Supplementary Information

for

THF-Enabled PtBr_{2}-Catalyzed
 Desymmetric Hydrogenative [3 + 2]
 Cycloaddition of 2-AlkynylbenzaldehydeTethered Cyclohexadienones

Rui Hu, ${ }^{\text {a }}$ Jichao Chen, ${ }^{\text {a }}$ Zeliang Wang, ${ }^{\text {a }}$ Dandan Shang, ${ }^{\text {a }}$ Lei Yu, ${ }^{\text {b }}$ Philip Wai Hong Chan*, ${ }^{*}$ and Weidong Rao*,a
${ }^{\text {a }}$ Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
${ }^{\mathrm{b}}$ School of Chemistry, Monash University, Clayton, Victoria 3800, Australia weidong@njfu.edu.cn (W.R.); phil.chan@monash.edu (P.W.H.C.)

Table of Contents

1. General Information S1
2 Complete Screening and Optimization of the $[3+2]$ S2 Cycloaddition Reaction
2. Preparation of the Substrates $\mathbf{1}$ and $\mathbf{7}$ S4
3. General Procedure for the THF-Enabled PtBr_{2}-Catalyzed S23
Desymmetric Hydrogenative $[3+2]$ Cycloaddition and TBATB-Mediated Deacetalization
5 Gram-Scale Synthesis of $\mathbf{4 c}$ and Selective Transformations S47
4. Control Experiments with 1a S52
5. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra for All New S56 Compounds
6. X-ray Crystal Structures of $\mathbf{2 a}, \mathbf{4 a}, \mathbf{8 d}$ and $\mathbf{1 3}$ S129
7. References S132

1. General Information

Unless specified, all reagents and starting materials were purchased from commercial sources and used as received. THF was dried using $\mathrm{Na} /$ benzophenone. Analytical thin layer chromatography (TLC) was performed using pre-coated silica gel plate. Visualization was achieved by UV light (254 nm). Flash chromatography was performed using silica gel and gradient solvent system (petroleum ether: EtOAc as eluent). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded with either a 400 or 600 MHz spectrometer. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), td (triplet of doublets), dt (doublet of triplet) or m (multiplet). The number of protons (n) for a given resonance is indicated by $n \mathrm{H}$ and coupling constants are reported as a J value in Hz . High resolution mass spectra (HRMS) were obtained on a LC/HRMS TOF spectrometer using simultaneous electrospray (ESI).
2. Complete Screening and Optimization of the [3+2] Cycloaddition Reaction

Table S1. Catalyst, Temperature and Concentration Optimization

entry	catalyst	$T\left({ }^{\circ} \mathrm{C}\right)$	Concentration (M)	yield (\%) ${ }^{\text {b }}$				
				2a	3a	4a	5a	6 a
1	PtCl_{2}	70	0.1	42	37	-	-	-
2	$\mathbf{P t B r}_{2}$	70	0.1	49	40	-	-	-
3^{c}	PtBr_{2}	70	0.1	$-{ }^{d}$	-	-	-	-
4^{e}	PtBr_{2}	70	0.1	-	-	35	46	-
$5^{\text {f }}$	PtBr_{2}	25	0.1	28	25	-	-	-
6	PtI_{2}	70	0.1	8	10	-	-	-
7	$\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}$	70	0.1	25	27	-	-	-
8	$\mathrm{Pt}(\mathrm{COD}) \mathrm{Cl}_{2}$	70	0.1	19	17	-	-	-
9	PtCl_{4}	70	0.1	25	23	-	-	-
10	PtI_{4}	70	0.1	8	10	-	-	-
11	PtO_{2}	70	0.1	- ${ }^{\text {g }}$	-	-	-	-
12	PtBr_{2}	70	0.2	46	38	-	-	-
13	PtBr_{2}	70	0.05	35	31	-	-	-

Table S1. (continued)

entry	catalyst	$T\left({ }^{\circ} \mathrm{C}\right)$	Concentration(M)	yield (\%) ${ }^{\text {b }}$				
				2a	3a	4a	5a	6
14	JohnPhosAuNTf ${ }_{2}$	25	0.1	\underbrace{g}	-	-	-	
15	JohnPhosAuNTf ${ }_{2}$	70	0.1	${ }^{8}$	-	-	-	-
16	XPhosAuNTf 2	70	0.1	- ${ }^{8}$	-	-	-	-
17	$\mathrm{IPrAuNTf}_{2}$	70	0.1	$-^{g}$	-	-	-	-
18	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	70	0.1	-	-	-	-	32
19	$\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}$	70	0.1	-	-	-	-	19
20	$\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$	70	0.1	- ${ }^{\text {g }}$	-	-	-	-
21	AgSbF_{6}	70	0.1	.g	-	-	-	-
$\begin{aligned} & { }^{t_{\mathrm{B}}} \\ & \\ & \\ & \hline \end{aligned}$								
	ohnPhos		XPhos	IPr				

${ }^{a}$ All reactions were performed at the 0.2 mmol scale with $5 \mathrm{~mol} \%$ of catalyst and $4 \AA \mathrm{MS}(100 \mathrm{mg})$ in THF $(0.1 \mathrm{M})$ at $70{ }^{\circ} \mathrm{C}$ for $12 \mathrm{~h} .{ }^{b}$ Isolated product yield. ${ }^{c}$ Reaction performed with 1,4 -dioxane in place of THF as the solvent. ${ }^{d}$ Reaction gave unknown decomposition products based on TLC analysis and ${ }^{1} \mathrm{H}$ NMR measurements of the crude reaction mixture. ${ }^{e}$ Reaction performed in the absence of $4 \AA$ MS. ${ }^{f}$ Reaction performed at $25^{\circ} \mathrm{C}$ for $30 \mathrm{~h} .{ }^{g}$ No reaction based on TLC analysis and ${ }^{1} \mathrm{H}$ NMR measurements of the crude reaction mixture.

3. Preparation of the Substrates 1 and 7

General Procedure for the Preparation of \boldsymbol{O} - and \boldsymbol{N}-Tethered Cyclohexadienones

1 and 7.

According to the corresponding literature procedures, ${ }^{\text {S1 }}$ to a solution of the O-tethered- or N-tethered alkynes $\mathbf{S 1}^{\mathrm{S} 2-\mathrm{S} 5}$ and $\mathbf{S 2}^{\mathrm{S6-S7}}$ (2.0 mmol), 2-iodo(bromo)-benzaldehyde $\mathbf{S 3}$ ($2.2 \mathrm{mmol}, 1.1$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(46.2 \mathrm{mg}, 0.02$ equiv) and $\mathrm{CuI}(7.6 \mathrm{mg}, 0.02$ equiv) in anhydrous $\mathrm{THF}(0.2 \mathrm{M}, 10 \mathrm{~mL})$ was added ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}$ ($8 \mathrm{mmol}, 4$ equiv) under an argon atmosphere. The resulting reaction mixture was stirred at room temperature for $8-24 \mathrm{~h}$ until full consumption of the starting material, as indicated by TLC analysis. The reaction mixture was quenched with the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL), followed by extraction with EtOAc (15 $\mathrm{mL} x 2$). The combined organic extracts were then washed with saturated brine (15 mL), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford O-tethered cyclohexadienones $\mathbf{1 a}-\mathbf{z}$ and $\mathbf{7 a}-\mathbf{f}$ and $N T s$-tethered cyclohexadienones 1aa-ad in good to excellent yields.

Substrates 1a, 1b, 1c, 1e, 1g, 1h, 11, 1n, 1s, 1aa, 1ab, 7a, $\mathbf{7 c}$ and $\mathbf{7 e}$ were synthesized following literature procedures. ${ }^{\text {S1 }}$

2-(3-((1-Methyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehyde $(1 a)^{S 1}$

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $10: 1$) to afford 1a in 81% yield ($1.079 \mathrm{~g}, 5 \mathrm{mmol}$ scale) as a yellow solid; mp $82-84{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.48(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.46$ (t, J $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.37-6.34(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3,184.9,150.6,136.1,133.7,133.4,130.6,129.0$, $127.3,125.8,92.8,82.3,73.4,54.3,26.3$.

2-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehyde $(1 b)^{S 1}$

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $10: 1$) to afford $\mathbf{1 b}$ in 78% yield $(437 \mathrm{mg})$ as a pale-yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.47(\mathrm{~s}$, 1H), 7.93-7.89 (m, 1H), 7.57-7.51 (m, 2H), 7.48-7.43 (m, 1H), 6.83 (d, J = 10.2 Hz , $2 \mathrm{H}), 6.41$ (d, $J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 1.86(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.2, 185.1, 149.7, 136.0, 133.6, 133.3, 131.7, 128.9, 127.2, 125.8, 92.9, 82.2, 77.0, 54.2, 32.2, 7.7.

2-(3-((4-Oxo-1-propylcyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehyde $(1 c)^{S 1}$

Column chromatography (eluent: petroleum ether/EtOAc $=25: 1$ to $10: 1$) to afford $\mathbf{1 c}$ in 78% yield ($1.377 \mathrm{~g}, 6 \mathrm{mmol}$ scale) as a pale-yellow solid; mp $74-76{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.46(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H})$, $1.81-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 191.3,185.2,150.0,136.1,133.7,133.4,131.5,128.9,127.3,125.8,93.0$, 82.2, 76.5, 54.1, 41.5, 16.9, 14.2.

2-(3-((4-Oxo-1-pentylcyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehyde (1d)

Column chromatography (eluent: petroleum ether/EtOAc $=25: 1$ to $15: 1$) to afford $\mathbf{1 d}$ in 67% yield (432 mg) as a pale-yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.48(\mathrm{~s}$, $1 \mathrm{H}), 7.91$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.52$ (m, 2H), 7.47-7.44 (m, 1H), 6.84 (d, $J=10.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 1.82-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.26(\mathrm{~m}$, 6 H), 0.86 (t, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.4, 185.3, 150.1, $136.2,133.7,133.4,131.6,129.0,127.3,125.9,93.0,82.2,76.6,54.1,39.3,31.8,23.1$, 22.4, 13.9; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 323.1642$, found: 323.1651.

2-(3-((1-Benzyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehyde

 $(1 e)^{S 1}$

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $10: 1$) to afford $\mathbf{1 e}$ in 91% yield (623 mg) as a pale-yellow solid; mp $64-66{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.46(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.85(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3,184.9,149.4,136.1,134.3,133.7,133.3,131.4$, 130.7, 129.0, 128.1, 127.3, 127.2, 125.8, 92.9, 82.4, 76.3, 54.4, 46.2.

2-(3-((1-(2-Methoxyethyl)-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benz

 aldehyde (1f)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $8: 1$) to afford $\mathbf{1 f}$ in 69% yield (428 mg) as a pale-yellow solid; $\mathrm{mp} 90-92{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 10.47$ (s, 1H), 7.91 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.46$ (t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.90(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=6.2 \mathrm{~Hz}$, 2H), 3.27 (s, 3H), $2.08\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.4$, 185.1, 149.7, 136.2, 133.7, 133.4, 131.1, 129.0, 127.4, 125. 8, 92.9, 82.4, 75.1, 67.2, 58.5, 54.0, 39.5; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 311.1278$, found: 311.1284.

