Supplementary Information for

THF-Enabled PtBr₂-Catalyzed Desymmetric Hydrogenative [3 + 2] Cycloaddition of 2-Alkynylbenzaldehyde-Tethered Cyclohexadienones

Rui Hu,^a Jichao Chen,^a Zeliang Wang,^a Dandan Shang,^a Lei Yu,^b Philip Wai Hong Chan^{*,b} and Weidong Rao^{*,a}

^aJiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

^bSchool of Chemistry, Monash University, Clayton, Victoria 3800, Australia <u>weidong@njfu.edu.cn</u> (W.R.); <u>phil.chan@monash.edu</u> (P.W.H.C.)

Table of Contents

1.	General Information	S 1				
2	Complete Screening and Optimization of the [3 + 2]	S 2				
	Cycloaddition Reaction					
3.	Preparation of the Substrates 1 and 7					
4.	General Procedure for the THF-Enabled PtBr ₂ -Catalyzed	S23				
	Desymmetric Hydrogenative [3 + 2] Cycloaddition and					
	TBATB-Mediated Deacetalization					
5	Gram-Scale Synthesis of 4c and Selective Transformations					
6.	Control Experiments with 1a	S52				
7.	Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra for All New	S56				
	Compounds					
8.	X-ray Crystal Structures of 2a, 4a, 8d and 13	S129				
9.	References	S132				

1. General Information

Unless specified, all reagents and starting materials were purchased from commercial sources and used as received. THF was dried using Na/benzophenone. Analytical thin layer chromatography (TLC) was performed using pre-coated silica gel plate. Visualization was achieved by UV light (254 nm). Flash chromatography was performed using silica gel and gradient solvent system (petroleum ether: EtOAc as eluent). ¹H, ¹³C and ¹⁹F NMR spectra were recorded with either a 400 or 600 MHz spectrometer. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), td (triplet of doublets), dt (doublet of triplet) or m (multiplet). The number of protons (*n*) for a given resonance is indicated by *n*H and coupling constants are reported as a *J* value in Hz. High resolution mass spectra (HRMS) were obtained on a LC/HRMS TOF spectrometer using simultaneous electrospray (ESI).

2. Complete Screening and Optimization of the [3+2] Cycloaddition Reaction Table S1. Catalyst, Temperature and Concentration Optimization

ontru	catalyst	$T(\mathcal{C})$	Concentration	yield $(\%)^b$				
entry			(M)	2a	3a	4a	5a	6a
1	PtCl ₂	70	0.1	42	37	-	-	-
2	PtBr ₂	70	0.1	49	40	-	-	-
3 ^{<i>c</i>}	PtBr ₂	70	0.1	d	-	-	-	-
4 ^{<i>e</i>}	PtBr ₂	70	0.1	-	-	35	46	-
5 ^f	PtBr ₂	25	0.1	28	25	-	-	-
6	PtI ₂	70	0.1	8	10	-	-	-
7	$(Ph_3P)_2PtCl_2$	70	0.1	25	27	-	-	-
8	Pt(COD)Cl ₂	70	0.1	19	17	-	-	-
9	PtCl ₄	70	0.1	25	23	-	-	-
10	PtI ₄	70	0.1	8	10	-	-	-
11	PtO ₂	70	0.1	_g	-	-	-	-
12	PtBr ₂	70	0.2	46	38	-	-	-
13	PtBr ₂	70	0.05	35	31	-	-	-

^{*a*}All reactions were performed at the 0.2 mmol scale with 5 mol % of catalyst and 4 Å MS (100 mg) in THF (0.1 M) at 70 °C for 12 h. ^{*b*}Isolated product yield. ^{*c*}Reaction performed with 1,4-dioxane in place of THF as the solvent. ^{*d*}Reaction gave unknown decomposition products based on TLC analysis and ¹H NMR measurements of the crude reaction mixture. ^{*e*}Reaction performed in the absence of 4 Å MS. ^{*f*}Reaction performed at 25 °C for 30 h. ^{*g*}No reaction based on TLC analysis and ¹H NMR measurements of the crude reaction mixture.

3. Preparation of the Substrates 1 and 7

General Procedure for the Preparation of *O*- and *N*-Tethered Cyclohexadienones 1 and 7.

According to the corresponding literature procedures,^{S1} to a solution of the S2^{S6-S7} S1^{S2-S5} (2.0)O-tethered-*N*-tethered alkynes and mmol). or 2-iodo(bromo)-benzaldehyde S3 (2.2 mmol, 1.1 equiv), Pd(PPh₃)₄ (46.2 mg, 0.02 equiv) and CuI (7.6 mg, 0.02 equiv) in anhydrous THF (0.2 M, 10 mL) was added ⁱPr₂NH (8 mmol, 4 equiv) under an argon atmosphere. The resulting reaction mixture was stirred at room temperature for 8-24 h until full consumption of the starting material, as indicated by TLC analysis. The reaction mixture was quenched with the addition of saturated NH₄Cl solution (10 mL), followed by extraction with EtOAc (15 mL x 2). The combined organic extracts were then washed with saturated brine (15 mL), dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford O-tethered cyclohexadienones 1a-z and 7a-f and NTs-tethered cyclohexadienones **1aa-ad** in good to excellent yields.

Substrates 1a, 1b, 1c, 1e, 1g, 1h, 1l, 1n, 1s, 1aa, 1ab, 7a, 7c and 7e were synthesized following literature procedures.^{S1}

2-(3-((1-Methyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehyde (1a)^{S1}

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford **1a** in 81% yield (1.079 g, 5 mmol scale) as a yellow solid; mp 82–84 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.48 (s, 1H), 7.91 (d, *J* = 7.9 Hz, 1H), 7.57–7.53 (m, 2H), 7.46 (t, *J* = 7.3 Hz, 1H), 6.91–6.87 (m, 2H), 6.37–6.34 (m, 2H), 4.29 (s, 2H), 1.52 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 191.3, 184.9, 150.6, 136.1, 133.7, 133.4, 130.6, 129.0, 127.3, 125.8, 92.8, 82.3, 73.4, 54.3, 26.3.

2-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehyde (1b)^{S1}

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford **1b** in 78% yield (437 mg) as a pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 10.47 (s, 1H), 7.93–7.89 (m, 1H), 7.57–7.51 (m, 2H), 7.48–7.43 (m, 1H), 6.83 (d, *J* = 10.2 Hz, 2H), 6.41 (d, *J* = 10.2 Hz, 2H), 4.31 (s, 2H), 1.86 (q, *J* = 7.6 Hz, 2H), 0.87 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 191.2, 185.1, 149.7, 136.0, 133.6, 133.3, 131.7, 128.9, 127.2, 125.8, 92.9, 82.2, 77.0, 54.2, 32.2, 7.7.

2-(3-((4-Oxo-1-propylcyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehyde (1c)^{S1}

Column chromatography (eluent: petroleum ether/EtOAc = 25:1 to 10:1) to afford **1c** in 78% yield (1.377 g, 6 mmol scale) as a pale-yellow solid; mp 74–76 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.46 (s, 1H), 7.90 (d, *J* = 7.5 Hz, 1H), 7.56–7.51 (m, 2H), 7.46 (t, *J* = 7.3 Hz, 1H), 6.84 (d, *J* = 10.2 Hz, 2H), 6.40 (d, *J* = 10.2 Hz, 2H), 4.30 (s, 2H), 1.81–1.75 (m, 2H), 1.34–1.26 (m, 2H), 0.90 (t, *J* = 7.4H); ¹³C NMR (150 MHz,

CDCl₃) δ 191.3, 185.2, 150.0, 136.1, 133.7, 133.4, 131.5, 128.9, 127.3, 125.8, 93.0, 82.2, 76.5, 54.1, 41.5, 16.9, 14.2.

2-(3-((4-Oxo-1-pentylcyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehyde (1d)

Column chromatography (eluent: petroleum ether/EtOAc = 25:1 to 15:1) to afford **1d** in 67% yield (432 mg) as a pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 10.48 (s, 1H), 7.91 (d, *J* = 7.9 Hz, 1H), 7.58–7.52 (m, 2H), 7.47–7.44 (m, 1H), 6.84 (d, *J* = 10.2 Hz, 2H), 6.39 (d, *J* = 10.2 Hz, 2H), 4.30 (s, 2H), 1.82–1.79 (m, 2H), 1.30–1.26 (m, 6H), 0.86 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 191.4, 185.3, 150.1, 136.2, 133.7, 133.4, 131.6, 129.0, 127.3, 125.9, 93.0, 82.2, 76.6, 54.1, 39.3, 31.8, 23.1, 22.4, 13.9; HRMS (ESI) calcd for C₂₁H₂₃O₃ [M+H]⁺: 323.1642, found: 323.1651.

2-(3-((1-Benzyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehyde (1e)^{S1}

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford **1e** in 91% yield (623 mg) as a pale-yellow solid; mp 64–66 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.46 (s, 1H), 7.92 (d, *J* = 7.8 Hz, 1H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.51 (d, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.28–7.22 (m, 3H), 7.18 (d, *J* = 6.7 Hz, 2H), 6.85 (d, *J* = 10.2 Hz, 2H), 6.32 (d, *J* = 10.2 Hz, 2H), 4.30 (s, 2H), 3.09 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 191.3, 184.9, 149.4, 136.1, 134.3, 133.7, 133.3, 131.4, 130.7, 129.0, 128.1, 127.3, 127.2, 125.8, 92.9, 82.4, 76.3, 54.4, 46.2. 2-(3-((1-(2-Methoxyethyl)-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benz aldehyde (1f)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 8:1) to afford **1f** in 69% yield (428 mg) as a pale-yellow solid; mp 90–92 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.47 (s, 1H), 7.91 (d, *J* = 7.7 Hz, 1H), 7.57–7.53 (m, 2H), 7.46 (t, *J* = 7.1 Hz, 1H), 6.90 (d, *J* = 10.2 Hz, 2H), 6.38 (d, *J* = 10.2 Hz, 2H), 4.30 (s, 2H), 3.46 (t, *J* = 6.2 Hz, 2H), 3.27 (s, 3H), 2.08 (t, *J* = 6.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 191.4, 185.1, 149.7, 136.2, 133.7, 133.4, 131.1, 129.0, 127.4, 125. 8, 92.9, 82.4, 75.1, 67.2, 58.5, 54.0, 39.5; HRMS (ESI) calcd for C₁₉H₁₉O₄ [M+H]⁺: 311.1278, found: 311.1284.

2-(3-((1-Isopropyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehyd e (1g)^{S1}

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford **1g** in 70% yield (412 mg) as a colorless solid; mp 60–62 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.48 (s, 1H), 7.92 (d, *J* = 7.7 Hz, 1H),7.57–7.52 (m, 2H), 7.46 (t, *J* = 7.3 Hz, 1H), 6.84 (d, *J* = 10.3 Hz, 2H), 6.44 (d, *J* = 10.3 Hz, 2H), 4.30 (s, 2H), 2.09 (dt, *J* = 13.8, 6.9 Hz, 1H), 0.98 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 195.8, 191.5, 150.7, 144.3, 134.5, 132.3, 128.9, 128.2, 127.5, 124.6, 99.2, 89.1, 83.6, 68.7, 52.0, 51.6, 37.4, 17.3, 16.8.

2-(3-((4-Oxo-[1,1'-biphenyl]-1(4H)-yl)oxy)prop-1-yn-1-yl)benzaldehyde (1h)^{S1}

Column chromatography (eluent: petroleum ether/EtOAc = 25:1 to 12:1) to afford **1h** in 78% yield (525 mg) as a colorless solid; mp 120–122 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.50 (s, 1H), 7.92 (d, *J* = 7.9 Hz, 1H), 7.58–7.55 (m, 2H), 7.52–7.45 (m, 3H), 7.40–7.37 (m, 2H), 7.35–7.31 (m, 1H), 6.94 (d, *J* = 10.1 Hz, 2H), 6.44 (d, *J* = 10.1 Hz, 2H), 4.54 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 191.3, 185.3, 149.4, 137.52 136.2, 133.8, 133.4, 130.1, 129.1, 128.9, 128.6, 127.4, 125.8, 125.7, 92.8, 82.6, 77.1, 54.1.

2-(3-((4-Oxo-[1,1'-bi(cyclohexane)]-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehyd e (1i)

Column chromatography (eluent: petroleum ether/EtOAc = 25:1 to 12:1) to afford **1i** in 68% yield (455 mg) as a yellow solid; mp 100–102 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.45 (d, J = 0.7 Hz, 1H), 7.88 (dd, J = 7.9, 0.7 Hz, 1H), 7.54–7.49 (m, 2H), 7.44–7.41 (m, 1H), 6.82 (d, J = 10.3 Hz, 2H), 6.40 (d, J = 10.3 Hz, 2H), 4.26 (s, 2H), 1.90 (d, J = 11.9 Hz, 2H), 1.76–1.72 (m, 3H), 1.64 (d, J = 12.9 Hz, 1H), 1.23–1.16 (m, 2H), 1.11–1.05 (m, 1H), 0.95 (dd, J = 12.7, 3.3 Hz, 1H), 0.91 (dd, J = 12.7, 3.3 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 191.3, 185.4, 149.4, 136.1, 133.7, 133.3, 132.1, 128.9, 127.2, 125.9, 93.2, 82.0, 78.7, 53.9, 46.5, 27.3, 26.3, 26.3; HRMS (ESI) calcd for C₂₂H₂₃O₃ [M+H]⁺: 335.1642, found: 335.1649.

2-(3-((7-Oxo-1,3,4,7-tetrahydronaphthalen-4a(2*H*)-yl)oxy)prop-1-yn-1-yl)benzald ehyde (1j)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford 1j in 50% yield (306 mg) as a yellow solid; mp 74–76 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.48 (s, 1H), 7.91 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.57–7.52 (m, 2H), 7.45 (t, *J* = 7.2 Hz, 1H), 6.79 (d, *J* = 10.0 Hz, 1H), 6.36–6.35 (m, 1H), 6.25 (s, 1H), 4.14 (d, *J* = 15.6 Hz, 1H), 4.11 (d, *J* = 15.6 Hz, 1H), 2.61–2.52 (m, 1H), 2.38 (d, *J* = 12.6 Hz, 1H), 2.24 (d, *J* = 13.8 Hz, 1H), 2.07–1.97 (m, 2H), 1.65 (d, *J* = 11.7 Hz, 1H), 1.43–1.36 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 191.4, 185.9, 162.0, 150.2, 136.2, 133.7, 133.4, 131.0, 129.0, 127.2, 126.9, 125.9, 92.6, 82.0, 74.5, 53.3, 39.4, 32.6, 28.1, 20.3; HRMS (ESI) calcd for C₂₀H₁₉O₃ [M+H]⁺: 307.1329, found: 307.1338.

2-(3-((6-Oxo-1,2,3,6-tetrahydro-3a*H*-inden-3a-yl)oxy)prop-1-yn-1-yl)benzaldehy de (1k)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford 1k in 89% yield (520 mg) as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 10.46 (s, 1H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.55–7.51 (m, 2H), 7.44 (t, *J* = 7.3 Hz, 1H), 6.89 (d, *J* = 9.9 Hz, 1H), 6.35 (dd, *J* = 9.9, 1.6 Hz, 1H), 6.23 (s, 1H), 4.19 (d, *J* = 15.8 Hz, 1H), 4.12 (d, *J* = 15.8 Hz, 1H), 2.85–2.78 (m, 1H), 2.54–2.46 (m, 1H), 2.33–2.24 (m, 1H), 2.20 (dd, *J* = 13.5, 8.2 Hz, 1H), 2.00–1.90 (m, 1H), 1.70–1.65 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 191.4, 185.9, 165.9, 144.4, 136.1, 133.7, 133.4, 132.1, 128.9, 127.2,

126.0, 125.6, 92.7, 81.7, 79.3, 52.9, 35.7, 28.8, 21.6; HRMS (ESI) calcd for C₁₉H₁₇O₃ [M+H]⁺: 293.1172, found: 293.1180.

