Supplementary Information

Elemental sulfur as the " S " source: visible-light-mediated four-component reactions leading to thiocyanates
Zhiwei Wang, ${ }^{\text {a }}$ Ruisheng Liu ${ }^{\text {a }}$, Chengming Qu, ${ }^{\text {a }}$ Yufen Lv*a , Huilan Yue, ${ }^{\text {b }}$ Wei Wei*a,b
${ }^{a}$ School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
*E-mail: weiweiqfnu@163.com; yufenlv06@163.com
${ }^{\text {b }}$ Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, Xining 810008, China.
*E-mail: hlyue@nwipb.cas.cn
Table of Content

1. General information S2
2.The procedure for visible-light-initiated four-component reaction of α-diazoesters,elemental sulfur, cyclic ethers and TMSCN leading to thiocyanatesS2
3.The procedure for two-component reaction of α-diazoesters with dimethoxyethane leading to α-alkoxyl esters S3
2. Preliminary mechanistic studies. S3-S5
3. Characterization data of products 5a-5x, 6a-6e S6-S14
4. Copies of NMR spectra for $\mathbf{5 a - 5 x}, \mathbf{6 a - 6 e}$ S15-43

1.General information

All commercially available reagent grade chemicals were purchased from Aldrich, Acros, Bidepharm and Energy Chemical Company and used as received without further purification unless otherwise stated. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded in CDCl_{3} on a Bruker Avance III spectrometer with TMS as internal standard $(500 \mathrm{MHz}$ ${ }^{1} \mathrm{H}, 125 \mathrm{MHz}{ }^{13} \mathrm{C}$) at room temperature, the chemical shifts (δ) were expressed in ppm and J values were given in Hz . The following abbreviations are used to indicate the multiplicity: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). All first order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted were designated as multiplet (m). Mass analyses and HRMS were obtained on a Finnigan-LCQDECA mass spectrometer and a Bruker Daltonics Bio-TOF-Q mass spectrometer by the ESI method, respectively. Column chromatography was performed on silica gel (200-300 mesh). There is 3.0 cm distance between the reactor and LEDs.
2. The procedure for visible-light-initiated four-component reaction of α diazoesters, elemental sulfur, cyclic ethers and TMSCN leading to thiocyanates.

To a mixture of α-diazoesters $1(0.2 \mathrm{mmol}), \mathrm{S}_{8} \mathbf{2}(0.2 \mathrm{mmol})$, TMSCN $\mathbf{3}$ (0.1 $\mathrm{mmol})$ and DBU (0.01 mmol) was added cyclic ethers $4(2 \mathrm{~mL})$. The reaction mixture was stirred in air under the irradiation of 3 W blue LED at room temperature for 4-6h. After completion of the reaction, the solution was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product 5.
3. The procedure for two-component reaction of α-diazoesters with dimethoxyethane leading to α-alkoxyl esters.

To a mixture of α-diazoesters $1(0.2 \mathrm{mmol}), \mathrm{S}_{8}(0.2 \mathrm{mmol})$, TMSCN $(0.1 \mathrm{mmol})$ and DBU (0.01 mmol) was added dimethoxyethane (2 mL). The reaction mixture was stirred in air under the irradiation of 3 W blue LED at room temperature for 4 h . After completion of the reaction, the solution was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product 6 .

4.Preliminary mechanistic studies.

4.1 The addition of TEMPO in the model reaction system.

To a mixture of α-diazoester 1a (0.2 mmol), $\mathrm{S}_{8} \mathbf{2}(0.2 \mathrm{mmol})$, TMSCN 3 (0.1 $\mathrm{mmol})$ and DBU (0.01 mmol), TEMPO (0.1 mmol) was added THF (AR, 2 mL). The reaction mixture was stirred in air under the irradiation of 3 W blue LED at room temperature for 4 h . After completion of the reaction, the solution was concentrated in vacuum, the desired product $\mathbf{5 a}$ was obtained in 84% yield. This result indicated that a radical process might not be involved in the present transformations.

