Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Decarboxylative Amination of Benzoic Acids Bearing

Electron-Donating Substituents and Non-Activated Amines

Feilong Wang,[†] Ying Han,[†] Le Yu and Dianhu Zhu^{*}

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127 (China) E-mail: zhudianhu@nwu.edu.cn

Supporting Information

Table of Contents

1. General information
2. Table S1. Optimization of reaction conditions for decarboxylative iodization of
aryl carboxylic acid
3. Table S2. Optimization of reaction conditions for palladium-catalyzed C-N
coupling
4. Table S3. Optimization of reaction conditions for quenching experiment
5. Preparation of substrates
6. General procedure for decarboxylative amination
7. Decarboxylative amination modifications of complex bioactive molecules S33
8. Preliminary mechanism studies
9. Theoretical calculation for decarboxylative iodination
10. References
11. ¹ H, ¹⁹ F, ¹³ C NMR spectra of corresponding compunds

General information.

All reactions were carried out under an argon atmosphere using standard Schlenk-Lines. ¹H, ¹³C and ¹⁹F NMR spectra were acquired on 400 MHz, 100 MHz, 376 MHz on JOEL-ZETA 400 MHz or Bruker-AVANCE III-400 MHz spectrometer (400 MHz for ¹H; 100 MHz for ¹³C; 376 MHz for ¹⁹F). ¹H NMR and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 ppm and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as inter standard. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet, br = broad. All reactions were monitored by TLC with 0.25 mm coated commercial silica gel plates (TLC Silica Gel 60 F₂₅₄). Flash column chromatograph was carried out using 300-400 mesh silica gel at medium pressure. Infrared (IR) data were recorded as films on potassium bromide plates on a Bruker Tensor 27 FT-IR spectrometer. Absorbance frequencies are reported in reciprocal cetimeters (cm⁻¹). Mass spectra were acquired on a Bruker Daltonics MicroTof-Q II mass spectrometer or Agilent 7890B-5977A mass spectrometer.

Materials. All reagents were received from commercial sources unless otherwise noted. Solvents were freshly dried and degassed according to the purification handbook *Purification of Laboratory Chemicals* before using.

	COOH OMe	I2 (2.0 eq) base (1.0 eq) solvent 150 °C, 16 h	
entry	base	solvent	yield (2cl , %) ^b
1	K ₃ PO ₄	CH ₃ CN	94 (25 ^c)
2	K ₃ PO ₄	toluene	36
3	Li ₂ CO ₃	toluene	trace
4	K ₂ CO ₃	toluene	83
5	Cs ₂ CO ₃	toluene	94
6	Cs_2CO_3	C ₆ H ₅ Cl	59

Table S1. Optimization of reaction conditions for decarboxylative iodization of aryl carboxylic acid.^{a,b}

^{*a*} Reaction conditions: *o*-methoxybenzoic acid (0.10 mmol), I₂ (0.20 mmol), base (1.0 equiv, anhydrous) in solvent (1.0 mL) at 150 °C for 16 h; ^{*b*} Yields were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard; ^{*c*} No drying treatment. Caution: decarboxylation iodization is sensitive to water, and anhydrous inorganic base is necessary.

ĺ	+	нң о	[Pd] (10 m	iol%), [L] (2	4 mol%)		
	OMe 2cl		base, solvent, temp., 10 h			OMe	
entrv	[Pd]	[L]	base	x (ea)	solvent	temp (°C)	vield (3cl . %)
	[]	[-]		,, (04)			<u> </u>
1	Pd(OAc) ₂	Ruphos	K_3PO_4	2.0	MeCN	120	< 4
2	Pd(OAc) ₂	Ruphos	K_3PO_4	2.0	toluene	120	7
3	Pd(OAc) ₂	Ruphos	K ₂ CO ₃	2.0	toluene	120	< 4
4	Pd(OAc) ₂	Ruphos	Li ₂ CO ₃	2.0	toluene	120	< 3
5	Pd(OAc) ₂	Ruphos	Cs_2CO_3	2.0	toluene	120	18
6	Pd(OAc) ₂	Ruphos	Cs_2CO_3	3.0	toluene	120	87
7	PdCl ₂	Ruphos	Cs_2CO_3	3.0	toluene	120	12
8	Pd(TFA) ₂	Ruphos	Cs_2CO_3	3.0	toluene	120	86
9	Pd(OAc) ₂	P(^t Bu) ₃	Cs_2CO_3	3.0	toluene	120	ND
10	Pd(OAc) ₂	P(o-tol) ₃	Cs_2CO_3	3.0	toluene	120	ND
11	Pd(OAc) ₂	BINAP	Cs_2CO_3	3.0	toluene	120	78
12	Pd(OAc) ₂	Xantphos	Cs_2CO_3	3.0	toluene	120	36
13	Pd(OAc) ₂	Brettphos	Cs_2CO_3	3.0	toluene	120	60
14	Pd(OAc) ₂	Xphos	Cs_2CO_3	3.0	toluene	120	36
15	Pd(OAc) ₂	Ruphos	Cs ₂ CO ₃	3.0	toluene	100	97
16	Pd(OAc) ₂	Ruphos	Cs_2CO_3	3.0	toluene	80	52

Table S2. Optimization of reaction conditions for palladium-catalyzed C-N coupling. *a,b*

^{*a*} Reaction conditions: *o*-iodoanisole (0.10 mmol), morpholine (0.12 mmol, 1.2 equiv), [Pd] (10 mol%), [L] (24 mol%), and anhydrous base in solvent (1.0 mL) at setting temperature for 10 h; ^{*b*} Yields were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

COOH OMe	I ₂ (2.0 eq) Cs ₂ CO ₃ (1.0 eq) Toluene 150 °C,16 h	OMe 120 °C 5 h 2cl	morpholine (1.2 eq) Pd(OAc) ₂ (10 mol%) Ruphos (24 mol%) Cs ₂ CO ₃ (3.0 eq) 100 °C,10 h	N OMe 3cl
Entry		Et ₃ N (x eq)	yield (3cl, %) ^b
1		0		0
2		3.0	6	50
3		4.0	7	71
4		5.0	7	78
5		6.0	8	31
6		8.0	٤	38
7		10.0	Ę	56

Table S3. Optimization of reaction conditions for quenching experiment. *a*,*b*

^{*a*} Reaction conditions: *o*-methoxybenzoic acid (0.10 mmol), I₂ (0.20 mmol), Cs₂CO₃ (1.0 equiv, anhydrous) in toluene (1.0 mL) at 150 °C for 16 h; then the reaction was quenched by x equiv Et₃N at 120 °C for 5 h; after filtration, morpholine (0.12 mmol, 1.2 equiv), Pd(OAc)₂ (10 mol%), RuPhos (24 mol%), Cs₂CO₃ (3.0 equiv, anhydrous) were added to the filtrate at the 100 °C for another 10 h; ^{*b*} Yields were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

Preparation of substrates

The substrate was prepared following literature procedures: ^[1]

Di-*tert*-butyl dicarbonate (23.42 ml, 100 mmol) was added into a solution of 2-(4-aminophenyl)ethanol (6.86 g, 50 mmol) in 250 mL THF. The reaction mixture was stirred at room temperature overnight. The organic phase was concentrated by reduced vacuum, and then precipitated in hexanes. The precipitate was filtered and dried under high vacuum to yield white solid (11.15 g, 94%).

Tert-butyl (4-(2-hydroxyethyl)phenyl)carbamate

White solid (11.15 g, 94%). Mp: 107-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 8.1 Hz, 2 H), 7.12 (d, J = 8.2 Hz, 2 H), 6.55 (s, 1 H), 3.79 (t, J = 6.6 Hz, 2 H), 2.79 (t, J = 6.6 Hz, 2 H), 1.64 (s, 1 H), 1.50 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 136.9, 133.2, 129.6, 119.1, 63.8, 38.6, 28.4, 27.5 ppm.

These substrates were prepared following the literature procedure: ^[2]

Complex carboxylic acid (5.0 mmol), *tert*-butyl (4-(2-hydroxyethyl)phenyl)carbamate (5.0 mmol, 1.0 equiv), DCC (7.5 mmol, 1.5 equiv) and DMAP (0.5 mmol, 10 mmol%) in DCM (30 mL) in 100mL round bottom flask were stirred at RT for 12 h. After the reaction, the mixture was filtered and the filtrate was concentrated by reduced vacuum. Then crude compound was subjected to 20% of TFA in DCM (v/v, 20 mL) at room temperature for 30 min. After the concentration under reduced vacuum, the mixture was dissolved in water and treated with saturated NaHCO₃ to adjust the pH to 8, subsequently extracted with EtOAc for three times. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified on a silica gel column chromatograph to afford the corresponding complex aniline substrates.

4-Aminophenethyl2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetate 1cp

Yellow oil (1.31 g, 67%). Eluent: ethyl acetate/petroleum ether (2:1, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 2.4 Hz, 1 H), 7.89 (d, J = 7.8 Hz, 1 H), 7.55 (t, J = 7.4 Hz, 1 H), 7.47 (t, J = 7.6 Hz, 1 H), 7.36 (dd, J = 8.0, 3.0 Hz, 2 H), 7.00 (d, J = 8.5 Hz, 1 H), 6.94 (d, J = 8.1 Hz, 2 H), 6.59 (d, J = 8.0 Hz, 2 H), 5.18 (s, 2 H), 4.24 (t, J = 7.1 Hz, 2 H), 3.61 (s, 2 H), 3.44 (br, 2 H), 2.80 (t, J = 7.1 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 171.5, 160.5, 145.0, 140.6, 136.5, 135.7, 132.9, 132.6, 129.9, 129.6, 129.4, 128.0, 127.9, 127.6, 125.2, 121.1, 115.4, 73.7, 66.0, 40.4, 34.3 ppm. IR (KBr): v = 3369, 2929, 1727, 1643, 1611, 1517, 1489, 1412, 1300, 1139, 1011, 827, 763, 698, 641, 554, 506 cm⁻¹. HRMS (ESI): m/z for C₂₄H₂₁NO₄ [M+H]⁺ calcd 388.1549, found 388.1543.

4-Aminophenethyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)ace tate 1cq

Yellow solid (1.84 g, 77%). Mp: 121-122 °C. Eluent: ethyl acetate/petroleum ether (2:1, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.1 Hz, 2 H), 7.46 (d, J = 8.2 Hz, 2 H), 6.94 (d, J = 2.5 Hz, 1 H), 6.89 (t, J = 8.4 Hz, 3 H), 6.67 (dd, J = 9.0, 2.5 Hz, 1 H), 6.54 (d, J = 8.1 Hz, 2 H), 4.25 (t, J = 6.9 Hz, 2 H), 3.81 (s, 3 H), 3.63 (s, 2 H), 3.53 (br, 2 H), 2.78 (t, J = 6.9 Hz, 2 H), 2.32 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 168.4, 156.2, 145.0, 139.3, 136.0, 134.1, 131.3, 130.9, 130.8, 129.8, 129.2, 127.5, 115.3, 115.1 112.8, 111.8, 101.4, 66.0, 55.8, 34.3, 30.5, 13.5 ppm. IR (KBr): v

= 3369, 2929, 1726, 1677, 1517, 1476, 1356, 1219, 1164, 1142, 1066, 925, 828, 753, 733, 700, 551, 481 cm⁻¹. HRMS (ESI): m/z for $C_{27}H_{25}ClN_2O_4$ [M+H]⁺ calcd 477.1581, found 477.1575.

4-Aminophenethyl(1S,4R)-4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-ca rboxylate 1cr

Yellow solid (0.96 g, 60%). Mp: 95-96 °C. Eluent: ethyl acetate/petroleum ether (2:1, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 6.99 (d, J = 8.3 Hz, 2 H), 6.61 (d, J = 8.2 Hz, 2 H), 4.32-4.40 (m, 2 H), 3.60 (br, 2 H), 2.87 (t, J = 7.1 Hz, 2 H), 2.31-2.39 (m, 1 H), 1.93-2.00 (m, 1 H), 1.83-1.89 (m, 1 H), 1.61-1.68 (m, 1 H), 1.08 (s, 3 H), 0.96 (s, 3 H), 0.86 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 178.3, 167.5, 145.2, 129.9, 126.9, 115.4, 91.3, 66.4, 54.9, 54.2, 34.2, 30.7, 29.0, 16.8, 16.7, 9.8 ppm. IR (KBr): v = 2966, 1781, 1743, 1626, 1518, 1312, 1269, 1169, 1105, 1062, 931, 822, 797, 734, 554 cm⁻¹. HRMS (ESI): m/z for C₁₈H₂₃NO₄ [M+H]⁺ calcd 318.1705, found 318.1698.

The substrate was prepared following literature procedures: ^[2-3]

4-((*Tert*-butoxycarbonyl)amino)benzoic acid (5.0 mmol), phenol (5.0 mmol, 1.0 equiv), DCC (7.5 mmol, 1.5 equiv) and DMAP (0.5 mmol, 10 mmol%) in DCM (30 mL) in 100mL round bottom flask were stirred at RT for 12 h. After the reaction, the mixture was filtered and the filtrate was concentrated by reduced vacuum. Then crude compound was subjected to 20% of TFA in DCM (v/v, 20 mL) at room temperature for 30 min. After the concentration under reduced vacuum, the mixture was dissolved in water and treated with saturated NaHCO₃ to adjust the pH to 8, subsequently extracted with EtOAc for three times. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The

residue was purified on a silica gel column chromatograph to afford the corresponding complex aniline substrates.

(S)-2,5,7,8-Tetramethyl-2-((4S,8R)-4,8,12-trimethyltridecyl)chroman-6-yl 4-aminobenzoate 1cs

Yellow oil (1.23 g, 45%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.6 Hz, 2 H), 6.68 (d, J = 8.4 Hz, 2 H), 3.97 (br, 2 H), 2.62 (t, J = 6.9 Hz, 2 H), 2.16 (s, 1 H), 2.13 (s, 3 H), 2.06 (s, 3 H), 2.02 (s, 3 H), 1.73-1.87 (m, 3 H), 1.55 (dq, J = 13.0, 6.7 Hz, 3 H), 1.24-1.30 (m, 14 H), 1.16 (t, J = 7.0 Hz, 3 H), 0.86-0.89 (m, 16 H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 151.5, 149.4, 140.9, 132.4, 127.3, 125.5, 123.1, 118.9, 117.5, 114.0, 39.5, 37.7, 37.6, 37.5, 37.4, 32.9, 28.1, 24.9, 24.6, 24.3, 23.9, 23.8, 22.9, 22.8, 21.2, 20.9, 20.8, 19.9, 19.8, 19.7, 13.2, 12.3, 12.0 ppm. IR (KBr): v = 3334, 2925, 2867, 1733, 1702, 1592, 1528, 1459, 1412, 1288, 1230, 1155, 1096, 859, 769, 701 cm⁻¹. HRMS (ESI): m/z for C₃₆H₅₅NO₃ [M+H]⁺ calcd 550.4260, found 550.4253.