2-(3-((1-(2-((*tert*-Butyldimethylsilyl)oxy)ethyl)-4-oxocyclohexa-2,5-dien-1-yl)oxy) prop-1-yn-1-yl)benzaldehyde (11)^{S1}

Column chromatography (eluent: petroleum ether/EtOAc = 40:1 to 25:1) to afford **11** in 74% yield (608 mg) as a yellow solid; mp 60–62 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.47 (s, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.57–7.51 (m, 2H), 7.46 (t, *J* = 7.4 Hz, 1H), 6.92 (d, *J* = 10.2 Hz, 2H), 6.36 (d, *J* = 10.1 Hz, 2H), 4.29 (s, 2H), 3.72 (t, *J* = 6.0 Hz, 2H), 2.03 (t, *J* = 6.0 Hz, 2H), 0.86 (s, 9H), 0.01 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 191.3, 185.3, 150.0, 136.2, 133.7, 133.4, 130.9, 129.0, 127.3, 125.9, 92.9, 82.3, 75.2, 57.8, 53.9, 42.9, 25.8, 18.1, -5.5.

2-(3-((1,2-Dimethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzaldehy de (1m)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford **1m** in 86% yield (482 mg) as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 10.47 (s, 1H), 7.90 (d, *J* = 7.9 Hz, 1H), 7.57–7.52 (m, 2H), 7.45 (t, *J* = 7.1 Hz, 1H), 6.87 (d, *J* = 10.0 Hz, 1H), 6.33 (d, *J* = 10.0 Hz, 1H), 6.23 (s, 1H), 4.18 (d, *J* = 15.5 Hz, 2H), 4.10 (d, *J* = 15.5 Hz, 2H), 2.07 (s, 3H), 1.49 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 191.3, 185.2, 159.4, 150.9, 136.1, 133.7, 133.4, 130.3, 129.4, 129.0, 127.3, 125. 8, 92.2, 82.1, 75.2, 53.9, 25.5, 18.1; HRMS (ESI) calcd for C₁₈H₁₇O₃ [M+H]⁺: 281.1172, found: 281.1181. 2-(3-((1,3,5-Trimethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzalde hyde (1n)^{S1}

Column chromatography (eluent: petroleum ether/EtOAc = 25:1 to 15:1) to afford 1n in 79% yield (465 mg) as a pale-yellow solid; mp 74–76 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.46 (s, 1H), 7.87 (d, *J* = 7.7 Hz, 1H), 7.53–7.49 (m, 2H), 7.43–7.39 (m, 1H), 6.58 (s, 2H), 4.21 (s, 2H), 1.90 (s, 6H), 1.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 191.3, 186.2, 145.5, 136.9, 136.0, 133.6, 133.4, 128.8, 127.1, 126.0, 93.4, 81.7, 73.3, 53.7, 26.5, 15.9.

2-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)-6-fluorobenzald ehyde (10)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford **10** in 80% yield (477 mg) as a pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 10.45 (s, 1H), 7.49 (td, *J* = 8.1, 5.4 Hz, 1H), 7.31 (d, *J* = 7.7 Hz, 1H), 7.14–7.10 (m, 1H), 6.84 (d, *J* = 10.2 Hz, 2H), 6.39 (d, *J* = 10.2 Hz, 2H), 4.29 (s, 2H), 1.85 (d, *J* = 7.6 Hz, 2H), 0.85 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 187.8 (d, *J* = 3.5 Hz), 185.2, 162.7 (d, *J* = 262.3 Hz), 149.8, 134.8 (d, *J* = 10.5 Hz), 131.8, 129.8, 129.7 (d, *J* = 3.6 Hz), 125.9 (d, *J* = 3.4 Hz), 124.4 (d, *J* = 8.1 Hz), 117.2 (d, *J* = 8.1 Hz), 93.6, 82.4 (d, *J* = 4.2 Hz), 77.2, 54.2, 32.2, 7.8; ¹⁹F NMR (565 MHz, CDCl₃) δ -116.40 (dd, *J* = 10.4, 5.5 Hz); HRMS (ESI) calcd for C₁₈H₁₆FO₃ [M+H]⁺: 299.1078, found: 299.1083.

2-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)-5-fluorobenzald ehyde (1p)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford **1p** in 40% yield (239 mg; from 2-bromo-5-fluorobenzaldehyde) as a pale-pink solid; mp 72–74 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.40 (d, *J* = 3.1 Hz, 1H), 7.55 (dd, *J* = 8.5, 2.8 Hz, 1H), 7.52 (dd, *J* = 8.5, 5.1 Hz, 1H), 7.24 (td, *J* = 8.2, 2.4 Hz, 1H), 6.80 (d, *J* = 10.2 Hz, 2H), 6.39 (d, *J* = 10.2 Hz, 2H), 4.29 (s, 2H), 1.84 (q, *J* = 7.6 Hz, 2H), 0.85 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.1, 185.1, 162.5 (d, *J* = 253.2 Hz), 161.7, 149.6, 138.2 (d, *J* = 6.7 Hz), 135.5 (d, *J* = 7.7 Hz), 131.8, 121.9 (d, *J* = 3.5 Hz), 121.3 (d, *J* = 22.8 Hz), 113.8 (d, *J* = 23.0 Hz), 92.7 (d, *J* = 1.4 Hz), 81.1, 77.1, 54.1, 32.2, 7.8; ¹⁹F NMR (565 MHz, CDCl₃) δ -108.19 – -108.30 (m); HRMS (ESI) calcd for C₁₈H₁₆FO₃ [M+H]⁺: 299.1078, found: 299.1087.

5-Chloro-2-(3-((1-ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzald ehyde (1q)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford **1q** in 73% yield (460 mg) as a pale-yellow solid; mp 71–73 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.37 (s, 1H), 7.83 (d, *J* = 2.2 Hz, 1H), 7.49 (dd, *J* = 8.3, 2.2 Hz, 1H), 7.45 (d, *J* = 8.3 Hz, 1H), 6.79 (d, *J* = 10.2 Hz, 2H), 6.39 (d, *J* = 10.2 Hz, 2H), 4.28 (s, 2H), 1.84 (q, *J* = 7.6 Hz, 2H), 0.84 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.9, 185.1, 149.6, 137.2, 135.5, 134.6, 133.7, 131.8, 127.2, 124.0, 93.9, 81.2, 77.1,

54.1, 32.2, 7.8; HRMS (ESI) calcd for $C_{18}H_{16}ClO_3$ [M+H]⁺: 315.0782, found: 315.0789.

5-Bromo-2-(3-((1-ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzald ehyde (1r)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford **1r** in 87% yield (625 mg) as a pale-yellow solid; mp 74–76 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.38 (s, 1H), 8.02 (d, *J* = 1.9 Hz, 1H), 7.66 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.39 (d, *J* = 8.3 Hz, 1H), 6.80 (d, *J* = 10.2 Hz, 2H), 6.41 (d, *J* = 10.2 Hz, 2H), 4.29 (s, 2H), 1.85 (q, *J* = 7.6 Hz, 2H), 0.86 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.9, 185.1, 149.6, 137.2, 136.6 134.7, 131.8, 130.3, 124.5, 123.5, 94.1, 81.3, 77.1, 54.1, 32.5, 7.8; HRMS (ESI) calcd for C₁₈H₁₆BrO₃ [M+H]⁺: 359.0277, found: 395.0276.

2-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)-5-methylbenzald ehvde (1s)^{S1}

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford **1s** in 84% yield (494 mg) as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 10.39 (s, 1H), 7.66 (s, 1H), 7.38 (d, *J* = 7.9 Hz, 1H), 7.31 (dd, *J* = 7.9, 1.2 Hz, 1H), 6.79 (d, *J* = 10.2 Hz, 2H), 6.37 (d, *J* = 10.2 Hz, 2H), 4.26 (s, 2H), 2.35 (s, 3H), 1.82 (q, *J* = 7.6 Hz, 2H), 0.82 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 191.4, 185.1, 149.7, 139.3, 135.9, 134.5, 133.2, 131.7, 127.5, 122.9, 92.1, 82.3, 77.0, 54.2, 32.1, 21.2, 7.7;

2-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)-4-fluorobenzald ehyde (1t)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford **1t** in 34% yield (203 mg; from 2-bromo-4-fluorobenzaldehyde) as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 10.37 (s, 1H), 7.92 (dd, *J* = 8.6, 5.9 Hz, 1H), 7.20 (dd, *J* = 8.8, 2.3 Hz, 1H), 7.14 (td, *J* = 8.5, 2.3 Hz, 1H), 6.80 (d, *J* = 10.1 Hz, 2H), 6.41 (d, *J* = 10.2 Hz, 2H), 4.30 (s, 2H), 1.85 (q, *J* = 7.5 Hz, 2H), 0.86 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.7, 185.1, 165.5 (d, *J* = 257.0 Hz), 149.6, 132.9 (d, *J* = 2.8 Hz), 131.9, 130.2 (d, *J* = 10.2 Hz), 128.3 (d, *J* = 11.0 Hz), 120.0 (d, *J* = 23.6 Hz), 116.9 (d, *J* = 22.1 Hz), 94.1, 81.0 (d, *J* = 2.8 Hz), 77.2, 54.1, 32.2, 7.8; ¹⁹F NMR (565 MHz, CDCl₃) δ -103.02 - -103.25 (m); HRMS (ESI) calcd for C₁₈H₁₆FO₃ [M+H]⁺: 299.1078, found: 299.1078.

4-Chloro-2-(3-((1-ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzald ehyde (1u)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 9:1) to afford **1u** in 38% yield (239 mg; from 2-bromo-4-chlorobenzaldehyde) as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 10.37 (s, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.49 (s, 1H), 7.39 (d, *J* = 8.3 Hz, 1H), 6.79 (d, *J* = 10.1 Hz, 2H), 6.39 (d, *J* = 10.1 Hz, 2H), 4.28 (s, 2H), 1.84 (q, *J* = 7.5 Hz, 2H), 0.84 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.0, 185.1, 149.5, 140.1, 134.4, 133.0, 131.9, 129.4, 128.6, 127.2, 94.2, 80.8, 77.1, 54.0, 32.2, 7.8; HRMS (ESI) calcd for C₁₈H₁₆ClO₃ [M+H]⁺: 315.0782, found: 315.0782.

4-Bromo-2-(3-((1-ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzald ehyde (1v)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 9:1) to afford **1v** in 69% yield (496 mg) as a pale-yellow solid; mp 67–69 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.37 (s, 1H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.67 (d, *J* = 1.9 Hz, 1H), 7.58–7.56 (m, 1H), 6.80 (d, *J* = 10.2 Hz, 2H), 6.40 (d, *J* = 10.2 Hz, 2H), 4.29 (s, 2H), 1.85 (q, *J* = 7.6 Hz, 2H), 0.85 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.2, 185.1, 149.5, 136.0, 134.8, 132.4, 131.9, 128.7, 128.6, 127.2, 94.3, 80.7, 77.1, 54.1, 32.2, 7.8; HRMS (ESI) calcd for C₁₈H₁₆BrO₃ [M+H]⁺: 359.0277, found: 359.0277.

2-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)-3-methylbenzald ehyde (1w)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford **1w** in 64% yield (377 mg) as a pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 10.51 (s, 1H), 7.75 (d, *J* = 7.7 Hz, 1H), 7.45 (d, *J* = 7.5 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 10.0 Hz, 2H), 6.41 (d, *J* = 10.0 Hz, 2H), 4.35 (s, 2H), 2.47 (s, 3H), 1.86 (q, *J* = 7.6 Hz, 2H), 0.87 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 192.0, 185.2, 149.8, 141.8, 136.5, 134.9, 131.8, 128.4, 125.6, 124.7, 97.5, 80.8, 77.1, 54.3, 32.3, 20.4, 7.8; HRMS (ESI) calcd for C₁₉H₁₉O₃ [M+H]⁺: 295.1329, found: 295.1329. 6-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)benzo[d][1,3]diox ole-5-carbaldehyde (1x)

Column chromatography (eluent: petroleum ether/EtOAc = 15:1 to 8:1) to afford **1x** in 45% yield (292 mg; from 6-Bromopiperonal) as a pale-yellow solid; mp 61–63 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.30 (s, 1H), 7.32 (s, 1H), 6.90 (s, 1H), 6.80 (d, J =10.2 Hz, 2H), 6.41 (d, J = 10.1 Hz, 2H), 6.07 (s, 2H), 4.28 (s, 2H), 1.85 (q, J = 7.6 Hz, 2H), 0.86 (t, J = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.7, 185.2, 152.3, 149.8, 148.9, 132.6, 131.8, 122.5, 112.2, 106.0, 102.4, 91.7, 82.0, 77.1, 54.2, 32.2, 7.8; HRMS (ESI) calcd for C₁₉H₁₇O₅ [M+H]⁺: 325.1071, found: 325.1070.

1-(3-((1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)oxy)prop-1-yn-1-yl)-2-naphthaldehy de (1y)

Column chromatography (eluent: petroleum ether/EtOAc = 15:1 to 8:1) to afford **1y** in 39% yield (258 mg; from 1-bromo-2-naphthaldehyde) as a colorless solid; mp 105– 107 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.72 (s, 1H), 8.45–8.41 (m, 1H), 7.95 (dd, J = 8.6, 3.2 Hz, 1H), 7.88 (dd, J = 8.5, 3.5 Hz, 2H), 7.67–7.64 (m, 2H), 6.87 (d, J = 10.1 Hz, 2H), 6.44 (d, J = 10.1 Hz, 2H), 4.48 (s, 2H), 1.90 (q, J = 7.6 Hz, 2H), 0.89 (t, J = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 191.9, 185.2, 149.8, 135.7, 134.8, 133.2, 131.9, 129.4, 129.3, 128.5, 127.8, 127.0, 126.4, 121.9, 99.0, 80.1, 77.2, 54.4, 32.3, 7.8; HRMS (ESI) calcd for C₂₂H₁₈NaO₃ [M+Na]⁺: 353.1148, found: 353.1148. 2-(4-((4-Oxo-1-propylcyclohexa-2,5-dien-1-yl)oxy)but-1-yn-1-yl)benzaldehyde (1z)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford **1z** in 71% yield (438 mg) as a pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 10.51 (s, 1H), 7.86 (dd, *J* = 7.8, 0.8 Hz, 1H), 7.51–7.46 (m, 2H), 7.37 (t, *J* = 7.5 Hz, 1H), 6.78– 6.74 (m, 2H), 6.35–6.30 (m, 2H), 3.51 (t, *J* = 6.7 Hz, 2H), 2.69 (t, *J* = 6.7 Hz, 2H), 1.74–1.69 (m, 2H), 1.30–1.22 (m, 2H), 0.87 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 191.9, 185.3, 150.8, 136.0, 133.6, 133.1, 131.1, 128.1, 127.1, 126.9, 94.2, 77.3, 75.7, 63.3, 41.5, 21.6, 16.7, 14.1; HRMS (ESI) calcd for C₂₆H₂₆NO₄S [M+H]⁺: 309.1485, found: 309.1484.

N-(3-(2-Formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(1-methyl-4-oxocyclohexa-2,5 -dien-1-yl)benzenesulfonamide (1aa)^{S1}

Column chromatography (eluent: petroleum ether/EtOAc = 15:1 to 5:1) to afford **1aa** in 60% yield (503 mg) as a colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 10.29 (s, 1H), 7.91 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.84 (d, *J* = 8.3 Hz, 2H), 7.57 (dt, *J* = 7.6, 3.8 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 7.7 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.09–7.06 (m, 2H), 6.23–6.20 (m, 2H), 4.54 (s, 2H), 2.41 (s, 3H), 1.67 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.8, 184.2, 151.0, 144.1, 138.4, 136.1, 133.7, 133.4, 129.6, 129.1, 128.0, 127.8, 127.5, 125.0, 92.4, 81.1, 60.2, 37.2, 25.8, 21.4.

N-(1-Butyl-4-oxocyclohexa-2,5-dien-1-yl)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1ab)^{S1}

Column chromatography (eluent: petroleum ether/EtOAc = 15:1 to 4:1) to afford **1ab** in 86% yield (794 mg) as a colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 10.29 (s, 1H), 7.91 (d, *J* = 7.7 Hz, 1H), 7.81 (d, *J* = 8.2 Hz, 2H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.44 (d, *J* = 7.7 Hz, 1H), 7.25 (s, 2H), 7.00 (d, *J* = 10.2 Hz, 2H), 6.26 (d, *J* = 10.1 Hz, 2H), 4.56 (s, 2H), 2.39 (s, 3H), 2.06–2.00 (m, 2H), 1.252–1.18 (m, 2H), 1.12–1.05 (m, 2H), 0.79 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.8, 184.8, 149.3, 144.2, 138.6, 136.3, 133.8, 133.5, 129.6, 129.1, 127.9, 127.7, 125.2, 92.6, 81.1, 64.2, 37.0, 36.4, 26.1, 22.6, 21.5, 13.7.