2-(3-((1-Isopropyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehyd e (1g) $)^{\text {S }}$

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $10: 1$) to afford $\mathbf{1 g}$ in 70% yield (412 mg) as a colorless solid; $\mathrm{mp} 60-62{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 10.48(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 2.09(\mathrm{dt}, J=13.8$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.8,191.5$, $150.7,144.3,134.5,132.3,128.9,128.2,127.5,124.6,99.2,89.1,83.6,68.7,52.0$, 51.6, 37.4, 17.3, 16.8.

2-(3-((4-Oxo-[1,1'-biphenyl]-1(4H)-yl)oxy)prop-1-yn-1-yl)benzaldehyde (1h) ${ }^{\text {S1 }}$

Column chromatography (eluent: petroleum ether/EtOAc $=25: 1$ to $12: 1$) to afford $\mathbf{1 h}$ in 78% yield (525 mg) as a colorless solid; mp $120-122{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.50(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}$, $3 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=$ $10.1 \mathrm{~Hz}, 2 \mathrm{H}$), $4.54(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.3,185.3,149.4$, 137.52 136.2, 133.8, 133.4, 130.1, 129.1, 128.9, 128.6, 127.4, 125.8, 125.7, 92.8, 82.6, 77.1, 54.1.

2-(3-((4-Oxo-[1,1'-bi(cyclohexane)]-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehyd e (1i)

Column chromatography (eluent: petroleum ether/EtOAc $=25: 1$ to $12: 1$) to afford $\mathbf{1 i}$ in 68% yield (455 mg) as a yellow solid; mp $100-102{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 10.45 (d, $J=0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.88 (dd, $J=7.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49$ (m, 2H), 7.44-7.41 (m, $1 \mathrm{H}), 6.82(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.76-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.23-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.11-1.05(\mathrm{~m}, 1 \mathrm{H})$, $0.95(\mathrm{dd}, J=12.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{dd}, J=12.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3,185.4,149.4,136.1,133.7,133.3,132.1,128.9,127.2,125.9,93.2,82.0,78.7,53.9$, 46.5, 27.3, 26.3, 26.3; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 335.1642$, found: 335.1649 .

2-(3-((7-Oxo-1,3,4,7-tetrahydronaphthalen-4a(2H)-yl)oxy)prop-1-yn-1-yl)benzald ehyde (1j)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $10: 1$) to afford 1 j in 50% yield (306 mg) as a yellow solid; $\mathrm{mp} 74-76{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.48(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36-6.35(\mathrm{~m}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}$, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.4,185.9,162.0,150.2,136.2,133.7,133.4,131.0$, 129.0, 127.2, 126.9, 125.9, 92.6, 82.0, 74.5, 53.3, 39.4, 32.6, 28.1, 20.3; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 307.1329$, found: 307.1338.

2-(3-((6-Oxo-1,2,3,6-tetrahydro-3aH-inden-3a-yl)oxy)prop-1-yn-1-yl)benzaldehy de (1k)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $10: 1$) to afford 1 k in 89% yield (520 mg) as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.46(\mathrm{~s}, 1 \mathrm{H})$, 7.90 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=9.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.20$ (dd, $J=13.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.4,185.9,165.9,144.4,136.1,133.7,133.4,132.1,128.9,127.2$,
126.0, 125.6, 92.7, 81.7, 79.3, 52.9, 35.7, 28.8, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 293.1172$, found: 293.1180 .

2-(3-((1-(2-((tert-Butyldimethylsilyl)oxy)ethyl)-4-oxocyclohexa-2,5-dien-1-yl)oxy)

 prop-1-yn-1-yl)benzaldehyde (11) ${ }^{\text {S1 }}$

Column chromatography (eluent: petroleum ether/EtOAc $=40: 1$ to $25: 1$) to afford 11 in 74% yield (608 mg) as a yellow solid; $\mathrm{mp} 60-62{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.47(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.03(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3,185.3,150.0,136.2,133.7,133.4,130.9,129.0,127.3,125.9,92.9,82.3,75.2$, $57.8,53.9,42.9,25.8,18.1,-5.5$.

2-(3-((1,2-Dimethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehy de (1m)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $10: 1$) to afford $\mathbf{1 m}$ in 86% yield (482 mg) as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.47(\mathrm{~s}, 1 \mathrm{H}), 7.90$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.33(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.07 ($\mathrm{s}, 3 \mathrm{H}$), $1.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.3, 185.2, 159.4, 150.9, 136.1, 133.7, 133.4, 130.3, 129.4, 129.0, 127.3, 125. 8, 92.2, 82.1, 75.2, 53.9, 25.5, 18.1; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 281.1172$, found: 281.1181.

2-(3-((1,3,5-Trimethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzalde

 hyde (1n) ${ }^{\text {S1 }}$

Column chromatography (eluent: petroleum ether/EtOAc $=25: 1$ to $15: 1$) to afford 1 n in 79% yield (465 mg) as a pale-yellow solid; mp $74-76{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, CDCl_{3}) $\delta 10.46(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}$, $1 \mathrm{H}), 6.58(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3,186.2,145.5,136.9,136.0,133.6,133.4,128.8,127.1,126.0,93.4,81.7,73.3$, 53.7, 26.5, 15.9.

2-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)-6-fluorobenzald ehyde (10)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $10: 1$) to afford $\mathbf{1 o}$ in 80% yield $(477 \mathrm{mg})$ as a pale-yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.45(\mathrm{~s}$, $1 \mathrm{H}), 7.49(\mathrm{td}, J=8.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.84$ (d, $J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 1.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $0.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.8(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 185.2$, 162.7 (d, $J=262.3 \mathrm{~Hz}), 149.8,134.8(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 131.8,129.8,129.7(\mathrm{~d}, J=3.6$ $\mathrm{Hz}), 125.9(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 124.4(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 117.2(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 93.6,82.4(\mathrm{~d}, J$ $=4.2 \mathrm{~Hz}), 77.2,54.2,32.2,7.8 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-116.40(\mathrm{dd}, J=10.4$, 5.5 Hz); HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 299.1078$, found: 299.1083.

2-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)-5-fluorobenzald ehyde (1p)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $10: 1$) to afford $\mathbf{1 p}$ in 40% yield (239 mg ; from 2-bromo-5-fluorobenzaldehyde) as a pale-pink solid; mp $72-74{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.40(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.5$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=8.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{td}, J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.39$ (d, $J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 1.84(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.85(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.1,185.1,162.5(\mathrm{~d}, J=253.2 \mathrm{~Hz})$, $161.7,149.6,138.2(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 135.5(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 131.8,121.9(\mathrm{~d}, J=3.5 \mathrm{~Hz})$, $121.3(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 113.8(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 92.7(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 81.1,77.1,54.1$, 32.2, 7.8; ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-108.19--108.30$ (m); HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 299.1078$, found: 299.1087.

5-Chloro-2-(3-((1-ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzald ehyde (1q)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $10: 1$) to afford $\mathbf{1 q}$ in 73% yield (460 mg) as a pale-yellow solid; mp $71-73{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.37(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H})$, $1.84(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $189.9,185.1,149.6,137.2,135.5,134.6,133.7,131.8,127.2,124.0,93.9,81.2,77.1$,
54.1, 32.2, 7.8; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 315.0782, found: 315.0789 .

5-Bromo-2-(3-((1-ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzald ehyde (1r)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $10: 1$) to afford $\mathbf{1 r}$ in 87% yield (625 mg) as a pale-yellow solid; mp $74-76{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.38(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H})$, $1.85(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 189.9, 185.1, 149.6, 137.2, 136.6 134.7, 131.8, 130.3, 124.5, 123.5, 94.1, 81.3, 77.1, 54.1, 32.5, 7.8; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 359.0277, found: 395.0276.

2-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)-5-methylbenzald ehyde (1s) ${ }^{\text {S1 }}$

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $10: 1$) to afford 1s in 84% yield (494 mg) as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.39(\mathrm{~s}, 1 \mathrm{H})$, $7.66(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=10.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.37$ (d, $J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $0.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.4, 185.1, 149.7, 139.3, $135.9,134.5,133.2,131.7,127.5,122.9,92.1,82.3,77.0,54.2,32.1,21.2,7.7$;

2-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)-4-fluorobenzald ehyde (1t)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $10: 1$) to afford 1t in 34% yield (203 mg ; from 2-bromo-4-fluorobenzaldehyde) as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.37$ (s, 1H), 7.92 (dd, $\left.J=8.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.20(\mathrm{dd}, J=$ 8.8, 2.3 Hz, 1H), $7.14(\mathrm{td}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 1.85(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.7,185.1,165.5(\mathrm{~d}, ~ J=257.0 \mathrm{~Hz}$), 149.6, 132.9 (d, $J=$ $2.8 \mathrm{~Hz}), 131.9,130.2(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 120.0(\mathrm{~d}, J=23.6 \mathrm{~Hz})$, $116.9(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 94.1,81.0(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 77.2,54.1,32.2,7.8 ;{ }^{19}$ F NMR (565 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-103.02--103.25(\mathrm{~m})$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 299.1078, found: 299.1078.

4-Chloro-2-(3-((1-ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzald ehyde (1u)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $9: 1$) to afford $\mathbf{1 u}$ in 38% yield (239 mg ; from 2-bromo-4-chlorobenzaldehyde) as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.37(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79$ (d, $J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.39$ (d, $J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.28$ (s, 2H), 1.84 (q, $J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 0.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.0$, 185.1, 149.5, 140.1, 134.4, 133.0, 131.9, 129.4, 128.6, 127.2, 94.2, 80.8, 77.1, 54.0, 32.2, 7.8; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 315.0782$, found: 315.0782.

4-Bromo-2-(3-((1-ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzald ehyde (1v)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $9: 1$) to afford $\mathbf{1 v}$ in 69% yield (496 mg) as a pale-yellow solid; mp $67-69{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.37(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.56$ (m, 1H), $6.80(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 1.85(\mathrm{q}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.2,185.1$, $149.5,136.0,134.8,132.4,131.9,128.7,128.6,127.2,94.3,80.7,77.1,54.1,32.2,7.8 ;$ HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 359.0277$, found: 359.0277.

2-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)-3-methylbenzald

 ehyde (1w)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $10: 1$) to afford $\mathbf{1 w}$ in 64% yield $(377 \mathrm{mg})$ as a pale-yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.51$ (s, 1H), 7.75 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.0,185.2$, $149.8,141.8,136.5,134.9,131.8,128.4,125.6,124.7,97.5,80.8,77.1,54.3,32.3$, 20.4, 7.8; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 295.1329$, found: 295.1329.