General procedure for decarboxylative amination

Aromatic carboxylic acid (0.5 mmol), I₂ (1.0 mmol, 2.0 equiv) and Cs₂CO₃ (0.5 mmol, 1.0 equiv, anhydrous) were placed into an oven-dried 25 mL Schlenk tube that was equipped with a stirring bar under argon atmosphere. Freshly distilled toluene (3.0 mL) was added to the Schlenk tube. The reaction was stirred at 150 °C for 16 h and then quenched by NEt₃ (4.0 mmol, 8.0 equiv) at 120 °C for 5 h. Subsequently, after the filtration, the filtrate was added to another Schlenk tube charged with Pd(OAc)₂ (10 mol%), Ruphos (24 mol%), amines (0.6 mmol, 1.2 equiv) and Cs₂CO₃ (1.5 mmol, 3.0 equiv, anhydrous) under argon atmosphere. The mixture was stirred at 100 °C for 10 h. After the reaction, the solution was filtered and washed with ethyl acetate for three times. The combined solvents were removed under vacuum, and the residue was purified by column chromatography to obtain the desired aromatic amines.

N-(2-Methoxyphenyl)pyridin-3-amine 3aa

Yellow solid (87.1 mg, 87%). Mp: 81-82 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 2.8 Hz, 1 H), 8.18 (d, J = 4.5 Hz, 1 H), 7.48 (d, J = 8.3 Hz, 1 H), 7.24-7.30 (m, 1 H), 7.18 (dd, J = 8.3, 4.6 Hz, 1 H), 6.87-6.95 (m, 3 H), 6.24 (s, 1 H), 3.89 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 142.0, 140.8, 139.5, 131.7, 124.0, 123.6, 121.2, 120.9, 115.3, 110.8, 55.6 ppm. The spectroscopic data were matched with those reported in the literature.^[4]

Gram-scale synthesis of N-(2-methoxyphenyl)pyridin-3-amine 3aa

To a mixture of *o*-methoxybenzoic acid (7.5 mmol), I_2 (15.0 mmol, 2.0 equiv) and Cs_2CO_3 (7.5 mmol, 1.0 equiv, anhydrous) in an oven-dried 100 mL Schlenk tube was added freshly distilled toluene (45.0 mL) under argon atmosphere. The reaction was

stirred at 150 °C for 16 h and then quenched by NEt₃ (60.0 mmol, 8.0 equiv) at 120 °C for 5 h. Subsequently, after the filtration, the filtrate was added to another Schlenk tube charged with Pd(OAc)₂ (10 mol%), Ruphos (24 mol%), amines (9.0 mmol, 1.2 equiv) and Cs₂CO₃ (22.5 mmol, 3.0 equiv, anhydrous) under argon atmosphere. The mixture was stirred at 100 °C for 10 h. After the reaction, the solution was filtered and washed with ethyl acetate for three times. The combined solvents were removed under vacuum, and the residue was purified by column chromatography to obtain *N*-(2-methoxyphenyl)pyridin-3-amine **3aa** as a yellow solid (1.27 g, 85%).

N-(2,4-Dimethoxyphenyl)pyridin-3-amine 3ab

Yellow solid (82.9 mg, 72%). Mp: 93-94 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1 H), 8.05 (d, J = 4.7 Hz, 1 H), 7.24 (d, J = 10.5 Hz, 1 H), 7.15 (d, J = 8.6 Hz, 1 H), 7.11-7.12 (m, 1 H), 6.46-6.57 (m, 1 H), 6.43 (dt, J = 8.6, 2.1 Hz, 1 H), 5.77 (s, 1 H), 3.80 (s, 3 H), 3.78 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 156.1, 151.8, 141.4, 140.8, 139.0, 124.2, 123.7, 121.8, 120.0, 103.9, 99.6, 55.7 ppm. The spectroscopic data were matched with those reported in the literature.^[5]

N-(2-Methoxy-4-methylphenyl)pyridin-3-amine 3ac

Yellow oil (99.6 mg, 93%). Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 2.9 Hz, 1 H), 8.12 (dd, J = 4.7, 1.4 Hz, 1 H), 7.38-7.41 (m, 1 H), 7.14 (dd, J = 8.2, 4.7 Hz, 2 H), 6.72 (d, J = 12.9 Hz, 2 H), 6.02 (s, 1 H), 3.86 (s, 3 H), 2.33 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 141.4, 140.3, 140.0, 131.7, 128.7, 123.7, 123.2, 121.1, 116.6, 112.0, 55.7, 21.3 ppm. IR (KBr): v = 2923, 1524, 1261, 801, 764, 750 cm⁻¹. HRMS (ESI): m/z for C₁₃H₁₄N₂O [M+H]⁺ calcd 215.1184, found 215.1181.

N-(4-Chloro-2-methoxyphenyl)pyridin-3-amine 3ad

Yellow solid (84.5 mg, 72%). Mp: 78-79 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1 H), 8.18 (s, 1 H), 7.43 (d, J = 8.2 Hz, 1 H), 7.18 (dd, J = 8.3, 4.6 Hz, 1 H), 7.12 (d, J = 8.2 Hz, 1 H), 6.83-6.87 (m, 2 H), 6.08 (s, 1 H), 3.87 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 142.3, 140.9, 139.2, 130.5, 125.7, 124.5, 123.9, 120.7, 115.7, 111.6, 56.0 ppm. IR (KBr): v = 2925, 2851, 1580, 1515, 1245, 1029, 891, 853, 838, 793, 708 cm⁻¹. HRMS (ESI): m/z for C₁₂H₁₁ClN₂O [M+H]⁺ calcd 235.0638, found 235.0637.

N-(5-Fluoro-2-methoxyphenyl)pyridin-3-amine 3ae

Yellow solid (82.9 mg, 76%). Mp: 70-71 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.2$). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1 H), 8.24 (s, 1 H), 7.52 (s, 1 H), 7.22 (s, 1 H), 6.93 (s, 1 H), 6.78 (s, 1 H), 6.54 (s, 1 H), 6.36 (s, 1 H), 3.88 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -121.3 (m, 1 F); ¹³C NMR (100 MHz, CDCl₃) δ 157.5 (d, J = 242.4 Hz), 144.5, 143.1, 141.9, 138.4, 133.4, 125.4, 123.9, 111.1 (d, J = 10.1 Hz), 105.6 (d, J = 20.2 Hz), 101.5 (d, J = 10.1 Hz), 56.2 ppm. IR (KBr): v = 2936, 1617, 1580, 1525, 1479, 1444, 1408, 1246, 1210, 1108, 1030, 984, 846, 789, 711 cm⁻¹. HRMS (ESI): m/z for C₁₂H₁₁FN₂O [M+H]⁺ calcd 219.0934, found 219.0938.

2,6-Dimethoxy-*N*-(4-methoxybenzyl)aniline 3af

Yellow oil (54.7 mg, 40%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.3$).¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.6 Hz, 2 H), 6.77-6.87 (m, 3 H), 6.55 (d, J = 8.3 Hz, 2 H), 4.36 (s, 2 H), 4.12 (s, 1 H), 3.82 (s, 6 H), 3.78 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 151.1, 133.5, 129.3, 127.4, 120.1, 113.7, 104.9, 56.1, 55.3,

50.9 ppm. IR (KBr): ν = 2224, 1605, 1508, 1303, 1258, 1172, 1024, 834, 683, 548 cm⁻¹. HRMS (ESI): m/z for C₁₆H₁₉NO₃ [M+H]⁺ calcd 274.1443, found 274.1438. *N*-(2-Phenoxyphenyl)pyridin-3-amine 3ag

Yellow solid (43.3 mg, 33%). Mp: 54-55 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 2.8 Hz, 1 H), 8.18 (dd, J = 4.7, 1.4 Hz, 1 H), 7.46 (qd, J = 8.2, 2.8 Hz, 1 H), 7.32 (td, J = 7.4, 1.6 Hz, 3 H), 7.17 (dd, J = 8.3, 4.7 Hz, 1 H), 7.03-7.11 (m, 2 H), 6.98-7.02 (m, 2 H), 6.93 (dd, J = 8.0, 1.7 Hz, 1 H), 6.85-6.90 (m, 1 H), 6.16 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 145.9, 142.6, 141.3, 139.1, 134.4, 130.0, 124.9, 124.4, 123.8, 123.5, 121.5, 119.7, 118.1, 116.4 ppm. IR (KBr): $\nu = 2922$, 1577, 1519, 1486, 1453, 1407, 1239, 1214, 794, 748, 708, 691 cm⁻¹. HRMS (ESI): m/z for C₁₇H₁₄N₂O [M+H]⁺ calcd 263.1184, found 263.1181.

N-(4-Methoxy-2-methylphenyl)pyridin-3-amine 3ah

White solid (88.9 mg, 83%). Mp: 94-95 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 2.9 Hz, 1 H), 8.00 (dd, J = 4.7, 1.4 Hz, 1 H), 7.11 (d, J = 8.6 Hz, 1 H), 7.06 (dd, J = 8.3, 4.6 Hz, 1 H), 6.90-6.93 (m, 1 H), 6.81 (d, J = 3.0 Hz, 1 H), 6.73 (dd, J = 8.6, 3.0 Hz, 1 H), 5.41 (s, 1 H), 3.80 (s, 3 H), 2.20 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 142.9, 139.8, 137.5, 134.9, 132.2, 125.8, 123.8, 120.4, 116.6, 112.2, 55.5, 18.3 ppm. IR (KBr): v = 1584, 1498, 1289, 1218, 1046, 794, 764, 750, 708 cm⁻¹. HRMS (ESI): m/z for C₁₃H₁₄N₂O [M+H]⁺ calcd 215.1184, found 215.1179.

N-(2,6-Dimethylphenyl)pyridin-3-amine 3ai

Yellow solid (59.5 mg, 60%). Mp: 111-112 °C. Eluent: ethyl acetate/petroleum ether

(1:1, $R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 2.9 Hz, 1 H), 7.99 (d, J = 3.5 Hz, 1 H), 7.12 (s, 3 H), 7.03 (dd, J = 8.3, 4.6 Hz, 1 H), 6.64 (d, J = 8.2 Hz, 1 H), 5.46 (s, 1 H), 2.20 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 139.4, 137.0, 136.7, 136.1, 128.8, 126.5, 123.9, 119.1, 18.4 ppm. The spectroscopic data were matched with those reported in the literature.^[6]

N-Mesitylpyridin-3-amine 3aj

Yellow solid (80.7 mg, 76%). Mp: 97-98 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 2.9 Hz, 1 H), 8.00 (d, J = 4.7 Hz, 1 H), 7.04 (dd, J = 8.3, 4.7 Hz, 1 H), 6.97 (s, 2 H), 6.65 (d, J = 8.3 Hz, 1 H), 5.39 (s, 1 H), 2.33 (s, 3 H), 2.18 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 139.2, 136.5, 136.1, 136.0, 134.3, 129.4, 123.8, 118.8, 20.9, 18.2 ppm. The spectroscopic data were matched with those reported in the literature.^[7]

N-(2-Chloro-4-methoxyphenyl)pyridin-3-amine 3ak

Yellow solid (89.2 mg, 76%). Mp: 55-56 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1 H), 8.13 (s, 1 H), 7.17-7.27 (m, 2 H), 7.14 (dd, J = 8.5, 4.5 Hz, 1 H), 6.97 (d, J = 2.7 Hz, 1 H), 6.78 (d, J = 8.9 Hz, 1 H), 5.76 (s, 1 H), 3.77 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 141.8, 140.5, 139.6, 131.8, 126.3, 123.9, 123.1, 121.4, 115.4, 113.9, 55.9 ppm. IR (KBr): v = 2923, 1583, 1512, 1494, 1281, 1251, 1210, 1045, 858, 841, 798, 708 cm⁻¹. HRMS (ESI): m/z for C₁₂H₁₁ClN₂O [M+H]⁺ calcd 235.0638, found 235.0642.

N-(2-Fluoro-4-methoxyphenyl)pyridin-3-amine 3al

Yellow oil (72.0 mg, 66%). Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.2$). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1 H), 8.10 (s, 1 H), 7.12-7.23 (m, 3 H), 6.72 (dd, *J*

= 12.2, 2.8 Hz, 1 H), 6.66 (dq, J = 8.8, 2.9, 1.3 Hz, 1 H), 5.52 (s, 1 H), 3.79 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -124 (m, 1 F); ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 141.9, 141.0, 138.3, 123.0 (d, J = 242.4 Hz), 121.3, 120.9, 115.3, 110.8, 110.0 (d, J = 2.0 Hz), 102.8 (d, J = 20.2 Hz), 55.9 ppm. IR (KBr): v = 2923, 2851, 1582, 1514, 1287, 1244, 1155, 1117, 1030, 795, 749, 708 cm⁻¹. HRMS (ESI): m/z for C₁₂H₁₁FN₂O [M+H]⁺ calcd 219.0934, found 219.0931.

N-(4-Methoxyphenyl)pyridin-3-amine 3am

Yellow solid (57.1 mg, 57%). Mp: 125-126 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1 H), 8.04 (s, 1 H), 7.19 (d, J = 8.3 Hz, 1 H), 7.06 (d, J = 8.9 Hz, 3 H), 6.86 (d, J = 7.0 Hz, 2 H), 5.75 (s, 1 H), 3.79 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 142.0, 140.4, 138.2, 134.4, 123.9, 122.8, 121.3, 114.9, 55.7 ppm. The spectroscopic data were matched with those reported in the literature.^[4]

N-(4-Ethoxyphenyl)pyridin-3-amine 3an

Yellow solid (78.2 mg, 73%). Mp: 107-108 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 2.8 Hz, 1 H), 8.03 (d, J = 4.6 Hz, 1 H), 7.18 (dq, J = 8.3, 2.9 Hz, 1 H), 7.02-7.10 (m, 3 H), 6.82-6.88 (m, 2 H), 5.78 (s, 1 H), 4.00 (q, J = 7.0 Hz, 2 H), 1.40 (t, J = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 142.0, 140.4, 138.2, 134.3, 123.8, 122.8, 121.3, 115.6, 63.9, 15.0 ppm. The spectroscopic data were matched with those reported in the literature.^[8] *N*-(4-Isopropoxyphenyl)pyridin-3-amine 3ao

Yellow solid (99.3 mg, 87%). Mp: 133-134 °C. Eluent: ethyl acetate/petroleum ether

(5:1, $R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 2.9 Hz, 1 H), 8.04 (dd, J = 4.6, 1.3 Hz, 1 H), 7.20 (dq, J = 8.4, 2.9 Hz, 1 H), 7.08 (dd, J = 8.3, 4.6 Hz, 1 H), 7.01-7.06 (m, 2 H), 6.82-6.87 (m, 2 H), 5.73 (s, 1 H), 4.43-4.52 (m, 1 H), 1.32 (d, J = 6.1 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 141.9, 140.5, 138.3, 134.4, 123.8, 122.7, 121.3, 117.2, 70.6, 22.2 ppm. IR (KBr): v = 3252, 3180, 3042, 2976, 1575, 1509, 1482, 1327, 1276, 1240, 1121, 957, 764, 750, 701 cm⁻¹. HRMS (ESI): m/z for C₁₄H₁₆N₂O [M+H]⁺ calcd 229.1341, found 229.1340.