N-(3-(2-Formylphenyl)prop-2-yn-1-yl)-*N*-(1-isopropyl-4-oxocyclohexa-2,5-dien-1 -yl)-4-methylbenzenesulfonamide (1ac)

Column chromatography (eluent: petroleum ether/EtOAc = 15:1 to 4:1) to afford **1ac** in 92% yield (824 mg) as a colorless solid; mp 114–116 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.21 (s, 1H), 7.90 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.75 (d, *J* = 8.3 Hz, 2H), 7.56 (td, *J* = 7.6, 1.3 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.40 (d, *J* = 7.7 Hz, 1H), 7.21 (d, *J* = 8.1 Hz, 2H), 7.10 (d, *J* = 10.4 Hz, 2H), 6.25 (d, *J* = 10.4 Hz, 2H), 4.61 (s, 2H), 2.76–2.71 (m, 1H), 2.36 (s, 3H), 0.93 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 190.8, 184.8, 146.8, 144.3, 137.3, 136.2, 133.8, 133.4, 130.1, 129.5, 129.1, 128.1, 127.8, 125.1, 92.1, 81.3, 66.9, 36.8, 33.6, 21.5, 17.4; HRMS (ESI) calcd for C₂₆H₂₆NO₄S [M+H]⁺: 448.1577, found: 448.1577. *N*-(1-(But-3-en-1-yl)-4-oxocyclohexa-2,5-dien-1-yl)-*N*-(3-(2-formylphenyl)prop-2yn-1-yl)-4-methylbenzenesulfonamide (1ad)

Column chromatography (eluent: petroleum ether/EtOAc = 15:1 to 6:1) to afford 1ad in 84% yield (772 mg) as a pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 10.28 (s, 1H), 7.91 (d, *J* = 7.0 Hz, 1H), 7.82 (d, *J* = 8.3 Hz, 2H), 7.57 (td, *J* = 7.6, 1.3 Hz, 1H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.27 (d, *J* = 8.4 Hz, 2H), 7.02 (d, *J* = 10.2 Hz, 2H), 6.29 (d, *J* = 10.2 Hz, 2H), 5.68–5.62 (m, 1H), 4.95–4.90 (m, 2H), 4.56 (s, 2H), 2.40 (s, 3H), 2.20–2.13 (m, 2H), 1.91–1.87 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 190.8, 184.5, 148.8, 144.1, 138.4, 136.1, 136.1, 133.7, 133.4, 129.7, 129.6, 129.0, 127.9, 127.6, 125.0, 115.7, 92.4, 81.1, 63.8, 36.9, 35.4, 28.0, 21.4; HRMS (**ESI**) calcd for C₂₇H₂₆NO₄S [M+H]⁺: 460.1577, found: 460.1577.

2-(3-(((8*S*,9*S*,10*S*,13*S*,14*S*)-13-Methyl-3,17-dioxo-3,6,7,8,9,11,12,13,14,15,16,17-do decahydro-10*H*-cyclopenta[*a*]phenanthren-10-yl)oxy)prop-1-yn-1-yl)benzaldehy de (7a)^{S1}

Column chromatography (eluent: petroleum ether/EtOAc = 10:1 to 4:1) to afford **7a** in 68% yield (583 mg) as a colorless solid; mp 189–191 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.46 (s, 1H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.54 (td, *J* = 7.2, 1.1 Hz, 1H), 7.51 (d, *J* = 6.9 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.10 (d, *J* = 10.3 Hz, 1H), 6.38 (dd, *J* = 10.3, 1.9 Hz, 1H), 6.22 (s, 1H), 4.15 (s, 2H), 2.66 (td, *J* = 12.7, 4.6 Hz, 1H), 2.47–2.39 (m, 2H), 2.21 (qd, *J* = 11.4, 3.7 Hz, 1H), 2.12–2.08 (m, 3H), 1.97–1.91 (m, 1H), 1.88–1.83 (m, 1H), 1.81–1.76 (m, 1H), 1.64–1.57 (m, 1H), 1.27–1.13 (m, 4H), 0.97 (s, 1H), 1.81–1.76 (m, 1H), 1.64–1.57 (m, 1H), 1.27–1.13 (m, 4H), 0.97 (s, 1H), 1.81–1.76 (m, 1H), 1.64–1.57 (m, 1H), 1.27–1.13 (m, 4H), 0.97 (s).

3H); ¹³C NMR (150 MHz, CDCl₃) δ 220.1, 191.3, 184.9, 163.2, 149.2, 136.1, 133.7, 133.3, 131.6, 128.9, 127.3, 126.6, 125.8, 92.7, 82.1, 76.4, 55.3, 53.4, 50.1, 47.7, 35.6, 34.6, 32.5, 32.2, 31.0, 22.1, 21.9, 13.8.

2-Fluoro-6-(3-(((8*S*,9*S*,10*S*,13*S*,14*S*)-13-methyl-3,17-dioxo-3,6,7,8,9,11,12,13,14,1 5,16,17-dodecahydro-10*H*-cyclopenta[*a*]phenanthren-10-yl)oxy)prop-1-yn-1-yl)b enzaldehyde (7b)

Column chromatography (eluent: petroleum ether/EtOAc = 10:1 to 4:1) to afford **7b** in 53% yield (473 mg) as a pale-yellow solid; mp 180–182 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.44 (s, 1H), 7.49 (td, *J* = 8.0, 5.5 Hz, 1H), 7.29 (d, *J* = 7.7 Hz, 1H), 7.14–7.09 (m, 2H), 6.36 (dd, *J* = 10.3, 1.8 Hz, 1H), 6.19 (s, 1H), 4.14 (d, *J* = 12.1 Hz, 1H), 4.12 (d, *J* = 12.1 Hz, 1H), 2.64 (td, *J* = 12.8, 4.7 Hz, 1H), 2.43 (dd, *J* = 19.4, 8.9 Hz, 1H), 2.39–2.38 (m, 1H), 2.20 (ddd, *J* = 22.6, 11.4, 3.6 Hz, 1H), 2.11–2.01 (m, 3H), 1.95–1.89 (m, 1H), 1.86–1.82 (m, 1H), 1.81–1.76 (m, 1H), 1.63–1.55 (m, 1H), 1.25–1.18 (m, 4H), 0.95 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 220.1, 187.7 (d, *J* = 3.2 Hz), 185.0, 163.2, 162.6 (d, *J* = 262.6 Hz), 149.4, 134.8 (d, *J* = 10.5 Hz), 131.5, 129.6 (d, *J* = 3.6 Hz), 126.5, 125.9 (d, *J* = 3.4 Hz), 124.4 (d, *J* = 8.2 Hz), 117.1 (d, *J* = 21.5 Hz), 93.2, 82.2 (d, *J* = 4.3 Hz), 76.4, 55.2, 53.4, 50.1, 47.7, 35.5, 34.5, 32.4, 32.1, 31.0, 22.1, 21.9, 13.7; ¹⁹F NMR (565 MHz, CDCl₃) δ –116.31; HRMS (ESI) calcd for C₂₈H₂₈FO₄[M+H]⁺: 447.1966, found: 447.1972.

5-Methyl-2-(3-(((8*S*,9*S*,10*S*,13*S*,14*S*)-13-methyl-3,17-dioxo-3,6,7,8,9,11,12,13,14,1 5,16,17-dodecahydro-10*H*-cyclopenta[*a*]phenanthren-10-yl)oxy)prop-1-yn-1-yl)b enzaldehyde (7c)^{S1}

Column chromatography (eluent: petroleum ether/EtOAc = 10:1 to 4:1) to afford **5c** in 60% yield (531 mg) as a colorless solid; mp 230–232 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.42 (s, 1H), 7.70 (s, 1H), 7.40 (d, *J* = 7.9 Hz, 1H), 7.35 (d, *J* = 7.7 Hz, 1H), 7.09 (d, *J* = 10.3 Hz, 1H), 6.37 (dd, *J* = 10.3, 1.7 Hz, 1H), 6.21 (s, 1H), 4.14 (s, 2H), 2.66 (td, *J* = 12.7, 4.7 Hz, 1H), 2.47–2.41 (m, 2H), 2.39 (s, 3H), 2.24–2.17 (m, 1H), 2.10–2.01 (m, 3H), 1.96–1.90 (m, 1H), 1.86–1.77 (m, 2H), 1.64–1.56 (m, 1H), 1.27–1.11 (m, 4H), 0.96 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 191.5, 185.0, 163.3, 149.3, 139.4, 136.0, 134.6, 133.2, 131.5, 127.6, 126.5, 123.0, 91.9, 82.2, 76.4, 55.3, 53.5, 50.1, 47.7, 35.6, 34.6, 32.5, 32.2, 31.0, 22.1, 21.9, 21.3, 13.8;

5-Chloro-2-(3-(((8*S*,9*S*,10*S*,13*S*,14*S*)-13-methyl-3,17-dioxo-3,6,7,8,9,11,12,13,14,1 5,16,17-dodecahydro-10*H*-cyclopenta[*a*]phenanthren-10-yl)oxy)prop-1-yn-1-yl)b enzaldehyde (7d)

Column chromatography (eluent: petroleum ether/EtOAc = 10:1 to 4:1) to afford 5d in 46% yield (426 mg) as a pale-yellow solid; mp 192–194 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.39 (s, 1H), 7.86 (d, *J* = 2.2 Hz, 1H), 7.51 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.46 (d, *J* = 8.3 Hz, 1H), 7.09 (d, *J* = 10.3 Hz, 1H), 6.39 (dd, *J* = 10.3, 2.0 Hz, 1H), 6.22 (s, 1H), 4.15 (d, *J* = 1.3 Hz, 2H), 2.64 (ddd, *J* = 12.8, 5.2, 3.8 Hz, 1H), 2.46 (dd, *J* = 19.5, 8.8 Hz, 1H), 2.43–2.39 (m, 1H), 2.20 (qd, *J* = 11.4, 3.7 Hz, 1H), 2.13–2.06 (m, 3H),

1.97–1.92 (m, 1H), 1.88–1.85 (m, 1H), 1.81–1.77 (m, 1H), 1.64–1.57 (m, 1H), 1.28– 1.13 (m, 4H), 0.97 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 220.1, 190.0, 184.9, 163.0, 149.1, 137.2, 135.6, 134.5, 133.8, 131.7, 127.3, 126.7, 124.1, 93.6, 81.1, 76.5, 55.3, 53.4, 50.1, 47.7, 35.6, 34.6, 32.5, 32.2, 31.1, 22.1, 21.9, 13.8; HRMS (ESI) calcd for C₂₈H₂₈ClO₄ [M+H]⁺: 463.1671, found: 463.1671.

5-Bromo-2-(3-(((8*S*,9*S*,10*S*,13*S*,14*S*)-13-methyl-3,17-dioxo-3,6,7,8,9,11,12,13,14,1 5,16,17-dodecahydro-10*H*-cyclopenta[*a*]phenanthren-10-yl)oxy)prop-1-yn-1-yl)b enzaldehyde (7e)^{S1}

Column chromatography (eluent: petroleum ether/EtOAc = 10:1 to 4:1) to afford **5e** in 69% yield (700 mg) as a colorless solid; mp 183–185 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.38 (s, 1H), 8.02 (d, *J* = 2.1 Hz, 1H), 7.67 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.39 (d, *J* = 8.3 Hz, 1H), 7.09 (d, *J* = 10.3 Hz, 1H), 6.39 (dd, *J* = 10.3, 1.9 Hz, 1H), 6.22 (s, 1H), 4.14 (s, 2H), 2.64 (ddd, *J* = 12.7, 5.2, 4.1 Hz, 1H), 2.46 (dd, *J* = 19.4, 8.8 Hz, 1H), 2.43–2.39 (m, 1H), 2.21 (qd, *J* = 11.4, 3.7 Hz, 1H), 2.12–2.03 (m, 3H), 1.97– 1.92 (m, 1H), 1.89–1.77 (m, 2H), 1.64–1.57 (m, 1H), 1.28–1.12 (m, 4H), 0.97 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 220.1, 189.9, 184.9, 163.0, 149.1, 137.3, 136.7, 134.6, 131.7, 130.3, 126.7, 124.5, 123.6, 93.8, 81.2, 76.5, 55.3, 53.4, 50.1, 47.7, 35.6, 34.6, 32.8, 32.2, 31.1, 22.1, 21.9, 13.8; HRMS (ESI) calcd for C₂₈H₂₈BrO₄ [M+H]⁺: 507.1165, found: 507.1167. 2-(3-(((8*S*,9*S*,10*S*,13*S*,14*S*,17*S*)-17-Hydroxy-13-methyl-3-oxo-3,6,7,8,9,11,12,13,14 ,15,16,17-dodecahydro-10*H*-cyclopenta[a]phenanthren-10-yl)oxy)prop-1-yn-1-yl) benzaldehyde (7f)

Column chromatography (eluent: petroleum ether/EtOAc = 10:1 to 3:1) to afford **5f** in 53% yield (456 mg) as a colorless solid; mp 171–173 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.47 (s, 1H), 7.91 (dd, J = 7.8, 0.6 Hz, 1H), 7.58–7.42 (m, 3H), 7.12 (d, J = 10.3 Hz, 1H), 6.37 (dd, J = 10.3, 2.0 Hz, 1H), 6.23–6.15 (m, 1H), 4.15 (s, 2H), 3.62 (t, J = 8.4 Hz, 1H), 2.62 (ddd, J = 12.5, 5.1, 3.8 Hz, 1H), 2.40–2.31 (m, 1H), 2.14–1.95 (m, 4H), 1.90–1.82 (m, 1H), 1.74–1.55 (m, 3H), 1.50–1.31 (m, 2H), 1.19–0.89 (m, 4H), 0.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.4, 185.2, 164.1, 149.9, 136.1, 133.7, 133.3, 131.4, 128.9, 127.3, 126.3, 126.0, 92.9, 82.0, 81.5, 55.7, 53.4, 49.9, 43.1, 36.3, 35.1, 33.4, 32.5, 30.4, 23.6, 22.6, 11.0; HRMS (ESI) calcd for C₂₆H₂₆NO₄S [M+H]⁺: 431.2217, found: 431.2214.

4. General Procedure for the THF-enabled PtBr₂-Catalyzed Desymmetric Hydrogenative [3 + 2] Cycloaddition and TBATB-Mediated Deacetalization

To an oven-dried round-bottom flask (10 mL) equipped with a magnetic stir bar were added *O- or NTs*-tethered cyclohexadienones **1** or **7** (0.2 mmol), 4Å MS (100 mg) and PtBr₂ (3.5 mg, 0.01 mmol). The reaction vessel was capped and charged with an argon atmosphere through three cycles of the vacuum-argon-backfill method over 5 min. Anhydrous THF (2 mL) was then added and the resulting reaction mixture was stirred at 70 °C for 24 h. Upon completion, the reaction mixture was cooled to room

temperature, tetrabutylammonium tribromide (TBATB) (4.8 mg, 0.01mmol) and MeOH (2 mL) were added. The resulting reaction mixture was stirred at room temperature for 1 h (monitored by TLC), filtered through a pad of Celite and rinsed with EtOAc. The filtrate was washed with saturated NaHCO₃ (10 mL) and extracted with EtOAc (10 mL x 2). The combined organic phases are washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford the desired product **4** or **8**.

(2a*S**,2a¹*S**,5a*R**,6*R**)-2a-Ethyl-6-hydroxy-2a,2a¹,5a,6-tetrahydrobenzo[5,6]cycl ohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4a)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **4a** in 75% yield (40 mg); colorless solid, mp 182–184 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 7.9 Hz, 1H), 7.29 (t, *J* = 7.1 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.01 (d, *J* = 7.4 Hz, 1H), 6.56 (dd, *J* = 10.1, 1.8 Hz, 1H), 6.20 (d, *J* = 2.3 Hz, 1H), 5.78 (d, *J* = 10.1 Hz, 1H), 4.92 (dd, *J* = 11.8, 2.6 Hz, 1H), 4.66 (d, *J* = 13.3 Hz, 1H), 4.28 (d, *J* = 13.3 Hz, 1H), 3.55 (d, *J* = 11.9 Hz, 1H), 3.44 (dd, *J* = 4.9, 3.1 Hz, 1H), 3.39–3.34 (m, 1H), 1.62 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.1, 152.0, 140.0, 139.6, 132.2, 130.2, 127.6, 127.5, 127.3, 123.8, 82.2, 72.8, 71.0, 50.5, 49.4, 22.8; HRMS (ESI) calcd for C₁₇H₁₇O₃ [M+H]⁺: 269.1172, found: 269.1170.

