site occupation factors, which lead to the alert (PLAT420_ALERT_2_B) in the checkCIF report. The large solvent accessible void (PLAT602_ALERT_2_A) of onedimensional channel in syn-A is probably due to the stable and flexible structure, held together by multiple weak interactions including $\pi-\pi$ stacking, hydrogen bonding and coordination interaction. Because of the very large thermal motion and disorder of the solvents in the lattice, the diffuse residual electron density is difficult to be accurately modeled and thus a treatment by SQUEEZE (from PLATON) was used for solvate molecule in TBox-4 ${ }^{2+}$ and TBox-5 ${ }^{2+}$, which leads to large solvent accessible voids in structures.

Table S1. Crystal data and structure refinements for all the complexes.

	syn-A	TBox-4 ${ }^{2+}$	TBox-5 ${ }^{+}$
formula	$\begin{gathered} \mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{14} \\ \mathrm{Mg}_{1} \end{gathered}$	$\begin{gathered} \mathrm{C}_{92} \mathrm{H}_{64} \mathrm{~N}_{8} \\ \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{~F}_{24} \end{gathered}$	$\begin{gathered} \mathrm{C}_{50} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4} \\ \mathrm{P}_{2} \mathrm{~F}_{12} \end{gathered}$
Mr.	821.00	1989.39	1044.75
crystal system	triclinic	monoclinic	monoclinic
space group	$P-1$	$P 2_{1}$	$P 2_{1} / n$
$a[\AA]$	9.0813(2)	13.0593(2)	12.3869(3)
$b[\AA$]	15.6295(3)	29.9001(5)	25.3788(6)
$c[\AA]$	16.8870(3)	13.7754(2)	16.9113(4)
$\alpha\left[{ }^{\circ}\right]$	64.472(2)	90	90
$\beta\left[{ }^{\circ}\right]$	85.9190(10)	106.534(2)	108.419(3)
$\gamma\left[{ }^{\circ}\right]$	80.7210(10)	90	90
$V\left[\mathrm{~A}^{3}\right]$	2134.58(8)	5156.53(15)	5044.0(2)
Z	2	2	4
$\begin{gathered} D_{\text {calcd }} \\ {\left[\mathrm{Mg} / \mathrm{m}^{3}\right]} \end{gathered}$	1.277	1.281	1.376
measured refl.	23577	32430	29785
unique refl.	8345	15471	9940
$R_{\text {int }}$	0.0401	0.0442	0.0517
GooF	1.045	1.069	1.084
$\begin{gathered} R_{1}, w R_{2} \\ {[1>2 \sigma(I)]} \end{gathered}$	$\begin{gathered} \hline 0.0456, \\ 0.1197 \end{gathered}$	$\begin{gathered} 0.0621, \\ 0.1696 \end{gathered}$	$\begin{gathered} \hline 0.0659, \\ 0.1837 \end{gathered}$
$\begin{gathered} R_{1}, w R_{2} \\ \text { [all data] } \end{gathered}$	$\begin{gathered} \hline 0.0530, \\ 0.1236 \end{gathered}$	$\begin{gathered} \hline 0.0695, \\ 0.1750 \end{gathered}$	$\begin{gathered} \hline 0.0738, \\ 0.1897 \\ \hline \end{gathered}$

Fig. S19. Single crystal structure of syn-A. The asymmetric unit was labeled, and the C, N, O and Br atoms are drawn as 50% thermal ellipsoids. Disordered water and $\mathrm{NO}_{3}{ }^{-}$moiety were omitted for clarity.

Fig. S20. Single crystal structure of TBox-4 $\mathbf{2}^{2+}$. The asymmetric unit was labeled, and the C, N, and O atoms are drawn as 50% thermal ellipsoids. Disordered $\mathrm{PF}_{6}{ }^{-}$ions were omitted for clarity.

Fig. S21. Single crystal structure of TBox-5 $\mathbf{5}^{\mathbf{2 +}}$. The asymmetric unit was labeled, and the C, N, P, F and O atoms are drawn as 50% thermal ellipsoids. Disordered naphthyl and PF_{6} moieties were omitted for clarity.