N-(4-Methoxy-3-methylphenyl)pyridin-3-amine 3ap

Yellow solid (63.2 mg, 59%). Mp: 122-123 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 2.8 Hz, 1 H), 8.04 (d, J = 4.5 Hz, 1 H), 7.18-7.21 (m, 1 H), 7.08 (dd, J = 8.3, 4.7 Hz, 1 H), 6.94 (d, J = 6.1 Hz, 2 H), 6.78 (d, J = 9.3 Hz, 1 H), 5.71 (s, 1 H), 3.81 (s, 3 H), 2.20 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 142.0, 140.4, 138.3, 134.0, 128.0, 124.4, 123.8, 121.2, 119.6, 111.0, 55.8, 16.4 ppm. IR (KBr): v = 1580, 1502, 1482, 1255, 1225, 1127, 1033, 795, 764, 750, 707 cm⁻¹. HRMS (ESI): m/z for C₁₃H₁₄N₂O [M+H]⁺ calcd 215.1184, found 215.1181.

2-Methoxy-N-(pyridin-3-yl)pyridin-3-amine 3aq

Yellow solid (45.3 mg, 45%). Mp: 67-68 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 2.9 Hz, 1 H), 8.18 (dd, J = 4.7, 1.4 Hz, 1 H), 7.67 (dd, J = 5.0, 1.6 Hz, 1 H), 7.42 (dq, J = 8.2, 2.9 Hz, 1 H), 7.37 (dd, J = 7.7, 1.6 Hz, 1 H), 7.17 (dd, J = 8.3, 4.7 Hz, 1 H), 6.77 (dd, J = 7.7, 5.0 Hz, 1 H), 6.17 (s, 1 H), 3.99 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 153.7, 143.0, 141.3, 138.4, 137.1, 127.2 125.0, 123.9, 119.7, 117.0, 53.7 ppm. IR (KBr): v = 1573, 1464, 1418, 1388, 1244, 1188, 1113, 1017, 783, 755, 709 cm⁻¹. HRMS (ESI): m/z for C₁₁H₁₁N₃O [M+H]⁺ calcd 202.0980, found 202.0978.

3-Methyl-N-(4-nitrophenyl)benzo[b]thiophen-2-amine 3ar

Yellow solid (49.7 mg, 35%). Mp: 133-134 °C. Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 9.0 Hz, 2 H), 7.76 (d, J = 7.6 Hz, 1 H), 7.68 (d, J = 7.9 Hz, 1 H), 7.36-7.44 (m, 2 H), 6.75 (d, J = 9.2 Hz, 2 H), 6.06 (s, 1 H), 2.26 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 151.6, 140.2, 138.9, 136.9, 135.2, 126.3, 125.5, 125.3, 124.6, 122.7, 122.3, 113.2, 11.3 ppm. IR (KBr): v = 3337, 1584, 1498, 1320, 1301, 1272, 1179, 1111, 839, 751, 728, 691, 486 cm⁻¹. HRMS (ESI): m/z for C₁₅H₁₂N₂O₂S [M+H]⁺ calcd 285.0698, found 285.0694.

3-Methyl-N-(4-nitrophenyl)benzofuran-2-amine 3as

Yellow solid (60.3 mg, 45%). Mp: 59-60 °C. Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 9.1 Hz, 2 H), 7.50 (d, J = 7.1 Hz, 1 H), 7.40 (d, J = 7.8 Hz, 1 H), 7.26-7.32 (m, 2 H), 6.80 (d, J = 8.9 Hz, 2 H), 6.23 (s, 1 H), 2.15 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 151.6, 149.8, 144.5, 140.8, 129.7, 126.2, 124.6, 122.9, 119.4, 113.7, 111.1, 106.7, 8.0 ppm. IR (KBr): v = 3346, 1593, 1501, 1323, 1304, 1111, 841, 747 cm⁻¹. HRMS (ESI): m/z for C₁₅H₁₂N₂O₃ [M+H]⁺ calcd 269.0926, found 269.0921.

2-Methoxy-N-(4-methoxyphenyl)aniline 3aw

Yellow oil (86.0 mg, 75%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 8.6 Hz, 2 H), 7.07 (d, *J* = 7.5 Hz, 1 H), 6.91 (d, *J* = 5.8 Hz, 1 H), 6.88 (s, 1 H), 6.87 (s, 1 H), 6.84 (d, *J* = 7.5 Hz, 1 H), 6.79 (t, *J* = 7.5 Hz, 1 H), 6.00 (s, 1 H), 3.90 (s, 3 H), 3.81 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 147.5, 135.5, 135.2, 122.9, 121.1, 118.7, 114.7, 112.7, 110.3, 55.7 ppm. The spectroscopic data were matched with those reported in the literature.^[9]

2-Methoxy-N-(4-phenoxyphenyl)aniline 3ax

Yellow oil (109.3 mg, 75%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.52 (m, 2 H), 7.38 (d, J = 7.3 Hz, 1 H), 7.27 (d, J = 6.5 Hz, 2 H), 7.17-7.23 (m, 2 H), 7.10-7.17 (m, 3 H), 7.04 (dd, J = 6.3, 3.0 Hz, 1 H), 6.98-7.02 (m, 2 H), 6.28 (s, 1 H), 3.98 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 151.4, 148.2, 138.7, 134.0, 130.0, 122.9, 121.2, 120.8, 119.8, 118.2, 114.1, 110.7, 55.8 ppm. IR (KBr): v = 3404, 1596, 1502, 1485, 1457, 1218, 1114, 1025, 864, 835, 778, 738, 690, 504 cm⁻¹. HRMS (ESI): m/z for C₁₉H₁₇NO₂ [M+H]⁺ calcd 292.1338, found 292.1335.

N-(4-butylphenyl)-2-methoxyaniline 3ay

Yellow oil (94.5 mg, 74%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 6.1 Hz, 1 H), 7.17 (s, 4 H), 6.90 (dd, J = 15.4, 8.1 Hz, 3 H), 6.18 (s, 1 H), 3.94 (s, 3 H), 2.65 (t, J = 7.7 Hz, 2 H), 1.68 (dt, J = 15.6, 7.3 Hz, 2 H), 1.41-1.50 (m, 2 H), 0.98-1.10 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 140.3, 136.3, 133.9, 129.3, 121.0, 119.6, 119.4, 114.0, 110.6, 55.7, 35.2, 34.0, 22.6, 14.2 ppm. The spectroscopic data were matched with those reported in the literature.^[10]

2-Methoxy-N-phenylaniline 3az

Yellow oil (76.7 mg, 77%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.48 (m, 3 H), 7.28 (d, J = 7.4 Hz, 2 H), 7.07 (t, J = 7.3 Hz, 1 H), 7.00 (dd, J = 6.3, 2.4 Hz, 3 H), 6.30 (s, 1 H), 3.96 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 143.0, 133.2, 129.5, 121.4, 121.1, 120.2, 118.8, 114.9, 110.8, 55.8 ppm. The spectroscopic data were matched with those reported in the

literature.^[10]

2-Methoxy-N-(4-(trifluoromethoxy)phenyl)aniline 3ba

Yellow oil (110.5 mg, 78%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (s, 1 H), 7.13-7.19 (m, 4 H), 6.94 (s, 3 H), 6.20 (s, 1 H), 3.91 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -58.1 (s, 3 F); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 143.0, 141.9, 132.5, 122.4, 121.0, 120.8, 120.7 (q, *J* = 262.6 Hz), 118.9, 115.4, 110.8, 55.6 ppm. IR (KBr): v = 1594, 1505, 1460, 1256, 1197, 1150, 1114, 1027, 918, 835, 809, 780, 739, 503, 449 cm⁻¹. HRMS (ESI): m/z for C₁₄H₁₂F₃NO₂ [M+H]⁺ calcd 284.0898, found 284.0889.

1-(4-((2-Methoxyphenyl)amino)phenyl)ethan-1-one 3bb

Yellow oil (105.0 mg, 87%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.7 Hz, 2 H), 7.40 (d, J = 7.8 Hz, 1 H), 7.07 (d, J = 8.8 Hz, 2 H), 6.98-7.02 (m, 1 H), 6.89-6.97 (m, 2 H), 6.49 (s, 1 H), 3.86 (s, 3 H), 2.52 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 149.8, 148.1, 130.6, 130.3, 129.1, 122.7, 120.8, 118.3, 115.1, 111.1, 55.7, 26.3 ppm. The spectroscopic data were matched with those reported in the literature.^[11]

2-Methoxy-N-(4-(methylsulfonyl)phenyl)aniline 3bc

Yellow solid (104.0 mg, 75%). Mp: 114-115 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.7$). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.7 Hz, 2 H), 7.35 (d, J = 8.4 Hz, 1 H), 7.08 (d, J = 8.8 Hz, 2 H), 7.03 (t, J = 7.7 Hz, 1 H), 6.90-6.99 (m, 2 H), 6.50 (s, 1 H), 3.84 (s, 3 H), 3.00 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 148.7, 130.0, 129.6, 129.3, 123.5, 120.8, 119.2, 115.2, 111.3, 55.7, 45.0 ppm. The

spectroscopic data were matched with those reported in the literature.^[12]

4-((2-Methoxyphenyl)amino)benzonitrile 3bd

White solid (85.2 mg, 76%). Mp: 107-108 °C. Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, J = 8.8, 1.8 Hz, 2 H), 7.35 (d, J = 1.9 Hz, 1 H), 7.00-7.06 (m, 3 H), 6.91-6.96 (m, 2 H), 6.40 (s, 1 H), 3.86 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 147.7, 133.8, 129.6, 123.4, 120.8, 120.1, 118.9, 115.6, 111.2, 101.5, 55.8 ppm. IR (KBr): v = 3319, 2215, 1587, 1517, 1458, 1338, 1245, 1173, 1112, 1027, 822, 742, 542 cm⁻¹. HRMS (ESI): m/z for C₁₄H₁₂N₂O [M+H]⁺ calcd 225.1028, found 225.1025.

2-Methoxy-N-(4-nitrophenyl)aniline 3be

Reddish brown solid (73.3 mg, 60%). Mp: 109-110 °C. Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (t, J = 8.2 Hz, 2 H), 7.31-7.44 (m, 1 H), 7.08 (t, J = 7.7 Hz, 1 H), 7.02 (t, J = 8.2 Hz, 2 H), 6.96 (t, J = 7.7 Hz, 2 H), 6.54 (s, 1 H), 3.88 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 149.7, 139.9, 129.1, 126.2, 124.2, 120.9, 119.7, 114.3, 111.3, 55.8 ppm. The spectroscopic data were matched with those reported in the literature.^[13]

Bis(2-methoxyphenyl)amine 3bf

Yellow oil (91.7 mg, 80%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.7 Hz, 2 H), 7.02-7.09 (m, 2 H), 7.02 (s, 2 H), 7.00 (s, 2 H), 6.70 (s, 1 H), 3.97 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 132.7, 121.0, 120.4, 115.6, 110.8, 55.8 ppm. The spectroscopic data were matched with those reported in the literature.^[9]

2-Methoxy-N-(2-phenoxyphenyl)aniline 3bg

Yellow solid (109.3 mg, 75%). Mp: 78-79 °C. Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J = 8.1, 1.5 Hz, 1 H), 7.50 (dd, J = 6.7, 2.7 Hz, 1 H), 7.37-7.43 (m, 2 H), 7.16-7.18 (m, 1 H), 7.14-7.16 (m, 2 H), 7.12 (q, J = 1.5 Hz, 1 H), 7.04 (dd, J = 8.0, 1.6 Hz, 1 H), 6.98 (qd, J = 7.0, 4.2 Hz, 2 H), 6.94 (dd, J = 7.0, 5.1 Hz, 2 H), 6.59 (s, 1 H), 3.85 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 149.4, 145.9, 135.4, 132.2, 129.9, 124.4, 123.2, 120.9, 120.8, 120.5, 119.9, 118.1, 116.7, 116.2, 110.9, 55.7 ppm. IR (KBr): v = 1600, 1526, 1489, 1242, 1215, 1117, 1028, 856, 748, 691 cm⁻¹. HRMS (ESI): m/z for C₁₉H₁₇NO₂ [M+H]⁺ calcd 292.1338, found 292.1334.

2-Isopropyl-N-(2-methoxyphenyl)aniline 3bh

Yellow oil (84.5 mg, 70%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.9$). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (td, J = 7.6, 1.7 Hz, 2 H), 7.28 (td, J = 7.5, 1.7 Hz, 1 H), 7.20 (td, J = 7.5, 1.4 Hz, 1 H), 7.06 (dd, J = 7.6, 1.9 Hz, 1 H), 6.96-7.01 (m, 1 H), 6.88-6.96 (m, 2 H), 6.08 (s, 1 H), 4.01 (s, 3 H), 3.28-3.38 (m, 1 H), 1.39 (d, J = 6.9 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 141.4, 139.6, 135.3, 126.6, 126.3, 123.7, 122.4, 121.2, 118.9, 113.8, 110.5, 55.8, 28.0, 23.3 ppm. IR (KBr): v = 2960, 1594, 1510, 1491, 1449, 1292, 1236, 1114, 1030, 743 cm⁻¹. HRMS (ESI): m/z for C₁₆H₁₉NO [M+H]⁺ calcd 242.1545, found 242.1543.

2-(Tert-butyl)-N-(2-methoxyphenyl)aniline 3bi

Yellow oil (76.6 mg, 60%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.9$). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 26.1, 7.8 Hz, 2 H), 7.27 (q, J = 6.1 Hz, 1 H), 7.16 (t, J = 7.3 Hz, 1 H), 6.97 (d, J = 4.5 Hz, 2 H), 6.82-6.93 (m, 2 H), 6.18 (s, 1 H),

4.00 (s, 3 H), 1.54 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 143.6, 141.0, 135.8, 127.2, 127.0, 125.9, 123.8, 121.2, 118.3, 113.0, 110.4, 55.9, 35.0, 30.8 ppm. IR (KBr): $\nu = 2954, 2928, 1593, 1508, 1445, 1226, 1113, 1029, 802, 756,737 \text{ cm}^{-1}$. HRMS (ESI): m/z for C₁₇H₂₁NO [M+H]⁺ calcd 256.1701, found 256.1697.