6-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzo[d][1,3]diox ole-5-carbaldehyde (1x)

Column chromatography (eluent: petroleum ether/EtOAc $=15: 1$ to $8: 1$) to afford $\mathbf{1 x}$ in 45% yield (292 mg ; from 6-Bromopiperonal) as a pale-yellow solid; $\mathrm{mp} 61-63{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.30(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 1.85(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 0.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 189.7, 185.2, 152.3, $149.8,148.9,132.6,131.8,122.5,112.2,106.0,102.4,91.7,82.0,77.1,54.2,32.2,7.8 ;$ HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 325.1071$, found: 325.1070.

1-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)-2-naphthaldehy

 de (1y)

Column chromatography (eluent: petroleum ether/EtOAc $=15: 1$ to $8: 1$) to afford $\mathbf{1 y}$ in 39% yield (258 mg ; from 1-bromo-2-naphthaldehyde) as a colorless solid; mp 105$107{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.72(\mathrm{~s}, 1 \mathrm{H}), 8.45-8.41(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=$ 8.6, $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.88 (dd, $J=8.5,3.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.67-7.64 (m, 2H), 6.87 (d, $J=10.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.9, 185.2, 149.8, 135.7, 134.8, 133.2, $131.9,129.4,129.3,128.5,127.8,127.0,126.4,121.9,99.0,80.1,77.2,54.4,32.3,7.8$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 353.1148$, found: 353.1148.

2-(4-((4-Oxo-1-propylcyclohexa-2,5-dien-1-yl)oxy)but-1-yn-1-yl)benzaldehyde

 (1z)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $10: 1$) to afford $\mathbf{1 z}$ in 71% yield (438 mg) as a pale-yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.51(\mathrm{~s}$, $1 \mathrm{H}), 7.86(\mathrm{dd}, J=7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-$ $6.74(\mathrm{~m}, 2 \mathrm{H}), 6.35-6.30(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.74-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) $\delta 191.9,185.3,150.8,136.0,133.6,133.1,131.1,128.1,127.1,126.9,94.2$, 77.3, 75.7, 63.3, 41.5, 21.6, 16.7, 14.1; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 309.1485, found: 309.1484.

N-(3-(2-Formylphenyl)prop-2-yn-1-yl)-4-methyl- N-(1-methyl-4-oxocyclohexa-2,5

 -dien-1-yl)benzenesulfonamide (1aa) ${ }^{\text {S1 }}$

Column chromatography (eluent: petroleum ether/EtOAc $=15: 1$ to 5:1) to afford 1aa in 60% yield $(503 \mathrm{mg})$ as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.29(\mathrm{~s}, 1 \mathrm{H})$, $7.91(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{dt}, J=7.6,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.06$ $(\mathrm{m}, 2 \mathrm{H}), 6.23-6.20(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.8,184.2,151.0,144.1,138.4,136.1,133.7,133.4,129.6,129.1$, $128.0,127.8,127.5,125.0,92.4,81.1,60.2,37.2,25.8,21.4$.

N-(1-Butyl-4-oxocyclohexa-2,5-dien-1-yl)-N-(3-(2-formylphenyl)prop-2-yn-1-yl)-

 4-methylbenzenesulfonamide (1ab) ${ }^{S 1}$

Column chromatography (eluent: petroleum ether/EtOAc $=15: 1$ to $4: 1$) to afford 1ab in 86% yield (794 mg) as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.29(\mathrm{~s}, 1 \mathrm{H})$, $7.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.252-1.18(\mathrm{~m}, 2 \mathrm{H})$, 1.12-1.05 (m, 2H), $0.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.8$, $184.8,149.3,144.2,138.6,136.3,133.8,133.5,129.6,129.1,127.9,127.7,125.2$, 92.6, 81.1, 64.2, 37.0, 36.4, 26.1, 22.6, 21.5, 13.7.

N-(3-(2-Formylphenyl)prop-2-yn-1-yl)-N-(1-isopropyl-4-oxocyclohexa-2,5-dien-1

 -yl)-4-methylbenzenesulfonamide (1ac)

Column chromatography (eluent: petroleum ether/EtOAc $=15: 1$ to $4: 1$) to afford 1ac in 92% yield (824 mg) as a colorless solid; mp $114-116^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 10.21(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{td}, J=7.6,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J$ $=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 2.76-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 0.93$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.8,184.8,146.8,144.3,137.3,136.2$, $133.8,133.4,130.1,129.5,129.1,128.1,127.8,125.1,92.1,81.3,66.9,36.8,33.6,21.5,17.4 ;$ HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 448.1577$, found: 448.1577.
N-(1-(But-3-en-1-yl)-4-oxocyclohexa-2,5-dien-1-yl)-N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1ad)

Column chromatography (eluent: petroleum ether/EtOAc $=15: 1$ to $6: 1$) to afford 1ad in 84% yield (772 mg) as a pale-yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.28$ (s, $1 \mathrm{H}), 7.91$ (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.29$ (d, $J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.68-5.62(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.56$ $(\mathrm{s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 190.8,184.5,148.8,144.1,138.4,136.1,136.1,133.7,133.4,129.7,129.6$, 129.0, 127.9, 127.6, 125.0, 115.7, 92.4, 81.1, 63.8, 36.9, 35.4, 28.0, 21.4; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 460.1577$, found: 460.1577 .

2-(3-(((8S,9S,10S,13S,14S)-13-Methyl-3,17-dioxo-3,6,7,8,9,11,12,13,14,15,16,17-do decahydro-10H-cyclopenta[a]phenanthren-10-yl)oxy)prop-1-yn-1-yl)benzaldehy de (7a) ${ }^{\text {S1 }}$

Column chromatography (eluent: petroleum ether/EtOAc $=10: 1$ to $4: 1$) to afford 7a in 68% yield (583 mg) as a colorless solid; mp $189-191{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.46(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=$ $10.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 2.66(\mathrm{td}, J=12.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-$ 2.39 (m, 2H), 2.21 (qd, $J=11.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.08(\mathrm{~m}, 3 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 1 \mathrm{H})$, $1.88-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.13(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{~s}$,

3H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.1,191.3,184.9,163.2,149.2,136.1,133.7$, $133.3,131.6,128.9,127.3,126.6,125.8,92.7,82.1,76.4,55.3,53.4,50.1,47.7,35.6$, 34.6, 32.5, 32.2, 31.0, 22.1, 21.9, 13.8.

2-Fluoro-6-(3-(($8 S, 9 S, 10 S, 13 S, 14 S)-13-m e t h y l-3,17-d i o x 0-3,6,7,8,9,11,12,13,14,1$ 5,16,17-dodecahydro-10H-cyclopenta[a]phenanthren-10-yl)oxy)prop-1-yn-1-yl)b enzaldehyde (7b)

Column chromatography (eluent: petroleum ether/EtOAc $=10: 1$ to $4: 1$) to afford $\mathbf{7 b}$ in 53% yield (473 mg) as a pale-yellow solid; mp $180-182{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.44(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{td}, J=8.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-$ 7.09 (m, 2H), $6.36(\mathrm{dd}, J=10.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{td}, J=12.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=19.4,8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=22.6,11.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 3 \mathrm{H})$, $1.95-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.25-$ $1.18(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.1,187.7(\mathrm{~d}, J=3.2$ $\mathrm{Hz}), 185.0,163.2,162.6(\mathrm{~d}, J=262.6 \mathrm{~Hz}), 149.4,134.8(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 131.5,129.6$ (d, $J=3.6 \mathrm{~Hz}$), 126.5, $125.9(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 124.4(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 117.1(\mathrm{~d}, J=21.5$ Hz), 93.2, $82.2(\mathrm{~d}, ~ J=4.3 \mathrm{~Hz}), 76.4,55.2,53.4,50.1,47.7,35.5,34.5,32.4,32.1,31.0$, 22.1, 21.9, 13.7; ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.31$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{FO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 447.1966$, found: 447.1972. enzaldehyde (7c) ${ }^{\text {S1 }}$

Column chromatography (eluent: petroleum ether/EtOAc $=10: 1$ to $4: 1$) to afford $\mathbf{5 c}$ in 60% yield (531 mg) as a colorless solid; mp $230-232{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.42(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dd}, J=10.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{~s}$, $2 \mathrm{H}), 2.66(\mathrm{td}, J=12.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.17(\mathrm{~m}$, $1 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 1 \mathrm{H})$, 1.27-1.11 (m, 4H), $0.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.5,185.0,163.3$, $149.3,139.4,136.0,134.6,133.2,131.5,127.6,126.5,123.0,91.9,82.2,76.4,55.3$, 53.5, 50.1, 47.7, 35.6, 34.6, 32.5, 32.2, 31.0, 22.1, 21.9, 21.3, 13.8;

5-Chloro-2-(3-(((8S,9S,10S,13S,14S)-13-methyl-3,17-dioxo-3,6,7,8,9,11,12,13,14,1 5,16,17-dodecahydro-10H-cyclopenta[a]phenanthren-10-yl)oxy)prop-1-yn-1-yl)b enzaldehyde (7d)

Column chromatography (eluent: petroleum ether/EtOAc $=10: 1$ to $4: 1$) to afford 5 d in 46% yield (426 mg) as a pale-yellow solid; mp $192-194{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.39(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=10.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}$, $1 \mathrm{H}), 4.15$ (d, $J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.64$ (ddd, $J=12.8,5.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=19.5$, $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{qd}, J=11.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 3 \mathrm{H})$,
$1.97-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.28-$ $1.13(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.1,190.0,184.9,163.0$, $149.1,137.2,135.6,134.5,133.8,131.7,127.3,126.7,124.1,93.6,81.1,76.5,55.3$, $53.4,50.1,47.7,35.6,34.6,32.5,32.2,31.1,22.1,21.9,13.8$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{ClO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 463.1671$, found: 463.1671 .

5-Bromo-2-(3-(((8S,9S,10S,13S,14S)-13-methyl-3,17-dioxo-3,6,7,8,9,11,12,13,14,1 5,16,17-dodecahydro-10H-cyclopenta[a]phenanthren-10-yl)oxy)prop-1-yn-1-yl)b enzaldehyde (7e) ${ }^{\text {S1 }}$

Column chromatography (eluent: petroleum ether/EtOAc $=10: 1$ to $4: 1$) to afford $\mathbf{5 e}$ in 69% yield (700 mg) as a colorless solid; mp $183-185{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.38(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=10.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}$, $1 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 2.64(\mathrm{ddd}, J=12.7,5.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=19.4,8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{qd}, \mathrm{J}=11.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 3 \mathrm{H}), 1.97-$ $1.92(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.12(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.1,189.9,184.9,163.0,149.1,137.3,136.7,134.6$, $131.7,130.3,126.7,124.5,123.6,93.8,81.2,76.5,55.3,53.4,50.1,47.7,35.6,34.6$, 32.8, 32.2, 31.1, 22.1, 21.9, 13.8; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{BrO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 507.1165, found: 507.1167.