4. Theoretical calculations for $\mathbf{T B o x}^{\mathbf{- 6}}{ }^{\mathbf{2}+}$.

For the reason that we failed to get enough quality of crystalline sample Tbox-6 ${ }^{2+}$ to collect the corresponding diffraction data, the density functional theory (DFT) calculation was carried out for TBox- $\mathbf{6}^{2+}$ using the Gaussian 09 program. ${ }^{[53]} \mathrm{PCM}$ solvation model ${ }^{[54]}$ was used in all calculations. The geometry optimizations were carried out using B3LYP/6-31G(d) ${ }^{[55]}$ level of theory with Grimme's D3 dispersion correction ${ }^{[56]}$ based upon the crystal data of TBox-5 ${ }^{2+}$.

Fig. S22. Optimized structure of TBox-6 ${ }^{2+}$ at the B3LYP-D3/6-31G(d)/PCM level of theory.

5. Characterization of Host-Guest Properties

The association constant $\left(K_{a}\right)$ for the formation of the $1: 1$ complex between guest molecules and TBox-4 $\mathbf{4}^{2+}-\mathbf{T B o x}-\mathbf{6}^{2+}$ were determined by UV-Vis or ${ }^{1} \mathrm{H}$ NMR titration experiments. For the ${ }^{1} \mathrm{H}$ NMR titration experiments, a solution of TBox-4 $\mathbf{4}^{2+}\left(1.41 \times 10^{-3} \mathrm{M}\right)$ was prepared in $\mathrm{D}_{2} \mathrm{O}$. This solution (0.4 mL) was placed in a NMR tube. The sample was then titrated with a solution of guest. NMR titrations were performed by adding guest to the solution of host with a fixed concentration. The nonlinear curve-fitting method was then used to obtain the binding constants through the following equation:

$$
\Delta \delta=\Delta \delta^{*}\left\{0.5^{*} \mathrm{G}_{0}+0.5^{*}\left(\mathrm{H}_{0}+1 / K_{\mathrm{a}}\right)-\operatorname{sqrt}\left[0.25^{*}\left(\mathrm{H}_{0}+\mathrm{G}_{0}+1 / K_{a}\right)^{\wedge} 2-\mathrm{H}_{0} * \mathrm{G}_{0}\right]\right\}
$$

For the UV-Vis titration experiments, when the solution of guest was added incrementally to the solution of TBox- $\mathbf{5}^{2+}$ or TBox- $\mathbf{6}^{2+}$, the UV-Vis spectra were recorded one after the other. The stacked spectra show that, upon the addition of guest, new absorption bands emerge and are enhanced. The nonlinear curve-fitting method was then used to obtain the association constant through the following equation:

$$
\Delta A=\Delta \varepsilon^{*}\left\{0.5 * \mathrm{G}_{0}+0.5 *\left(\mathrm{H}_{0}+1 / K \mathrm{a}\right)-\operatorname{sqrt}\left[0.25 *\left(\mathrm{H}_{0}+\mathrm{G}_{0}+1 / K_{a}\right)^{\wedge} 2-\mathrm{H}_{0} * \mathrm{G}_{0}\right]\right\}
$$

where ΔA is the change in the absorbance on gradual addition of guest, whereas $\Delta \varepsilon$ refers to the difference of molar absorptivity between host-guest complexes and free hosts; the total concentration of $\mathbf{T B o x}{ }^{2+}$ and guest is denoted by H_{0} and G_{0}. From the UV-vis titration experiments, plots of absorption intensity against the guest concentrations were obtained and nonlinear least squares data treatments (red line) gave the corresponding association constants of host-guest complexes. ${ }^{[57]}$

G2

G5
G3

G6

G7

G8

G9

G10

G11

G12

G13

Fig. S23.Chemical structures of the investigated guests G1-G13.

Fig. S24. Job-plot analysis of binding complex between TBox-4 ${ }^{2+}$ and G2 from ${ }^{1} \mathrm{H}$ NMR. Jobplot corresponding to the binding between TBox-4 ${ }^{2+}$ and $\mathbf{G} 2$ at different molarity ratio with a fixed total concentration $\left(\left[\mathbf{T B o x}-\mathbf{4}^{\mathbf{2 +}}\right]+[\mathbf{G 2}]=2.7 \mathrm{mM}\right)$. The value distribution indicates a $1: 1$ (host:guest) binding stoichiometry in $\mathrm{D}_{2} \mathrm{O}$.