(2-((2-Methoxyphenyl)amino)phenyl)(phenyl)methanone 3bj

Yellow oil (97.1 mg, 64%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.7$). ¹H NMR (400 MHz, CDCl₃) δ 10.20 (s, 1 H), 7.78 (dd, J = 7.5, 2.3 Hz, 2 H), 7.59 (s, 1 H), 7.57 (s, 1 H), 7.55 (s, 1 H), 7.53 (d, J = 2.7 Hz, 1 H), 7.50 (s, 1 H), 7.47 (d, J = 7.0 Hz, 1 H), 7.34-7.43 (m, 1 H), 7.03-7.09 (m, 1 H), 6.93-7.02 (m, 2 H), 6.70-6.80 (m, 1 H), 3.94 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 151.3, 147.3, 139.9, 135.0, 134.2, 131.7, 130.2, 129.8, 128.3, 123.3, 121.0, 120.7, 119.7, 117.0, 115.2, 111.4, 55.9 ppm. The spectroscopic data were matched with those reported in the literature.^[14]

3-Chloro-4-fluoro-N-(2-methoxyphenyl)aniline 3bk

Yellow oil (69.2 mg, 55%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.7$). ¹H NMR (400 MHz, CDCl₃) δ 7.17-7.24 (m, 2 H), 7.05 (t, J = 8.7 Hz, 1 H), 6.95-7.00 (m, 1 H), 6.93 (d, J = 1.9 Hz, 3 H), 6.09 (s, 1 H), 3.90 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -125.4 (m, 1 F); ¹³C NMR (100 MHz, CDCl₃) 153.1 (d, J = 242.4 Hz), 148.6, 139.9 (d, J = 3.0 Hz), 132.6, 121.3 (d, J = 20.2 Hz), 121.0, 120.9, 120.3, 118.3 (d, J = 3.0 Hz), 117.0 (d, J = 11.1 Hz), 115.1, 110.8, 55.7 ppm. IR (KBr): v = 1598, 1514, 1498, 1460, 1244, 1221, 1115, 1029, 813, 746, 533 cm⁻¹. HRMS (ESI): m/z for C₁₃H₁₁ClFNO [M+H]⁺ calcd 252.0591, found 252.0586.

Yellow oil (105.1 mg, 85%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.47 (m, 1 H), 6.87-7.05 (m, 3 H), 6.44-6.58 (m, 2 H), 6.11-6.33 (m, 2 H), 3.90 (s, 3 H), 3.80 (d, J = 7.0 Hz, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -111.2 (m, 1 F); ¹³C NMR (100 MHz, CDCl₃) δ 164.7 (d, J = 243.4 Hz), 161.8 (d, J = 13.1 Hz), 149.2, 145.6 (d, J = 13.1 Hz), 131.7, 121.5, 120.9, 117.0, 110.9, 98.9, 96.9 (d, J = 25.3 Hz), 93.9 (d, J = 25.3 Hz), 55.7, 55.5 ppm. IR (KBr): v = 3410, 2938, 1589, 1491, 1460, 1250, 1157, 1129, 821, 744, 672, 447 cm⁻¹. HRMS (ESI): m/z for C₁₄H₁₄FNO₂ [M+H]⁺ calcd 248.1087, found 248.1079.

N-(2-Methoxyphenyl)-2-methyl-3-nitroaniline 3bm

Yellow solid (96.9 mg, 75%). Mp: 100-101 °C. Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.7$). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.1 Hz, 1 H), 7.39 (d, J = 8.1 Hz, 1 H), 7.21 (t, J = 8.1 Hz, 1 H), 7.03 (d, J = 6.8 Hz, 1 H), 6.95 (d, J = 3.5 Hz, 2 H), 6.87-6.93 (m, 1 H), 6.00 (s, 1 H), 3.92 (s, 3 H), 2.39 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 151.9, 148.9, 143.4, 132.3, 126.8, 122.8, 122.1, 121.5, 121.0, 117.0, 116.3, 110.9, 55.8, 13.6 ppm. IR (KBr): v = 3414, 1597, 1524, 1464, 1352, 1244, 1116, 1028, 851, 802, 778, 737 cm⁻¹. HRMS (ESI): m/z for C₁₄H₁₄N₂O₃ [M+H]⁺ calcd 259.1083, found 259.1081.

6-((2-Methoxyphenyl)amino)-3,4-dihydronaphthalen-1(2H)-one 3bn

Yellow solid (93.6 mg, 70%). Mp: 52-53 °C. Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.6 Hz, 1 H), 7.38 (dd, J = 7.7, 1.8 Hz, 1 H), 6.98-7.05 (m, 1 H), 6.96 (dd, J = 9.4, 1.8 Hz, 1 H), 6.87-6.94 (m, 2

H), 6.83 (s, 1 H), 6.45 (s, 1 H), 3.83 (s, 3 H), 2.82 (t, J = 6.3 Hz, 2 H), 2.47-2.65 (m, 2 H), 2.06 (q, J = 6.0 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 150.0, 148.3, 146.9, 130.2, 129.5, 125.2, 122.8, 120.8, 118.8, 114.3, 113.6, 111.1, 55.7, 39.0, 30.3, 23.5 ppm. IR (KBr): v = 3318, 2936, 1659, 1582, 1520, 1350, 1284, 1245, 1183, 1115, 1026, 897, 823, 746, 701, 657 cm⁻¹. HRMS (ESI): m/z for C₁₇H₁₇NO₂ [M+H]⁺ calcd 268.1338, found 268.1335.

N-(2-Methoxyphenyl)naphthalen-2-amine 3bo

Yellow solid (99.7 mg, 80%). Mp: 57-58 °C. Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.92 (m, 2 H), 7.80 (d, J = 8.1 Hz, 1 H), 7.67 (s, 1 H), 7.62 (d, J = 7.4 Hz, 1 H), 7.55 (t, J = 7.5 Hz, 1 H), 7.39-7.48 (m, 2 H), 6.99-7.12 (m, 3 H), 6.49 (s, 1 H), 3.97 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 140.7, 134.9, 133.0, 129.5, 129.4, 127.9, 126.9, 126.7, 123.8, 121.1, 121.0, 120.7, 115.5, 112.4, 110.9, 55.8 ppm. The spectroscopic data were matched with those reported in the literature.^[10]

N-(2-Methoxyphenyl)quinolin-6-amine 3bp

White solid (108.9 mg, 87%). Mp: 142-143 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.69 (dd, J = 4.3, 1.7 Hz, 1 H), 7.98 (d, J = 9.0 Hz, 1 H), 7.90 (d, J = 7.8 Hz, 1 H), 7.46 (dt, J = 9.2, 2.9 Hz, 2 H), 7.40 (d, J = 2.6 Hz, 1 H), 7.25 (dd, J = 8.3, 4.3 Hz, 1 H), 6.90-6.96 (m, 3 H), 6.42 (s, 1 H), 3.86 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 149.1, 147.7, 144.5, 141.3, 134.5, 131.9, 130.6, 129.7, 123.8, 121.6, 121.4, 120.9, 116.3, 110.9, 110.0, 55.7 ppm. IR (KBr): v = 1624, 1596, 1527, 1502, 1438, 1378, 1295, 1250, 1115, 1028, 831, 747 cm⁻¹. HRMS (ESI): m/z for C₁₆H₁₄N₂O [M+H]⁺ calcd 251.1184, found 251.1180.

N-(2-Methoxyphenyl)quinoxalin-6-amine 3bq

Yellow solid (111.8 mg, 89%). Mp: 41-42 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.61 (t, J = 2.1 Hz, 1 H), 8.52 (t, J = 2.1 Hz, 1 H), 7.88 (d, J = 9.1 Hz, 1 H), 7.64 (t, J = 2.3 Hz, 1 H), 7.51 (dt, J = 7.7, 1.9 Hz, 1 H), 7.42 (dt, J = 9.0, 2.3 Hz, 1 H), 6.85-6.99 (m, 3 H), 6.63 (s, 1 H), 3.79 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 145.2, 145.1, 145.0, 141.6, 139.0, 130.5, 130.3, 123.9, 122.7, 120.9, 118.1, 111.0, 109.0, 55.7 ppm. IR (KBr): v = 3402, 3271, 2927, 1621, 1595, 1529, 1501, 1349, 1251, 1229, 1116, 1028, 868, 824, 778, 745, 415 cm⁻¹. HRMS (ESI): m/z for C₁₅H₁₃N₃O [M+H]⁺ calcd 252.1137, found 252.1134.

N-(2-Methoxyphenyl)benzo[d]thiazol-5-amine 3br

Yellow solid (110.2 mg, 86%). Mp: 101-102 °C. Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.92 (s, 1 H), 7.94 (d, J = 2.2 Hz, 1 H), 7.77 (d, J = 8.6 Hz, 1 H), 7.36-7.42 (m, 1 H), 7.23 (dd, J = 8.6, 2.2 Hz, 1 H), 6.87-6.94 (m, 3 H), 6.36 (s, 1 H), 3.87 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 154.8, 148.6, 142.1, 132.8, 126.0, 122.2, 121.0, 120.7, 118.9, 115.2, 111.6, 110.8, 55.7 ppm. IR (KBr): $\nu = 3401$, 3063, 2931, 2833, 1590, 1557, 1508, 1430, 1228, 1113, 1025, 860, 804, 729, 635, 423 cm⁻¹. HRMS (ESI): m/z for C₁₄H₁₂N₂OS [M+H]⁺ calcd 257.0749, found 257.0745.

2-Methoxy-N-methyl-N-phenylaniline 3bs

Yellow oil (89.6 mg, 84%). Eluent: ethyl acetate/petroleum ether (10:1, $R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (dt, J = 10.5, 1.9 Hz, 1 H), 7.25-7.27 (m, 1 H), 7.20-7.25 (m, 2 H), 7.03 (t, J = 8.3 Hz, 2 H), 6.79 (t, J = 7.3 Hz, 1 H), 6.73 (dd, J = 7.8, 1.1 Hz, 2 H), 3.82 (s, 3 H), 3.29 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 156.2,

149.6, 137.0, 129.4, 128.9, 127.2, 121.5, 117.4, 113.6, 112.8, 55.8, 39.2 ppm. The spectroscopic data were matched with those reported in the literature.^[15]

2-Fluoro-N-(2-methoxyphenyl)pyridin-3-amine 3bt

Yellow oil (105.8 mg, 97%). Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.9$). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, J = 10.3, 6.2 Hz, 2 H), 7.26 (dd, J = 8.0, 1.7 Hz, 1 H), 7.02 (dd, J = 7.7, 4.9 Hz, 1 H), 6.94-6.99 (m, 1 H), 6.91 (dd, J = 6.7, 3.9 Hz, 2 H), 6.24 (s, 1 H), 3.85 (s, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -83.9 (m, 1 F); ¹³C NMR (100 MHz, CDCl₃) δ 153.9 (d, J = 232.3 Hz), 149.7, 136.1 (d, J = 20.2 Hz), 130.1, 127.4 (d, J = 20.20 Hz), 123.6 (d, J = 5.05 Hz), 122.5, 121.7 (d, J = 10.1 Hz), 120.8, 117.1, 111.1, 55.7 ppm. IR (KBr): v = 3418, 1597, 1573, 1514, 1456, 1440, 1230, 1172, 1108, 1025, 828, 789, 737, 449 cm⁻¹. HRMS (ESI): m/z for C₁₂H₁₁FN₂O [M+H]⁺ calcd 219.0934, found 219.0928.

N-(2-Methoxyphenyl)-2-nitropyridin-3-amine 3bu

Reddish brown solid (88.3 mg, 72%). Mp: 134-135 °C. Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 9.12 (s, 1 H), 7.96 (dd, J = 4.0, 1.5 Hz, 1 H), 7.61 (dd, J = 8.6, 1.5 Hz, 1 H), 7.35 (dd, J = 8.6, 4.0 Hz, 1 H), 7.29 (dd, J = 7.6, 1.6 Hz, 1 H), 7.19-7.24 (m, 1 H), 6.99 (t, J = 8.3 Hz, 2 H), 3.84 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 142.2, 138.6, 137.2, 129.9, 126.9, 126.6, 125.9, 124.0, 120.9, 111.9, 55.8 ppm. IR (KBr): v = 3364, 2924, 1592, 1505, 1483, 1253, 1140, 1116, 1047, 1024, 891, 848, 807, 751, 637 cm⁻¹. HRMS (ESI): m/z for C₁₂H₁₁N₃O₃ [M+H]⁺ calcd 246.0879, found 246.0872.

2-Methoxy-N-(2-methoxyphenyl)pyridin-3-amine 3bv

Yellow oil (105.9 mg, 92%). Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.9$). ¹H

NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 5.0, 1.6 Hz, 1 H), 7.50 (dd, J = 7.8, 1.6 Hz, 1 H), 7.34 (dd, J = 6.8, 2.1 Hz, 1 H), 6.91 (q, J = 4.1 Hz, 3 H), 6.77-6.82 (m, 1 H), 6.49 (s, 1 H), 4.04 (s, 3 H), 3.87 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 149.4, 135.9, 131.2, 127.9, 121.3, 120.8, 119.3, 117.0, 116.4, 110.8, 55.7, 53.6 ppm. IR (KBr): $\nu = 3416$, 2948, 1579, 1517, 1482, 1452, 1395, 1241, 1113, 1019, 782, 741 cm⁻¹. HRMS (ESI): m/z for C₁₃H₁₄N₂O₂ [M+H]⁺ calcd 231.1134, found 231.1129.

N-(2-Methoxyphenyl)-4-methylpyridin-3-amine 3bw

Yellow oil (97.5 mg, 91%). Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1 H), 8.16 (d, J = 4.9 Hz, 1 H), 7.11 (d, J = 4.9 Hz, 1 H), 6.88-6.93 (m, 2 H), 6.83-6.85 (m, 2 H), 5.80 (s, 1 H), 3.90 (s, 3 H), 2.26 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 143.6, 142.1, 138.7, 137.9, 133.2, 125.7, 121.0, 120.3, 114.6, 110.6, 55.7, 17.5 ppm. IR (KBr): v = 2929, 1600, 1562, 1512, 1456, 1410, 1320, 1243, 1115, 1028, 822, 746, 728 cm⁻¹. HRMS (ESI): m/z for C₁₃H₁₄N₂O [M+H]⁺ calcd 215.1184, found 215.1188.