,15,16,17-dodecahydro-10H-cyclopenta[a]phenanthren-10-yl)oxy)prop-1-yn-1-yl)

 benzaldehyde (7f)

Column chromatography (eluent: petroleum ether/EtOAc $=10: 1$ to $3: 1$) to afford $\mathbf{5 f}$ in 53% yield (456 mg) as a colorless solid; $\mathrm{mp} 171-173{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 10.47(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=10.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.37(\mathrm{dd}, J=10.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23-6.15(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{ddd}, J=12.5,5.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.95(\mathrm{~m}$, $4 H), 1.90-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.19-0.89(\mathrm{~m}, 4 \mathrm{H})$, $0.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.4,185.2,164.1,149.9,136.1,133.7$, $133.3,131.4,128.9,127.3,126.3,126.0,92.9,82.0,81.5,55.7,53.4,49.9,43.1,36.3$, 35.1, 33.4, 32.5, 30.4, 23.6, 22.6, 11.0; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 431.2217, found: 431.2214.
4. General Procedure for the THF-enabled $\mathbf{P t B r}_{2}$-Catalyzed Desymmetric Hydrogenative [3+2] Cycloaddition and TBATB-Mediated Deacetalization

To an oven-dried round-bottom flask (10 mL) equipped with a magnetic stir bar were added O - or $N T s$-tethered cyclohexadienones 1 or $7(0.2 \mathrm{mmol}), 4 \AA \mathrm{MS}(100 \mathrm{mg})$ and $\mathrm{PtBr}_{2}(3.5 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction vessel was capped and charged with an argon atmosphere through three cycles of the vacuum-argon-backfill method over 5 min . Anhydrous THF (2 mL) was then added and the resulting reaction mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 24 h . Upon completion, the reaction mixture was cooled to room
temperature, tetrabutylammonium tribromide (TBATB) ($4.8 \mathrm{mg}, 0.01 \mathrm{mmol}$) and $\mathrm{MeOH}(2 \mathrm{~mL})$ were added. The resulting reaction mixture was stirred at room temperature for 1 h (monitored by TLC), filtered through a pad of Celite and rinsed with EtOAc. The filtrate was washed with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with EtOAc (10 mL x 2). The combined organic phases are washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford the desired product 4 or 8 .

($2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}$)-2a-Ethyl-6-hydroxy-2a,2a ${ }^{1}, 5 \mathrm{a}, 6$-tetrahydrobenzo[5,6]cycl

 ohepta[1,2,3-cd]benzofuran-5(1H)-one (4a)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product 4 a in 75% yield (40 mg); colorless solid, mp $182-184{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=10.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.78(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=11.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=4.9,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.39-3.34 (m, 1H), $1.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.1,152.0,140.0$, $139.6,132.2,130.2,127.6,127.5,127.3,123.8,82.2,72.8,71.0,50.5,49.4,22.8 ;$ HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 269.1172$, found: 269.1170 .
$\left(2 \mathrm{aS}^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}\right)$-2a-Ethyl-6-hydroxy-2a, $2 \mathrm{a}^{1}, 5 \mathrm{a}, 6$-tetrahydrobenzo[5,6]cycl ohepta[1,2,3-cd]benzofuran-5(1H)-one (4b)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product 4b in 93% yield (53 mg); colorless solid, $\mathrm{mp} 99-101^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.91(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.58(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.4,151.8,140.3,139.6,132.2$, $130.3,128.0,127.6,127.5,127.3,123.8,84.4,72.9,71.1,49.6,47.9,29.4,8.0$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 283.1329$, found: 283.1326 .

$\left(2 a S^{*}, 2 a^{1} S^{*}, 5 a R^{*}, 6 R^{*}\right)$-6-Hydroxy-2a-propyl-2a, $\mathbf{2 a}^{1}, 5 \mathrm{a}, 6$-tetrahydrobenzo $[5,6]$ cy clohepta[1,2,3-cd]benzofuran-5(1H)-one (4c)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product $\mathbf{4 c}$ in 97% yield (58 mg); colorless solid, $\mathrm{mp} 138-140^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=10.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}$, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=11.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dt}, J=13.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ $(\mathrm{dt}, J=13.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=5.1,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.43-3.40(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{ddd}, J=14.1,10.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{ddd}, J=14.1,11.0$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.4,151.8,140.2,139.6,132.2,130.3,127.8,127.5,127.5,127.3,123.8,84.4$, 72.9, 71.1, 49.5, 48.5, 38.9, 17.1, 14.5; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 297.1485, found: 297.1483.
$\left(2 a S^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a}^{*}, 6 R^{*}\right)$-6-Hydroxy-2a-pentyl-2a, $2 \mathrm{a}^{1}, 5 \mathrm{a}, 6$-tetrahydrobenzo[5,6]cy clohepta[1,2,3-cd]benzofuran-5(1H)-one (4d)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $5: 1$) to give the product $\mathbf{4 d}$ in 92% yield (60 mg); colorless solid, $\mathrm{mp} 198-200^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=10.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.80(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}$, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.41(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{ddd}, J=14.1$, $10.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.80$ (ddd, $J=14.1,11.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.39-$ $1.32(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.4,151.9$, 140.2, 139.6, 132.2, 130.3, 127.8, 127.6, 127.5, 127.4, 123.8, 84.4, 73.0, 71.1, 49.5, 48.5, 36.7, 32.2, 23.4, 22.5, 14.0; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 325.1798$, found: 325.1791.

$\left(2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} \mathrm{~S}^{*}, 5 \mathrm{a}^{*}, 6 R^{*}\right.$)-2a-Benzyl-6-hydroxy-2a, $2 \mathrm{a}^{1}, 5 \mathrm{a}, 6$-tetrahydrobenzo $[5,6]$ cy clohepta $[1,2,3-c d]$ benzofuran-5(1H)-one (4e)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product 4 e in 57% yield (40 mg); colorless solid, $\mathrm{mp} 196-198^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=10.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=13.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~d}$,
$J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.2$, 151.3, 139.7, 139.6, 135.3, 132.2, 130.4, 130.2, 128.4, 127.9, 127.6, 127.5, 127.3, 127.2, 123.9, 84.2, 72.8, 71.1, 49.4, 48.0, 42.7; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 367.1305$, found: 367.1304.
($2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}$)-6-Hydroxy-2a-(2-methoxyethyl)-2a, $\mathrm{aa}^{1}, 5 \mathrm{a}, 6$-tetrahydrobe nzo[5,6] cyclohepta[1,2,3-cd]benzofuran-5(1H)-one (4f)

Column chromatography (eluent: petroleum ether/EtOAc $=15: 1$ to $2: 1$) to give the product $\mathbf{4 f}$ in 83% yield (52 mg); colorless solid, mp $126-127^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=10.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.79(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=11.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{ddd}, J=9.9,6.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.57(\mathrm{~m}, 2 \mathrm{H})$, $3.55-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.19$ (ddd, $J=14.7,6.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (ddd, $J=$ $14.8,6.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.5,151.3,140.0,139.8$, $132.1,130.3,127.8,127.5,127.5,127.3,123.7,83.5,72.9,71.1,67.7,58.6,49.2,48$. 8, 36.4; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 313.1434$, found: 313.1433.
($2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}$)-6-Hydroxy-2a-isopropyl-2a, $\mathbf{2 a}^{1}, 5 \mathrm{a}, 6$-tetrahydrobenzo[5,6] cyclohepta[1,2,3-cd]benzofuran-5(1H)-one (4g)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $5: 1$) to give the product $\mathbf{4 g}$ in 59% yield (35 mg); colorless solid, mp $107-109{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=10.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.88(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=11.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.29 (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 3 \mathrm{H}), 2.15(\mathrm{dt}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.13$ (dd, $J=6.9,3.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.4,151.6,141.0,139.6,132.0$, 130.6, 128.5, 127.5, 127.5, 127.4, 123.7, 86.3, 73.2, 71.2, 50.5, 45.9, 34.5, 17.6, 17.4; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 297.1485$, found: 297.1486 .
$\left(2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}\right)$-6-Hydroxy-2a-phenyl-2a, $\mathrm{aa}^{1}, 5 \mathrm{a}, 6$-tetrahydrobenzo[5,6]cy clohepta[1,2,3-cd]benzofuran-5(1H)-one (4h)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $4: 1$) to give the product $\mathbf{4 h}$ in 90% yield (60 mg); colorless solid, mp $145-147{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=10.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.96(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=11.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dt}, J=13.2,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.53-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=4.8,3.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.5,149.2,139.8,139.7,139.0,132.4,130.2,129.3$, 128.9, 128.7, 127.7, 127.5, 127.4, 125.5, 123.7, 86.0, 72.7, 71.8, 53.1, 48.4; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 353.1148$, found: 353.1145 .
$\left(2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}\right)$-2a-Cyclohexyl-6-hydroxy-2a, $2 \mathrm{a}^{1}, 5 \mathrm{a}, 6$-tetrahydrobenzo[5, 6]cyclohepta[1,2,3-cd]benzofuran-5(1H)-one (4i)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $5: 1$) to give the product $4 \mathbf{i}$ in 78% yield (52 mg); colorless solid, mp $126-128{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=10.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.85(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=11.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.80$ (ddd, $J=11.6,7.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.16(\mathrm{~m}$, 1H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.1,191.3,184.9,163.2,149.2,136.1,133.7$, 133.3, 131.6, 128.9, 127.3, 126.6, 125.8, 92.7, 82.1, 76.4, 55.3, 53.4, 50.1, 47.7, 35.6, 34.6, 32.5, 32.2, 31.0, 22.1, 21.9, 13.8; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 337.1798, found: 337.1793.
$\left(6 \mathrm{a} R^{*}, 6 \mathrm{a}^{1} S^{*}, 14 R^{*}, 14 \mathrm{a} R^{*}\right.$)-14-Hydroxy-3,4,5,6,6a${ }^{1}, 8,14,14 \mathrm{a}-$ octahydro- $1 H$-benzo[$h]$ benzo $[5,6]$ cyclohepta $1,2,3-c d]$ benzofuran-1-one (4j)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product $\mathbf{4 j}$ in 74% yield (46 mg); colorless solid, mp $214-216{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=11.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J$ $=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=4.6,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.19(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{td}, J=12.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-$ 2.04 (m, 1H), 2.04-1.99 (m, 1H), 1.99-1.91 (m, 2H), 1.80-1.73 (m, 1H), 1.40-1.31 (m, 1H); ${ }^{13}{ }^{1}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.1,165.0,140.2,139.9,132.1,130.3,127.7,127.5,127.3$, 123.8, 122.7, 84.2, 72.5, 70.2, 49.9, 49.4, 36.6, 32.0, 28.5, 21.9; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 309.1485$, found: 309.1486.
$\left(5 \mathrm{a} R^{*}, 5 \mathrm{a}^{1} S^{*}, 13 R^{*}, 13 \mathrm{a} R^{*}\right)$-13-Hydroxy-4,5,5a${ }^{1}, 7,13,13 \mathrm{a}-h e x a h y d r o b e n z o[5,6]$ cycl ohepta[1,2,3-cd]cyclopenta[h]benzofuran-1(3H)-one (4k)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $4: 1$) to give the product $\mathbf{4 k}$ in 68% yield (40 mg); pale-yellow solid, mp $176-178{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.55$ (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 1 \mathrm{H})$, $3.31(\mathrm{dd}, J=5.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{dt}, J=16.7,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.22-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{dd}, J=17.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.9,166.5,141.6,139.9,132.1,131.5,128.5,127.5,127.4,123.0$, 122.6, 89.0, 72.5, 69.6, 53.2, 41.9, 32.2, 27.9, 20.9; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 295.1329$, found: 295.1328.