Fig. S25. Job-plot analysis of binding complex between TBox-5 ${ }^{2+}$ and G5 from ${ }^{1} \mathrm{H}$ NMR. Jobplot corresponding to the binding between TBox-5 ${ }^{2+}$ and $\mathbf{G 5}$ at different molarity ratio with a fixed total concentration $\left(\left[\mathbf{T B 0 x}-\mathbf{5}^{2+}\right]+[\mathbf{G 5}]=2.1 \mathrm{mM}\right)$. The value distribution indicates a $1: 1$ (host:guest) binding stoichiometry in $\mathrm{D}_{2} \mathrm{O}$.

Fig. S26. Job-plot analysis of binding complex between TBox-6 ${ }^{2+}$ and G8 from ${ }^{1} \mathrm{H}$ NMR. Jobplot corresponding to the binding between TBox- $\mathbf{6}^{2+}$ and $\mathbf{G 8}$ at different molarity ratio with a fixed total concentration $\left(\left[\mathbf{T B o x}-\mathbf{6}^{\mathbf{2 +}}\right]+[\mathbf{G 8}]=2.2 \mathrm{mM}\right)$. The value distribution indicates a $1: 1$ (host:guest) binding stoichiometry in $\mathrm{D}_{2} \mathrm{O}$.

Fig. S27. Top: stacked ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}\right)$ obtained by titrating $\mathbf{G 1}$ into an aqueous solution of TBox-4.2Cl $\left(1.41 \times 10^{-3} \mathrm{M}\right)$. Bottom: the nonlinear curve-fitting for the complexation of TBox-4 $\mathbf{4}^{\mathbf{2 +}}$ with $\mathbf{G 1}$ to give an association constant of $68 \pm 15 \mathrm{M}^{-1}$.

Fig. S28. Top: stacked ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}\right)$ obtained by titrating $\mathbf{G} \mathbf{2}$ into an aqueous solution of $\mathbf{T B o x}-\mathbf{4} \cdot \mathbf{2 C l}\left(1.41 \times 10^{-3} \mathrm{M}\right)$. Bottom: the nonlinear curve-fitting for the complexation of TBox-4 $\mathbf{4}^{\mathbf{2}}$ with $\mathbf{G} \mathbf{2}$ to give an association constant of $164 \pm 38 \mathrm{M}^{-1}$.

Fig. S29. Top: stacked UV-Vis spectra obtained by titrating G3 into a mixed $\mathrm{H}_{2} \mathrm{O} /$ DMSO solution $(9: 1, \mathrm{v} / \mathrm{v})$ of TBox-5•2Cl$\left(1.8 \times 10^{-3} \mathrm{M}\right)$ at 298 K . The mixed solution was used because of the low solubility of G3 in pure water. Bottom: the nonlinear curve-fitting for the complexation of TBox-5 ${ }^{2+}$ with $\mathbf{G 3}$ to give an association constant of $94 \pm 15 \mathrm{M}^{-1}$.

Fig. S30. Top: stacked UV-Vis spectra obtained by titrating G4 into a mixed $\mathrm{H}_{2} \mathrm{O} /$ DMSO solution $(9: 1, \mathrm{v} / \mathrm{v})$ of $\mathbf{T B} \mathbf{x - 5}-2 \mathrm{Cl}\left(1.8 \times 10^{-3} \mathrm{M}\right)$ at 298 K . The mixed solution was used because of the low solubility of G4 in pure water. Bottom: the nonlinear curve-fitting for the complexation of TBox-5 ${ }^{2+}$ with $\mathbf{G 4}$ to give an association constant of $259 \pm 9 \mathrm{M}^{-1}$.

Fig. S31. Top: stacked UV-Vis spectra obtained by titrating G5 into a mixed $\mathrm{H}_{2} \mathrm{O} /$ DMSO solution $(5: 1, \mathrm{v} / \mathrm{v})$ of $\mathbf{T B o x}-\mathbf{5} \cdot 2 \mathrm{Cl}\left(9.9 \times 10^{-4} \mathrm{M}\right)$ at 298 K . The mixed solution was used because of the low solubility of G5 in pure water. Bottom: the nonlinear curve-fitting for the complexation of TBox-5 $\mathbf{5}^{+}$with $\mathbf{G 5}$ to give an association constant of $137 \pm 47 \mathrm{M}^{-1}$.