5-Fluoro-N-(2-methoxyphenyl)pyridin-3-amine 3bx

White solid (106.9 mg, 98%). Mp: 76-77 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (dd, J = 2.3, 1.4 Hz, 1 H), 7.98 (d, J = 2.4 Hz, 1 H), 7.28 (dd, J = 8.1, 1.7 Hz, 1 H), 7.16-7.20 (m, 1 H), 6.96-7.03 (m, 1 H), 6.91-6.95 (m, 2 H), 6.29 (s, 1 H), 3.88 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -126.8 (m, 1 F); ¹³C NMR (100 MHz, CDCl₃) δ 160.1 (d, J = 252.5 Hz), 149.5, 141.4 (d, J = 6.1 Hz), 135.9 (d, J = 3.0 Hz), 130.4, 129.1 (d, J = 76.8 Hz), 122.6, 121.0, 117.0, 111.1, 109.5 (d, J = 22.2 Hz), 55.7 ppm. The spectroscopic data were matched with those reported in the literature.^[16]

N-(2-Methoxyphenyl)-5-methylpyridin-3-amine 3by

Yellow oil (103.9 mg, 97%). Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1 H), 8.01 (s, 1 H), 7.27 (s, 2 H), 6.90 (s, 3 H), 6.12 (s, 1 H), 3.88 (s, 3 H), 2.28 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 142.8, 139.2, 138.2, 133.5, 132.0, 124.9, 121.1, 120.9, 115.3, 110.8, 55.7, 18.5 ppm. IR (KBr): v = 3395, 3250, 3038, 2925, 1587, 1524, 1459, 1298, 1251, 1180, 1116, 1027, 850, 743, 708 cm⁻¹. HRMS (ESI): m/z for C₁₃H₁₄N₂O [M+H]⁺ calcd 215.1184, found 215.1181.

N-(2-Methoxyphenyl)-6-methylpyridin-3-amine 3bz

Yellow solid (99.6 mg, 93%). Mp: 108-109 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 2.8 Hz, 1 H), 7.40 (dd, J = 8.3, 2.8 Hz, 1 H), 7.14 (dd, J = 5.6, 3.5 Hz, 1 H), 7.05 (d, J = 8.3 Hz, 1 H), 6.83-6.89 (m, 3 H), 6.06 (s, 1 H), 3.88 (s, 3 H), 2.49 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 148.3, 141.1, 136.7, 132.8, 126.5, 123.3, 121.0, 120.4, 114.0, 110.7, 55.7, 23.6 ppm. IR (KBr): v = 3402, 3005, 2936, 1594, 1515, 1492, 1459, 1243, 1115, 1027, 822, 742, 723, 648 cm⁻¹. HRMS (ESI): m/z for C₁₃H₁₄N₂O [M+H]⁺ calcd 215.1184, found 215.1180.

N-(2-Methoxyphenyl)pyrimidin-5-amine 3ca

White solid (82.5 mg, 82%). Mp: 105-106 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1 H), 8.53 (s, 2 H), 7.22 (d, J = 6.8 Hz, 1 H), 6.94-7.00 (m, 1 H), 6.86-6.93 (m, 2 H), 6.19 (s, 1 H), 3.85 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 149.4, 145.3, 138.2, 130.1, 122.7, 121.0, 116.5, 111.2, 55.7 ppm. IR (KBr): v = 1573, 1522, 1424, 1250, 1122, 1026, 750, 723 cm⁻¹.

HRMS (ESI): m/z for $C_{11}H_{11}N_3O[M+H]^+$ calcd 202.0980, found 202.0978.

N-(2-Methoxyphenyl)quinolin-3-amine 3cb

Yellow solid (107.6 mg, 86%). Mp: 68-69 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, J = 2.6 Hz, 1 H), 8.03 (d, J = 7.8 Hz, 1 H), 7.77 (s, 1 H), 7.62 (d, J = 8.0 Hz, 1 H), 7.39-7.52 (m, 3 H), 6.83-7.02 (m, 3 H), 6.46 (s, 1 H), 3.87 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 145.8, 143.7, 136.8, 131.6, 129.1, 129.0, 127.2, 126.6, 126.6, 121.6, 121.0, 117.3, 115.7, 110.9, 55.7 ppm. The spectroscopic data were matched with those reported in the literature.^[17]

N-(2-Methoxyphenyl)-4,6-dimethylpyrimidin-2-amine 3cc

Yellow solid (57.3 mg, 50%). Mp: 100-101 °C. Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃) δ 8.63 (dd, J = 7.9, 1.8 Hz, 1 H), 7.70 (s, 1 H), 6.85-7.00 (m, 2 H), 6.87 (dd, J = 7.9, 1.7 Hz, 1 H), 6.47 (s, 1 H), 3.87 (s, 3 H), 2.37 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 159.9, 147.8, 129.8, 121.2, 120.9, 118.2, 111.6, 109.9, 55.7, 24.1 ppm. The spectroscopic data were matched with those reported in the literature.^[18]

Methyl 3-((2-methoxyphenyl)amino)thiophene-2-carboxylate 3cd

Yellow oil (102.7 mg, 78%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 9.03 (s, 1 H), 7.34 (dd, J = 9.5, 6.6 Hz, 2 H), 7.18 (d, J = 5.6 Hz, 1 H), 6.95-7.01 (m, 1 H), 6.91 (dd, J = 12.0, 7.6 Hz, 2 H), 3.88 (s, 3 H), 3.87 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 150.7, 149.7, 131.9, 131.1, 122.6, 120.8, 118.1, 117.8, 110.9, 103.7, 55.8, 51.6 ppm. IR (KBr): v = 2949, 1669, 1598,

1562, 1503, 1445, 1396, 1254, 1236, 1087, 1030, 776, 743, 454 cm⁻¹. HRMS (ESI): m/z for $C_{13}H_{13}NO_3S$ [M+H]⁺ calcd 264.0694, found 264.0688.

N-Benzyl-2-methoxyaniline 3ce

Yellow oil (66.1 mg, 62%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 6.8 Hz, 2 H), 7.48 (t, J = 7.4 Hz, 2 H), 7.41 (t, J = 7.1 Hz, 1 H), 6.96-7.03 (m, 1 H), 6.93 (dd, J = 8.0, 1.5 Hz, 1 H), 6.84 (td, J = 7.6, 1.6 Hz, 1 H), 6.75 (dd, J = 7.8, 1.6 Hz, 1 H), 4.79 (s, 1 H), 4.48 (s, 2 H), 3.96 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 147.1, 139.9, 138.4, 128.9, 127.8, 127.4, 121.6, 116.9, 110.3, 109.7, 55.6, 48.3 ppm. The spectroscopic data were matched with those reported in the literature.^[19]

(R)-2-Methoxy-N-(1-phenylethyl)aniline 3cf

Yellow solid (63.6 mg, 56%). Mp: 74-75 °C. Eluent: ethyl acetate/petroleum ether (20:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.1 Hz, 2 H), 7.38 (t, J = 7.4 Hz, 2 H), 7.26-7.32 (m, 1 H), 6.84 (d, J = 7.8 Hz, 1 H), 6.78 (t, J = 7.6 Hz, 1 H), 6.69 (t, J = 7.7 Hz, 1 H), 6.43 (d, J = 7.6 Hz, 1 H), 4.71 (s, 1 H), 4.55 (q, J = 6.8 Hz, 1 H), 3.94 (s, 3 H), 1.62 (d, J = 6.6 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 146.7, 145.6, 137.4, 128.8, 127.0, 126.0, 121.3, 116.5, 111.2, 109.4, 55.6, 53.5, 25.4 ppm. The spectroscopic data were matched with those reported in the literature.^[20]

2-Methoxy-N-(thiophen-2-ylmethyl)aniline 3cg

Yellow oil (80.0 mg, 73%). Eluent: ethyl acetate/petroleum ether (10:1, $R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 3.7 Hz, 1 H), 7.09 (s, 1 H), 7.01-7.06 (m, 1 H), 6.95 (t, J = 6.9 Hz, 1 H), 6.86 (d, J = 6.7 Hz, 1 H), 6.78 (q, J = 7.5 Hz, 2 H), 4.74 (s, 1 H), 4.59 (s, 2 H), 3.89 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 147.1, 143.4, 137.8,

127.0, 125.1, 124.7, 121.4, 117.4, 110.5, 109.7, 55.6, 43.4 ppm. The spectroscopic data were matched with those reported in the literature.^[21]

N-(Furan-2-ylmethyl)-2-methoxyaniline 3ch

Yellow oil (76.2 mg, 75%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1 H), 6.91-7.00 (m, 1 H), 6.86 (dd, J = 8.0, 4.2 Hz, 1 H), 6.76-6.82 (m, 2 H), 6.38 (d, J = 2.0 Hz, 1 H), 6.31 (d, J = 3.6 Hz, 1 H), 4.70 (s, 1 H), 4.40 (s, 2 H), 3.89 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 147.2, 142.0, 137.8, 121.4, 117.3, 110.5, 110.4, 109.7, 107.1, 55.6, 41.3 ppm. The spectroscopic data were matched with those reported in the literature.^[22]

2-Methoxy-N-(pyridin-3-ylmethyl)aniline 3ci

Yellow oil (81.4 mg, 76%). Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1 H), 8.50 (d, J = 4.9 Hz, 1 H), 7.68 (d, J = 8.0 Hz, 1 H), 7.23 (dd, J = 7.7, 4.7 Hz, 1 H), 6.76-6.95 (m, 2 H), 6.69 (td, J = 7.7, 1.6 Hz, 1 H), 6.54 (d, J = 7.6 Hz, 1 H), 4.67 (s, 1 H), 4.36 (s, 2 H), 3.84 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 148.7, 147.0, 137.7, 135.3, 135.2, 123.7, 121.4, 117.3, 110.2, 109.6, 55.5, 45.6 ppm. The spectroscopic data were matched with those reported in the literature.^[23]

N-Cyclohexyl-2-methoxyaniline 3cj

Yellow oil (56.4 mg, 55%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.8$).¹H NMR (400 MHz, CDCl₃) δ 6.92 (t, J = 7.6 Hz, 1 H), 6.82 (d, J = 8.4 Hz, 1 H), 6.69 (d, J = 14.3 Hz, 2 H), 4.21 (s, 1 H), 3.89 (s, 3 H), 3.28-3.37 (m, 1 H), 2.15 (d, J = 8.9 Hz, 2 H), 1.84 (d, J = 13.4 Hz, 2 H), 1.45 (q, J = 12.7 Hz, 2 H), 1.27-1.33 (m, 2 H), 1.22-1.27 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 146.9, 137.4, 121.4, 115.9, 110.3,

109.7, 55.5, 51.5, 33.6, 26.2, 25.3 ppm. The spectroscopic data were matched with those reported in the literature.^[4]

N-hexadecyl-2-methoxyaniline 3ck

White solid (107.7 mg, 62%). Mp: 55-56 °C. Eluent: ethyl acetate/petroleum ether (10:1, $R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃) δ 6.91 (t, J = 7.6 Hz, 1 H), 6.79 (d, J = 7.9 Hz, 1 H), 6.69 (t, J = 7.7 Hz, 1 H), 6.64 (d, J = 7.8 Hz, 1 H), 4.21 (s, 1 H), 3.87 (s, 3 H), 3.15 (t, J = 7.2 Hz, 2 H), 1.66-1.73 (m, 3 H), 1.42-1.51 (m, 3 H), 1.30-1.34 (m, 22 H), 0.94 (t, J = 6.7 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 138.6, 121.4, 116.2, 109.8, 109.4, 55.4, 43.9, 32.1, 29.7-29.9 (m, 10 C), 29.6, 27.4, 22.9, 14.3 ppm. IR (KBr): v = 2917, 2847, 1602, 1521, 1468, 1224, 1026, 730 cm⁻¹. HRMS (ESI): m/z for C₂₃H₄₁NO [M+H]⁺ calcd 348.3266, found 348.3262.

4-(2-Methoxyphenyl)morpholine 3cl

Yellow oil (82.1 mg, 85%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 6.97-7.04 (m, 1 H), 6.90-6.94 (m, 2 H), 6.86 (d, J = 7.8 Hz, 1 H), 3.86-3.91 (m, 4 H), 3.85 (s, 3 H), 3.02-3.09 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 141.2, 123.3, 121.1, 118.1, 111.4, 67.3, 55.5, 51.3 ppm. The spectroscopic data were matched with those reported in the literature.^[24]

Decarboxylative amination modifications of complex bioactive molecules

o-Methoxybenzoic acid (0.5 mmol), I₂ (1.0 mmol, 2.0 equiv) and Cs₂CO₃ (0.5 mmol, 1.0 equiv, anhydrous) were placed into an oven-dried 25 mL Schlenk tube that was equipped with a stirring bar under argon atmosphere. Freshly distilled toluene (3.0 mL) was added to the Schlenk tube. The reaction was stirred at 150 °C for 16 h and then quenched by NEt₃ (4.0 mmol, 8.0 equiv) at 120 °C for 5 h. Subsequently, after the filtration, the filtrate was added to another Schlenk tube charged with Pd(OAc)₂ (10 mol%), Ruphos (24 mol%), complex bioactive amines (0.6 mmol, 1.2 equiv) and Cs₂CO₃ (1.5 mmol, 3.0 equiv, anhydrous) under argon atmosphere. The mixture was stirred at 100 °C for 10 h. After the reaction, the solution was filtered and washed with ethyl acetate for three times. The combined solvents were removed under vacuum, and the residue was purified by column chromatography to obtain the desired *N*-aryl complex bioactive anilines.

7-((2-Methoxyphenyl)amino)-4-methyl-2H-chromen-2-one 3cm

Yellow solid (122.4 mg, 87%). Mp: 160-161 °C. Eluent: ethyl acetate/petroleum ether (2:1, $R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dd, J = 13.6, 8.2 Hz, 2 H), 6.96-7.04 (m, 2 H), 6.93 (t, J = 7.9 Hz, 3 H), 6.43 (s, 1 H), 6.04 (s, 1 H), 3.87 (s, 3 H), 2.35 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 161.8, 155.5, 152.7, 149.8, 147.2, 130.1, 125.6, 122.9, 120.9, 118.3, 113.3, 112.9, 111.1, 110.9, 102.1, 55.7, 18.6 ppm. The spectroscopic data were matched with those reported in the literature.^[25] Ethyl 3-((2-methoxyphenyl)amino)isonicotinate 3cn

Yellow solid (113.0 mg, 83%). Mp: 57-58 °C. Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃) δ 9.09 (s, 1 H), 8.68 (s, 1 H), 8.01 (d, J = 5.2 Hz, 1 H), 7.69 (d, J = 5.2 Hz, 1 H), 7.41 (d, J = 8.2 Hz, 1 H), 7.07 (t, J = 7.8 Hz, 1 H), 6.93 (t, J = 8.0 Hz, 2 H), 4.38 (q, J = 7.2 Hz, 2 H), 3.86 (s, 3 H), 1.40 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 151.7, 141.8, 138.9, 138.1, 128.8, 124.5, 123.3, 121.1, 120.8, 117.8, 111.4, 61.5, 55.8, 14.3 ppm. IR (KBr): v = 3333, 1694, 1597, 1563, 1510, 1419, 1296, 1254, 1222, 1177, 1118, 1099, 1026, 788, 747, 711 cm⁻¹. HRMS (ESI): m/z for C₁₅H₁₆N₂O₃ [M+Na]⁺ calcd 295.1059, found 295.1057.