(2aS*,2a¹S*,5aR*,6R*)-2a-Ethyl-6-hydroxy-2a,2a¹,5a,6-tetrahydrobenzo[5,6]cycl ohepta[1,2,3-cd]benzofuran-5(1H)-one (4b)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **4b** in 93% yield (53 mg); colorless solid, mp 99–101 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 7.9 Hz, 1H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.01 (d, *J* = 7.5 Hz, 1H), 6.61 (d, *J* = 10.2 Hz, 1H), 6.21 (s, 1H), 5.81 (d, *J* = 10.2 Hz, 1H), 4.91 (d, *J* = 11.3 Hz, 1H), 4.64 (d, *J* = 13.1 Hz, 1H), 4.29 (d, *J* = 13.1 Hz, 1H), 3.58 (d, *J* = 11.7 Hz, 1H), 3.42 (s, 2H), 2.02–1.96 (m, 1H), 1.89–1.83 (m, 1H), 1.12 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.4, 151.8, 140.3, 139.6, 132.2, 130.3, 128.0, 127.6, 127.5, 127.3, 123.8, 84.4, 72.9, 71.1, 49.6, 47.9, 29.4, 8.0; HRMS (ESI) calcd for C₁₈H₁₉O₃ [M+H]⁺: 283.1329, found: 283.1326.

(2a*S**,2a¹*S**,5a*R**,6*R**)-6-Hydroxy-2a-propyl-2a,2a¹,5a,6-tetrahydrobenzo[5,6]cy clohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4c)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **4c** in 97% yield (58 mg); colorless solid, mp 138–140 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 7.9 Hz, 1H), 7.30–7.26 (m, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.01 (d, *J* = 7.3 Hz, 1H), 6.61 (dd, *J* = 10.2, 1.7 Hz, 1H), 6.20 (d, *J* = 2.1 Hz, 1H), 5.80 (d, *J* = 10.2 Hz, 1H), 4.91 (dd, *J* = 11.8, 2.4 Hz, 1H), 4.64 (dt, *J* = 13.2, 1.7 Hz, 1H), 4.28 (dt, *J* = 13.2, 1.8 Hz, 1H), 3.57 (d, *J* = 11.8 Hz, 1H), 3.44 (dd, *J* = 5.1, 2.9 Hz, 1H), 3.43–3.40 (m, 1H), 1.93 (ddd, *J* = 14.1, 10.7, 6.1 Hz, 1H), 1.80 (ddd, *J* = 14.1, 11.0, 5.7 Hz, 1H), 1.62–1.54 (m, 2H), 1.01 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.4, 151.8, 140.2, 139.6, 132.2, 130.3, 127.8, 127.5, 127.5, 127.3, 123.8, 84.4, 72.9, 71.1, 49.5, 48.5, 38.9, 17.1, 14.5; HRMS (ESI) calcd for C₁₉H₂₁O₃ [M+H]⁺: 297.1485, found: 297.1483.

(2aS*,2a¹S*,5aR*,6R*)-6-Hydroxy-2a-pentyl-2a,2a¹,5a,6-tetrahydrobenzo[5,6]cy clohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4d)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 5:1) to give the product **4d** in 92% yield (60 mg); colorless solid, mp 198–200 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 7.9 Hz, 1H), 7.28 (d, *J* = 7.3 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.01 (d, *J* = 7.5 Hz, 1H), 6.61 (dd, *J* = 10.2, 1.3 Hz, 1H), 6.20 (d, *J* = 1.8 Hz, 1H), 5.80 (d, *J* = 10.2 Hz, 1H), 4.91 (d, *J* = 10.8 Hz, 1H), 4.64 (d, *J* = 13.2 Hz, 1H), 4.28 (d, *J* = 13.2 Hz, 1H), 3.58 (d, *J* = 11.8 Hz, 1H), 3.45–3.41 (m, 2H), 1.94 (ddd, *J* = 14.1, 10.9, 5.9 Hz, 1H), 1.80 (ddd, *J* = 14.1, 11.2, 5.6 Hz, 1H), 1.59–1.50 (m, 2H), 1.39–1.32 (m, 4H), 0.92 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.4, 151.9, 140.2, 139.6, 132.2, 130.3, 127.8, 127.6, 127.5, 127.4, 123.8, 84.4, 73.0, 71.1, 49.5, 48.5, 36.7, 32.2, 23.4, 22.5, 14.0; HRMS (ESI) calcd for C₂₁H₂₅O₃ [M+H]⁺: 325.1798, found: 325.1791.

(2aS*,2a¹S*,5aR*,6R*)-2a-Benzyl-6-hydroxy-2a,2a¹,5a,6-tetrahydrobenzo[5,6]cy clohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4e)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **4e** in 57% yield (40 mg); colorless solid, mp 196–198 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 7.9 Hz, 1H), 7.37–7.29 (m, 5H), 7.29–7.26 (m, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 6.99 (d, *J* = 7.5 Hz, 1H), 6.51 (dd, *J* = 10.2, 1.0 Hz, 1H), 6.18 (d, *J* = 1.6 Hz, 1H), 5.82 (d, *J* = 10.2 Hz, 1H), 4.84 (d, *J* = 11.8 Hz, 1H), 4.59 (d, *J* = 13.1 Hz, 1H), 4.26 (d, *J* = 13.1 Hz, 1H), 3.55 (d, *J* = 11.8 Hz, 1H), 3.38–3.32 (m, 2H), 3.25 (d,

J = 14.1 Hz, 1H), 3.10 (d, J = 14.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 198.2, 151.3, 139.7, 139.6, 135.3, 132.2, 130.4, 130.2, 128.4, 127.9, 127.6, 127.5, 127.3, 127.2, 123.9, 84.2, 72.8, 71.1, 49.4, 48.0, 42.7; HRMS (ESI) calcd for C₂₃H₂₀NaO₃ [M+Na]⁺: 367.1305, found: 367.1304.

(2aS*,2a¹S*,5aR*,6R*)-6-Hydroxy-2a-(2-methoxyethyl)-2a,2a¹,5a,6-tetrahydrobe nzo[5,6]cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4f)

Column chromatography (eluent: petroleum ether/EtOAc = 15:1 to 2:1) to give the product **4f** in 83% yield (52 mg); colorless solid, mp 126–127 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 7.9 Hz, 1H), 7.27 (t, *J* = 7.5 Hz, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.00 (d, *J* = 7.5 Hz, 1H), 6.58 (dd, *J* = 10.2, 1.4 Hz, 1H), 6.19 (d, *J* = 1.9 Hz, 1H), 5.79 (d, *J* = 10.2 Hz, 1H), 4.89 (dd, *J* = 11.5, 1.9 Hz, 1H), 4.65 (d, *J* = 13.2 Hz, 1H), 4.28 (d, *J* = 13.1 Hz, 1H), 3.67 (ddd, *J* = 9.9, 6.7, 5.1 Hz, 1H), 3.62–3.57 (m, 2H), 3.55–3.50 (m, 2H), 3.35 (s, 3H), 2.19 (ddd, *J* = 14.7, 6.9, 5.0 Hz, 1H), 2.10 (ddd, *J* = 14.8, 6.7, 5.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 198.5, 151.3, 140.0, 139.8, 132.1, 130.3, 127.8, 127.5, 127.5, 127.3, 123.7, 83.5, 72.9, 71.1, 67.7, 58.6, 49.2, 48. 8, 36.4; HRMS (ESI) calcd for C₁₉H₂₁O₄ [M+H]⁺: 313.1434, found: 313.1433.

(2aS*,2a¹S*,5aR*,6R*)-6-Hydroxy-2a-isopropyl-2a,2a¹,5a,6-tetrahydrobenzo[5,6] cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4g)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 5:1) to give the product **4g** in 59% yield (35 mg); colorless solid, mp 107–109 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, *J* = 7.9 Hz, 1H), 7.28 (d, *J* = 7.3 Hz, 1H), 7.20 (t, *J* = 7.4 Hz,

1H), 7.02 (d, J = 7.5 Hz, 1H), 6.65 (dd, J = 10.3, 1.7 Hz, 1H), 6.24 (d, J = 1.9 Hz, 1H), 5.88 (d, J = 10.3 Hz, 1H), 4.94 (dd, J = 11.5, 2.6 Hz, 1H), 4.61 (d, J = 12.9 Hz, 1H), 4.29 (d, J = 12.9 Hz, 1H), 3.55–3.48 (m, 3H), 2.15 (dt, J = 13.8, 6.9 Hz, 1H), 1.13 (dd, J = 6.9, 3.5 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 198.4, 151.6, 141.0, 139.6, 132.0, 130.6, 128.5, 127.5, 127.5, 127.4, 123.7, 86.3, 73.2, 71.2, 50.5, 45.9, 34.5, 17.6, 17.4; HRMS (ESI) calcd for C₁₉H₂₁O₃ [M+H]⁺: 297.1485, found: 297.1486.

(2aS*,2a¹S*,5aR*,6R*)-6-Hydroxy-2a-phenyl-2a,2a¹,5a,6-tetrahydrobenzo[5,6]cy clohepta[1,2,3-cd]benzofuran-5(1*H*)-one (4h)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 4:1) to give the product **4h** in 90% yield (60 mg); colorless solid, mp 145–147 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 7.9 Hz, 1H), 7.57–7.54 (m, 2H), 7.46–7.44 (m, 2H), 7.42–7.38 (m, 1H), 7.29 (t, *J* = 7.3 Hz, 1H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.05 (d, *J* = 7.5 Hz, 1H), 6.70 (dd, *J* = 10.1, 1.8 Hz, 1H), 6.25 (d, *J* = 2.1 Hz, 1H), 6.09 (d, *J* = 10.1 Hz, 1H), 4.96 (d, *J* = 13.1 Hz, 1H), 4.76 (dd, *J* = 11.8, 2.5 Hz, 1H), 4.51 (dt, *J* = 13.2, 1.8 Hz, 1H), 3.53–3.50 (m, 1H), 3.48 (d, *J* = 11.8 Hz, 1H), 3.41 (dd, *J* = 4.8, 3.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 198.5, 149.2, 139.8, 139.7, 139.0, 132.4, 130.2, 129.3, 128.9, 128.7, 127.7, 127.5, 127.4, 125.5, 123.7, 86.0, 72.7, 71.8, 53.1, 48.4; HRMS (**ESI**) calcd for C₂₂H₁₈NaO₃ [M+Na]⁺: 353.1148, found: 353.1145.

(2aS*,2a¹S*,5aR*,6R*)-2a-Cyclohexyl-6-hydroxy-2a,2a¹,5a,6-tetrahydrobenzo[5, 6]cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4i)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 5:1) to give the product **4i** in 78% yield (52 mg); colorless solid, mp 126–128 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, *J* = 7.9 Hz, 1H), 7.26 (t, *J* = 7.2 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.01 (d, *J* = 7.5 Hz, 1H), 6.63 (dd, *J* = 10.3, 1.6 Hz, 1H), 6.22 (d, *J* = 1.9 Hz, 1H), 5.85 (d, *J* = 10.3 Hz, 1H), 4.93 (dd, *J* = 11.5, 2.6 Hz, 1H), 4.59 (d, *J* = 12.9 Hz, 1H), 4.28 (d, *J* = 12.9 Hz, 1H), 3.54 (d, *J* = 11.6 Hz, 2H), 3.51 (dd, *J* = 5.4, 3.1 Hz, 1H), 1.95 (d, *J* = 8.2 Hz, 1H), 1.88 (d, *J* = 12.1 Hz, 1H), 1.85 (d, *J* = 11.4 Hz, 2H), 1.80 (ddd, *J* = 11.6, 7.4, 3.0 Hz, 1H), 1.74–1.68 (m, 1H), 1.34–1.25 (m, 4H), 1.24–1.16 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 220.1, 191.3, 184.9, 163.2, 149.2, 136.1, 133.7, 133.3, 131.6, 128.9, 127.3, 126.6, 125.8, 92.7, 82.1, 76.4, 55.3, 53.4, 50.1, 47.7, 35.6, 34.6, 32.5, 32.2, 31.0, 22.1, 21.9, 13.8; HRMS (ESI) calcd for C₂₂H₂₅O₃ [M+H]⁺: 337.1798, found: 337.1793.

(6a*R**,6a¹*S**,14*R**,14a*R**)-14-Hydroxy-3,4,5,6,6a¹,8,14,14a-octahydro-1*H*-benzo[*h*]benzo[5,6]cyclohepta[1,2,3-*cd*]benzofuran-1-one (4j)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **4j** in 74% yield (46 mg); colorless solid, mp 214–216 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 7.9 Hz, 1H), 7.29–7.26 (m, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 6.99 (d, *J* = 7.5 Hz, 1H), 6.19 (d, *J* = 1.8 Hz, 1H), 5.68 (s, 1H), 4.90 (dd, *J* = 11.8, 2.5 Hz, 1H), 4.60 (d, *J* = 13.3 Hz, 1H), 4.20 (d, *J* = 13.3 Hz, 1H), 3.61 (d, *J* = 11.8 Hz, 1H), 3.39 (dd, *J* = 4.6, 3.3 Hz, 1H), 3.19 (d, *J* = 2.1 Hz, 1H), 2.67 (td, *J* = 12.2, 4.2 Hz, 1H), 2.19 (d, *J* = 11.8 Hz, 1H), 2.08–2.04 (m, 1H), 2.04–1.99 (m, 1H), 1.99–1.91 (m, 2H), 1.80–1.73 (m, 1H), 1.40–1.31 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 198.1, 165.0, 140.2, 139.9, 132.1, 130.3, 127.7, 127.5, 127.3, 123.8, 122.7, 84.2, 72.5, 70.2, 49.9, 49.4, 36.6, 32.0, 28.5, 21.9; HRMS (ESI) calcd for C₂₀H₂₁O₃ [M+H]⁺: 309.1485, found: 309.1486.

(5a*R**,5a¹*S**,13*R**,13a*R**)-13-Hydroxy-4,5,5a¹,7,13,13a-hexahydrobenzo[5,6]cycl ohepta[1,2,3-*cd*]cyclopenta[*h*]benzofuran-1(3*H*)-one (4k)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 4:1) to give the product **4k** in 68% yield (40 mg); pale-yellow solid, mp 176–178 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, *J* = 7.7 Hz, 1H), 7.27 (t, *J* = 7.2 Hz, 1H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.05 (d, *J* = 7.4 Hz, 1H), 6.28 (s, 1H), 5.86 (d, *J* = 1.3 Hz, 1H), 5.04 (s, 1H), 4.55 (d, *J* = 13.1 Hz, 1H), 4.26 (d, *J* = 13.1 Hz, 1H), 3.51 (d, *J* = 7.2 Hz, 1H), 3.43 (s, 1H), 3.31 (dd, *J* = 5.8, 3.7 Hz, 1H), 2.83–2.74 (m, 1H), 2.35 (dt, *J* = 16.7, 6.5 Hz, 1H), 2.22–2.11 (m, 1H), 2.04 (dd, *J* = 17.7, 9.3 Hz, 1H), 1.91–1.84 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 197.9, 166.5, 141.6, 139.9, 132.1, 131.5, 128.5, 127.5, 127.4, 123.0, 122.6, 89.0, 72.5, 69.6, 53.2, 41.9, 32.2, 27.9, 20.9; HRMS (ESI) calcd for C₁₉H₁₉O₃ [M+H]⁺: 295.1329, found: 295.1328.