2a,3,4,5,5a ${ }^{1}, 7$-Hexahydrobenzo $[5,6]$ cyclohepta $[1,2,3-c d][1,3]$ dioxole $[h]$ benzofura n-1(2H)-one (41)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product 41 in 48% yield (27 mg); pale-yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72$ $(\mathrm{s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.76-4.67(\mathrm{~m}, 2 \mathrm{H})$, $4.30(\mathrm{dd}, J=6.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{td}, J=8.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=15.1,8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=16.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=16.6,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.27 (ddd, $J=12.5,8.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.9,145.3,137.0,135.9,133.5,133.3,131.2,129.9,128.8,126.6,119.5,88.2$,
77.6, 70.3, 65.8, 45.7, 40.8, 37.7; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 281.1172$, found: 281.1172 .
($2 \mathrm{a} R^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}$)-6-Hydroxy-2a,3-dimethyl-2a, $2 \mathrm{a}{ }^{1}, 5 \mathrm{a}, 6$-tetrahydrobenzo $[5$, 6]cyclohepta[1,2,3-cd]benzofuran-5(1H)-one (4m)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product $\mathbf{4 m}$ in 66% yield (37 mg); colorless solid, $\mathrm{mp} 170-1726{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90$ (dd, $J=11.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dt}, J=13.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=5.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=4.8,2.4 \mathrm{~Hz}$, 1H), $1.94(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.7$, $163.0,139.9,139.8,132.1,130.2,127.5,127.4,127.2,125.9,123.7,84.0,72.7,70.5$, 51.5, 49.4, 22.2, 17.6; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 283.1329$, found: 283.1331 .
($2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} R^{*}, 5 \mathrm{a} R^{*}, 6 S^{*}$)-6-Hydroxy-2a,4,5a-trimethyl-2a, $\mathbf{2 a}^{1}, 5 \mathrm{a}, 6$-tetrahydrobenz $0[5,6]$ cyclohepta $[1,2,3-c d]$ benzofuran-5(1H)-one (4n)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product $\mathbf{4 n}$ in 84% yield (50 mg); colorless solid, mp $126-128{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=$ $7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 4.81$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=$
$1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.8,147.0$, $145.6,138.2,136.5,135.7,130.8,129.6,128.2,126.8,121.8,81.8,79.2,70.0,62.2$, 53.6, 27.7, 26.4, 16.1; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 297.1485$, found: 297.1492.
($2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}$)-2a-Ethyl-7-fluoro-6-hydroxy-2a, $2 \mathrm{a}{ }^{1}, 5 \mathrm{a}, 6$-tetrahydrobenzo [5,6]cyclohepta $[1,2,3-c d]$ benzofuran-5(1H)-one (40)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product $\mathbf{4 o}$ in 55% yield (33 mg); pale-yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24$ (td, $J=8.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.63$ (dd, $J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ (s, $1 \mathrm{H}), 6.24(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=7.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=13.1,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.38(\mathrm{dt}, J=13.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=9.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 197.4,160.2(\mathrm{~d}, J=246.9 \mathrm{~Hz}), 151.3,146.1,138.1,131.6$, $129.1(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 126.6(\mathrm{~d}, J=13.6 \mathrm{~Hz}), 125.5(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 121.7(\mathrm{~d}, J=2.6$ $\mathrm{Hz}), 114.1(\mathrm{~d}, J=23.9 \mathrm{~Hz}), 82.7,70.2,65.3(\mathrm{~d}, J=6.94 \mathrm{~Hz}), 58.6,45.1,32.1,8.1 ;{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.19$ (dd, $J=9.7,5.5 \mathrm{~Hz}$); HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 301.1234$, found: 301.1234.
$\left(2 \mathrm{a}^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}\right)$-2a-Ethyl-8-fluoro-6-hydroxy-2a,2a ${ }^{1}, 5 \mathrm{a}, 6$-tetrahydrobenzo [5,6]cyclohepta[1,2,3-cd]benzofuran-5(1H)-one (4p)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $43: 1$) to give the product $\mathbf{4} \mathbf{p}$ in 77% yield (46 mg); colorless solid, mp $145-147{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{dd}, J=10.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ (td, $J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.84(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.2,162.2(\mathrm{~d}, J=247.2 \mathrm{~Hz})$, $152.00,142.5(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 139.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 134.0(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 133.9$, $127.8,126.5(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 122.7,114.9(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 114.1(\mathrm{~d}, J=21.4 \mathrm{~Hz})$, 84.5, 72.5, 71.1, 49.2, 48.0, 29.3, 7.9; ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.58$ to 113.72 (m); HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 301.1234$, found: 301.1232.
($2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a}^{*}, 6 R^{*}$)-8-Chloro-2a-ethyl-6-hydroxy-2a, $2 \mathrm{a}^{1}, 5 \mathrm{a}, 6$-tetrahydrobenz o[5,6]cyclohepta[1,2,3-cd]benzofuran-5(1H)-one (4q)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $4: 1$) to give the product $\mathbf{4 q}$ in 82% yield (52 mg); colorless solid, mp $190-192{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.61(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.62(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.41(\mathrm{~s}, 2 \mathrm{H}), 2.03-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.1,151.9,141.5,140.8,133.5,133.4,128.8,127.8$, 127.8, 127.3, 122.7, 84.5, 72.4, 71.0, 49.1, 48.0, 29.2, 7.9; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 317.0939$, found: 317.0940. o[5,6]cyclohepta[1,2,3-cd]benzofuran-5(1H)-one (4r)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product $4 \mathbf{r}$ in 80% yield (72 mg); colorless solid, mp 207-209 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.63 (dd, $J=10.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.85(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=13.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 1 \mathrm{H})$, $1.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.1, 151.9, 141.7, 141.1, 133.6, 130.8, 130.4, 129.3, 127.8, 122.8, 121.9, 84.5, 72.4, 71.1, 49.1, 48.0, 29.2, 7.9; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 361.0434$, found: 361.0442.
$\left(2 \mathrm{a}^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}\right)$-2a-Ethyl-6-hydroxy-8-methyl-2a,2a ${ }^{1}, 5 \mathrm{a}, 6$-tetrahydrobenz o[5,6]cyclohepta[1,2,3-cd]benzofuran-5(1H)-one (4s)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product 4s in 84% yield (50 mg); colorless solid, mp 176-178 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.60$ $(\mathrm{d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.62 (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}$, $2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{dq}, J=14.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dq}, J=14.8,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.4$, 151.7, 139.3, 138.9,
137.3, 132.3, 128.2, 128.0, 127.9, 127.6, 123.6, 84.3, 72.9, 71.1, 49.6, 47.9, 29.3, 21.3, 7.9; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 297.1485$, found: 297.1493.

($2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}$)-2a-Ethyl-9-fluoro-6-hydroxy-2a, $2 \mathrm{a}{ }^{1}, 5 \mathrm{a}, 6$-tetrahydrobenzo

[5,6]cyclohepta $[1,2,3-c d]$ benzofuran-5(1H)-one (4t)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $4: 1$) to give the product $4 \mathbf{t}$ in 79% yield (48 mg); colorless solid, mp $106-108{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{dd}, J=8.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{td}, J=8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=$ $9.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=10.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=13.5$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.38(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{dq}, J=14.9,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.86(\mathrm{dq}, J=14.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) $\delta 198.3,161.7(\mathrm{~d}, J=245.0 \mathrm{~Hz}), 151.8,142.0,135.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 132.3(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 128.0,122.9,122.9,118.2(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 114.1$ $(\mathrm{d}, J=20.5 \mathrm{~Hz}), 84.5,72.6,71.0,49.3,48.0,29.3,7.9 ;{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -117.12 (dd, $J=15.7,7.6 \mathrm{~Hz}$); HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 301.1234$, found: 301.1227.

$\left(2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} \mathrm{~S}^{*}, 5 \mathrm{a}^{*}, 6 R^{*}\right)$-9-Chloro-2a-ethyl-6-hydroxy-2a, $\mathbf{2 a}^{1}, 5 \mathrm{a}, 6$-tetrahydrobenz o[5,6]cyclohepta[1,2,3-cd]benzofuran-5(1H)-one (4u)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $4: 1$) to give the product $4 \mathbf{u}$ in 85% yield (54 mg); colorless solid, mp $112-114{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=$
$2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=10.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.38(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{dq}, J=14.9,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.86(\mathrm{dq}, J=14.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.2,151.9,142.1,138.1,132.9,132.0,131.6,129.2,127.9,127.3,122.7,84.5$, 72.6, 71.1, 49.2, 48.0, 29.3, 8.0; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 317.0939, found: 317.0940.

$\left(2 a S^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a}^{*}, 6 R^{*}\right)$-9-Bromo-2a-ethyl-6-hydroxy-2a, $2 \mathrm{a}^{1}, 5 \mathrm{a}, 6$-tetrahydrobenz

 o[5,6]cyclohepta[1,2,3-cd]benzofuran-5(1H)-one (4v)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product 4v in 96% yield (69 mg); colorless solid, mp 117-119 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=10.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.36(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{dq}, J=14.8,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.84(\mathrm{dq}, J=14.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.1,151.8,142.2,138.7,134.3,132.3,130.2,129.4,127.8,122.5,120.9,84.5$, 72.5, 71.0, 49.1, 48.0, 29.2, 7.9; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 383.0253, found: 383.0251 . zo[5,6]cyclohepta[1,2,3-cd]benzofuran-5(1H)-one (4w)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $4: 1$) to give the product 4w in 79% yield (47 mg); colorless solid, $\mathrm{mp} 91-93{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dt}, J=14.1,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.66-6.60(\mathrm{~m}, 2 \mathrm{H})$, $6.07(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=8.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=8.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.20(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 197.9,151.7,143.3,139.9,137.0,131.4,130.2,130.2$, 127.3, 126.4, 119.2, 83.3, 74.6, 71.0, 55.9, 45.9, 31.5, 20.6, 8.1; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 297.1485$, found: 297.1488.