Methyl 5-((2-methoxyphenyl)amino)nicotinate 3co

White solid (109.8 mg, 85%). Mp: 134-135 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 1 H), 8.54 (s, 1 H), 8.00 (d, J = 1.7 Hz, 1 H), 7.27 (d, J = 8.1 Hz, 1 H), 6.83-7.05 (m, 3 H), 6.29 (s, 1 H), 3.90 (s, 3 H), 3.86 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 149.3, 143.6, 142.4, 139.8, 130.7, 126.3, 123.6, 122.2, 121.0, 116.4, 111.0, 55.7, 52.5 ppm. IR (KBr): v = 3372, 2951, 1724, 1588, 1527, 1455, 1303, 1266, 1243, 1113, 1020, 768, 745, 700, 454 cm⁻¹. HRMS (ESI): m/z for C₁₄H₁₄N₂O₃ [M+H]⁺ calcd 259.1083, found 259.1079.

3-((2-methoxyphenyl)amino)phenethyl-2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin -2-yl)acetate 3cp

Yellow oil (167.8 mg, 68%). Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 2.4 Hz, 1 H), 7.89 (d, J = 7.7 Hz, 1 H), 7.54 (t, J = 7.4 Hz, 1 H), 7.45 (t, J = 7.6 Hz, 1 H), 7.38 (dd, J = 8.4, 2.3 Hz, 1 H), 7.34 (d, J = 7.5 Hz, 1 H), 7.25 (dd, J = 6.0, 2.0 Hz, 1 H), 7.07 (s, 4 H), 7.02 (d, J = 8.4 Hz, 1 H),

6.82-6.89 (m, 3 H), 6.08 (s, 1 H), 5.16 (s, 2 H), 4.30 (t, J = 7.0 Hz, 2 H), 3.87 (s, 3 H), 3.63 (s, 2 H), 2.88 (t, J = 7.0 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 171.5, 160.6, 148.2, 141.3, 140.6, 136.6, 136.4, 135.7, 133.2, 132.9, 132.5, 130.4, 130.0, 129.8, 129.6, 127.9, 125.2, 121.3, 121.1, 119.1, 118.9, 114.6, 110.6, 73.7, 65.8, 55.7, 40.4, 34.5 ppm. IR (KBr): v = 2955, 2921, 2851, 1732, 1647, 1599, 1520, 1459, 1300, 1242, 1016, 829, 737, 702, 642 cm⁻¹. HRMS (ESI): m/z for C₃₁H₂₇NO₅ [M+H]⁺ calcd 494.1967, found 494.1959.

4-((2-Methoxyphenyl)amino)phenethyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-meth yl-1H-indol-3-yl)acetate 3cq

Yellow solid (183.7 mg, 63%). Mp: 39-40 °C. Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 1.9 Hz, 1 H), 7.61 (d, J = 1.9 Hz, 1 H), 7.44 (d, J = 2.0 Hz, 1 H), 7.42 (d, J = 2.0 Hz, 1 H), 7.19-7.23 (m, 1 H), 7.00 (s, 4 H), 6.94 (d, J = 2.6 Hz, 1 H), 6.88 (dd, J = 9.3, 4.4 Hz, 2 H), 6.82-6.86 (m, 2 H), 6.67 (dd, J = 9.0, 2.5 Hz, 1 H), 6.01-6.13 (m, 1 H), 4.30 (t, J = 6.8 Hz, 2 H), 3.88 (s, 3 H), 3.81 (s, 3 H), 3.64 (s, 2 H), 2.85 (t, J = 6.9 Hz, 2 H), 2.32 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 168.4, 156.2, 148.2, 141.2, 139.3, 136.0, 134.0, 133.2, 131.3, 130.9, 130.8, 130.4, 129.7, 129.2, 120.9, 119.8, 118.9, 115.1, 114.4, 112.7, 111.7, 110.6, 101.4, 65.8, 55.8, 55.7, 34.4, 30.5, 13.5 ppm. IR (KBr): v = 2955, 2921, 2851, 1733, 1682, 1598, 1521, 1459, 1317, 1237, 1170, 1114, 835, 739 cm⁻¹. HRMS (ESI): m/z for C₃₄H₃₁ClN₂O₅ [M+H]⁺ calcd 583.2000, found 583.1993.

Yellow solid (180.0 mg, 85%). Mp: 37-38 °C. Eluent: ethyl acetate/petroleum ether (5:1, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.25 (m, 1 H), 7.13 (d, J = 8.4 Hz, 2 H), 7.08 (d, J = 7.8 Hz, 2 H), 6.83-6.89 (m, 3 H), 6.11 (s, 1 H), 4.43 (t, J = 7.0 Hz, 2 H), 3.87 (s, 3 H), 2.95 (t, J = 7.0 Hz, 2 H), 2.36 (td, J = 13.6, 10.1 Hz, 1 H), 1.99 (td, J = 13.5, 9.6 Hz, 1 H), 1.84-1.93 (m, 1 H), 1.66 (td, J = 13.3, 9.3 Hz, 1 H), 1.09 (s, 3 H), 0.97 (s, 3 H), 0.87 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 178.3, 167.5, 148.2, 141.4, 133.2, 129.9, 120.9, 119.9, 119.1, 114.3, 110.6, 91.2, 66.2, 55.7, 54.9, 54.2, 34.4, 30.7, 29.0, 16.8, 16.7, 9.8 ppm. IR (KBr): v = 2956, 2921, 2851, 1788, 1748, 1599, 1521, 1460, 1243, 1170, 1109, 932, 739 cm⁻¹. HRMS (ESI): m/z for C₂₅H₂₉NO₅ [M+H]⁺ calcd 424.2124, found 424.2119.

(S)-2,5,7,8-Tetramethyl-2-((4R,6R)-4,6,8-trimethylnonyl)chroman-6-yl-4-((2-met hoxyphenyl)amino)benzoate 3cs

Yellow solid (263.9 mg, 88%). Mp: 55-56 °C. Eluent: ethyl acetate/petroleum ether (1:1, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 8.14-8.22 (m, 2 H), 7.48 (dd, J = 7.6, 1.8 Hz, 1 H), 7.12-7.21 (m, 2 H), 6.92-7.08 (m, 3 H), 6.50 (s, 1 H), 3.91 (s, 3 H), 2.66 (t, J = 6.9 Hz, 2 H), 2.18 (s, 3 H), 2.13 (s, 3 H), 2.08 (s, 3 H), 1.87 (td, J = 13.8, 12.5, 6.9 Hz, 2 H), 1.46 (t, J = 5.4 Hz, 4 H), 1.31 (d, J = 4.9 Hz, 12 H), 1.09-1.25 (m, 7 H), 0.91-0.94 (m, 13 H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 149.9, 149.5, 148.3, 140.9, 132.2, 130.5, 127.3, 125.5, 123.1, 122.7, 120.9, 120.5, 118.2, 117.5, 115.3, 111.1, 55.7, 39.6, 37.7, 37.6, 37.5, 33.0, 28.2, 25.0, 24.6, 24.3, 23.9, 22.9, 22.8, 21.2, 20.8,
20.0, 19.9, 19.8, 13.2, 12.4, 12.0 ppm. IR (KBr): v = 2925, 2866, 1716, 1591, 1525, 1460, 1275, 1237, 1171, 1089, 762, 742, 699, 500 cm⁻¹. HRMS (ESI): m/z for C₃₉H₅₃NO₄ [M+H]⁺ calcd 656.4679, found 656.4670.

Preliminary mechanism studies

A. Competition experiments: ortho-substituents

2-Methoxybenzoic acid (0.1 mmol), ortho-substituted benzoic acid (0.1 mmol, methyl, hydrogen, fluoro, chloro), I₂ (0.4 mmol, 2.0 equiv) and Cs₂CO₃ (0.2 mmol, 1.0 equiv, anhydrous) were placed into an oven-dried 25 mL Schlenk tube that was equipped with a stirring bar under argon atmosphere. Freshly distilled toluene (2.0 mL) was added to the Schlenk tube. The reaction was stirred at 150 °C for 16 h and then quenched by NEt₃ (1.6 mmol, 8.0 equiv) at 120 °C for 5 h. Subsequently, after the filtration, the filtrate was added to another Schlenk tube charged with Pd(OAc)₂ (10 mol%), Ruphos (24 mol%), amines (0.24 mmol, 1.2 equiv) and Cs₂CO₃ (0.6 mmol, 3.0 equiv, anhydrous) under argon atmosphere. The mixture was stirred at 100 °C for 10 h. After the reaction, the solution was filtered and washed with ethyl acetate for three times. The combined solvents were removed under vacuum, and the crude residue was analyzed by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. This reaction afforded 65:23 mixed products for 2-methoxybenzoic acid 2-methylbenzoic and acid, and single product N-(2-methoxyphenyl)pyridin-3-amine **3aa** in 83%, 90% yields, respectively, for the sequences containing with hydrogen and chloro-substituted benzoic acids.

B. Competition experiments: differences in electronic effects

2,6-Dimethylbenzoic acid (0.1 mmol, **1ai**), 2,4,6-trimethylbenzoic acid (0.1 mmol, **1aj**), I₂ (0.4 mmol, 2.0 equiv) and Cs₂CO₃ (0.2 mmol, 1.0 equiv, anhydrous) were placed into an oven-dried 25 mL Schlenk tube that was equipped with a stirring bar under argon atmosphere. Freshly distilled toluene (2.0 mL) was added to the Schlenk tube. The reaction was stirred at 150 °C for 16 h and then quenched by NEt₃ (1.6 mmol, 8.0 equiv) at 120 °C for 5 h. Subsequently, after the filtration, the filtrate was added to another Schlenk tube charged with Pd(OAc)₂ (10 mol%), Ruphos (24 mol%), amines (0.24 mmol, 1.2 equiv) and Cs₂CO₃ (0.6 mmol, 3.0 equiv, anhydrous) under argon atmosphere. The mixture was stirred at 100 °C for 10 h. After the reaction, the solution was filtered and washed with ethyl acetate for three times. The combined solvents were removed under vacuum, and the crude residue was analyzed by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. This reaction afforded *N*-(2,6-dimethylphenyl)pyridin-3-amine **3ai** in 34% yield and *N*-mesitylpyridin-3-amine **3aj** in 45% yield.

C. Control experiments: decarboxylative iodination

2-Methoxybenzoic acid (0.1 mmol), I₂ (0.2 mmol, 2.0 equiv) and Cs₂CO₃ (0.1 mmol, 1.0 equiv, anhydrous) were placed into an oven-dried 25 mL Schlenk tube that was equipped with a stirring bar under argon atmosphere. Freshly distilled toluene (1.0 mL) was added to the Schlenk tube. The reaction was stirred at 150 °C for 16 h and then quenched by NEt₃ (0.8 mmol, 8.0 equiv) at 120 °C for 5 h. After the reaction, the solution was filtered and washed with ethyl acetate for three times. The combined solvents were removed under vacuum, and the crude residue was analyzed by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. This reaction successfully afforded the desired *o*-methoxyiodobenzene **2aa** in 94% yield.

D. Control experiments: Buchwald-Hartwig amination

25 mL Schlenk tube charged with $Pd(OAc)_2$ (10 mol%), Ruphos (24 mol%) and Cs_2CO_3 (0.3 mmol, 3.0 equiv, anhydrous) was added *o*-methoxyiodobenzene (0.10 mmol), 3-aminopyridine (0.12 mmol, 1.2 equiv) and 1mL toluene under argon atmosphere. The mixture was stirred at 100 °C for 10 h. After the reaction, the solution was filtered and washed with ethyl acetate for three times. The combined solvents were removed under vacuum, and the crude residue was analyzed by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. This reaction successfully afforded the desired *N*-(2-methoxyphenyl)pyridin-3-amine **3aa** in 99% yield.

E. Radical exclusion experiment

2-Methoxybenzoic acid (0.1 mmol), I₂ (0.2 mmol, 2.0 equiv) and Cs₂CO₃ (0.1 mmol, 1.0 equiv, anhydrous) were placed into an oven-dried 25 mL Schlenk tube that was equipped with a stirring bar under argon atmosphere. Freshly distilled toluene (1.0 mL) and diallylmalonate (1.0 equiv) were added to the Schlenk tube. The reaction was stirred at 150 °C for 16 h and then quenched by NEt₃ (0.8 mmol, 8.0 equiv) at 120 °C for 5 h. After the reaction, the solution was filtered and washed with ethyl acetate for three times. The combined solvents were removed under vacuum, and the crude by GC-MS $^{1}\mathrm{H}$ NMR residue was analyzed and spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. This reaction successfully afforded the desired o-methoxyiodobenzene 2aa in 87% yield and no cyclization adducts were observed, suggesting that a radical mechanism is excluded in current decarboxylative iodination.

Theoretical calculation for decarboxylative iodination

A. Computational methods

All calculations were performed with the Gaussian 09 package ^[26]. Geometry optimizations were performed with the dispersion-corrected density functional method B3LYP-D3 ^[27-29] with solvent effects in acetonitrile represented by the SMD solvation model ^[30]. The 6-311++G(d,p) basis set ^[31-33] was used for C, H, O and Cl atoms and the SDD basis set ^[34-35] was used for I. Normal vibrational mode analysis at the same level of theory confirmed that the optimized structures are minima (zero imaginary frequency) or saddle points (one imaginary frequency). The relative energies and free energies (at 298.15K, 1 atm) are in kcal/mol.

The decarboxylative iodination was modelled starting from the benzoyl hypoiodite **1**. An initial rotation provides intermediate **I** *via* transition state **TS 1**. The decarboxylation step proceeds from intermediate **I** *via* transition state **TS 2**. The resulting overall energy diagram is shown below:

Scheme S1. Energies measured in kcal/mol for DFT modelling using a toluene solvent correction.