2a,3,4,5,5a¹,7-Hexahydrobenzo[5,6]cyclohepta[1,2,3-*cd*][1,3]dioxole[*h*]benzofura n-1(2*H*)-one (4l)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **4l** in 48% yield (27 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (s, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.41–7.31 (m, 3H), 6.61 (s, 1H), 4.76–4.67 (m, 2H), 4.30 (dd, *J* = 6.4, 4.5 Hz, 1H), 4.08 (td, *J* = 8.7, 6.0 Hz, 1H), 3.93 (dd, *J* = 15.1, 8.2 Hz, 1H), 3.10 (s, 1H), 2.84 (dd, *J* = 16.6, 4.3 Hz, 1H), 2.74 (dd, *J* = 16.6, 6.5 Hz, 1H), 2.27 (ddd, *J* = 12.5, 8.4, 6.8 Hz, 1H), 2.13–2.06 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 145.3, 137.0, 135.9, 133.5, 133.3, 131.2, 129.9, 128.8, 126.6, 119.5, 88.2,

77.6, 70.3, 65.8, 45.7, 40.8, 37.7; HRMS (ESI) calcd for C₁₈H₁₇O₃ [M+H]⁺: 281.1172, found: 281.1172.

(2a*R**,2a¹*S**,5a*R**,6*R**)-6-Hydroxy-2a,3-dimethyl-2a,2a¹,5a,6-tetrahydrobenzo[5, 6]cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4m)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **4m** in 66% yield (37 mg); colorless solid, mp 170–1726 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, *J* = 7.9 Hz, 1H), 7.26 (t, *J* = 7.3 Hz, 1H), 7.17 (t, *J* = 7.4 Hz, 1H), 6.99 (d, *J* = 7.5 Hz, 1H), 6.17 (d, *J* = 2.1 Hz, 1H), 5.65 (d, *J* = 1.1 Hz, 1H), 4.90 (dd, *J* = 11.7, 2.3 Hz, 1H), 4.62 (d, *J* = 13.3 Hz, 1H), 4.15 (dt, *J* = 13.4, 1.8 Hz, 1H), 3.71 (d, *J* = 11.8 Hz, 1H), 3.45 (dd, *J* = 5.1, 3.1 Hz, 1H), 3.35 (dd, *J* = 4.8, 2.4 Hz, 1H), 1.94 (d, *J* = 1.2 Hz, 3H), 1.61 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.7, 163.0, 139.9, 139.8, 132.1, 130.2, 127.5, 127.4, 127.2, 125.9, 123.7, 84.0, 72.7, 70.5, 51.5, 49.4, 22.2, 17.6; HRMS (ESI) calcd for C₁₈H₁₉O₃ [M+H]⁺: 283.1329, found: 283.1331.

 $(2aS^*, 2a^1R^*, 5aR^*, 6S^*)$ -6-Hydroxy-2a,4,5a-trimethyl-2a,2a¹,5a,6-tetrahydrobenz o[5,6]cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4n)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **4n** in 84% yield (50 mg); colorless solid, mp 126–128 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.31 (td, *J* = 7.4, 1.3 Hz, 1H), 7.25 (d, *J* = 6.9 Hz, 1H), 7.20 (td, *J* = 7.4, 0.8 Hz, 1H), 7.15 (d, *J* = 7.5 Hz, 1H), 6.59 (d, *J* = 1.4 Hz, 1H), 6.42 (s, 1H), 4.81 (d, *J* = 6.8 Hz, 1H), 4.38 (s, 2H), 3.08 (d, *J* = 7.2 Hz, 1H), 2.59 (s, 1H), 1.88 (d, *J* =

1.1 Hz, 3H), 1.48 (s, 3H), 1.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 201.8, 147.0, 145.6, 138.2, 136.5, 135.7, 130.8, 129.6, 128.2, 126.8, 121.8, 81.8, 79.2, 70.0, 62.2, 53.6, 27.7, 26.4, 16.1; HRMS (ESI) calcd for C₁₉H₂₁O₃ [M+H]⁺: 297.1485, found: 297.1492.

(2a*S**,2a¹*S**,5a*R**,6*R**)-2a-Ethyl-7-fluoro-6-hydroxy-2a,2a¹,5a,6-tetrahydrobenzo [5,6]cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4o)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **40** in 55% yield (33 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.24 (td, *J* = 8.0, 5.7 Hz, 1H), 6.97–6.89 (m, 2H), 6.63 (dd, *J* = 10.4, 1.2 Hz, 1H), 6.54 (s, 1H), 6.24 (d, *J* = 10.4 Hz, 1H), 5.81 (dd, *J* = 7.2, 4.5 Hz, 1H), 4.44 (dd, *J* = 13.1, 1.1 Hz, 1H), 4.38 (dt, *J* = 13.1, 2.1 Hz, 1H), 3.47 (dd, *J* = 9.1, 4.5 Hz, 1H), 3.19 (d, *J* = 7.6 Hz, 1H), 3.04 (d, *J* = 8.2 Hz, 1H), 1.83–1.76 (m, 2H), 0.94 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.4, 160.2 (d, *J* = 246.9 Hz), 151.3, 146.1, 138.1, 131.6, 129.1 (d, *J* = 9.4 Hz), 126.6 (d, *J* = 13.6 Hz), 125.5 (d, *J* = 3.0 Hz), 121.7 (d, *J* = 2.6 Hz), 114.1 (d, *J* = 23.9 Hz), 82.7, 70.2, 65.3 (d, *J* = 6.94 Hz), 58.6, 45.1, 32.1, 8.1; ¹⁹F NMR (565 MHz, CDCl₃) δ –117.19 (dd, *J* = 9.7, 5.5 Hz); HRMS (ESI) calcd for C₁₈H₁₈FO₃ [M+H]⁺: 301.1234, found: 301.1234.

 $(2aS^*, 2a^1S^*, 5aR^*, 6R^*)$ -2a-Ethyl-8-fluoro-6-hydroxy-2a, $2a^1, 5a, 6$ -tetrahydrobenzo [5,6]cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4p)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 43:1) to give the product **4p** in 77% yield (46 mg); colorless solid, mp 145–147 °C; ¹H NMR (600

MHz, CDCl₃) δ 7.64 (dd, J = 10.9, 1.5 Hz, 1H), 6.97 (dd, J = 8.2, 6.1 Hz, 1H), 6.85 (dd, J = 8.0, 2.4 Hz, 1H), 6.62 (d, J = 10.2 Hz, 1H), 6.16 (s, 1H), 5.81 (d, J = 10.2 Hz, 1H), 4.84 (d, J = 9.3 Hz, 1H), 4.62 (d, J = 13.1 Hz, 1H), 4.26 (d, J = 13.1 Hz, 1H), 3.61 (d, J = 11.2 Hz, 1H), 3.41 (s, 2H), 2.00–1.95 (m, 1H), 1.89–1.83 (m, 1H), 1.11 (t, J = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.2, 162.2 (d, J = 247.2 Hz), 152.00, 142.5 (d, J = 6.9 Hz), 139.2 (d, J = 2.9 Hz), 134.0 (d, J = 8.0 Hz), 133.9, 127.8, 126.5 (d, J = 3.4 Hz), 122.7, 114.9 (d, J = 21.4 Hz), 114.1 (d, J = 21.4 Hz), 84.5, 72.5, 71.1, 49.2, 48.0, 29.3, 7.9; ¹⁹F NMR (565 MHz, CDCl₃) δ -113.58 to - 113.72 (m); HRMS (ESI) calcd for C₁₈H₁₈FO₃ [M+H]⁺: 301.1234, found: 301.1232.

(2a*S**,2a¹*S**,5a*R**,6*R**)-8-Chloro-2a-ethyl-6-hydroxy-2a,2a¹,5a,6-tetrahydrobenz o[5,6]cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4q)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 4:1) to give the product **4q** in 82% yield (52 mg); colorless solid, mp 190–192 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.90 (s, 1H), 7.13 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.91 (d, *J* = 8.2 Hz, 1H), 6.61 (d, *J* = 10.2 Hz, 1H), 6.14 (s, 1H), 5.80 (d, *J* = 10.2 Hz, 1H), 4.82 (d, *J* = 11.8 Hz, 1H), 4.62 (d, *J* = 13.1 Hz, 1H), 4.26 (d, *J* = 13.2 Hz, 1H), 3.62 (d, *J* = 11.8 Hz, 1H), 3.41 (s, 2H), 2.03–1.96 (m, 1H), 1.89–1.83 (m, 1H), 1.11 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.1, 151.9, 141.5, 140.8, 133.5, 133.4, 128.8, 127.8, 127.8, 127.3, 122.7, 84.5, 72.4, 71.0, 49.1, 48.0, 29.2, 7.9; HRMS (ESI) calcd for C₁₈H₁₈ClO₃ [M+H]⁺: 317.0939, found: 317.0940.

(2a*S**,2a¹*S**,5a*R**,6*R**)-8-Bromo-2a-ethyl-6-hydroxy-2a,2a¹,5a,6-tetrahydrobenz o[5,6]cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4r)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **4r** in 80% yield (72 mg); colorless solid, mp 207–209 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.07 (s, 1H), 7.30 (dd, *J* = 8.1, 1.6 Hz, 1H), 6.86 (d, *J* = 8.2 Hz, 1H), 6.63 (dd, *J* = 10.2, 1.4 Hz, 1H), 6.14 (d, *J* = 1.9 Hz, 1H), 5.82 (d, *J* = 10.2 Hz, 1H), 4.85 (d, *J* = 11.3 Hz, 1H), 4.63 (d, *J* = 13.5 Hz, 1H), 4.26 (dd, *J* = 13.5, 1.8 Hz, 1H), 3.56 (d, *J* = 11.9 Hz, 1H), 3.44–3.38 (m, 2H), 2.03–1.96 (m, 1H), 1.89–1.83 (m, 1H), 1.12 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.1, 151.9, 141.7, 141.1, 133.6, 130.8, 130.4, 129.3, 127.8, 122.8, 121.9, 84.5, 72.4, 71.1, 49.1, 48.0, 29.2, 7.9; HRMS (ESI) calcd for C₁₈H₁₈BrO₃ [M+H]⁺: 361.0434, found: 361.0442.

(2a*S**,2a¹*S**,5a*R**,6*R**)-2a-Ethyl-6-hydroxy-8-methyl-2a,2a¹,5a,6-tetrahydrobenz o[5,6]cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4s)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **4s** in 84% yield (50 mg); colorless solid, mp 176–178 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (s, 1H), 6.98 (d, *J* = 7.6 Hz, 1H), 6.89 (d, *J* = 7.7 Hz, 1H), 6.60 (d, *J* = 10.2 Hz, 1H), 6.17 (s, 1H), 5.80 (d, *J* = 10.2 Hz, 1H), 4.88 (d, *J* = 11.6 Hz, 1H), 4.62 (d, *J* = 12.9 Hz, 1H), 4.27 (d, *J* = 12.9 Hz, 1H), 3.59 (d, *J* = 11.8 Hz, 1H), 3.40 (s, 2H), 2.35 (s, 3H), 1.97 (dq, *J* = 14.8, 7.4 Hz, 1H), 1.85 (dq, *J* = 14.8, 7.5 Hz, 1H), 1.11 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.4, 151.7, 139.3, 138.9,
137.3, 132.3, 128.2, 128.0, 127.9, 127.6, 123.6, 84.3, 72.9, 71.1, 49.6, 47.9, 29.3, 21.3, 7.9; HRMS (ESI) calcd for C₁₉H₂₁O₃ [M+H]⁺: 297.1485, found: 297.1493.

 $(2aS^*, 2a^1S^*, 5aR^*, 6R^*)$ -2a-Ethyl-9-fluoro-6-hydroxy-2a, $2a^1, 5a, 6$ -tetrahydrobenzo [5,6]cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4t)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 4:1) to give the product **4t** in 79% yield (48 mg); colorless solid, mp 106–108 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.88 (dd, *J* = 8.3, 6.3 Hz, 1H), 6.95 (td, *J* = 8.4, 2.7 Hz, 1H), 6.71 (dd, *J* = 9.8, 2.7 Hz, 1H), 6.62 (dd, *J* = 10.2, 1.6 Hz, 1H), 6.13 (d, *J* = 2.0 Hz, 1H), 5.82 (d, *J* = 10.2 Hz, 1H), 4.86 (d, *J* = 11.2 Hz, 1H), 4.64 (d, *J* = 13.5 Hz, 1H), 4.28 (dd, *J* = 13.5, 1.8 Hz, 1H), 3.59 (d, *J* = 11.8 Hz, 1H), 3.44–3.38 (m, 2H), 1.99 (dq, *J* = 14.9, 7.5 Hz, 1H), 1.86 (dq, *J* = 14.9, 7.5 Hz, 1H), 1.12 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.3, 161.7 (d, *J* = 245.0 Hz), 151.8, 142.0, 135.4 (d, *J* = 3.0 Hz), 132.3 (d, *J* = 7.4 Hz), 129.6 (d, *J* = 8.0 Hz), 128.0, 122. 9, 122.9, 118.2 (d, *J* = 21.9 Hz), 114.1 (d, *J* = 20.5 Hz), 84.5, 72.6, 71.0, 49.3, 48.0, 29.3, 7.9; ¹⁹F NMR (565 MHz, CDCl₃) δ -117.12 (dd, *J* = 15.7, 7.6 Hz); HRMS (ESI) calcd for C₁₈H₁₈FO₃ [M+H]⁺: 301.1234, found: 301.1227.

(2aS*,2a¹S*,5aR*,6R*)-9-Chloro-2a-ethyl-6-hydroxy-2a,2a¹,5a,6-tetrahydrobenz o[5,6]cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4u)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 4:1) to give the product **4u** in 85% yield (54 mg); colorless solid, mp 112–114 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, *J* = 8.5 Hz, 1H), 7.23 (dd, *J* = 8.5, 2.1 Hz, 1H), 6.99 (d, *J* =

2.0 Hz, 1H), 6.62 (dd, J = 10.2, 1.4 Hz, 1H), 6.12 (d, J = 1.9 Hz, 1H), 5.81 (d, J = 10.2 Hz, 1H), 4.85 (d, J = 10.4 Hz, 1H), 4.64 (d, J = 13.5 Hz, 1H), 4.28 (d, J = 13.5 Hz, 1H), 3.57 (d, J = 11.7 Hz, 1H), 3.45–3.38 (m, 2H), 1.99 (dq, J = 14.9, 7.5 Hz, 1H), 1.86 (dq, J = 14.8, 7.5 Hz, 1H), 1.12 (t, J = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.2, 151.9, 142.1, 138.1, 132.9, 132.0, 131.6, 129.2, 127.9, 127.3, 122.7, 84.5, 72.6, 71.1, 49.2, 48.0, 29.3, 8.0; HRMS (ESI) calcd for C₁₈H₁₈ClO₃ [M+H]⁺: 317.0939, found: 317.0940.

(2aS*,2a¹S*,5aR*,6R*)-9-Bromo-2a-ethyl-6-hydroxy-2a,2a¹,5a,6-tetrahydrobenz o[5,6]cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4v)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **4v** in 96% yield (69 mg); colorless solid, mp 117–119 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.77 (d, *J* = 8.5 Hz, 1H), 7.35 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.13 (d, *J* = 1.6 Hz, 1H), 6.61 (dd, *J* = 10.2, 1.1 Hz, 1H), 6.09 (d, *J* = 1.6 Hz, 1H), 5.79 (d, *J* = 10.2 Hz, 1H), 4.80 (d, *J* = 11.5 Hz, 1H), 4.63 (d, *J* = 13.5 Hz, 1H), 4.26 (d, *J* = 13.5 Hz, 1H), 3.61 (d, *J* = 11.8 Hz, 1H), 3.43–3.36 (m, 2H), 1.97 (dq, *J* = 14.8, 7.5 Hz, 1H), 1.10 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.1, 151.8, 142.2, 138.7, 134.3, 132.3, 130.2, 129.4, 127.8, 122.5, 120.9, 84.5, 72.5, 71.0, 49.1, 48.0, 29.2, 7.9; HRMS (ESI) calcd for C₁₈H₁₇BrNaO₃ [M+Na]⁺: 383.0253, found: 383.0251.