Fig. S32. Top: stacked UV-Vis spectra obtained by titrating G6 into a mixed $\mathrm{H}_{2} \mathrm{O} /$ DMSO solution (6.6:1, v/v) of TBox-6.2Cl $\left(1.6 \times 10^{-3} \mathrm{M}\right)$ at 298 K . The mixed solution was used because of the low solubility of G6 in pure water. Bottom: the nonlinear curve-fitting for the complexation of TBox-6 ${ }^{2+}$ with $\mathbf{G 6}$ to give an association constant of $(1.17 \pm 0.26) \times 10^{4} \mathrm{M}^{-1}$.

Fig. S33. Top: stacked UV-Vis spectra obtained by titrating G7 into a mixed $\mathrm{H}_{2} \mathrm{O} / \mathrm{DMSO}$ solution $(11: 1, \mathrm{v} / \mathrm{v})$ of TBox-6 $2 \mathrm{Cl}\left(8.8 \times 10^{-4} \mathrm{M}\right)$ at 298 K . The mixed solution was used because of the low solubility of $\mathbf{G 7}$ in pure water. Bottom: the nonlinear curve-fitting for the complexation of TBox-6 ${ }^{\mathbf{2}+}$ with $\mathbf{G 7}$ to give an association constant of $188 \pm 47 \mathrm{M}^{-1}$.

Fig. S34. Top: stacked UV-Vis spectra obtained by titrating G8 into a mixed $\mathrm{H}_{2} \mathrm{O} /$ DMSO solution (2.5:1, v/v) of TBox-6.2Cl $\left(1.08 \times 10^{-3} \mathrm{M}\right)$ at 298 K . The mixed solution was used because of the low solubility of G8 in pure water. Bottom: the nonlinear curve-fitting for the complexation of TBox- $\mathbf{6}^{\mathbf{2 +}}$ with $\mathbf{G 8}$ to give an association constant of $(4.85 \pm 0.27) \times 10^{3} \mathrm{M}^{-1}$.

Fig. S35. Top: stacked UV-Vis spectra obtained by titrating G9 into a mixed $\mathrm{H}_{2} \mathrm{O} /$ DMSO solution $(1: 1, \mathrm{v} / \mathrm{v})$ of TBox-6.2Cl $\left(1.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L}\right)$ at 298 K . For clarity of absorption bands of host-guest complex at 407 nm , the absorption of host TBox- $\mathbf{6}^{2+}$ has been subtracted. Bottom: the nonlinear curve-fitting for the complexation of TBox- $\mathbf{6}^{\mathbf{2 +}}$ with $\mathbf{G 9}$ to give an association constant of $514 \pm 90 \mathrm{M}^{-1}$.

Fig. S36. UV-Vis spectra obtained by adding G3-G9 into aqueous solution of TBox-6 $\mathbf{6}^{\mathbf{2 +}}(1.7 \times$ $\left.10^{-3} \mathrm{M}\right)$ at 298 K .

Fig. S37. ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}\right)$ of a) G2, c) TBox- $4{ }^{2+}$, and b) their mixture. These spectra verify the formation of the host-guest complex between $\mathbf{G} 2$ and TBox-4 ${ }^{2+}$.

Fig. S38. ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of a) $\mathbf{G 5}+\mathbf{T B o x}-\mathbf{4}^{2+}$, b) $\mathbf{G 4}+\mathbf{T B o x}-\mathbf{4}^{2+}$, and c) TBox-4 ${ }^{2+}$. These spectra indicate G4-G5 cannot be encapsulated into the internal cavity of TBox- 4^{2+} in water.