B. Coordinates and energies of computed structures

1-o-MeO

С	-1.54591100	-0.66041600	0.09001700
С	-2.18858800	0.59685100	0.04070700
С	-2.29570800	-1.83087600	-0.06604300
С	-3.57140600	0.64108800	-0.18045200
С	-3.66523500	-1.77903600	-0.29752900
С	-4.29450800	-0.53654800	-0.35511200
Н	-4.23172300	-2.69273800	-0.42662300
Н	-5.36230400	-0.47565300	-0.53165600
0	0.63467600	0.04337800	-0.37077200
Н	-4.08888500	1.58914300	-0.21325900
0	-1.42849100	1.69632500	0.25180700
С	-2.05648500	2.98325800	0.28375000
Н	-2.80424500	3.03743100	1.07999300
Н	-1.25568300	3.69110900	0.48602500
Н	-2.51890400	3.22031200	-0.67845300
С	-0.08300200	-0.83376800	0.34926200
0	0.38282500	-1.69033500	1.06618800
Ι	2.70828500	0.04784700	-0.12218600
Н	-1.78437100	-2.78376200	-0.00553800

TS1-o-MeO

E = -546.276713G = -546.179778

С	-1.44221700	-0.72886400	0.20823500
С	-1.64067400	0.67925200	0.20212000
С	-2.51172400	-1.55941300	-0.17690500
С	-2.88805800	1.19045600	-0.19106400
С	-3.73932900	-1.04656600	-0.55812000
С	-3.91963200	0.33845500	-0.56311300
Н	-4.54378000	-1.70965900	-0.85043500
Н	-4.87242000	0.76317500	-0.85821000
0	0.84400400	-0.64144600	1.06341400
Н	-3.05695500	2.25727800	-0.20169800
0	-0.62124500	1.47711800	0.57484300
С	-0.75799300	2.90044800	0.47978900
Н	-1.53461700	3.26764800	1.15568400
Н	0.20731600	3.30002700	0.78223100
Н	-0.97745400	3.20647100	-0.54651500
С	-0.18429600	-1.42229100	0.57731000
0	-0.04999200	-2.62547800	0.54929700
Ι	2.23104600	0.07082200	-0.31474200
Н	-2.34614100	-2.62889200	-0.16967700

I-o-MeO

E = -546.286051G = -546.190615

С	-1.20963300	-0.77195500	0.28737700
С	-1.48881800	0.60540400	0.36702800
С	-1.98691700	-1.59581800	-0.52778200
С	-2.51559900	1.14396000	-0.41276100
С	-3.00404600	-1.05729800	-1.31137200
С	-3.25883900	0.31134700	-1.24939200
Н	-3.59076800	-1.69828000	-1.95736400
Н	-4.05058700	0.74316000	-1.85068000
0	1.15026400	-1.00666500	1.00444300
Н	-2.74503700	2.19930500	-0.36821100

0	-0.72656600	1.31454900	1.23728500
С	-0.87156700	2.73885800	1.28751900
Н	-1.87294300	3.01934600	1.62491000
Н	-0.13389800	3.08215100	2.00923400
Н	-0.66695300	3.18571200	0.31070600
С	-0.14438000	-1.39423200	1.12297800
0	-0.34872700	-2.27217300	1.93109600
Ι	1.90779900	0.15017300	-0.56557000
Н	-1.77411000	-2.65788600	-0.55754100

TS2-o-MeO

E = -546.245523G = -546.151269

G	=	-54	46.	15.	126	,

С	-0.65503800	0.25583500	0.86521600
С	-1.45578000	0.01142700	-0.31997300
С	-0.65372800	-0.72155200	1.89708900
С	-1.96056700	-1.27866500	-0.55735700
С	-1.16963000	-1.96763500	1.65623100
С	-1.79984700	-2.24566900	0.41362800
Н	-1.10721900	-2.74385900	2.40784000
Н	-2.20284500	-3.23605800	0.23901800
0	0.86102400	2.03378100	0.49205800
Η	-2.50502100	-1.50241600	-1.46304000
Ο	-1.65900800	1.06456100	-1.08691800
С	-2.35729400	0.92789400	-2.34678600
Н	-3.37898500	0.58591300	-2.17562800
Н	-2.36093000	1.92516000	-2.77615000
Η	-1.81951300	0.23604400	-2.99675900
С	-0.18138200	1.68641600	1.13272500
0	-0.84796200	2.36537100	1.92383500
Ι	1.66253500	-0.34908900	-0.43675900
Н	-0.17269900	-0.48110000	2.83649800

G = -546.260891

С	0.32263000	-0.54575100	0.00003000
С	1.28886300	0.47457800	0.00012100
С	0.69007600	-1.88515900	0.00005500
С	2.64107900	0.10736700	0.00024000
С	2.04147600	-2.23761000	0.00017400
С	3.00881600	-1.23769200	0.00026600
Н	2.32370000	-3.28332200	0.00019100
Н	4.06128100	-1.49616400	0.00035900
Н	3.40877800	0.86878800	0.00031400
0	0.84930100	1.75729600	0.00008300
С	1.80832600	2.81953600	0.00015700
Н	2.43601400	2.78449600	-0.89500300
Н	1.22489400	3.73774900	0.00009700
Н	2.43585700	2.78451300	0.89542700
Ι	-1.76266800	-0.03342100	-0.00015600
Н	-0.07113900	-2.65470800	-0.00001600

1-p-MeO

E = -546.300315G = -546.204618

С	1.01808900	0.48113900	0.00000700
С	1.88366700	1.58849500	0.00009600
С	1.56310600	-0.80750600	0.00000900
С	3.25369600	1.40864900	0.00019800
С	2.94043500	-0.99935400	0.00010200
С	3.79456300	0.11202500	0.00021000
Н	3.33354000	-2.00598400	0.00007800
0	-1.14408400	-0.41632700	-0.00015600
Н	3.92901900	2.25542900	0.00027800

С	-0.44403800	0.74040500	-0.00008600
0	-0.95138600	1.84179500	-0.00005600
Ι	-3.21868100	-0.29867400	-0.00023800
Н	0.90895500	-1.66889600	-0.00007400
0	5.14621300	0.03889700	0.00027900
С	5.77327800	-1.25076700	0.00089200
Н	5.50378900	-1.81790400	-0.89434500
Н	6.84337000	-1.05601700	0.00128500
Н	5.50303300	-1.81741600	0.89620900
Н	1.46568900	2.58705400	0.00009700

TS1-*p*-MeO

E = -546.284987G = -546.188302

С	-0.70074200	0.96183900	0.23340600
С	-1.65484000	1.73261400	-0.45869000
С	-1.07644100	-0.29017500	0.73647400
С	-2.93653800	1.25907500	-0.64782200
С	-2.36549400	-0.77576400	0.55645900
С	-3.30386800	-0.00169500	-0.14187400
Н	-2.62826200	-1.74352900	0.95910600
0	1.56074700	0.63217700	1.02127200
Н	-3.67659400	1.83922600	-1.18505300
С	0.65492400	1.49997200	0.41634500
0	1.00213900	2.62741600	0.15194900
Ι	2.60660400	-0.66922100	-0.22537400
Н	-0.35672800	-0.88668300	1.28087200
0	-4.57895100	-0.37755000	-0.37912600
С	-5.03257000	-1.65248200	0.09871700
Н	-4.97037100	-1.70568400	1.18883900
Н	-6.07184300	-1.72801100	-0.21251700
Н	-4.45442100	-2.46514400	-0.34900300
Н	-1.36985000	2.70189200	-0.84829000

I-p-MeO

E = -346.287640G = -546.192227

С	-0.52201600	1.10037600	0.16165300
С	-1.44771700	1.68825000	-0.71670900
С	-0.90162700	-0.02973200	0.89161600

С	-2.69992500	1.13095000	-0.89259500
С	-2.16864900	-0.58379100	0.74269800
С	-3.07169000	-0.01079600	-0.16287900
Η	-2.43916200	-1.44788000	1.33250300
0	1.91099300	1.04024800	0.60893500
Η	-3.41345500	1.56355500	-1.58293800
С	0.77957600	1.76859600	0.36441100
0	0.92986600	2.97151100	0.38771400
Ι	2.31317600	-0.85314800	-0.19729700
Η	-0.21930900	-0.47316000	1.60547300
0	-4.31986900	-0.47805400	-0.39840300
С	-4.77089200	-1.64278400	0.30645100
Η	-4.78842500	-1.46555200	1.38532500
Η	-5.78194200	-1.82730000	-0.04947900
Η	-4.13869400	-2.50593900	0.08077900
Η	-1.16761300	2.57706800	-1.26878000

TS2-p-MeO

E = -546.249405G = -546.154832

С	-0.13664900	1.17794900	-0.04528800
С	0.56652200	1.34713700	1.18219200
С	0.57496500	0.66319000	-1.17789400
С	1.82421700	0.83892700	1.32375500
С	1.85944400	0.18748600	-1.05465500
С	2.48607300	0.24008200	0.20717000
Η	2.36972200	-0.21819800	-1.91561000
0	-2.38622700	1.10718500	-0.78404800
Н	2.36171900	0.89551600	2.26168600
С	-1.48468400	1.85446700	-0.27655800
0	-1.58188800	3.05680200	-0.00110900
Ι	-1.47079300	-1.22315600	0.13993300
Н	0.07563800	0.64243500	-2.13845200
0	3.70395700	-0.20920200	0.46050000
С	4.49297500	-0.81976000	-0.58650600
Н	4.68386500	-0.09935200	-1.38343800
Н	5.42503600	-1.10601000	-0.10829000
Н	3.98213300	-1.70155600	-0.97679400
Н	0.07002300	1.83930200	2.00839700

E =	-546.342342
G =	-546.262454

С	0.18389500	0.07562800	-0.00005100
С	-0.41528500	1.33597800	0.00005500
С	-0.58812900	-1.07829400	-0.00016100
С	-1.80077500	1.43138200	0.00006100
С	-1.98259300	-0.98164900	-0.00017200
С	-2.59389600	0.27600100	-0.00005900
Н	-2.56665900	-1.89134700	-0.00028000
Н	-2.28490200	2.40059300	0.00015700
Ι	2.32944300	-0.07821400	-0.00004400
Н	-0.12676100	-2.05722500	-0.00024700
0	-3.93983300	0.48067500	-0.00011800
С	-4.80628600	-0.65776300	0.00055000
Н	-4.65447000	-1.26912800	0.89532600
Н	-5.81849200	-0.25866600	0.00091500
Н	-4.65530600	-1.26955500	-0.89407800
Н	0.18320900	2.23758700	0.00015400

1-*o*-Me

E = -471.062670G = -470.970195

С	-1.66354600	-0.07435600	0.08766800
С	-2.72403900	0.83877500	-0.10317000
С	-1.91287500	-1.45140100	0.18752000

C	4 01870600	0 21272000	0 18287600
C	-4.018/9000	0.515/5000	-0.1828/000
С	-3.21141200	-1.94161100	0.12308500
С	-4.26768700	-1.05221700	-0.06640200
Н	-3.39533700	-3.00526100	0.21527000
Н	-5.28585100	-1.41975000	-0.12626600
0	0.60148300	-0.49319700	-0.26776900
Н	-4.84844600	0.99431200	-0.33953600
С	-0.25990300	0.42341400	0.22466900
0	0.07041700	1.48539700	0.69952300
Ι	2.64340400	-0.12870500	-0.05612600
Н	-1.08231200	-2.12953700	0.33123300
С	-2.52002200	2.32762800	-0.23297200
Н	-3.43719000	2.80659800	-0.57872400
Н	-2.23960100	2.76723700	0.72690600
Н	-1.71717600	2.56640400	-0.93336900

E = -471.047336G = -470.953661

С	-1.40270700	0.10856800	0.36268300
С	-2.55386400	0.65069900	-0.26269700
С	-1.34178700	-1.26418400	0.66220400
С	-3.59816300	-0.22835000	-0.56913600
С	-2.39866100	-2.10955100	0.35676100
С	-3.53166800	-1.58601100	-0.26492500
Н	-2.33955000	-3.16380800	0.59858700
Н	-4.36437500	-2.23359700	-0.51528900
0	0.87561800	0.26998400	1.15381600
Н	-4.48333300	0.16313400	-1.05787000
С	-0.24917900	0.96809800	0.71727900
0	-0.23203300	2.17410300	0.72012500
Ι	2.28943100	-0.22632400	-0.28878900
Н	-0.45705400	-1.65613600	1.14421300
С	-2.69875600	2.10683300	-0.62244200
Н	-1.85284000	2.45782000	-1.21765400
Н	-3.61737800	2.26633200	-1.18877400
Н	-2.72526500	2.73211000	0.27273700

E = -471.052974
G = -470.961652

С	-1.22047700	0.27298600	0.44373600
С	-2.18113200	0.46753400	-0.56494500
С	-1.18418800	-0.90932600	1.19090800
С	-3.08009500	-0.57468500	-0.81157100
С	-2.10584700	-1.92127900	0.94372700
С	-3.05154400	-1.75279200	-0.06635600
Н	-2.08157100	-2.83173600	1.53024900
Н	-3.76791400	-2.53880000	-0.27633400
0	1.06363800	1.15856300	0.76917100
Н	-3.81727000	-0.45720700	-1.59820900
С	-0.27918200	1.37354400	0.79977900
0	-0.61916800	2.47207800	1.17451700
Ι	1.98776300	-0.38869200	-0.29877300
Н	-0.43860500	-1.03206000	1.96773600
С	-2.23855900	1.74208700	-1.37023600
Н	-2.94069500	1.64516900	-2.19906700
Н	-2.55596900	2.58157900	-0.74664500
Н	-1.25906800	2.00016500	-1.78250300

TS2-*o*-Me

 $\begin{array}{l} E = -471.007790 \\ G = -470.916714 \end{array}$

С	0.85010000	0.44520500	-0.39547600
С	1.62696100	0.12157600	0.77743400
С	0.89751200	-0.42078800	-1.54518400
С	2.23736600	-1.11740300	0.81806700
С	1.55224100	-1.63070800	-1.47615800
С	2.20231700	-1.98350800	-0.28761800
Н	1.56712300	-2.29718000	-2.32845400
Н	2.71309900	-2.93722500	-0.22307900
0	-0.94907700	1.90694900	-0.85265600
Н	2.77760300	-1.41794300	1.70770100
С	0.30255700	1.85663900	-0.62366800
0	1.10200300	2.79972400	-0.62189500
Ι	-1.54938700	-0.47491200	0.25440200
Н	0.39247900	-0.10377800	-2.44912900
С	1.71037000	1.09529800	1.90661800
Н	2.30012400	0.69755500	2.73161800
Н	2.15650500	2.03098200	1.55513600
Н	0.71063500	1.34665400	2.27519900

$$\begin{split} E &= -471.110958 \\ G &= -471.033977 \end{split}$$

C 0.54520100 -0.20702200 -0.0000610	00
C 1.28878300 0.98057300 -0.000187	00
C 1.14343700 -1.46503500 -0.0000970	00
C 2.68553100 0.84433100 -0.000358	00
C 2.53432700 -1.56152600 -0.0002680	00
C 3.30623600 -0.40212700 -0.0004010	00
Н 3.00242100 -2.53899100 -0.0002940	00
Н 4.38819500 -0.46566700 -0.0005380	00
Н 3.29175300 1.74379800 -0.000462	00
I -1.61708500 -0.14584900 0.0002010	0
Н 0.53820200 -2.36214500 0.000006	00
C 0.66282900 2.35053500 -0.000133	00
Н 1.42930500 3.12638900 -0.000265	00
Н 0.02866400 2.49410200 -0.879420	00
Н 0.02892800 2.49414500 0.879339	000