(2a*S**,2a¹*S**,5a*R**,6*R**)-2a-Ethyl-6-hydroxy-10-methyl-2a,2a¹,5a,6-tetrahydroben zo[5,6]cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4w)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 4:1) to give the product **4w** in 79% yield (47 mg); colorless solid, mp 91–93 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.42 (d, *J* = 7.4 Hz, 1H), 7.14 (dt, *J* = 14.1, 7.2 Hz, 2H), 6.66–6.60 (m, 2H), 6.07 (d, *J* = 10.3 Hz, 1H), 5.11 (dd, *J* = 8.9, 3.3 Hz, 1H), 4.58 (d, *J* = 12.9 Hz, 1H), 4.39 (d, *J* = 12.8 Hz, 1H), 3.45 (dd, *J* = 8.0, 3.6 Hz, 1H), 3.23 (d, *J* = 7.9 Hz, 1H), 3.20 (d, *J* = 9.3 Hz, 1H), 2.32 (s, 3H), 1.90–1.78 (m, 2H), 1.00 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.9, 151.7, 143.3, 139.9, 137.0, 131.4, 130.2, 130.2, 127.3, 126.4, 119.2, 83.3, 74.6, 71.0, 55.9, 45.9, 31.5, 20.6, 8.1; HRMS (ESI) calcd for C₁₉H₂₁O₃ [M+H]⁺: 297.1485, found: 297.1488.

(2a*S**,2a¹*S**,5a*R**,6*R**)-2a-Ethyl-6-hydroxy-2a,2a¹,5a,6-tetrahydro-[1,3]dioxolo[4 '',5'':4',5']benzo[1',2':5,6]cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4x)

Column chromatography (eluent: petroleum ether/EtOAc = 150:1 to 3:1) to give the product **4x** in 59% yield (39 mg); pale-yellow solid, mp 192–194 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.46 (s, 1H), 6.63 (d, *J* = 10.2 Hz, 1H), 6.51 (s, 1H), 6.08 (s, 1H), 5.96 (d, *J* = 9.9 Hz, 2H), 5.85 (d, *J* = 10.2 Hz, 1H), 4.86 (d, *J* = 11.7 Hz, 1H), 4.63 (d, *J* = 13.0 Hz, 1H), 4.27 (d, *J* = 13.0 Hz, 1H), 3.59 (d, *J* = 11.8 Hz, 1H), 3.44–3.39 (m, 2H), 1.99 (dq, *J* = 14.8, 7.4 Hz, 1H), 1.87 (dq, *J* = 14.8, 7.5 Hz, 1H), 1.13 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.5, 151.9, 147.3, 146.5, 138.4, 134.5,

127.9, 124.3, 123.3, 111.7, 108.3, 101.2, 84.4, 72.8, 71.1, 49.7, 47.7, 29.5, 8.0; HRMS (ESI) calcd for C₁₉H₁₈NaO₅ [M+Na]⁺: 349.1046, found: 349.1047.

(2a*S**,2a¹*S**,5a*R**,6*R**)-2a-Ethyl-6-hydroxy-2a,2a¹,5a,6-tetrahydronaphtho[2',1': 5,6]cyclohepta[1,2,3-*cd*]benzofuran-5(1*H*)-one (4y)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **4y** in 64% yield (43 mg); pale-yellow solid, mp 188–190 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.08 (d, *J* = 8.3 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.55–7.47 (m, 2H), 7.27 (s, 1H), 6.66 (d, *J* = 10.3 Hz, 1H), 6.18 (d, *J* = 10.3 Hz, 1H), 5.36 (dd, *J* = 8.5, 3.7 Hz, 1H), 4.66 (d, *J* = 12.9 Hz, 1H), 4.51 (d, *J* = 12.9 Hz, 1H), 3.57 (dd, *J* = 9.0, 3.8 Hz, 1H), 3.25 (d, *J* = 8.6 Hz, 1H), 3.20 (d, *J* = 8.8 Hz, 1H), 1.81 (dt, *J* = 8.7, 6.5 Hz, 2H), 0.95 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.7, 151.7, 146.2, 137.8, 133.3, 131.9, 130.9, 129.6, 128.5, 127.9, 126.7, 126.4, 125.9, 123.6, 117.9, 83.0, 75.1, 70.9, 58.5, 45.4, 32.1, 8.1; HRMS (ESI) calcd for C₂₂H₂₀NaO₃ [M+Na]⁺: 355.1305, found: 355.1303.

(3a*S**,3a¹*S**,6a*R**,7*R**)-7-Hydroxy-3a-propyl-1,2,3a,3a¹,6a,7-hexahydro-6H-benz o[5,6]cyclohepta[1,2,3-*de*]chromen-6-one (4z)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **4z** in 56% yield (35 mg); colorless solid, mp 140–142 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.8 Hz, 1H), 7.27 (t, *J* = 7.3 Hz, 1H), 7.17 (t, *J* = 7.4 Hz, 1H), 7.05 (d, *J* = 7.5 Hz, 1H), 6.72 (dd, *J* = 10.3, 1.2 Hz, 1H), 6.35 (s, 1H), 5.76 (d, *J* = 10.3 Hz, 1H), 4.77 (d, *J* = 11.8 Hz, 1H), 4.01 (dd, *J* = 11.2, 4.0 Hz, 1H), 3.64–3.55

(m, 1H), 3.54 (dd, J = 5.8, 1.3 Hz, 1H), 3.41 (d, J = 11.9 Hz, 1H), 3.37 (d, J = 4.9 Hz, 1H), 2.56 (td, J = 13.1, 5.1 Hz, 1H), 2.24 (d, J = 13.6 Hz, 1H), 1.96–1.86 (m, 1H), 1.85–1.75 (m, 1H), 1.74–1.61 (m, 1H), 1.56–1.46 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.7, 156.2, 140.1, 135.1, 131.6, 130.2, 129.4, 128.6, 127.0, 126.9, 125.4, 78.7, 73.5, 64.9, 55.9, 49.2, 43.0, 39.2, 17.2, 14.4; HRMS (ESI) calcd for C₂₀H₂₃O₃ [M+H]⁺: 311.1642, found: 311.1649.

(2a*S**,2a¹*S**,5a*R**,6*R**)-6-Hydroxy-2a-methyl-2-tosyl-1,2,2a,2a¹,5a,6-hexahydro-5 *H*-benzo[5,6]cyclohepta[1,2,3-*cd*]indol-5-one (4aa)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 2:1) to give the product **4aa** in 55% yield (36 mg); colorless solid, mp 154–156 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, *J* = 7.9 Hz, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.04–7.02 (m, 1H), 7.01 (s, 1H), 6.29 (s, 1H), 5.70 (d, *J* = 10.2 Hz, 1H), 4.82 (d, *J* = 11.8 Hz, 1H), 4.24 (d, *J* = 13.3 Hz, 1H), 4.17 (d, *J* = 13.3 Hz, 1H), 3.46 (d, *J* = 12.0 Hz, 1H), 3.42 (s, 1H), 3.39 (dd, *J* = 5.4, 2.4 Hz, 1H), 2.45 (s, 3H), 1.82 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.9, 150.9, 143.7, 139.7, 138.5, 133.1, 132.5, 129.8, 129.5, 128.0, 127.4, 126.9, 126.6, 126.1, 72.7, 67.8, 53.8, 52.7, 49.5, 22.8, 21.5; HRMS (ESI) calcd for C₂₄H₂₄NO₄S [M+H]⁺: 422.1421, found: 422.1421.

(2a*S**,2a¹*S**,5a*R**,6*R**)-2a-Butyl-6-hydroxy-2-tosyl-1,2,2a,2a¹,5a,6-hexahydro-5*H* -benzo[5,6]cyclohepta[1,2,3-*cd*]indol-5-one (4ab)

Column chromatography (eluent: petroleum ether/EtOAc = 15:1 to 2:1) to give the product **4ab** in 60% yield (56 mg); colorless solid, mp 167–169 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, *J* = 7.9 Hz, 1H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.28 (t, *J* = 7.8 Hz, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.08 (dd, *J* = 10.3, 1.6 Hz, 1H), 7.00 (d, *J* = 7.5 Hz, 1H), 6.27 (s, 1H), 5.70 (d, *J* = 10.2 Hz, 1H), 4.84 (d, *J* = 11.6 Hz, 1H), 4.12 (dd, *J* = 34.1, 13.2 Hz, 2H), 3.65 (s, 1H), 3.50 (d, *J* = 11.9 Hz, 1H), 3.34 (dd, *J* = 5.5, 2.5 Hz, 1H), 2.52 (ddd, *J* = 18.3, 9.8, 4.7 Hz, 1H), 2.45 (s, 3H), 1.81–1.75 (m, 1H), 1.44–1.31 (m, 4H), 0.90 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.2, 150.8, 143.8, 139.6, 137.7, 133.4, 132.3, 129.7, 129.6, 127.9, 127.3, 127.1, 126.8, 126.4, 126.3, 72.8, 71.9, 54.1, 49.5, 47.7, 33.8, 26.3, 22.8, 21.5, 14.0; HRMS (ESI) calcd for C₂₇H₃₀NO₄S [M+H]⁺: 464.1890, found: 464.1888.

(2a*S**,2a¹*S**,5a*R**,6*R**)-6-Hydroxy-2a-isopropyl-2-tosyl-1,2,2a,2a¹,5a,6-hexahydr o-5*H*-benzo[5,6]cyclohepta[1,2,3-*cd*]indol-5-one (4ac)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **4ac** in 38% yield (34 mg); colorless solid, mp 187–189 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, *J* = 7.8 Hz, 1H), 7.72 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.23 (dd, *J* = 10.4, 0.8 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.01 (d, *J* = 7.5 Hz, 1H), 6.29 (s, 1H), 5.87 (d, *J* = 10.4 Hz, 1H), 4.89 (d, *J* = 11.2 Hz, 1H), 4.10 (d, *J* = 12.6 Hz, 1H), 4.01 (d, *J* = 12.5 Hz, 1H), 3.74 (d, *J* = 5.6 Hz, 1H), 3.49 (dd, *J* = 6.5, 2.3 Hz, 1H), 3.32 (d, *J* = 11.4 Hz, 1H), 3.07 (dt, *J* = 13.9, 6.9 Hz, 1H), 2.44 (s, 3H), 1.13–1.07 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 197.2, 149.4, 143.6, 139.8, 137.6, 134.0, 132.0, 129.7, 128.0, 127.3, 127.3, 127.0, 126.6, 126.4, 75.6, 72.6, 54.9, 52.2, 44.5, 33.7, 21.5, 18.6, 17.5; HRMS (ESI) calcd for C₂₆H₂₈NO₄S [M+H]⁺: 450.1734, found: 450.1728.

(2a*S**,2a¹*S**,5a*R**,6*R**)-2a-(But-3-en-1-yl)-6-hydroxy-2-tosyl-1,2,2a,2a¹,5a,6-hexa hydro-5*H*-benzo[5,6]cyclohepta[1,2,3-*cd*]indol-5-one (4ad)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to give the product **4ad** in 55% yield (51 mg); colorless solid, mp 181–183 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, *J* = 7.8 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 7.9 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.06 (d, *J* = 10.2 Hz, 1H), 7.00 (d, *J* = 7.5 Hz, 1H), 6.27 (s, 1H), 5.83 (tt, *J* = 10.3, 6.5 Hz, 1H), 5.72 (d, *J* = 10.2 Hz, 1H), 5.10 (d, *J* = 17.2 Hz, 1H), 5.06 (d, *J* = 10.2 Hz, 1H), 4.84 (d, *J* = 11.5 Hz, 1H), 4.10 (dd, *J* = 36.4, 13.2 Hz, 2H), 3.67 (s, 1H), 3.47 (d, *J* = 11.9 Hz, 1H), 3.36 (d, *J* = 3.0 Hz, 1H), 2.75–2.64 (m, 1H), 2.45 (s, 3H), 2.37–2.28 (m, 1H), 2.19 (dt, *J* = 18.6, 9.3 Hz, 1H), 1.91–1.83 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 197.1, 150.2, 144.0, 139.6, 137.4, 136.9, 133.1, 132.3, 129.9, 129.5, 128.0, 127.4, 127.2, 126.9, 126.6, 126.6, 115.8, 72.8, 71.8, 54.0, 49.5, 47.5, 32.9, 28.2, 21.6; HRMS (ESI) calcd for C₂₇H₂₈NO₄S [M+H]⁺: 462.1734, found: 462.1734.

(2*aS**,2*a1R**)-2a-methyl-2a,2a1-dihydrobenzo[5,6]cyclohepta[1,2,3-cd]benzofura n-5(1H)-one (5a)

Table S1, entry 4: Column chromatography (eluent: petroleum ether/EtOAc = 30:1 to 10:1) to give the product **5a** in 46% yield (23 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.81 (s, 1H), 7.58 (d, *J* = 7.7 Hz, 1H), 7.41–7.33 (m, 3H), 6.80 (d, *J* = 10.4 Hz, 1H), 6.59 (d, *J* = 1.6 Hz, 1H), 7.29 (d, *J* = 10.4 Hz, 1H), 4.64 (dd, *J* = 13.5, 1.2 Hz, 1H), 4.40 (dt, *J* = 13.5, 1.8 Hz, 1H), 2.83 (d, *J* = 1.2 Hz, 1H), 1.48 (s, 3H); ¹³C

NMR (150 MHz, CDCl₃) δ 184.2, 150.4, 146.2, 136.6, 135.7, 133.9, 132.8, 130.3, 130.2, 129.2, 128.4, 126.4, 118.8, 79.0, 70.0, 47.0, 28.1; HRMS (ESI) calcd for C₁₇H₁₅O₂ [M+H]⁺: 251.1067, found: 251.1072.

(2*a*S*,2*a*1*R**,5*aR**,6*R**,11*aR**)-2a-methyl-2a,2a1,5a,6-tetrahydro-1*H*-6,11a-epoxy benzo[5,6]cyclohepta[1,2,3-cd]benzofuran-5,11-dione (6a)^{S1}

Table S1, entry 18: Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 5:1) to afford **6a** in 32% yield (18 mg); yellow solid, mp 199–201 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, *J* = 7.7 Hz, 1H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 1H), 6.84 (d, *J* = 10.3 Hz, 1H), 6.25 (d, *J* = 10.3 Hz, 1H), 5.66 (s, 1H), 4.83 (d, *J* = 10.4 Hz, 1H), 3.86 (d, *J* = 10.4 Hz, 1H), 3.00 (d, *J* = 8.9 Hz, 1H), 2.98 (d, *J* = 8.9 Hz, 1H), 1.49 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 195.2, 191.5, 152.9, 144.3, 134.5, 130.0, 128.9, 128.2, 127.4, 124.5, 99.5, 88.6, 77.6, 68.4, 54.0, 51.4, 27.8.

(3a*S*,3b*S*,7a*R*,7a¹*S*,8*R*,15a*R*,15b*S*,17a*S*)-8-Hydroxy-17a-methyl-2,3,3a,3b,4,5,7a,7 a¹,8,14,15b,16,17,17a-tetradecahydrobenzo[5,6]cyclohepta[1,2,3-*cd*]cyclopenta[5, 6]naphtho[2,1-*h*]benzofuran-1,7-dione (8a)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 2:1) to give the product **8a** in 80% yield (697 mg); colorless solid, mp 140–142 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, *J* = 7.9 Hz, 1H), 7.27–7.24 (m, 1H), 7.17 (t, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 7.5 Hz, 1H), 6.18 (d, *J* = 2.0 Hz, 1H), 5.66 (s, 1H), 4.89 (dd, *J* = 11.8, 2.3

Hz, 1H), 4.58 (d, J = 13.3 Hz, 1H), 4.21 (d, J = 13.2 Hz, 1H), 3.62 (d, J = 11.9 Hz, 1H), 3.59–3.58 (m, 1H), 3.33 (t, J = 3.9 Hz, 1H), 2.75–2.70 (m, 1H), 2.48 (dd, J = 19.5, 8.7 Hz, 1H), 2.26–2.21 (m, 1H), 2.16–2.04 (m, 3H), 1.98–1.78 (m, 4H), 1.63–1.55 (m, 1H), 1.50 (td, J = 11.4, 4.4 Hz, 1H), 1.38–1.30 (m, 2H), 1.15–1.08 (m, 1H), 0.96 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.3, 155.7, 140.2, 134.7, 131.7, 130.2, 129.4, 128.7, 127.1, 126.9, 125.4, 76.7, 73.4, 65.0, 56.3, 51.7, 39.1, 27.5; HRMS (ESI) calcd for C₂₈H₃₁O₄ [M+H]⁺: 431.2217, found: 431.2216.