4.3 Deuterium experiment.

To a mixture of α-diazoester 1a (0.2 mmol), $\mathrm{S}_{8} \mathbf{2}$ (0.2 mmol), TMSCN 3 (0.1 $\mathrm{mmol})$, $\mathrm{DBU}(0.01 \mathrm{mmol})$, and $\mathrm{D}_{2} \mathrm{O}(2 \mathrm{mmol})$ was added anhydrous THF (2 mL). The
reaction mixture was stirred in air under the irradiation of 3 W blue LED at room temperature for 4 h . After completion of the reaction, the solution was concentrated in vacuum, the desired product D-5a was obtained in 66% yield. The deuterated product was determined by ${ }^{1} \mathrm{H}$ NMR and HRMS. This result indicated which indicated that proton at α-position of ester came from water in solvent.

HRMS

4.2 The procedures for Light $\mathbf{O n} / \mathbf{o f f}$ experiments.

To a mixture of α-diazoester 1a (0.4 mmol), $\mathrm{S}_{8} 2(0.2 \mathrm{mmol})$, diethyl H phosphonate 3a (0.1 mmol), and DBU (0.1 mmol) was added THF (2 mL). The reaction mixture was separately stirred and irradiated by 3 W blue LEDs at room temperature for $1 \mathrm{~h}, 2 \mathrm{~h}$, and 3 h . The desired product $\mathbf{5 a}$ was isolated in $25 \%, 50 \%$, and 71%, respectively. Additionally, the reaction mixture was stirred and irradiated by 3 W Blue LEDs at room temperature for 1 h , then the reaction mixture was continuously stirred in the dark for 1 h , the corresponding product was also obtained in 25.1% yield. Additionally, when the reaction mixture was stirred and irradiated by 3 W blue LEDs at room temperature for 2 h , then the reaction mixture was continuously stirred in the dark for 1 h , the corresponding product was obtained in 50% yield. The above results suggested that the continuous visible-light irradiation is necessary for promoting this transformation.

Fig S1. On/off experiments.

5. Characterization data of products $5 \mathrm{a}-5 \mathrm{x}$

methyl 2-phenyl-2-(4-thiocyanatobutoxy)acetate

Compound 5 a was obtained in 84% yield (23.4 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39$ $-7.32(\mathrm{~m}, 3 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 1 \mathrm{H})$, $3.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,136.4,128.8,128.7,127.2,112.3,81.1,68.8,52.3,33.8,27.7$, 27.0; HRMS (ESI) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S} 280.1007$; found 280.1008.

methyl 2-(4-thiocyanatobutoxy)-2-(p-tolyl)acetate
Compound $\mathbf{5 b}$ was obtained in 89% yield (26.2 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.46$ $(\mathrm{m}, 1 \mathrm{H}), 3.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.4,138.7,133.4,129.4,129.3,127.1,112.3$, 81.0, 68.6, 52.2, 33.9, 27.7, 27.0, 21.2; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S} 294.1164$; found 294.1166.

methyl 2-(4-thiocyanatobutoxy)-2-(m-tolyl)acetate
Compound 5c was obtained in 84% yield (24.5 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.15$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.48(\mathrm{~m}$, $1 \mathrm{H}), 3.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3,138.5,136.2,129.6,128.6,127.8,124.3,112.3$, 81.2, 68.8, 52.3, 33.9, 27.7, 27.0, 21.4; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S} 294.1164$; found 294.1168.

methyl 2-(4-(tert-butyl)phenyl)-2-(4-thiocyanatobutoxy)acetate

Compound 5d was obtained in 79% yield (26.3 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.49$ $(\mathrm{m}, 1 \mathrm{H}), 3.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}$, 9 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,151.8,133.3,126.9,125.7,112.3,81.0$, 68.7, 52.2, 34.6, 33.9, 31.3, 27.8, 27.0; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S} 336.1633$; found 336.1636 .