1-DMeO

$\begin{array}{l} E = -510.392005 \\ G = -510.274936 \end{array}$

С	-1.62540000	0.06002000	0.15706400
С	-2.48549300	1.14109600	-0.10943600
С	-2.06554100	-1.27552000	0.13671100
С	-3.82281400	0.85562300	-0.39355000
С	-3.41624200	-1.51236700	-0.13362400
С	-4.28552600	-0.45850800	-0.40241900
Н	-3.78469700	-2.53211700	-0.13770300
Н	-5.32817600	-0.66143200	-0.61976200
0	0.59774900	-0.15297000	-0.43338400
Н	-4.50468100	1.67115100	-0.60718600
С	-0.19766100	0.36033400	0.51873100
0	0.17340700	0.96919100	1.49211400
Ι	2.67493400	-0.02829900	-0.16748300
С	-1.99040100	2.56669200	-0.08796700
Н	-2.76208000	3.24972400	-0.44462400
Н	-1.70756400	2.86542700	0.92465100
Н	-1.10649300	2.69380000	-0.71957300
С	-1.12797800	-2.42737400	0.41013900
Н	-1.68730200	-3.34807100	0.58026300
Н	-0.45165400	-2.58637300	-0.43335800
Н	-0.50574300	-2.24201600	1.29017700

TS1-DMeO

E = -510.373216G = -510.253729

С	-1.39583400	0.06778600	0.40350500
С	-2.14935200	1.13803000	-0.13897600
С	-1.81725200	-1.27505500	0.25424600
С	-3.30978500	0.83399500	-0.85463500
С	-3.00265600	-1.52103200	-0.44282900
С	-3.73799900	-0.48100100	-1.00191800
Н	-3.35023400	-2.54259300	-0.54784600
Н	-4.64839200	-0.69570700	-1.55036000
0	0.88200900	-0.51586400	0.97712600
Н	-3.88391600	1.64056400	-1.29638800
С	-0.14871200	0.39938200	1.14654000
0	0.00096600	1.35029900	1.87087100
Ι	2.31262200	-0.02743500	-0.44593300
С	-1.73974100	2.58541100	-0.00313200
Н	-2.32814600	3.20759200	-0.67885300
Н	-1.89462800	2.94194400	1.01742900
Н	-0.68220100	2.73460200	-0.23211300
С	-1.06929000	-2.45235900	0.83600200
Н	-1.71716200	-3.33004800	0.86488900

Н	-0.19139400	-2.69304000	0.23242100
Н	-0.71298800	-2.25571400	1.84850000

I-DMeO

E = -510.384633G = -510.268713

С	-1.17427600	-0.00085400	0.50867600
С	-1.64224100	1.23055200	0.02272700
С	-1.64283600	-1.23029900	0.01831100
С	-2.60268200	1.21066400	-0.99144800
С	-2.60323800	-1.20633000	-0.99579200
С	-3.07903600	0.00318900	-1.49692900
Н	-2.97926900	-2.14289500	-1.39223900
Н	-3.82519400	0.00477700	-2.28347800
0	1.14470700	-0.00293100	1.35657000
Н	-2.97827800	2.14882700	-1.38451800
С	-0.18509700	-0.00321100	1.63346600
0	-0.47151300	-0.00492100	2.80713300
Ι	1.90601600	0.00091500	-0.59235200
С	-1.10533200	2.53217100	0.56568500
Н	-1.63380600	3.38357700	0.13588700
Н	-1.20722500	2.58237700	1.65318900
Н	-0.04180700	2.64719600	0.33239300
С	-1.10695500	-2.53406500	0.55712200
Н	-1.63302400	-3.38384100	0.12120000
Н	-0.04240000	-2.64718400	0.32769500
Н	-1.21324900	-2.58944000	1.64397300

TS2-DMeO

G = -510.227789

С	0.88522900	0.40564900	-0.00000200
С	1.26319400	-0.20394800	1.25754500
С	1.26317300	-0.20393500	-1.25756200
С	1.73972900	-1.50020700	1.22462800

С	1.73970900	-1.50019400	-1.22466800
С	1.95481400	-2.14606600	-0.00002500
Н	1.97166000	-2.01295100	-2.14994400
Н	2.33666700	-3.16053700	-0.00003400
0	-0.78185700	2.08432600	-0.00003500
Н	1.97169400	-2.01297500	2.14989500
С	0.47490600	1.87810000	0.00000600
0	1.38139500	2.71993000	0.00004200
Ι	-1.63681900	-0.43500000	0.00001000
С	1.10970000	0.56444800	2.53170400
Н	1.33469400	-0.05728300	3.39727800
Н	1.78678400	1.42506800	2.52804800
Н	0.09574000	0.96089400	2.63381400
С	1.10966600	0.56448000	-2.53170800
Н	1.33461900	-0.05724500	-3.39729700
Н	0.09571700	0.96096100	-2.63378500
Н	1.78677800	1.42507900	-2.52805900

2-DMeO

E = -510.441083G = -510.338188

С	-0.53358800	-0.00000300	-0.00001100
С	-1.19964400	-1.23491600	-0.00000500
С	-1.19960100	1.23492900	-0.00000700
С	-2.60088000	-1.20329200	0.00000000
С	-2.60083900	1.20335600	0.00000000
С	-3.29711400	0.00004400	0.00000100
Н	-3.14296900	2.14250300	0.00000300
Н	-4.38109800	0.00006200	0.00000200
Н	-3.14304400	-2.14242000	0.00000300
Ι	1.64042600	-0.00001200	0.00000000
С	-0.48947200	-2.56450200	0.00000600
Н	-1.20964600	-3.38355100	0.00001700
Н	0.15161700	-2.67188600	-0.87925100
Н	0.15162000	-2.67186500	0.87926300
С	-0.48936700	2.56448000	0.00000500
Н	-1.20950000	3.38356500	-0.00005100
Н	0.15167500	2.67183400	0.87930200
Н	0.15178500	2.67180600	-0.87921100

E = -891.351758G = -891.296892

С	-1.48919600	-0.33886400	0.15260300
С	-2.60274400	0.48521200	-0.06447300
С	-1.67960100	-1.72648800	0.21042800
С	-3.87455000	-0.06259300	-0.20295700
С	-2.94981900	-2.27683100	0.08807400
С	-4.04677800	-1.44238800	-0.11823300
Н	-3.08106400	-3.34994300	0.14970600
Н	-5.04111900	-1.86019200	-0.22054800
0	0.76429400	-0.50338100	-0.33680200
Н	-4.72007600	0.58950600	-0.37887100
С	-0.11554800	0.21431900	0.38530400
0	0.16005000	1.13488400	1.11332600
Ι	2.79871300	-0.09561400	-0.09491500
Н	-0.81904200	-2.36353200	0.36723100
Cl	-2.44210800	2.22855600	-0.22374500

E = -891.335385G = -891.279680

С	1.23448200	0.20462600	0.44963100
С	2.41045500	-0.30491400	-0.13798200
С	1.13251500	1.59808500	0.61438200
С	3.43446600	0.55015200	-0.53579900
С	2.15727700	2.45092200	0.23078600
С	3.31097000	1.92385600	-0.34655800
Н	2.05530200	3.51878100	0.37806300
Н	4.11791200	2.57700800	-0.65672600
0	-1.04943200	0.05945900	1.17501200
Н	4.32235800	0.13723800	-0.99628400
С	0.11149800	-0.65358000	0.91429900
0	0.16042900	-1.83501800	1.13443900
Ι	-2.48111400	0.10587100	-0.33294900
Н	0.23234200	1.99615600	1.06070700
Cl	2.65489200	-2.01475200	-0.45574400

I-o-Cl

E = -891.344079G = -891.289494

С	-1.14867900	0.00418200	0.72147100
С	-1.68284000	0.48869100	-0.47395900
С	-1.61734600	-1.20897300	1.23364000
С	-2.65389800	-0.22533700	-1.16715500
С	-2.58340700	-1.93444300	0.54349000
С	-3.09945500	-1.44194600	-0.65463500
Н	-2.93477500	-2.87777100	0.94272100
Н	-3.85408600	-2.00079800	-1.19479100
0	1.16386300	0.74313200	1.15521600
Н	-3.05540100	0.16932000	-2.09131900
С	-0.14027900	0.78593600	1.50782400
0	-0.41383500	1.45737200	2.47258000
Ι	1.92023600	-0.46445400	-0.37867600
Н	-1.21235800	-1.58345900	2.16612600
Cl	-1.12710000	2.02918100	-1.11996200

TS2-o-Cl

E = -891.	292963
G = -891	.239112

0.67174700	-0.13437400	0.66955200
1.58640100	0.14132700	-0.40309300
0.40633000	0.92668700	1.60994600
2.04905900	1.41940100	-0.61825300
0.90608900	2.19427600	1.40422700
1.70904800	2.43999900	0.28613600
0.68333700	2.98987300	2.10247200
2.09766500	3.43623400	0.11254600
-0.91278400	-1.78379000	1.24725700
2.68626300	1.63261400	-1.46598600
0.33338300	-1.56012400	1.14235700
1.26601300	-2.30970000	1.43923600
-1.67495600	0.20292100	-0.45608800
-0.20525300	0.69415600	2.47252000
2.04191200	-1.13664400	-1.47564900
	0.67174700 1.58640100 0.40633000 2.04905900 0.90608900 1.70904800 0.68333700 2.09766500 -0.91278400 2.68626300 0.33338300 1.26601300 -1.67495600 -0.20525300 2.04191200	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

E = -891.399628G = -891.360076

С	-0.45271700	-0.42790600	-0.00001700
С	-1.31213200	0.67527800	-0.00005000
С	-0.98789600	-1.71747300	0.00002700
С	-2.69515900	0.48305600	-0.00002600
С	-2.36762100	-1.90539900	0.00001300
С	-3.22159600	-0.80429700	-0.00000400
Н	-2.76778900	-2.91201900	0.00004600
Н	-4.29604100	-0.94139400	0.00000600
Н	-3.34763500	1.34681800	-0.00005100
Ι	1.68320200	-0.23253800	0.00001600
Н	-0.32702400	-2.57421700	0.00004100
Cl	-0.72049900	2.32857600	-0.00003200
CO ₂			
0	1.15611800	-0.00054300	0.00000000
С	0.00000000	0.00035700	0.00000000
0	-1.15611800	0.00027500	0.00000000

References

- 1. T. Wei, J. C. Furgala and T. F. Scott, Chem. Commun. 2017, 53, 3874-3877.
- 2. a) Y. Kozhemyakin, A. Kretzschmar, M. Krämer, F. Rominger, A. Dreuw and U. H. F. Bunz, *Chem. -Eur. J.* 2017, 23, 9908-9918. b) A. S. Kalgutkar, A. B. Marnett, B. C. Crews, R. P. Remmel and L. J. Marnett, *J. Med. Chem.* 2000, 43, 2860-2870.
- 3. S. E. Van der Plas, A. Gea, S. Figaroli, P. J. De Clercq and A. Madder, *Eur. J. Org. Chem.* **2008**, 1582-1588.
- 4. Q. Shen, T. Ogata and J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 6586-6596.
- 5. S. Manna, P. O. Serebrennikova, I. A. Utepova, A. P. Antonchick and O. N. Chupakhin, Org. Lett. 2015, 17, 4588-4591.
- 6. J. Ouyang, S. Liu, Y. Wu and L. Qiu, ACS Catal. 2021, 11, 9252-9261.
- 7. L. Ackermann, J. H. Spatz, C. J. Gschrei, R. Born and A. Althammer, *Angew. Chem., Int. Ed.* **2006**, *45*, 7627-7630.
- 8. B. Mu, J. Li and Y. Wu, Appl. Organometal. Chem. 2013, 27, 537-541.
- 9. X. Lan, Y. Li, Y. Li, Z. Ke and F. Liu, J. Org. Chem. 2017, 82, 2914-2925.
- 10. T. Noel, J. R. Naber, R. L. Hartman, J. P. Mcmuiien, K. F. Jensen and S. L. Buchwald, *Chem. Sci.* **2011**, *2*, 287-290.
- 11. G. Li, L. Yang, J. Liu, W. Zhang and D. Xue, Angew. Chem., Int. Ed. 2021, 60, 5230-5234.
- 12. D. Han, S. Li, S. Xia, M. Su and J. Jin, Chem. -Eur. J. 2020, 26, 12349-12354.
- 13. M. O. Akram, A. Das, I. Chakrabarty and N. T. Patil, Org. Lett. 2019, 21, 8101-8105.
- 14. P. Huang, K. Parthasarathy and C. Cheng, Chem. -Eur. J. 2013, 19, 460-464.
- 15. D. Maiti, B. P. Fors, J. L. Henderson, Y. Nakamura and S. L. Buchwald, *Chem. Sci.* **2011**, *2*, 57-68.
- 16. T. V. Nykaza, J. C. Cooper, G. Li, N. Mahieu, A. Ramirez, M. R. Luzung and A. T. Radosevich, J. Am. Chem. Soc. 2018, 140, 15200-15205.
- 17. J. R. Etukala, E. V. K. Suresh Kumar and S. Y. Ablordeppey, J. Heterocyclic Chem. 2008, 45, 507-511.
- 18. H. Rolf and K. Von Fraunberg, Tetrahedron Lett. 1969, 30, 2595-2598.
- 19. P. V. Ramachandran, S. Choudhary and A. Singh, J. Org. Chem. 2021, 86, 4274-4280.
- 20. Z. Wang, X. Ye, S. Wei, P. Wu, A. Zhang and J. Sun, Org. Lett. 2006, 8, 999-1001.
- 21. B. P. Fedorov, G. I. Gorushkina and Y. L. Gol'dfarb, *Izvestiya Akademii Nauk* SSSR, Seriya Khimicheskaya, **1967**, *9*, 2049-2055.
- 22. M. S. Newman and R. W. Addor, J. Am. Chem. Soc. 1955, 77, 3789-3793.
- 23. F. Yang, T. Zhang, H. Wu, Y. Ning, N. Liu, Z. Yi, M. Liu and Y. Chen, J. Med. Chem. 2014, 57, 9357-9369.
- 24. Q. Kang, Y. Lin, Y. Li and H. Shi, J. Am. Chem. Soc. 2020, 142, 3706-3711.
- 25. R. M. Shinde, S. H. Bhosale, M. S. Bhosale, A. A. Gawai, K. R. Mahadik and S. S. Kadam, *Indian J. of Heterocyclic Chem.* 2006, 15, 229-232.
- 26. Gaussian 09, Revision D. 01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson,

H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.

- 27. A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
- 28. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
- 29. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 30. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
- 31. K. Raghavachari, J. S. Binkley, R. Seeger, and J. A. Pople, *J. Chem. Phys.* **1980**, 72, 650-654.
- 32. T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. V. R. Schleyer, *J. Comp. Chem.* **1983**, *4*, 294-301.
- 33. M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 1984, 80, 3265-3269.
- 34.T. H. Dunning Jr. and P. J. Hay, in Modern Theoretical Chemistry, Ed. H.F. Schaefer III, Vol. 3 (Plenum, New York, **1977**) 1-28.
- 35. D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss, *Theor. Chem. Acc.* **1990**, 77, 123-141.

¹H, ¹⁹F, ¹³C NMR spectra of corresponding compunds