($2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}$)-2a-Ethyl-6-hydroxy-2a,2a ${ }^{1}, 5 \mathrm{a}, 6$-tetrahydro-[1,3]dioxolo[4

 ',5':4',5']benzo[1',2':5,6]cyclohepta[1,2,3-cd]benzofuran-5(1H)-one (4x)

Column chromatography (eluent: petroleum ether/EtOAc $=150: 1$ to $3: 1$) to give the product 4x in 59% yield (39 mg); pale-yellow solid, mp 192-194 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H})$, $5.96(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}$, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.39(\mathrm{~m}$, $2 \mathrm{H}), 1.99(\mathrm{dq}, J=14.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dq}, J=14.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) δ 198.5, 151.9, 147.3, 146.5, 138.4, 134.5,
127.9, 124.3, 123.3, 111.7, 108.3, 101.2, 84.4, 72.8, 71.1, 49.7, 47.7, 29.5, 8.0; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 349.1046$, found: 349.1047.
$\left(2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a}^{*}, 6 R^{*}\right)$-2a-Ethyl-6-hydroxy-2a, $2 \mathrm{a}^{1}, 5 \mathrm{a}, 6$-tetrahydronaphtho[2', $\mathbf{1}^{\prime}$: 5,6]cyclohepta[1,2,3-cd]benzofuran-5(1H)-one (4y)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product $4 y$ in 64% yield (43 mg); pale-yellow solid, mp $188-190{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.18(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=8.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=12.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (dd, $J=9.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{dt}, J=8.7,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.7,151.7,146.2,137.8,133.3,131.9,130.9,129.6$, $128.5,127.9,126.7,126.4,125.9,123.6,117.9,83.0,75.1,70.9,58.5,45.4,32.1,8.1$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 355.1305$, found: 355.1303.
$\left(3 a S^{*}, 3 a^{1} S^{*}, 6 R^{*}, 7 R^{*}\right)$-7-Hydroxy-3a-propyl-1,2,3a,3a ${ }^{1}, 6 \mathrm{a}, 7$-hexahydro-6H-benz o[5,6]cyclohepta[1,2,3-de]chromen-6-one (4z)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product 4 z in 56% yield (35 mg); colorless solid, mp $140-142{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=10.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J$ $=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=11.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.55$
$(\mathrm{m}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=5.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56(\mathrm{td}, J=13.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 1 \mathrm{H})$, $1.85-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.7,156.2,140.1,135.1,131.6,130.2,129.4,128.6$, 127.0, 126.9, 125.4, 78.7, 73.5, 64.9, 55.9, 49.2, 43.0, 39.2, 17.2, 14.4; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 311.1642$, found: 311.1649.
($2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}$)-6-Hydroxy-2a-methyl-2-tosyl-1,2,2a,2a ${ }^{1}, 5 \mathrm{a}, 6$-hexahydro-5 H-benzo[5,6]cyclohepta[1,2,3-cd]indol-5-one (4aa)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $2: 1$) to give the product 4aa in 55% yield (36 mg); colorless solid, $\mathrm{mp} 154-156{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H})$, $6.29(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=$ $5.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9$, $150.9,143.7,139.7,138.5,133.1,132.5,129.8,129.5,128.0,127.4,126.9,126.6$, 126.1, 72.7, 67.8, 53.8, 52.7, 49.5, 22.8, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 422.1421$, found: 422.1421 .

$\left(2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}\right)$-2a-Butyl-6-hydroxy-2-tosyl-1,2,2a,2a ${ }^{1}, 5 \mathrm{a}, 6$-hexahydro-5H -benzo[5,6]cyclohepta[1,2,3-cd] indol-5-one (4ab)

Column chromatography (eluent: petroleum ether/EtOAc $=15: 1$ to $2: 1$) to give the product 4ab in 60% yield (56 mg); colorless solid, mp $167-169{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=10.3,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12$ (dd, $J=34.1,13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}$, $J=5.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, J=18.3,9.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.75(\mathrm{~m}$, 1 H), $1.44-1.31(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.2, 150.8, 143.8, 139.6, 137.7, 133.4, 132.3, 129.7, 129.6, 127.9, 127.3, 127.1, 126.8, 126.4, 126.3, 72.8, 71.9, 54.1, 49.5, 47.7, 33.8, 26.3, 22.8, 21.5, 14.0; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 464.1890$, found: 464.1888.

($2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} \mathrm{~S}^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}$)-6-Hydroxy-2a-isopropyl-2-tosyl-1,2,2a, $\mathrm{Za}^{1}, 5 \mathrm{a}, 6$-hexahydr

 o-5H-benzo[5,6] cyclohepta[1,2,3-cd]indol-5-one (4ac)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product 4ac in 38% yield (34 mg); colorless solid, mp 187-189 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (dd, $J=10.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.49(\mathrm{dd}, J=6.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dt}, J=13.9,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.07(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.2, 149.4, 143.6, 139.8, 137.6, 134.0, 132.0, 129.7, 128.0, 127.3, 127.3, 127.0, 126.6, 126.4, $75.6,72.6,54.9,52.2,44.5,33.7,21.5,18.6,17.5$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 450.1734$, found: 450.1728 . hydro-5H-benzo[5,6]cyclohepta[1,2,3-cd]indol-5-one (4ad)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $3: 1$) to give the product 4ad in 55% yield (51 mg); colorless solid, $\mathrm{mp} 181-183{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{tt}, J=10.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.10(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.10 (dd, $J=36.4,13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.28$ (m, 1H), 2.19 (dt, $J=18.6$, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.1,150.2,144.0$, 139.6, 137.4, 136.9, 133.1, 132.3, 129.9, 129.5, 128.0, 127.4, 127.2, 126.9, 126.6, 126.6, 115.8, 72.8, 71.8, 54.0, 49.5, 47.5, 32.9, 28.2, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 462.1734$, found: 462.1734 .
($2 a S^{*}, 2 a 1 R^{*}$)-2a-methyl-2a,2a1-dihydrobenzo[5,6]cyclohepta[1,2,3-cd]benzofura n-5(1H)-one (5a)

Table S1, entry 4: Column chromatography (eluent: petroleum ether/EtOAc $=30: 1$ to 10:1) to give the product $\mathbf{5 a}$ in 46% yield (23 mg); pale-yellow oil; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=13.5$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dt}, J=13.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.2,150.4,146.2,136.6,135.7,133.9,132.8,130.3$, 130.2, 129.2, 128.4, 126.4, 118.8, 79.0, 70.0, 47.0, 28.1; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 251.1067$, found: 251.1072.
$\left(2 a S^{*}, 2 a 1 R^{*}, 5 a R^{*}, 6 R^{*}, 11 a R^{*}\right)$-2a-methyl-2a,2a1,5a,6-tetrahydro-1H-6,11a-epoxy benzo[5,6]cyclohepta[1,2,3-cd]benzofuran-5,11-dione (6a) ${ }^{\text {S1 }}$

Table S1, entry 18: Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $5: 1$) to afford $\mathbf{6 a}$ in 32% yield (18 mg); yellow solid, $\mathrm{mp} 199-201{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.66(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.2$, $191.5,152.9,144.3,134.5,130.0,128.9,128.2,127.4,124.5,99.5,88.6,77.6,68.4$, 54.0, 51.4, 27.8.
(3aS,3bS,7aR,7a $\left.{ }^{1} S, 8 R, 15 a R, 15 b S, 17 a S\right)-8-H y d r o x y-17 a-m e t h y l-2,3,3 a, 3 b, 4,5,7 a, 7$ $\mathbf{a}^{1}, 8,14,15 \mathrm{~b}, 16,17,17 \mathrm{a}$-tetradecahydrobenzo[5,6]cyclohepta[1,2,3-cd]cyclopenta[5, 6]naphtho $[2,1-h$] benzofuran-1,7-dione (8a)

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $2: 1$) to give the product 8a in 80% yield (697 mg); colorless solid, mp $140-142{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=11.8,2.3$
$\mathrm{Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.59-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=$ $19.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 3 \mathrm{H}), 1.98-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.63-$ $1.55(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{td}, J=11.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.08(\mathrm{~m}, 1 \mathrm{H})$, 0.96 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.3,155.7,140.2,134.7,131.7,130.2$, 129.4, 128.7, 127.1, 126.9, 125.4, 76.7, 73.4, 65.0, 56.3, 51.7, 39.1, 27.5; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 431.2217$, found: 431.2216.
(3aS,3bS,7aR, $7 \mathrm{a}^{1} S, 8 R, 15 \mathrm{a} R, 15 \mathrm{bS}, 17 \mathrm{aS}$)-9-Fluoro-8-hydroxy-17a-methyl-2,3,3a,3 $\mathbf{b , 4 , 5 , 7 a}, 7 \mathbf{a}^{1}, 8,14,15 \mathrm{~b}, 16,17,17 \mathrm{a}-$ tetradecahydrobenzo[5,6]cyclohepta[1,2,3-cd]cycl openta[5,6]naphtho[2,1-h]benzofuran-1,7-dione (8b)

Column chromatography (eluent: petroleum ether/EtOAc $=15: 1$ to $2: 1$) to give the product $\mathbf{8 b}$ in 53% yield (48 mg); colorless solid, mp 260-262 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{td}, J=7.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (dd, $\left.J=9.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.85(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{dd}, J=7.4,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.42(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dt}, J=13.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.43 (dd, $J=6.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.34$ (m, 1H), 2.76 (ddd, $J=12.4,4.8,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.46(\mathrm{dd}, J=19.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.08-$ $2.04(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.63$ $(\mathrm{m}, 1 \mathrm{H}), 1.57(\mathrm{ddd}, J=18.4,10.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{td}, J=11.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.33-$ $1.27(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.1$, 197.9, 164.4, $161.6(\mathrm{~d}, J=248.0 \mathrm{~Hz}), 144.3,136.6(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=9.9$ $\mathrm{Hz}), 126.9(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 126.3(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 125.5,122.1(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 114.6$, (d, $J=24.4 \mathrm{~Hz}$), 84.7, 69.5, $66.5(\mathrm{~d}, ~ J=4.4 \mathrm{~Hz}), 54.8,50.6,49.1,47.8,42.3,36.1$, 35.7, 31.7, 31.7, 30.9, 21.7, 20.8, 13.8; ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.71$ (dd, J
$=10.0,5.1 \mathrm{~Hz}$); HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{FO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 449.2123$, found: 449.2117.
(3aS,3bS,7aR,7a $\left.{ }^{1} S, 8 R, 15 \mathrm{a} R, 15 \mathrm{bS}, 17 \mathrm{a} S\right)$-8-Hydroxy-10,17a-dimethyl-2,3,3a,3b,4,5 , $7 \mathrm{a}, 7 \mathbf{a}^{1}, \mathbf{8 , 1 4 , 1 5 b , 1 6 , 1 7 , 1 7 a - t e t r a d e c a h y d r o b e n z o [5 , 6] c y c l o h e p t a [1 , 2 , 3 - c d] c y c l o p e n ~}$ ta[5,6]naphtho $\mathbf{2 , 1 - h}]$ benzofuran-1,7-dione (8c)