methyl 2-(3-methoxyphenyl)-2-(4-thiocyanatobutoxy)acetate
Compound 5 e was obtained in 70% yield $(21.6 \mathrm{mg})$ according to the general procedure (6h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.00$ $-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.97(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 3 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-$ $1.96(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.79(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,159.9,137.8$, 129.7, 119.5, 114.5, 112.5, 112.3, 81.0, 68.8, 55.3, 52.3, 33.8, 27.7, 27.0; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~S} 310.1113$; found 310.1115.

methyl 2-(4-bromophenyl)-2-(4-thiocyanatobutoxy)acetate
Compound $\mathbf{5 f}$ was obtained in 80% yield (28.7 mg) according to the general procedure (6h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.48$ $(\mathrm{m}, 1 \mathrm{H}), 3.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,135.4,131.9,128.8,122.9,112.2,80.5,69.0,52.4,33.8$, 27.7, 27.0; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrNO}_{3} \mathrm{~S}$ 358.0113; found 358.0117.

methyl 2-(3-fluorophenyl)-2-(4-thiocyanatobutoxy)acetate
Compound $\mathbf{5 g}$ was obtained in 84% yield (25.3 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.21$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.15(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}), 3.61-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.97(\mathrm{~m}$, 2 H), $1.85-1.81(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,162.8(\mathrm{~d}, J=245.3$ $\mathrm{Hz}), 138.7(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 122.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=$
$21.0 \mathrm{~Hz}), 114.1(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 112.3,80.5(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 69.0,52.4,33.8,27.7$, 26.9; HRMS (ESI) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{FNO}_{3} \mathrm{~S}$ 298.0913; found 298.0910.

methyl 2-(4-fluorophenyl)-2-(4-thiocyanatobutoxy)acetate
Compound $\mathbf{5} \mathbf{h}$ was obtained in 86% yield (25.6 mg) according to the general procedure (4h). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42$ - $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.07-$ $7.04(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.47(\mathrm{~m}, 1 \mathrm{H})$, $3.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,163.9(\mathrm{~d}, J=246.0 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=8.3$ $\mathrm{Hz}), 115.7(\mathrm{~d}, J=22.5 \mathrm{~Hz}$), 112.3, 80.4, 68.9, 52.4, 33.8, 27.7, 26.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{FNO}_{3} \mathrm{~S}$ 298.0913; found 298.0909.

methyl 2-(2-fluorophenyl)-2-(4-thiocyanatobutoxy)acetate
Compound $\mathbf{5 i}$ was obtained in 83% yield (24.6 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.35$ $-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J$ $=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.65-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.99$ $-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,160.4(\mathrm{~d}, J$ $=246.8 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 124.6(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 123.9$ (d, $J=14.2 \mathrm{~Hz}$), 115.6 (d, $J=21.6 \mathrm{~Hz}$), 112.3, $74.1(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 69.6,69.1,52.4$, 33.8, 27.7, 26.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{FNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 298.0913, found 298.0898.

methyl 2-(2-chlorophenyl)-2-(4-thiocyanatobutoxy)acetate
Compound $\mathbf{5 j}$ was obtained in 85% yield (26.4 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.41$ $-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.63(\mathrm{~m}, 1 \mathrm{H})$, $3.54-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.79(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,134.4,133.9,129.9,129.7,128.7,127.3,112.3$, 69.2, 52.4, 33.8, 27.7, 26.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClNO}_{3} \mathrm{~S}$ 314.0618; found 314.0614.

methyl 2-(3-chlorophenyl)-2-(4-thiocyanatobutoxy)acetate
Compound $\mathbf{5 k}$ was obtained in 79% yield (34.1 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43$ (s, 1H), $7.34-7.30$ $(\mathrm{m}, 3 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,138.3,134.6,129.9,128.9,127.2,125.2,112.3,80.4,69.1,52.5,33.8,27.7$, 26.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClNO}_{3} \mathrm{~S}$ 314.0618; found 314.0616.