Fig. S39. ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of a) $\mathbf{G 1 0}+\mathbf{T B o x}-\mathbf{4}^{2+}$, b) $\mathbf{G 1 1}+\mathbf{T B o x}-\mathbf{4}^{2+}$, c) $\mathbf{G 1 2}+\mathbf{T B o x}-\mathbf{4}^{2+}$, d) $\mathbf{G 1 3}+\mathbf{T B o x}-\mathbf{4}^{2+}$ and e) $\mathbf{T B o x}-\mathbf{4}^{2+}$. These spectra indicate $\mathbf{G 1 0 - G 1 3}$ cannot be encapsulated into the internal cavity of TBox-4 $\mathbf{4}^{2+}$ in water.

Fig. S40. ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of a) G4, c) TBox-5 ${ }^{2+}$, and b) their equimolar mixture. These spectra verify the formation of the host-guest complex between $\mathbf{G 4}$ and $\mathbf{T B o x}-\mathbf{5}^{2+}$.

Fig. S41. Partial ${ }^{1} \mathrm{H}$ NMR spectra in $\mathrm{D}_{2} \mathrm{O}$ of (a) G4, (b) TBox-5 ${ }^{2+}$, (c) equimolar mixture of $\mathbf{T B o x}-\mathbf{5}^{2+} / \mathbf{G 4}$ and d$)$ adding deuterated hydrochloric acid to the mixture of $\mathbf{T B o x}-\mathbf{5}^{2+} / \mathbf{G 4}$ (asterisks indicate the proton signals of protonated G4).

Fig. S42. ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of a) G5, c) TBox-5 ${ }^{2+}$, and b) their equimolar mixture. These spectra verify the formation of the host-guest complex between G5 and TBox-5 ${ }^{2+}$.

Fig. S43. ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of a) $\mathbf{G 6}+\mathbf{T B o x}-\mathbf{5}^{2+}$, b) $\mathbf{G 7}+\mathbf{T B o x}-\mathbf{5}^{2+}$, c) $\mathbf{G 8}+\mathbf{T B o x}-\mathbf{5}^{2+}$, d) G9 + TBox-5 ${ }^{2+}$ and e) TBox-5 ${ }^{2+}$. These spectra indicate that G6-G9 cannot be encapsulated into the internal cavity of TBox-5 ${ }^{2+}$ in water.

Fig. S44. ${ }^{1} \mathrm{H}$ NMR spectra of a) $\mathbf{G 7}$ in CDCl_{3}, b) $\mathbf{G 7}+\mathbf{T B o x}-\mathbf{6}^{2+}$ in $\mathrm{D}_{2} \mathrm{O}$ and c) $\mathbf{T B o x}-\mathbf{6}^{2+}$ in $\mathrm{D}_{2} \mathrm{O}$. These spectra verify the formation of the host-guest complex between G7 and TBox-6 ${ }^{2+}$.

Fig. S45. ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of a) G8, b) G8+ TBox-6 ${ }^{2+}$ and c) TBox-6 ${ }^{\mathbf{2 +}}$. These spectra verify the formation of the host-guest complex between $\mathbf{G 8}$ and TBox-6 $\mathbf{6}^{2+}$.

6. Near-infrared photothermal conversion

The preparation of charge-transfer complex G6CTBox-6 $\mathbf{6}^{\mathbf{2 +}}$: To TBox- $\mathbf{6}^{\mathbf{2 +}}(2.0 \mathrm{~mL}, 2 \mathrm{mM})$ solution, 2,7-diaminofluorene (1.5 mg) was added, then the mixture was sonicated about 30 min . After that, the green solution (G6CTBox- $\mathbf{6}^{\mathbf{2 +}}$) was collected by vacuum filtration.

Photothermal conversion experiments: The solution of G6СTBox-6 ${ }^{2+}(1.0 \mathrm{~mL}, 2 \mathrm{mM})$ was irradiated by 808 nm laser ($1.0 \mathrm{~W} / \mathrm{cm}^{2}$) in a quartz cuvette. The variation of temperature was recorded by FOTRIC 326C camera. Similar experiments were also carried out for pure water as the blank control.