(3a*S*,3b*S*,7a*R*,7a¹*S*,8*R*,15a*R*,15b*S*,17a*S*)-9-Fluoro-8-hydroxy-17a-methyl-2,3,3a,3 b,4,5,7a,7a¹,8,14,15b,16,17,17a-tetradecahydrobenzo[5,6]cyclohepta[1,2,3-*cd*]cycl openta[5,6]naphtho[2,1-*h*]benzofuran-1,7-dione (8b)

Column chromatography (eluent: petroleum ether/EtOAc = 15:1 to 2:1) to give the product **8b** in 53% yield (48 mg); colorless solid, mp 260–262 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.20 (td, J = 7.9, 5.5 Hz, 1H), 6.93 (dd, J = 9.8, 8.8 Hz, 1H), 6.85 (d, J = 7.6 Hz, 1H), 6.38 (s, 1H), 5.95 (d, J = 1.1 Hz, 1H), 5.61 (dd, J = 7.4, 4.9 Hz, 1H), 4.42 (d, J = 13.9 Hz, 1H), 4.22 (dt, J = 13.2, 2.0 Hz, 1H), 3.79 (d, J = 8.0 Hz, 1H), 3.43 (dd, J = 6.7, 4.8 Hz, 1H), 3.37–3.34 (m, 1H), 2.76 (ddd, J = 12.4, 4.8, 3.6 Hz, 1H), 2.46 (dd, J = 19.5, 8.7 Hz, 1H), 2.31–2.26 (m, 1H), 2.13–2.09 (m, 1H), 2.08–2.04 (m, 2H), 1.98–1.91 (m, 1H), 1.84–1.80 (m, 1H), 1.75–1.69 (m, 1H), 1.67–1.63 (m, 1H), 1.57 (ddd, J = 18.4, 10.8, 6.2 Hz, 1H), 1.42 (td, J = 11.8, 4.2 Hz, 1H), 1.33–1.27 (m, 2H), 1.19–1.11 (m, 1H), 0.91 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 220.1, 197.9, 164.4, 161.6 (d, J = 248.0 Hz), 144.3, 136.6 (d, J = 3.4 Hz), 128.9 (d, J = 9.9 Hz), 126.9 (d, J = 11.9 Hz), 126.3 (d, J = 2.7 Hz), 125.5, 122.1 (d, J = 2.1 Hz), 114.6, (d, J = 24.4 Hz), 84.7, 69.5, 66.5 (d, J = 4.4 Hz), 54.8, 50.6, 49.1, 47.8, 42.3, 36.1, 35.7, 31.7, 31.7, 30.9, 21.7, 20.8, 13.8; ¹⁹F NMR (565 MHz, CDCl₃) δ –113.71 (dd, J

= 10.0, 5.1 Hz); HRMS (ESI) calcd for $C_{28}H_{30}FO_4$ [M+H]⁺: 449.2123, found: 449.2117.

(3a*S*,3b*S*,7a*R*,7a¹*S*,8*R*,15a*R*,15b*S*,17a*S*)-8-Hydroxy-10,17a-dimethyl-2,3,3a,3b,4,5 ,7a,7a¹,8,14,15b,16,17,17a-tetradecahydrobenzo[5,6]cyclohepta[1,2,3-*cd*]cyclopen ta[5,6]naphtho[2,1-*h*]benzofuran-1,7-dione (8c)

Column chromatography (eluent: petroleum ether/EtOAc = 15:1 to 24:1) to give the product **8c** in 81% yield (72 mg); colorless solid, mp 213–215 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (s, 1H), 6.97 (d, *J* = 7.7 Hz, 1H), 6.87 (d, *J* = 7.7 Hz, 1H), 6.15 (s, 1H), 5.66 (s, 1H), 4.86 (d, *J* = 10.4 Hz, 1H), 4.57 (d, *J* = 13.1 Hz, 1H), 4.19 (d, *J* = 13.1 Hz, 1H), 3.60 (d, *J* = 12.0 Hz, 1H), 3.58 (d, *J* = 1.5 Hz, 1H), 3.33–3.28 (m, 1H), 2.72 (td, *J* = 12.5, 4.7 Hz, 1H), 2.48 (dd, *J* = 19.4, 8.8 Hz, 1H), 2.35 (s, 3H), 2.23 (dd, *J* = 9.2, 2.7 Hz, 1H), 2.16–2.04 (m, 3H), 1.99–1.94 (m, 1H), 1.92 (dd, *J* = 11.6, 4.8 Hz, 1H), 1.34 (ddd, *J* = 17.6, 12.7, 5.4 Hz, 2H), 1.11 (qd, *J* = 12.9, 4.1 Hz, 1H), 0.96 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 220.1, 197.9, 165.8, 139.5, 138.7, 137.3, 132.3, 128.4, 128.0, 127.5, 123.6, 122.7, 85.6, 72.7, 70.2, 50.7, 49.1, 48.5, 47.9, 44.5, 35.9, 35.7, 32.4, 31.4, 30.9, 21.8, 21.3, 21.2, 13.8; HRMS (ESI) calcd for C₂₉H₃₃O₄ [M+H]⁺: 445.2373, found: 445.2378.

(3a*S*,3b*S*,7a*R*,7a¹*S*,8*R*,15a*R*,15b*S*,17a*S*)-10-Chloro-8-hydroxy-17a-methyl-2,3,3a, 3b,4,5,7a,7a¹,8,14,15b,16,17,17a-tetradecahydrobenzo[5,6]cyclohepta[1,2,3-*cd*]cy clopenta[5,6]naphtho[2,1-*h*]benzofuran-1,7-dione (8d)

Column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 2:1) to give the product **8d** in 88% yield (82 mg); colorless solid, mp 241–243 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.92 (s, 1H), 7.12 (dd, *J* = 8.2, 1.8 Hz, 1H), 6.90 (d, *J* = 8.2 Hz, 1H), 6.13 (d, *J* = 2.1 Hz, 1H), 5.66 (d, *J* = 1.0 Hz, 1H), 4.82 (dd, *J* = 11.9, 2.5 Hz, 1H), 4.57 (d, *J* = 13.4 Hz, 1H), 4.19 (dt, *J* = 13.6, 1.9 Hz, 1H), 3.62 (d, *J* = 11.9 Hz, 1H), 3.58 (d, *J* = 2.1 Hz, 1H), 3.32 (dd, *J* = 4.6, 3.1 Hz, 1H), 2.76–2.68 (m, 1H), 2.48 (dd, *J* = 19.5, 8.6 Hz, 1H), 2.26–2.22 (m, 1H), 2.15–2.05 (m, 3H), 1.98–1.90 (m, 2H), 1.89–1.83 (m, 1H), 1.82–1.76 (m, 1H), 1.59 (tt, *J* = 12.4, 9.2 Hz, 1H), 1.50 (td, *J* = 11.5, 4.4 Hz, 1H), 1.38–1.30 (m, 2H), 1.15–1.07 (m, 1H), 0.96 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 220.1, 197.5, 166.0, 141.7, 140.8, 133.5, 133.4, 128.8, 128.0, 127.3, 122.7, 122.6, 85.7, 72.3, 70.2, 50.7, 48.8, 48.5, 47.8, 44.6, 35.9, 35.7, 32.3, 31.5, 30.9, 21.8, 21.2, 13.8; HRMS (ESI) calcd for C₂₈H₃₀ClO4 [M+H]⁺: 465.1827, found: 465.1830.

(3a*S*,3b*S*,7a*R*,7a¹*S*,8*R*,15a*R*,15b*S*,17a*S*)-10-Bromo-8-hydroxy-17a-methyl-2,3,3a, 3b,4,5,7a,7a¹,8,14,15b,16,17,17a-tetradecahydrobenzo[5,6]cyclohepta[1,2,3-*cd*]cy clopenta[5,6]naphtho[2,1-*h*]benzofuran-1,7-dione (8e)

Column chromatography (eluent: petroleum ether/EtOAc = 15:1 to 2:1) to give the product **8e** in 96% yield (98 mg); colorless solid, mp 250–252 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.07 (s, 1H), 7.27 (d, *J* = 1.3 Hz, 1H), 6.82 (d, *J* = 8.2 Hz, 1H), 6.11 (s, 1H), 5.65 (s, 1H), 4.81 (d, *J* = 11.4 Hz, 1H), 4.55 (d, *J* = 13.5 Hz, 1H), 4.18 (d, *J* = 13.4 Hz, 1H), 3.63 (d, *J* = 11.9 Hz, 1H), 3.55 (d, *J* = 1.4 Hz, 1H), 3.35–3.27 (m, 1H), 2.71 (td, *J* = 12.5, 4.5 Hz, 1H), 2.47 (dd, *J* = 19.4, 8.8 Hz, 1H), 2.23 (d, *J* = 12.0 Hz, 1H), 2.14–2.03 (m, 3H), 1.97–1.82 (m, 3H), 1.80–1.74 (m, 1H), 1.62–1.54 (m, 1H), 1.49 (td, *J* = 11.4, 4.2 Hz, 1H), 1.33 (qd, *J* = 12.9, 5.4 Hz, 2H), 1.10 (qd, *J* = 12.8, 3.8 Hz, 1H), 0.95 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 220.0, 197.5, 166.0, 141.9, 141.1, 133.5, 130.8, 130.3, 129.2, 122.7, 122.5, 121.8, 85.6, 72.2, 70.2, 50.6, 48.7,

48.4, 47.8, 44.6, 35.8, 35.7, 32.3, 31.4, 30.9, 21.8, 21.2, 13.8; HRMS (ESI) calcd for C₂₈H₃₀BrO₄ [M+H]⁺: 509.1322, found: 509.1336.

(1*S*,3a*S*,3b*S*,7a*R*,7a¹*S*,8*R*,15a*R*,15b*S*,17a*S*)-1,8-Dihydroxy-17a-methyl-2,3,3a,3b,4 ,5,7a,7a¹,8,14,15b,16,17,17a-tetradecahydrobenzo[5,6]cyclohepta[1,2,3-*cd*]cyclope nta[5,6]naphtho[2,1-*h*]benzofuran-7(1H)-one (8f)

Column chromatography (eluent: petroleum ether/EtOAc = 10:1 to 2:1) to give the product **8f** in 86% yield (74 mg); colorless solid, mp 154–156 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.8 Hz, 1H), 7.27 (d, *J* = 6.7 Hz, 1H), 7.17 (t, *J* = 7.3 Hz, 1H), 6.98 (d, *J* = 7.5 Hz, 1H), 6.18 (s, 1H), 5.64 (s, 1H), 4.88 (d, *J* = 10.9 Hz, 1H), 4.58 (d, *J* = 13.3 Hz, 1H), 4.20 (d, *J* = 13.3 Hz, 1H), 3.67 (t, *J* = 8.8 Hz, 2H), 3.59 (s, 1H), 3.36–3.29 (m, 1H), 2.68 (td, *J* = 12.6, 4.3 Hz, 1H), 2.18 (d, *J* = 11.7 Hz, 1H), 2.14–2.04 (m, 1H), 1.94 (dd, *J* = 20.9, 11.1 Hz, 3H), 1.88–1.78 (m, 1H), 1.78–1.57 (m, 3H), 1.47 (td, *J* = 16.0, 6.0 Hz, 2H), 1.34 (ddd, *J* = 18.4, 12.0, 6.0 Hz, 1H), 1.16 (dd, *J* = 14.6, 10.7 Hz, 1H), 1.07–0.94 (m, 2H), 0.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.0, 166.6, 140.5, 139.8, 132.2, 130.3, 127.6, 127.4, 127.3, 123.6, 122.4, 85.8, 81.5, 72.7, 70.2, 50.4, 49.0, 48.6, 44.5, 43.2, 36.4, 36.1, 33.2, 31. 7, 30.5, 23.3, 21.6, 11.1; HRMS (ESI) calcd for C₂₈H₃₃O₄ [M+H]⁺: 433.2373, found: 433.2372.

5. Gram-Scale Synthesis of 4c and Selective Transformations

5.1. Scale-Up Experiment

To an oven-dried round-bottom flask (100 mL) equipped with a magnetic stir bar were added *O*-tethered cyclohexadienones **1c** (1.03 mg, 3.5 mmol), 4Å MS (1.75 g) and PtBr₂ (36.2 mg, 0.105 mmol). The reaction vessel was capped and charged with an argon atmosphere through three cycles of the vacuum-argon-backfill method over 10 min. Anhydrous THF (35 mL) was then added and the resulting reaction mixture was stirred at 70 °C for 15 h. Upon completion, the reaction mixture was cooled to room temperature, tetrabutylammonium tribromide (TBATB) (84.4 mg, 0.175 mmol) and MeOH (35 mL) were added. The resulting reaction mixture was stirred at room temperature for 1 h (monitored by TLC), filtered through a pad of Celite and rinsed with EtOAc. The filtrate was washed with saturated NaHCO₃ (50 mL) and extracted with EtOAc (50 mL x 3). The combined organic phases are washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford the desired product **4c** (1.01 g, 97 % yield).

5.2. Selective transformations

To a solution of **4c** (0.2 mmol, 59.3 mg) in 1,2-dichloroethane (2 mL) at room temperature was added TsOH (10 mol %). The resulting reaction mixture was stirred at room temperature for 6 h until full consumption of the starting material, as indicated by TLC analysis. Upon completion, the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 20:1 to 6:1) to afford the desired product **9** in 99% yield (55 mg) as a pale-yellow solid, mp 90–92 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.78 (s, 1H), 7.57 (d, *J* = 7.7 Hz, 1H), 7.39 (t, *J* = 5.7 Hz, 2H), 7.37–7.32 (m, 1H), 6.73 (d, *J* = 10.4 Hz, 1H), 6.58 (d, *J* = 1.1 Hz, 1H), 6.36 (d, *J* = 10.4 Hz, 1H), 4.67–4.58 (m, 1H), 4.38 (d, *J* = 13.5 Hz, 1H), 2.79 (s, 1H), 1.79–1.71 (m, 1H), 1.69–1.61 (m, 1H), 1.35–1.28 (m, 1H), 1.23–1.17 (m, 1H), 0.87 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 184.5, 149.7, 146.1, 136.5, 135.2, 133.9, 132.8, 131.4, 130.2, 129.4, 128.3, 126.3, 118.7, 81.9, 69.9, 45.4, 42.9, 17.2, 14.2; HRMS (ESI) calcd for C₁₉H₁₉O₂ [M+H]⁺: 279.1380, found: 279.1376.

To a solution of 4c (0.2 mmol, 59.3 mg) in 1,2-dichloroethane (2 mL) at room temperature was added TsOH (30 mol %). The resulting reaction mixture was stirred at room temperature for 2 h until full consumption of the starting material. Upon completion, indole (0.4 mmol, 2.0 equiv) was added to the reaction mixture and stirred at 60 °C for 12 h (monitored by TLC analysis). Upon completion, the reaction

mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 25:1 to 10:1) to give the product **10** in 71% yield (56 mg) as a pale-yellow solid, mp 241–243 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.84–7.82 (m, 1H), 7.66–7.63 (m, 1H), 7.63–7.61 (m, 1H), 7.46–7.33 (m, 4H), 7.21 (t, *J* = 7.2 Hz, 1H), 7.16 (t, *J* = 7.3 Hz, 1H), 6.81 (d, *J* = 2.4 Hz, 1H), 6.64 (d, *J* = 1.5 Hz, 1H), 4.84 (d, *J* = 14.1 Hz, 1H), 4.75 (d, *J* = 14.3 Hz, 1H), 4.12 (t, *J* = 4.3 Hz, 1H), 3.34 (dd, *J* = 16.4, 5.2 Hz, 1H), 2.71 (s, 1H), 2.68 (dd, *J* = 16.5, 3.5 Hz, 1H), 1.57–1.46 (m, 4H), 0.70 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.5, 148.0, 137.8, 135.7, 134.3, 133.8, 132.8, 132.5, 129.7, 128.3, 127.4, 126.1, 122.3, 120.9, 119.6, 118.6, 118.3, 115.2, 111.1, 86.4, 68.4, 47.7, 41.8, 36.9, 35.2, 16.1, 14.3; HRMS (ESI) calcd for C₂₇H₂₆NO₂ [M+H]⁺: 396.1958, found: 396.1956.