ethyl 2-(4-thiocyanatobutoxy)-2-(4-(trifluoromethyl)phenyl)acetate
Compound 51 was obtained in 77% yield (27.7 mg) according to the general procedure (6h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64-7.57(\mathrm{~m}, 4 \mathrm{H}), 4.89$ $(\mathrm{s}, 1 \mathrm{H}), 4.23-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,140.3,130.8(\mathrm{~d}, J=32.3 \mathrm{~Hz}), 127.2,125.6(\mathrm{q}, J=3.7 \mathrm{~Hz})$, $123.9(\mathrm{~d}, J=272.1 \mathrm{~Hz}), 80.6,69.2,61.6,33.8,27.8,26.9,14.1$; HRMS (ESI) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}$ 362.1038; found 362.1042.

methyl 2-(4-cyanophenyl)-2-(4-thiocyanatobutoxy)acetate
Compound $\mathbf{5 m}$ was obtained in 86% yield (25.1 mg) according to the general procedure (6h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.50$ $(\mathrm{m}, 1 \mathrm{H}), 3.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2,141.4,132.5,127.7,118.4,112.7,112.2,80.4,69.4,52.6$, 33.7, 27.8, 26.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 305.0960, found 305.0955.

methyl 4-(2-methoxy-2-oxo-1-(4-thiocyanatobutoxy)ethyl)benzoate
Compound $\mathbf{5 n}$ was obtained in 93% yield (31.6 mg) according to the general procedure (6 h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.44 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.53(\mathrm{~m}, 1 \mathrm{H})$, $3.46-13.42(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.75$ (m, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7$, 166.6, 141.2, 130.5, 129.9, 127.0, 112.2, 80.7, 69.1, 52.5, 52.2, 33.8, 27.7, 27.0; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 338.1062$, found 338.1067 .

ethyl 2-(benzo[c][1,2,5]thiadiazol-5-yl)-2-(4-thiocyanatobutoxy)acetate
Compound 50 was obtained in 52% yield (18.3 mg) according to the general procedure (6h). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.70(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.24-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.67(\mathrm{~m}$, $1 \mathrm{H}), 3.61-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.85(\mathrm{~m}$, $2 \mathrm{H}), 1.24(\mathrm{t}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,154.8$, 154.6, 138.2, 128.2, 121.8, 120.0, 112.2, 80.8, 69.2, 61.7, 33.8, 27.8, 27.0, 14.1; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 352.0790$, found 352.0777.

isopropyl 2-phenyl-2-(4-thiocyanatobutoxy)acetate
Compound 5p was obtained in 79% yield (19.4 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38$ - $7.32(\mathrm{~m}, 3 \mathrm{H}), 5.06-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 3.61-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.49(\mathrm{~m}$, $1 \mathrm{H}), 3.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,136.6$, 128.6,128.6, 127.0, 112.4, 81.3, 68.8, 68.7, 33.9, 27.8, 27.1, 21.8, 21.5; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 308.1320$; found 308.1322 .

ethyl 2-phenyl-2-(4-thiocyanatobutoxy)acetate
Compound $\mathbf{5 q}$ was obtained in 92% yield (27.0 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38$ - $7.33(\mathrm{~m}, 3 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.21-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.48(\mathrm{~m}$, $1 \mathrm{H}), 3.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,136.5,128.7,128.6,128.6,127.1$, 112.3, 81.2, 68.8, 61.3, 33.9, 27.7, 27.0, 14.1; HRMS (ESI) m/z: [M + H]+ Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$294.1164, found 294.1166.

benzyl 2-phenyl-2-(4-thiocyanatobutoxy)acetate
Compound $\mathbf{5 r}$ was obtained in 87% yield (30.8 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.37$ $-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 5.17-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.89(\mathrm{~s}$, $1 \mathrm{H}), 3.58-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.93(\mathrm{~m}$, 2H), 1.81 - 1.76 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,136.3,135.4,128.8$, 128.7, 128.6, 128.3, 128.0, 127.2, 112.3, 81.2, 68.8, 66.8, 33.8, 27.7, 27.0; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 356.1320$, found 356.1315 .