Calculation of photothermal conversion efficiency: The conversion efficiency was determined according to the previous method. ${ }^{[58,59]}$ The photothermal conversion efficiency (η) of G6 \subset TBox- $\mathbf{6}^{2+}$ was calculated by monitoring temperature change of $\mathbf{G 6} \subset \mathbf{T B o x}-\mathbf{6}^{\mathbf{2 +}}$ in aqueous $(2 \mathrm{mM})$ as a function of time under continuous laser irradiation ($808 \mathrm{~nm}, 1 \mathrm{~W} / \mathrm{cm}^{2}$) for 10 min (t). η was determined according to Equation (a):

$$
\begin{equation*}
\eta=\frac{\mathrm{h} S\left(T_{\max }-T_{\text {surr }}\right)-Q_{\text {dis }}}{I\left(1-10^{-\mathrm{A}_{808}}\right)} \tag{a}
\end{equation*}
$$

where h is heat transfer coefficient, S is the surface area of the container, $T_{\max }$ is the maximum system temperature $\left(57.1^{\circ} \mathrm{C}\right)$, and $T_{\text {surr }}$ is ambient temperature of the surroundings $\left(25.1^{\circ} \mathrm{C}\right) . Q_{\text {dis }}$ represents the heat dissipation from the light absorbed by the solvent and the quartz sample cell, I is the incident laser power $\left(1 \mathrm{~W} / \mathrm{cm}^{2}\right)$, and A_{808} is the absorbance of the sample at 808 nm (0.8664). The value of $h S$ is obtained from Equation (b):

$$
\begin{equation*}
\tau_{s}=\frac{m_{D} c_{D}}{\mathrm{~h} S} \tag{b}
\end{equation*}
$$

where, m_{D} and c_{D} represent the mass $(1.0 \mathrm{~g})$ and heat capacity $(4.2 \mathrm{~J} / \mathrm{g})$, respectively. τ_{s} is the time constant for heat transfer of the system, which is calculated from Equation (c):

$$
\begin{equation*}
t=-\tau_{s} \ln (\theta)=-\tau_{s} \ln \left(\frac{T-T_{\text {surr }}}{T_{\max }-T_{\text {surr }}}\right) \tag{c}
\end{equation*}
$$

where, t is the cooling time points after continuous irradiation for $10 \mathrm{mins}, T$ is the corresponding temperature of G6 \subset TBox- $\mathbf{6}^{2+}$ during the cooling stage, and according to Fig. S43, τ_{s} is calculated to be 258 s . Based on Equation (b) and (c), the value of $h S$ is determined to be 0.0163 W . $Q_{\text {dis }}$
represents the heat dissipation from the light absorbed by the water and the container, which is determined according to Equation (d):

$$
\begin{equation*}
Q_{\text {dis }}=\frac{m_{D} c_{D}\left(T_{\text {mas(water })}-T_{\text {surr }}\right)}{\tau_{s(\text { water })}} \tag{d}
\end{equation*}
$$

Where, $T_{\max (\text { water) }}$ is $26.6^{\circ} \mathrm{C}$ and $\tau_{\text {water }}$ is 243 s , thus $Q_{\text {dis }}$ was determined to be 0.0259 W . According to the experiment data and Equation (a), η was calculated to be 57.4%.

Fig. S46. The Plot of time versus $-\ln (\theta)$ of $\mathbf{G 6} \subset$ TBox- $\mathbf{6}^{2+}$.

Fig. S47. Heating curves of G6СTBox-6 $\mathbf{6}^{\mathbf{2 +}}$ under 808 nm laser ($1.0 \mathrm{~W} \mathrm{~cm}{ }^{-2}$) irradiation of different concentrations.

7. Photothermal Antibacterial Results

Preparation of bacterial solutions: A single colony of E. coli on a solid Luria-Bertani (LB) agar plate was transferred to 15 mL of liquid LB culture medium and was grown at $37^{\circ} \mathrm{C}$ for 6 h. Then bacteria were washed with PBS, centrifugated ($5000 \mathrm{rpm}, 3 \mathrm{~min}$) for 3 times, and resuspended in PBS at OD_{600} of ~ 1.2.