Column chromatography (eluent: petroleum ether/EtOAc $=15: 1$ to $24: 1$) to give the product 8c in 81% yield (72 mg); colorless solid, mp 213-215 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.15$ ($\mathrm{s}, 1 \mathrm{H}$), $5.66(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=$ $13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.28(\mathrm{~m}, 1 \mathrm{H})$, 2.72 (td, $J=12.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=19.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{dd}$, $J=9.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=11.6,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{dq}, J=12.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{td}, J=11.1,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.34$ (ddd, $J=17.6,12.7,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.11$ (qd, $J=12.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.96$ (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.1,197.9,165.8,139.5,138.7,137.3,132.3$, $128.4,128.0,127.5,123.6,122.7,85.6,72.7,70.2,50.7,49.1,48.5,47.9,44.5,35.9$, 35.7, 32.4, 31.4, 30.9, 21.8, 21.3, 21.2, 13.8; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 445.2373, found: 445.2378.
(3aS,3bS,7aR, $7 \mathrm{a}^{1} S, 8 R, 15 \mathrm{a} R, 15 \mathrm{bS}, 17 \mathrm{aS}$)-10-Chloro-8-hydroxy-17a-methyl-2,3,3a, 3b,4,5,7a,7a ${ }^{1}$,8,14,15b,16,17,17a-tetradecahydrobenzo[5,6]cyclohepta[1,2,3-cd]cy clopenta[5,6]naphtho[2,1-h]benzofuran-1,7-dione (8d)

S44

Column chromatography (eluent: petroleum ether/EtOAc $=20: 1$ to $2: 1$) to give the product $8 \mathbf{8 d}$ in 88% yield (82 mg); colorless solid, mp 241-243 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.13(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=11.9,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.57(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dt}, J=13.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.58 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=4.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.48$ (dd, J $=19.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.89-$ 1.83 (m, 1H), 1.82-1.76 (m, 1H), 1.59 (tt, $J=12.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{td}, J=11.5,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 220.1,197.5,166.0,141.7,140.8,133.5,133.4,128.8,128.0,127.3,122.7$, $122.6,85.7,72.3,70.2,50.7,48.8,48.5,47.8,44.6,35.9,35.7,32.3,31.5,30.9,21.8$, 21.2, 13.8; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{ClO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 465.1827$, found: 465.1830.
(3aS,3bS,7aR,7a ${ }^{1} S, 8 R, 15 \mathrm{a} R, 15 \mathrm{bS}, 17 \mathrm{aS}$)-10-Bromo-8-hydroxy-17a-methyl-2,3,3a, 3b,4,5,7a, $\mathbf{7 a}^{1}$,8,14,15b,16,17,17a-tetradecahydrobenzo[5,6]cyclohepta[1,2,3-cd]cy clopenta[5,6]naphtho[2,1-h]benzofuran-1,7-dione (8e)

Column chromatography (eluent: petroleum ether/EtOAc $=15: 1$ to $2: 1$) to give the product 8e in 96% yield (98 mg); colorless solid, mp 250-252 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11$ (s, 1H), $5.65(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=$ $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.27(\mathrm{~m}, 1 \mathrm{H})$, 2.71 (td, $J=12.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (dd, $J=19.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.14-2.03(\mathrm{~m}, 3 \mathrm{H}), 1.97-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H})$, $1.49(\mathrm{td}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{qd}, J=12.9,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.10(\mathrm{qd}, J=12.8,3.8$ $\mathrm{Hz}, 1 \mathrm{H}$), $0.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.0,197.5,166.0,141.9$, 141.1, 133.5, 130.8, 130.3, 129.2, 122.7, 122.5, 121.8, 85.6, 72.2, 70.2, 50.6, 48.7,
48.4, 47.8, 44.6, 35.8, 35.7, 32.3, 31.4, 30.9, 21.8, 21.2, 13.8; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{BrO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 509.1322$, found: 509.1336.
(1S,3aS,3bS,7aR,7a $\left.{ }^{1} S, 8 R, 15 \mathrm{a} R, 15 \mathrm{bS}, 17 \mathrm{aS}\right)$-1,8-Dihydroxy-17a-methyl-2,3,3a,3b,4 ,5,7a, $7 \mathbf{a}^{1}, 8,14,15 \mathrm{~b}, 16,17,17 \mathrm{a}-$ tetradecahydrobenzo[5,6]cyclohepta[1,2,3-cd]cyclope nta[5,6]naphtho[2,1-h]benzofuran-7(1H)-one (8f)

Column chromatography (eluent: petroleum ether/EtOAc $=10: 1$ to $2: 1$) to give the product $\mathbf{8 f}$ in 86% yield (74 mg); colorless solid, mp $154-156{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}$, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H})$, 3.36-3.29 (m, 1H), 2.68 (td, $J=12.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-$ $2.04(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=20.9,11.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.57(\mathrm{~m}, 3 \mathrm{H})$, $1.47(\mathrm{td}, J=16.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{ddd}, J=18.4,12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{dd}, J=$ $14.6,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.07-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.0, 166.6, 140.5, 139.8, 132.2, 130.3, 127.6, 127.4, 127.3, 123.6, 122.4, 85.8, 81.5, $72.7,70.2,50.4,49.0,48.6,44.5,43.2,36.4,36.1,33.2,31.7,30.5,23.3,21.6,11.1 ;$ HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 433.2373$, found: 433.2372.

5. Gram-Scale Synthesis of 4 c and Selective Transformations

5.1. Scale-Up Experiment

To an oven-dried round-bottom flask (100 mL) equipped with a magnetic stir bar were added O-tethered cyclohexadienones $1 \mathbf{c}(1.03 \mathrm{mg}, 3.5 \mathrm{mmol}), 4 \AA$ MS $(1.75 \mathrm{~g})$ and $\mathrm{PtBr}_{2}(36.2 \mathrm{mg}, 0.105 \mathrm{mmol})$. The reaction vessel was capped and charged with an argon atmosphere through three cycles of the vacuum-argon-backfill method over 10 min . Anhydrous THF (35 mL) was then added and the resulting reaction mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 15 h . Upon completion, the reaction mixture was cooled to room temperature, tetrabutylammonium tribromide (TBATB) ($84.4 \mathrm{mg}, 0.175 \mathrm{mmol}$) and $\mathrm{MeOH}(35 \mathrm{~mL})$ were added. The resulting reaction mixture was stirred at room temperature for 1 h (monitored by TLC), filtered through a pad of Celite and rinsed with EtOAc. The filtrate was washed with saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases are washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford the desired product $4 \mathrm{c}(1.01 \mathrm{~g}, 97 \%$ yield $)$.

5.2. Selective transformations

To a solution of $\mathbf{4 c}(0.2 \mathrm{mmol}, 59.3 \mathrm{mg})$ in 1,2-dichloroethane (2 mL) at room temperature was added $\mathrm{TsOH}(10 \mathrm{~mol} \%)$. The resulting reaction mixture was stirred at room temperature for 6 h until full consumption of the starting material, as indicated by TLC analysis. Upon completion, the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc $=20: 1$ to 6:1) to afford the desired product 9 in 99% yield (55 mg) as a pale-yellow solid, $\mathrm{mp} 90-92{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.78 (s, 1H), 7.57 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H})$, $6.73(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-$ 4.58 (m, 1H), 4.38 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 1 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.61$ $(\mathrm{m}, 1 \mathrm{H}), 1.35-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.17(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 184.5,149.7,146.1,136.5,135.2,133.9,132.8,131.4,130.2$, 129.4, 128.3, 126.3, 118.7, 81.9, 69.9, 45.4, 42.9, 17.2, 14.2; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 279.1380$, found: 279.1376.

To a solution of $\mathbf{4 c}(0.2 \mathrm{mmol}, 59.3 \mathrm{mg})$ in 1,2-dichloroethane $(2 \mathrm{~mL})$ at room temperature was added $\mathrm{TsOH}(30 \mathrm{~mol} \%)$. The resulting reaction mixture was stirred at room temperature for 2 h until full consumption of the starting material. Upon completion, indole ($0.4 \mathrm{mmol}, 2.0$ equiv) was added to the reaction mixture and stirred at $60{ }^{\circ} \mathrm{C}$ for 12 h (monitored by TLC analysis). Upon completion, the reaction
mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc $=25: 1$ to $10: 1$) to give the product $\mathbf{1 0}$ in 71% yield (56 mg) as a pale-yellow solid, mp $241-243{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.61$ (m, 1H), 7.46-7.33 (m, 4H), $7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=14.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=16.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 1 \mathrm{H}), 2.68$ $(\mathrm{dd}, J=16.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.46(\mathrm{~m}, 4 \mathrm{H}), 0.70(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.5,148.0,137.8,135.7,134.3,133.8,132.8,132.5,129.7,128.3$, 127.4, 126.1, 122.3, 120.9, 119.6, 118.6, 118.3, 115.2, 111.1, 86.4, 68.4, 47.7, 41.8, 36.9, 35.2, 16.1, 14.3; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 396.1958$, found: 396.1956.

To a solution of $\mathbf{4 c}(0.2 \mathrm{mmol}, 59.3 \mathrm{mg})$ in dichloromethane $(4 \mathrm{~mL})$ at room temperature was added $\mathrm{NaHCO}_{3}(0.4 \mathrm{mmol}, 2.0$ equiv) and Dess-Martin periodinane (DMP, $0.3 \mathrm{mmol}, 1.5$ equiv). The resulting reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material, as indicated by TLC analysis. Upon completion, the reaction mixture was quenched by adding saturated sodium thiosulfate (2 mL) and saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, extracted with EtOAc (10 mL $\times 2$). The combined organic phases are washed with brine (10 mL) and dried over MgSO_{4}. The solvent was removed under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc $=30: 1$ to $15: 1$) to afford the diketone product $11(21 \mathrm{mg})$ and its enol isomer 11' (18 mg) in 36 and 30\% yield, respectively.

Product 11: white solid, mp $125-127^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.70(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 4.64$ (d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.10-$ $2.03(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 196.8,192.8,151.1,142.2,135.3,134.4,131.9,131.7,130.9,127.9,127.5$, $122.8,85.8,78.7,70.7,50.6,39.7,16.8,14.5$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 295.1329$, found: 295.1328.

Product 11': white solid, mp 111-113 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.91(\mathrm{~s}, 1 \mathrm{H})$, $8.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.30(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 1 \mathrm{H}), 1.71(\mathrm{td}, J=12.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.58$ $(\mathrm{m}, 1 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $182.6,176.5,150.7,146.0,137.0,133.7,130.8,129.8,129.6,129.1,126.7,117.2$, 106.6, 82.7, 69.1, 43.5, 42.4, 16.9, 14.2; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 295.1329, found: 295.1325.

To a solution of $4 \mathbf{c}(0.2 \mathrm{mmol}, 59.3 \mathrm{mg})$ and $\mathrm{Sc}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%)$ in 1,2-dichloroethane (2 mL) was added TMSCN ($0.6 \mathrm{mmol}, 3$ equiv). The resulting reaction mixture was stirred at room temperature for 24 h . Upon completion, the solvent was removed under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc $=20: 1$ to $8: 1$) to afford the desired product $\mathbf{1 2}$ in 37% yield (34.6 mg) as a colorless solid, $\mathrm{mp} 114-116^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{td}, J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{dd}, J$
$=10.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=$ $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dt}, J=13.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{t}, J=4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.75$ (ddd, $J=13.8,10.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{ddd}, J=14.0,11.2,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.56-1.47(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.30(\mathrm{~s}, 9 \mathrm{H}),-0.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.7,139.6,133.6,132.7,131.8,128.2,126.7,126.7,126.2$, 123.4, 122.0, 83.9, 74.3, 70.3, 65.3, 45.9, 43.8, 40.2, 17.1, 14.6, 0.5, -0.3; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 468.2385$; found: 468.2378 .