phenethyl 2-phenyl-2-(4-thiocyanatobutoxy)acetate
Compound 5s was obtained in 81% yield (29.8 mg) according to the general procedure (4h). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.33(\mathrm{~m}, 5 \mathrm{H})$, $7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.07(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.37-4.32(\mathrm{~m}, 2 \mathrm{H}), 3.52-$ $3.44(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.89-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.80$ $-1.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.7,137.4,136.4,128.9,128.5$, 127.1, 126.6, 112.4, 81.2, 68.8, 65.6, 34.9, 33.9, 27.7, 27.0; HRMS (ESI) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S} 370.1477$; found 370.1480.

isobutyl 2-phenyl-2-(4-thiocyanatobutoxy)acetate
Compound 5t was obtained in 79% yield (30.6 mg) according to the general procedure (the reaction was complete for 4 h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 3 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 3.93-3.86(\mathrm{~m}, 2 \mathrm{H})$, $3.62-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.97(\mathrm{~m}, 2 \mathrm{H})$, $1.88-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.80(\mathrm{~m}, 2 \mathrm{H}), 0.83-0.81(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.9,136.7,128.7,128.6,127.1,112.3,81.2,71.1,68.8,33.9,27.8,28.7$, 27.0, 18.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$322.1477, found 322.1481.

isopentyl 2-phenyl-2-(4-thiocyanatobutoxy)acetate

Compound $5 \mathbf{u}$ was obtained in 82% yield (30.5 mg) according to the general procedure (the reaction was complete for 6 h). Yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.15-4.12(\mathrm{~m}, 2 \mathrm{H})$, $3.59-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.97(\mathrm{~m}, 2 \mathrm{H})$, $1.84-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.44(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{dd}, J=9.8,6.6$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.9, 136.5, 128.7, 128.6, 127.1, 112.4, 81.2, 68.8, 63.9, 37.1, 33.9, 27.7, 27.0, 24.9, 22.4, 22.3; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 336.1633$, found 336.1637.

allyl 2-phenyl-2-(4-thiocyanatobutoxy)acetate
Compound 5v was obtained in 88% yield (37.0 mg) according to the general procedure (the reaction was complete for 6 h). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.3(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 5.89-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.17(\mathrm{~m}, 2 \mathrm{H})$, $4.87(\mathrm{~s}, 1 \mathrm{H}), 4.82-4.60(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,136.4,131.6,128.8,128.7,127.2,127.1,118.5,112.3,81.2,68.8,65.6,33.9$, 27.7, 27.0; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 306.1164$, found 306.1167.

methyl 2-phenyl-2-((5-thiocyanatopentyl)oxy)acetate
Compound $\mathbf{5 w}$ was obtained in 64% yield (18.8 mg) according to the general procedure (the reaction was complete for 6 h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.56-$ $3.53(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.72-$ $1.67(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,136.5,128.7$, 128.6, 127.2, 112.3, 81.1, 69.3, 52.3, 33.9, 29.6, 28.9, 24.7; HRMS (ESI) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$294.1164, found 294.1166.

methyl (E)-2-phenyl-2-((4-thiocyanatobut-2-en-1-yl)oxy)acetate
Compound $5 x$ was obtained in 47% yield (11.8 mg) according to the general procedure (the reaction was complete for 4 h). Yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 3 \mathrm{H}), 5.97-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.82-5.77(\mathrm{~m}, 1 \mathrm{H})$, $4.92(\mathrm{~s}, 1 \mathrm{H}), 4.24-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 3.67-3.63(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,135.9,131.8,129.0$, $128.8,127.4,125.9,111.9,80.5,64.7,52.4,30.8 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~S} 278.0851$; found 278.0852 .

methyl 2-(2-methoxyethoxy)-2-phenylacetate
Compound 6a was obtained in 57% yield (12.8 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38$ $-7.30(\mathrm{~m}, 3 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 3.72-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.63(\mathrm{~m}, 1 \mathrm{H})$, $3.62-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3,136.4,128.7$, 128.6, 127.3, 81.4, 72.0, 69.0, 59.0, 52.2; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{4} 225.2217$; found 225.2219 .