Antibacterial activity Assessment of G6СTBox-6 $\mathbf{6}^{\mathbf{+}} \boldsymbol{:} 50 \mu \mathrm{~L}$ of E. coli suspension $\left(\mathrm{OD}_{600} \approx 1.2\right)$ was incubated with $250 \mu \mathrm{~L} \mathbf{G 6} \subset \mathbf{T B o x}-\mathbf{6}^{2+}$ solution $(0.48 \mathrm{mM})$ for 5 min . Then, two sets of the E. coli suspensions which have been treated with G6CTBox-6 ${ }^{\mathbf{2 +}}$ solution were kept in the dark or irradiated by a 808 nm NIR laser from 2.5 to 15 min . Finally, all of the E. coli suspensions were serially diluted 1×10^{5} fold with PBS. A $100 \mu \mathrm{~L}$ portion of the dilution with bacteria was spread on the solid LB agar plate, and the colonies formed after $14-16 \mathrm{~h}$ incubation at $37^{\circ} \mathrm{C}$ were counted. All the experiments were performed in triplicate. The live bacteria ratio was determined by calculating the number of colony-forming units (CFU). The CFU ratio was calculated according to the following equation (e):

$$
\begin{equation*}
\text { CFU Ratio }=\frac{C}{C_{0}} \times 100 \% \tag{e}
\end{equation*}
$$

C is the CFU of the experimental group treated with G6 \subset TBox-6 $\mathbf{6}^{2+}$ under NIR irradiation, and C_{0} is the CFU of the control group without any treatments (G6 $\subset \mathbf{T B o x}-\mathbf{6}^{2+}$ and NIR irradiation).

For non-specific antibacterial behavior of G6CTBox-6 $\mathbf{6}^{\mathbf{2 +}}, 50 \mu \mathrm{~L}$ of E. coli suspensions $\left(\mathrm{OD}_{600}\right.$ ≈ 1.2) were incubated with $250 \mu \mathrm{~L}$ PBS as control group or with $250 \mu \mathrm{~L} 0.48 \mathrm{mM}$ G6\subset TBox- $\mathbf{6}^{2+}$ solution as experimental group (to form 0.40 mM solution) in dark for 15 min . The E. coli suspensions were serially diluted 1×10^{5} fold with PBS, spread on the solid LB agar plate, and the formed colonies after incubation at $37^{\circ} \mathrm{C}$ were then counted. The result showed that the bacterial viability ratio is 81.5% after the treatment of $\mathbf{G 6} \subset$ TBox- $\mathbf{6}^{2+}(0.40 \mathrm{mM})$.

Fig. S48. The non-specific antibacterial behavior of $\mathbf{G 6} \subset \mathbf{T B o x}-\mathbf{6}^{\mathbf{2 +}}(0.40 \mathrm{mM})$.

Fig. S49. a) Infrared thermal images of G6СTBox-6 ${ }^{2+}(0.4 \mathrm{mM})$ in the presence of B.subtilis under 808 nm irradiation at $1.0 \mathrm{~W} \mathrm{~cm}^{-2}$ for different times. b) CFU for B.subtilis treated with G6 \subset TBox- $\mathbf{6}^{\mathbf{2 +}}$ under the same irradiation conditions as a), and error bars represent standard deviation, $\mathrm{N}=3$; inset: plate coating results.

8. References

[S1] G. M. Sheldrick, SADABS: Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen, Göttingen, Germany, 1996.
[S2] G. M. Sheldrick, SHELXL-97, Program for Solution of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.
[S3]. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
[S4]. M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669-681.
[S5]. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys.Chem., 1994, 98, 11623-11627.
[S6]. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
[S7] H. Cong, L.-L. Tao, Y.-H. Yu, Z. Tao, F. Yang, Y.-J. Zhao, S.-F. Xue, G. A. Lawrance and G. Wei, J. Phys. Chem. A., 2007, 111, 2715-2721.
[S8] S. Tian, H. Bai, S. Li, Y. Xiao, X. Cui, X. Li, J. Tan, Z. Huang, D. Shen, W. Liu, P. Wang, B. Z. Tang and C. S. Lee, Angew. Chem., Int. Ed., 2021, 60, 11758-11762
[S9] X. Li, L. Liu, S. Li, Y. Wan, J. X. Chen, S. Tian, Z. Huang, Y. F. Xiao, X. Cui, C. Xiang, Q. Tan, X. H. Zhang, W. Guo, X. J. Liang and C. S. Lee, ACS Nano., 2019,13, 12901-12911.