To a solution of $\mathbf{4 c}(0.2 \mathrm{mmol}, 59.3 \mathrm{mg})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added tetrabutylammonium tribromide (TBATB) ($0.5 \mathrm{mmol}, 2.5$ equiv). The resulting reaction mixture was stirred at room temperature for 24 h until full consumption of the starting material, as indicated by TLC analysis. Upon completion, the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc $=20: 1$ to $7: 1$) to afford the product $\mathbf{1 3}$ in 55% yield (59 mg) as a colorless solid, mp $189-191{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.21(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 3.67(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{td}, J=11.9,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 0.95(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7$, 131.8, 131.3, $128.2,128.1,123.0,98.8,97.8,89.6,87.7,80.1,71.6,61.5,55.0,53.5,50.9,49.8$, 48.6, 48.1, 33.2, 16.5, 14.7; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 553.0196; found: 553.0195.

6. Control Experiments with 1a

6.1. Probing a H• Atom or Hydride Shift Pathway

A 10 mL round-bottom flask was charged with $\mathbf{1 a}(0.2 \mathrm{mmol}, 53.3 \mathrm{mg}), 4 \AA \mathrm{MS}(100$ $\mathrm{mg}), \mathrm{PtBr}_{2}(0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, TEMPO ($0.4 \mathrm{mmol}, 2.0$ equiv) and anhydrous THF ($0.1 \mathrm{M}, 2 \mathrm{~mL}$) under an argon atmosphere, and the reaction mixture was stirred at 70 ${ }^{\circ} \mathrm{C}$ for 12 h . Upon completion, the reaction mixture cooled to room temperature and filtered through a pad of Celite and rinsed with EtOAc. The solvent was removed under reduced pressure and the crude residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc $=20: 1$ to $6: 1$) to afford the desired products $\mathbf{2 a}$ ($25 \mathrm{mg}, 37 \%$ yield) and $\mathbf{3 a}$ ($25.7 \mathrm{mg}, 38 \%$ yield).

A 10 mL round-bottom flask was charged with $\mathbf{1 a}(0.2 \mathrm{mmol}, 53.3 \mathrm{mg}), 4 \AA \mathrm{MS}(100$ mg), $\mathrm{PtBr}_{2}(0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, BHT ($0.4 \mathrm{mmol}, 2.0$ equiv) and anhydrous THF $(0.1 \mathrm{M}, 2 \mathrm{~mL})$ under an argon atmosphere, and the reaction mixture was stirred at 70 ${ }^{\circ} \mathrm{C}$ for 12 h . Upon completion, the reaction mixture cooled to room temperature and filtered through a pad of Celite, rinsed with EtOAc. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc $=20: 1$ to $6: 1$) to afford the desired product $\mathbf{2 a}$ ($31 \mathrm{mg}, 45 \%$ yield) and $\mathbf{3 a}$ ($27 \mathrm{mg}, 40 \%$ yield).

Colorless solid; mp $139-141{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.24$ $(\mathrm{s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.02-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ $(\mathrm{d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 1 \mathrm{H}), 2.35-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 1 \mathrm{H})$, $1.69(\mathrm{~s}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 195.0,150.3,137.6,127.3$, $127.0,78.4,71.2,67.1,32.3,23.6 ; H R M S ~(E S I)$ calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 339.1591, found: 339.1585.
$\left(2 \mathrm{a} S^{*}, 2 \mathrm{a}^{1} S^{*}, 5 \mathrm{a} R^{*}, 6 R^{*}\right)-2 \mathrm{a}-$ Methyl-6-(($\left(S^{*}\right)$-tetrahydrofuran-2-yl)oxy)-2a,2a${ }^{1}, 5 \mathrm{a}, 6$ -tetrahydrobenzo[5,6]cyclohepta[1,2,3-cd]benzofuran-5(1H)-one (3a)

Colorless solid; mp $139-141{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (s, 1H), 7.24 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 1 \mathrm{H}), 2.17$ $(\mathrm{s}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 195.0$, $150.3,137.6,131.7,127.3,127.0,123.4,105.8,81.6,78.4,71.2,67.1,32.3,23.5$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 339.1591$; found: 339.1588 .

6.2. Deuterium-Labeling Experiments

A 10 mL round-bottom flask was charged with $\mathbf{1 a}(0.2 \mathrm{mmol}, 53.3 \mathrm{mg}, 1.0$ equiv), 4 $\AA \mathrm{MS}(100 \mathrm{mg}), \mathrm{PtBr}_{2}(0.01 \mathrm{mmol}, 3.5 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and anhydrous d_{8}-THF $(0.1 \mathrm{M}$, 2 mL) under an argon atmosphere, and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 12 h. Upon completion, the reaction mixture was cooled to room temperature and tetrabutylammonium tribromide (TBATB) ($0.01 \mathrm{mmol}, 4.8 \mathrm{mg}, 5 \mathrm{~mol} \%$) and MeOH (2 mL) were added. The resulting reaction mixture was stirred at room temperature for 1 h (monitored by TLC analysis), filtered through a pad of Celite and rinsed with EtOAc. The filtrate was washed with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic phases are washed with brine (10 mL) and dried over MgSO_{4}. The solvent was removed under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc $=20: 1$ to 3:1) to afford the desired product $\boldsymbol{d}_{\mathbf{1}} \mathbf{- 4 a}(39 \mathrm{mg})$ in 72% yield.

Colorless solid; mp 180-182 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56$ (dd, $J=10.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.78$ (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ (d, $J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=13.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=4.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.2,152.0,139.9,139.6,132.2,130.2,127.6,127.6$, $127.5,127.4,82.3,72.8,71.0,50.5,49.5,22.9$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{DNaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 292.1054$; found: 292.1051 .

7. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra for All New Compounds

$\stackrel{10}{10}{ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(

ソ
命

1p
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

n ज

14
${ }^{3} \mathrm{C} \mathrm{CMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

프둧

à

テั

商

1ac
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

® ò

${ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
${ }^{3} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

ハ
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\stackrel{\infty}{\omega}}{\stackrel{\omega}{\omega}}$
๗

$\stackrel{8}{9}$

${ }^{13} \mathrm{CNMR}\left(\begin{array}{c}\text { 4C } \\ (100 \\ \left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)\end{array}\right.$

水

部解竞

菏

4h
${ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{4!}{4}$
C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\circ}$

各券
$\underset{\sim}{\sim}$

$$
{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
$$

-

	$\stackrel{\text { n }}{\text { ¢ }}$			\%	$\stackrel{\text { ¢̃ }}{\text { ¢ }}$


```
O-%
\mp@subsup{}{}{13}\textrm{C}\mathrm{ NMR 4z}
    MR(100 MHz, CDCl3)
```


${ }^{13} \mathrm{C}$ NMR (150 MHz, CDC13)

䓂

=
救

${ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8a
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8b
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8c
${ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

号

8 e
${ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{3} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\mathbf{8 f}$
${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	1	1		1			,		1					,	1	,	1				
210	200	190	180	170	160	150	140	130	120		$\mathbf{p m}^{100}$	90	80	70	60	50	40	30	20	10	0

$\begin{array}{ll}\overline{0} \\ \dot{i} \\ i & n_{0}^{m} \\ 0\end{array}$

12
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8. X-ray Crystal Structures of 2a, 4a, 8d and 13

Crystal preparation: Compound 2a (30 mg) was dissolved in hexane/EtOAc $=$ 9:1 (10 mL) in a 25 mL round-bottom flask while compounds $\mathbf{4 a}, \mathbf{8 d}$ or $\mathbf{1 3}(30 \mathrm{mg})$ were dissolved in hexane $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=8: 1: 1(5 \mathrm{~mL})$ in a 25 mL round-bottom flask and the resultant solution was allowed to slowly evaporate at room temperature to give crystals suitable for X-ray diffraction analysis. The intensity data were collected at 100 K or 150 K on a single crystal X-ray diffractometer. More information on crystal structures can also be obtained from the Cambridge Crystallographic Data Centre (CCDC) with deposition numbers 2150312 (2a), 2150313 (4a), 2150314 ((8d) and 2150315 (13), respectively.

Figure S1. ORTEP drawing of 2a with thermal ellipsoids at 30\% probability levels.

Figure S2. ORTEP drawing of $\mathbf{4 a}$ with thermal ellipsoids at $\mathbf{3 0 \%}$ probability levels.

Figure S3. ORTEP drawing of $\mathbf{8 d}$ with thermal ellipsoids at 30% probability levels.

Figure S4. ORTEP drawing of $\mathbf{1 3}$ with thermal ellipsoids at 30% probability levels.

9. References

S1. K. K. Gollapelli, V. B. Patil, A. Vinaykumar and R. Chegondi, Rh(I)-Catalyzed Stereoselective Desymmetrization of Prochiral Cyclohexadienones via Highly exo-Selective Huisgen-type [3+2] Cycloaddition, Chem. Sci., 2021, 12, 1544-1550.

S2. J. K. Hexum, R. Tello-Aburto, N. B. Struntz, A. M. Harned and D. A. Harki, Bicyclic Cyclohexenones as Inhibitors of NF-кB Signaling, ACS Med. Chem. Lett., 2012, 3, 459-464.

S3. Y. Fukui, P. Liu, Q. Liu, Z.-T. He, N.-Y. Wu, P. Tian and G.-Q. Lin, Tunable Arylative Cyclization of 1,6-Enynes Triggered by Rhodium (III)-Catalyzed C-H Activation, J. Am. Chem. Soc., 2014, 136, 15607-15614.

S4. Z.-T. He, X.-Q. Tang, L.-B. Xie, M. Cheng, P. Tian and G.-Q. Lin, Efficient Access to Bicyclo[4.3.0]nonanes: Copper-Catalyzed Asymmetric Silylative Cyclization of Cyclohexadienone-Tethered Allenes, Angew. Chem. Int. Ed., 2015, 54, 14815-14818.

S5. D. Gao, X.-Y. Liu, H. Xu, Y.-X. Tan, Q. Liao, Q.-H. Li, X. Yang and G.-Q. Lin, P. Tian, One-Pot Preparation of 9,10-Dihydrophenanthrenes Initiated by Rhodium(III)-Catalyzed C-H Activation and Relay Diels-Alder Reaction, Org. Lett., 2020, 22, 4300-4305.

S6. H. Jin, Q. Zhang, E. Li, P. Jia and N. Li, Y. Huang, Phosphine-Catalyzed Intramolecular Rauhut-Currier Reaction: Enantioselective Synthesis of Hydro-2h-indole Derivatives, Org. Biomol. Chem., 2017, 15, 7097-7101.

S7. D. Xu, Y. Zhao, D. Song, Z. Zhong, S. Feng, X. Xie, X. Wang and X. She, (3 +2)-Annulation of p-Quinamine and Aryne: A Strategy To Construct the Multisubstituted Hydrocarbazoles, Org. Lett., 2017, 9, 3600-3603.