methyl 2-(2-methoxyethoxy)-2-(m-tolyl)acetate
Compound 6b was obtained in 56% yield (13.3 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.23$ $(\mathrm{m}, 2 \mathrm{H}), 7.14-7.13(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.65-$ $3.63(\mathrm{~m}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.4,138.4$,
$136.3,129.5,128.5,127.9,124.5,81.4,72.0,68.9,59.0,52.2,21.4 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{4}$ 239.1283; found 239.1287.

methyl 2-(2-methoxyethoxy)-2-(3-methoxyphenyl)acetate
Compound 6 c was obtained in 66% yield (16.8 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.02(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, 3.69-3.67 (m, 1H), 3.66-3.58 (m, 3H), 3.37 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $171.2,159.8,137.9,129.6,119.7,114.6,112.4,81.3,72.0,69.0,59.0,55.3,52.3$; HRMS (ESI) m/z: [M + H] Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{5}$ 255.1232; found 255.1236.

methyl 2-(4-fluorophenyl)-2-(2-methoxyethoxy)acetate
Compound 6d was obtained in 53% yield (12.8 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.06-$ $7.03(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.58(\mathrm{~m}, 1 \mathrm{H})$, $3.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,162.9(\mathrm{~d}, J=245.8 \mathrm{~Hz}), 132.3(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 80.7,72.0,69.1,59.0,52.3 ;$ HRMS (ESI) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{FO}_{4}$ 243.1033; found 243.1037.

methyl 2-(2-chlorophenyl)-2-(2-methoxyethoxy)acetate
Compound 6e was obtained in 76% yield (19.6 mg) according to the general procedure (4h). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.39$ $-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 3.79-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $3.69-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,134.5,133.8,129.8,129.6,128.9,127.2,77.6,71.8,69.4,59.0,52.3$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClO}_{4}$ 259.0737; found 259.0741.

6. Copies of NMR spectra for $5 \mathrm{a}-5 \mathrm{x}, 6 \mathrm{a}-6 \mathrm{e}$

[1, 9.0

5a

$\begin{aligned} & \stackrel{\infty}{\mathrm{m}} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{+} \\ & \stackrel{1}{\sim} \\ & \underset{I}{2} \end{aligned}$		$\%$ 8 0 0	$\begin{aligned} & \text { ت} \\ & \text { N } \\ & \text { in } \end{aligned}$	¢ 0 0 0 0	

5b

$\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(9 p \mathrm{~m})\end{array}$

5c

$\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(6 p m)\end{array}$

5d

5e

5g

5h

5j

		 ソT～～ご		$\stackrel{0}{0}$	$\frac{\%}{\%}$	

51

¢ N ¢ 1					$\begin{aligned} & \stackrel{5}{5} \\ & \stackrel{1}{+} \\ & \text { i } \\ & 1 \end{aligned}$	

5m

7819991-
589904-

-112.2463

4M
जू
Nin

5n

N-NNNNNNNNN

	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { N} \\ & \\ & \stackrel{y}{\mathrm{~N}} \\ & \underset{\mathrm{I}}{2} \end{aligned}$	웅N్N M लNo ©NA		

190
$180 \quad 70 \quad 160 \quad 150$
fl（ppm）
$\mathbf{5 q}$

5r

오웅웅		잉 ㅁNN
- NN®	\% 8	¢ल
-	11	\cdots

5s

	$\begin{aligned} & \text { N} \\ & \text { N } \\ & \stackrel{0}{0} \\ & \underset{~}{1} \end{aligned}$		$\begin{aligned} & \stackrel{\infty}{ल} \\ & \stackrel{1}{N} \\ & \stackrel{1}{\mathrm{j}} \end{aligned}$	NがNON －NN゚ー゚ㅇ	

$\underbrace{}_{0}$

$\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{l}100 \\ \text { fi (ppm) }\end{array}\end{array}$

5w

5x

$6 \mathbf{a}$

6b

$6 c$

$6 e$