To a solution of **4c** (0.2 mmol, 59.3 mg) in dichloromethane (4 mL) at room temperature was added NaHCO₃ (0.4 mmol, 2.0 equiv) and Dess-Martin periodinane (DMP, 0.3 mmol, 1.5 equiv). The resulting reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material, as indicated by TLC analysis. Upon completion, the reaction mixture was quenched by adding saturated sodium thiosulfate (2 mL) and saturated aqueous NaHCO₃ (2 mL), extracted with EtOAc (10 mL \times 2). The combined organic phases are washed with brine (10 mL) and dried over MgSO₄. The solvent was removed under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 30:1 to 15:1) to afford the diketone product **11** (21 mg) and its enol isomer **11'** (18 mg) in 36 and 30% yield, respectively.

Product **11:** white solid, mp 125–127 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.22 (d, J = 7.8 Hz, 1H), 7.52 (t, J = 7.4 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.12 (d, J = 7.6 Hz, 1H), 6.70 (d, J = 10.5 Hz, 1H), 6.31 (s, 1H), 6.04 (d, J = 10.5 Hz, 1H), 5.32 (s, 1H), 4.64 (d, J = 14.2 Hz, 1H), 4.45 (d, J = 14.1 Hz, 1H), 3.32 (s, 1H), 2.19–2.11 (m, 1H), 2.10–2.03 (m, 1H), 1.63–1.53 (m, 2H), 0.99 (t, J = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.8, 192.8, 151.1, 142.2, 135.3, 134.4, 131.9, 131.7, 130.9, 127.9, 127.5, 122.8, 85.8, 78.7, 70.7, 50.6, 39.7, 16.8, 14.5; HRMS (ESI) calcd for C₁₉H₁₉O₃ [M+H]⁺: 295.1329, found: 295.1328.

Product **11'**: white solid, mp 111–113 °C; ¹H NMR (600 MHz, CDCl₃) δ 15.91 (s, 1H), 8.08 (d, *J* = 7.9 Hz, 1H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 1H), 7.32 (d, *J* = 7.7 Hz, 1H), 6.45 (d, *J* = 9.9 Hz, 2H), 6.29 (d, *J* = 10.2 Hz, 1H), 4.59 (d, *J* = 13.5 Hz, 1H), 4.30 (d, *J* = 13.4 Hz, 1H), 2.90 (s, 1H), 1.71 (td, *J* = 12.9, 4.8 Hz, 1H), 1.64–1.58 (m, 1H), 1.31–1.22 (m, 2H), 0.87 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 182.6, 176.5, 150.7, 146.0, 137.0, 133.7, 130.8, 129.8, 129.6, 129.1, 126.7, 117.2, 106.6, 82.7, 69.1, 43.5, 42.4, 16.9, 14.2; HRMS (ESI) calcd for C₁₉H₁₉O₃ [M+H]⁺: 295.1329, found: 295.1325.

To a solution of **4c** (0.2 mmol, 59.3 mg) and Sc(OTf)₃ (10 mol %) in 1,2-dichloroethane (2 mL) was added TMSCN (0.6 mmol, 3 equiv). The resulting reaction mixture was stirred at room temperature for 24 h. Upon completion, the solvent was removed under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 20:1 to 8:1) to afford the desired product **12** in 37% yield (34.6 mg) as a colorless solid, mp 114–116 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.68 (d, *J* = 7.9 Hz, 1H), 7.19 (td, *J* = 7.2, 0.9 Hz, 1H), 7.13 (t, *J* = 7.4 Hz, 1H), 6.96 (d, *J* = 7.2 Hz, 1H), 6.10 (d, *J* = 2.6 Hz, 1H), 5.78 (dd, *J*

= 10.1, 0.9 Hz, 1H), 5.74 (d, J = 10.1 Hz, 1H), 5.18 (d, J = 3.7 Hz, 1H), 4.54 (d, J = 13.6 Hz, 1H), 4.28 (dt, J = 13.6, 2.4 Hz, 1H), 3.06 (d, J = 1.2 Hz, 1H), 2.75 (t, J = 4.2 Hz, 1H), 1.75 (ddd, J = 13.8, 10.7, 6.1 Hz, 1H), 1.63 (ddd, J = 14.0, 11.2, 5.4 Hz, 1H), 1.56–1.47 (m, 2H), 0.99 (t, J = 7.3 Hz, 3H), 0.30 (s, 9H), -0.23 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 140.7, 139.6, 133.6, 132.7, 131.8, 128.2, 126.7, 126.7, 126.2, 123.4, 122.0, 83.9, 74.3, 70.3, 65.3, 45.9, 43.8, 40.2, 17.1, 14.6, 0.5, -0.3; HRMS (ESI) calcd for C₂₆H₃₈NO₃Si₂ [M+H]⁺: 468.2385; found: 468.2378.

To a solution of 4c (0.2 mmol, 59.3 mg) in MeOH (2 mL) was added tetrabutylammonium tribromide (TBATB) (0.5 mmol, 2.5 equiv). The resulting reaction mixture was stirred at room temperature for 24 h until full consumption of the starting material, as indicated by TLC analysis. Upon completion, the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 20:1 to 7:1) to afford the product **13** in 55% yield (59 mg) as a colorless solid, mp 189–191 °C; ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3) \delta 7.55 \text{ (d, } J = 7.6 \text{ Hz}, 1\text{H}), 7.28 \text{ (t, } J = 7.5 \text{ Hz}, 1\text{H}), 7.20 \text{ (t, } J = 7.2 \text{ Hz})$ Hz, 1H), 7.03 (d, J = 7.2 Hz, 1H), 5.62 (s, 1H), 5.54 (s, 1H), 4.47 (d, J = 6.8 Hz, 1H), 4.21 (d, J = 10.4 Hz, 1H), 4.16 (d, J = 10.4 Hz, 1H), 3.98 (d, J = 6.1 Hz, 1H), 3.69 (s, 3H), 3.67 (d, J = 9.6 Hz, 1H), 3.29 (s, 3H), 3.14 (s, 3H), 2.89 (d, J = 9.2 Hz, 1H), 1.90–1.81 (m, 1H), 1.75–1.67 (m, 1H), 1.56–1.48 (m, 1H), 1.40 (td, J = 11.9, 6.1 Hz, 1H), 0.95 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 142.7, 131.8, 131.3, 128.2, 128.1, 123.0, 98.8, 97.8, 89.6, 87.7, 80.1, 71.6, 61.5, 55.0, 53.5, 50.9, 49.8, 48.6, 48.1, 33.2, 16.5, 14.7; HRMS (ESI) calcd for $C_{22}H_{28}Br_2NaO_5$ [M+Na]⁺: 553.0196; found: 553.0195.

6. Control Experiments with 1a

6.1. Probing a H• Atom or Hydride Shift Pathway

A 10 mL round-bottom flask was charged with **1a** (0.2 mmol, 53.3 mg), 4 Å MS (100 mg), PtBr₂ (0.01 mmol, 5 mol %), TEMPO (0.4 mmol, 2.0 equiv) and anhydrous THF (0.1 M, 2 mL) under an argon atmosphere, and the reaction mixture was stirred at 70 $^{\circ}$ C for 12 h. Upon completion, the reaction mixture cooled to room temperature and filtered through a pad of Celite and rinsed with EtOAc. The solvent was removed under reduced pressure and the crude residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 20:1 to 6:1) to afford the desired products **2a** (25 mg, 37% yield) and **3a** (25.7 mg, 38% yield).

A 10 mL round-bottom flask was charged with **1a** (0.2 mmol, 53.3 mg), 4 Å MS (100 mg), PtBr₂ (0.01 mmol, 5 mol %), BHT (0.4 mmol, 2.0 equiv) and anhydrous THF (0.1 M, 2 mL) under an argon atmosphere, and the reaction mixture was stirred at 70 $^{\circ}$ C for 12 h. Upon completion, the reaction mixture cooled to room temperature and filtered through a pad of Celite, rinsed with EtOAc. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 20:1 to 6:1) to afford the desired product **2a** (31 mg, 45% yield) and **3a** (27 mg, 40% yield).

 $(2aS^*, 2a^1S^*, 5aR^*, 6R^*) - 2a - Methyl - 6 - (((R^*) - tetrahydrofuran - 2 - yl)oxy) - 2a, 2a^1, 5a, 6a^2 - tetrahydrobenzo [5, 6] cyclohepta [1, 2, 3 - cd] benzofuran - 5(1H) - one (2a)$

Colorless solid; mp 139–141 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.66 (s, 1H), 7.24 (d, J = 7.4 Hz, 1H), 7.18 (d, J = 6.1 Hz, 1H), 7.03 (d, J = 6.9 Hz, 1H), 6.46 (s, 1H), 6.24 (s, 1H), 5.71 (s, 1H), 5.27 (s, 1H), 5.02–4.85 (m, 1H), 4.66 (d, J = 13.0 Hz, 1H), 4.28 (d, J = 11.8 Hz, 1H), 3.99–3.87 (m, 2H), 3.45 (s, 1H), 2.35–1.92 (m, 3H), 1.87 (s, 1H), 1.69 (s, 1H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.0, 150.3, 137.6, 127.3, 127.0, 78.4, 71.2, 67.1, 32.3, 23.6; HRMS (ESI) calcd for C₂₁H₂₃O₄ [M+H]⁺: 339.1591, found: 339.1585.

 $(2aS^*,2a^1S^*,5aR^*,6R^*)-2a-Methyl-6-(((S^*)-tetrahydrofuran-2-yl)oxy)-2a,2a^1,5a,6-tetrahydrobenzo[5,6]cyclohepta[1,2,3-cd]benzofuran-5(1H)-one (3a)$

Colorless solid; mp 139–141 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.77 (s, 1H), 7.24 (d, J = 7.6 Hz, 1H), 7.16 (t, J = 7.4 Hz, 1H), 7.00 (d, J = 7.5 Hz, 1H), 6.46 (d, J = 10.1 Hz, 1H), 6.24 (s, 1H), 5.74 (d, J = 9.3 Hz, 1H), 5.41 (s, 1H), 5.04 (s, 1H), 4.65 (d, J = 12.8 Hz, 1H), 4.27 (d, J = 12.9 Hz, 1H), 3.84 (s, 2H), 3.37 (s, 1H), 3.34 (s, 1H), 2.17 (s, 2H), 1.99 (s, 1H), 1.91 (s, 1H), 1.60 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 195.0, 150.3, 137.6, 131.7, 127.3, 127.0, 123.4, 105.8, 81.6, 78.4, 71.2, 67.1, 32.3, 23.5; HRMS (ESI) calcd for C₂₁H₂₃O₄ [M+H]⁺: 339.1591; found: 339.1588.

6.2. Deuterium-Labeling Experiments

A 10 mL round-bottom flask was charged with **1a** (0.2 mmol, 53.3 mg, 1.0 equiv), 4 Å MS (100 mg), PtBr₂ (0.01 mmol, 3.5 mg, 5 mol %) and anhydrous d_8 -THF (0.1 M, 2 mL) under an argon atmosphere, and the reaction mixture was stirred at 70 °C for 12 h. Upon completion, the reaction mixture was cooled to room temperature and tetrabutylammonium tribromide (TBATB) (0.01 mmol, 4.8 mg, 5 mol%) and MeOH (2 mL) were added. The resulting reaction mixture was stirred at room temperature for 1 h (monitored by TLC analysis), filtered through a pad of Celite and rinsed with EtOAc. The filtrate was washed with saturated NaHCO₃ (10 mL) and extracted with EtOAc (10 mL × 3). The combined organic phases are washed with brine (10 mL) and dried over MgSO₄. The solvent was removed under reduced pressure and purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 20:1 to 3:1) to afford the desired product d_1 -4a (39 mg) in 72% yield.

Colorless solid; mp 180–182 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, J = 7.9 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 7.19 (t, J = 7.4 Hz, 1H), 7.01 (d, J = 7.5 Hz, 1H), 6.56 (dd, J = 10.1, 1.5 Hz, 1H), 6.20 (s, 1H), 5.78 (d, J = 10.1 Hz, 1H), 4.91 (d, J = 10.1 Hz, 1H), 4.66 (d, J = 13.3 Hz, 1H), 4.28 (dd, J = 13.3, 2.0 Hz, 1H), 3.57 (d, J = 11.8 Hz, 1H), 3.44 (dd, J = 4.6, 3.2 Hz, 1H), 3.36 (d, J = 2.3 Hz, 1H), 1.61 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.2, 152.0, 139.9, 139.6, 132.2, 130.2, 127.6, 127.6, 127.5, 127.4, 82.3, 72.8, 71.0, 50.5, 49.5, 22.9; HRMS (ESI) calcd for C₁₇H₁₅DNaO₃ [M+Na]⁺: 292.1054; found: 292.1051.

7. ¹H, ¹³C and ¹⁹F NMR Spectra for All New Compounds

10.4601 17.5357 17.5357 17.5356 17.53530 17.55530

-116.39 -116.40 -116.41

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-7.8559 -7.2500 -7.250

CONSTITUTION

Construction of the second sec

C 1000 C 1000

7,70097 7,70097 7,735905 7,53503 7,735905 7,53503 7,73516 7,53503 7,73517 7,53503 7,73517 7,53503 7,73517 6,69713 6,69713 6,69713 6,69714 6,69713 6,69714 7,114 6,69714 7,114 6,69714 7,114 7,1144 7,114 7,14

C 2001 C 200

11/1/1 12/2014 1/201

-7.0035 -7.1004 -7.

7,7887, 7,7887, 7,7887, 7,787, 7,787, 7,879, 7,879, 7,46,000, 7,46,000, 7,46,000, 7,40,000,000, 7,40,000,000,000,000,000,

2.2012 2.2012

Contraction Contra

Current Control Contro

8. X-ray Crystal Structures of 2a, 4a, 8d and 13

Crystal preparation: Compound **2a** (30 mg) was dissolved in hexane/EtOAc = 9:1 (10 mL) in a 25 mL round-bottom flask while compounds **4a**, **8d** or **13** (30 mg) were dissolved in hexane/EtOAc/CH₂Cl₂ = 8:1:1 (5 mL) in a 25 mL round-bottom flask and the resultant solution was allowed to slowly evaporate at room temperature to give crystals suitable for X-ray diffraction analysis. The intensity data were collected at 100 K or 150 K on a single crystal X-ray diffractometer. More information on crystal structures can also be obtained from the Cambridge Crystallographic Data Centre (CCDC) with deposition numbers 2150312 (**2a**), 2150313 (**4a**), 2150314 (**8d**) and 2150315 (**13**), respectively.

Figure S1. ORTEP drawing of 2a with thermal ellipsoids at 30% probability levels.

Figure S2. ORTEP drawing of 4a with thermal ellipsoids at 30% probability levels.

Figure S3. ORTEP drawing of 8d with thermal ellipsoids at 30% probability levels.

Figure S4. ORTEP drawing of 13 with thermal ellipsoids at 30% probability levels.

9. References

S1. K. K. Gollapelli, V. B. Patil, A. Vinaykumar and R. Chegondi, Rh(I)-Catalyzed Stereoselective Desymmetrization of Prochiral Cyclohexadienones *via* Highly *exo*-Selective Huisgen-type [3 + 2] Cycloaddition, *Chem. Sci.*, 2021, **12**, 1544-1550.

S2. J. K. Hexum, R. Tello-Aburto, N. B. Struntz, A. M. Harned and D. A. Harki,
Bicyclic Cyclohexenones as Inhibitors of NF-κB Signaling, ACS Med. Chem. Lett.,
2012, 3, 459-464.

S3. Y. Fukui, P. Liu, Q. Liu, Z.-T. He, N.-Y. Wu, P. Tian and G.-Q. Lin, Tunable Arylative Cyclization of 1,6-Enynes Triggered by Rhodium (III)-Catalyzed C-H Activation, *J. Am. Chem. Soc.*, 2014, **136**, 15607-15614.

S4. Z.-T. He, X.-Q. Tang, L.-B. Xie, M. Cheng, P. Tian and G.-Q. Lin, Efficient Access to Bicyclo[4.3.0]nonanes: Copper-Catalyzed Asymmetric Silylative Cyclization of Cyclohexadienone-Tethered Allenes, *Angew. Chem. Int. Ed.*, 2015, **54**, 14815-14818.

S5. D. Gao, X.-Y. Liu, H. Xu, Y.-X. Tan, Q. Liao, Q.-H. Li, X. Yang and G.-Q. Lin, P. Tian, One-Pot Preparation of 9,10-Dihydrophenanthrenes Initiated by Rhodium(III)-Catalyzed C-H Activation and Relay Diels-Alder Reaction, *Org. Lett.*, 2020, **22**, 4300-4305.

S6. H. Jin, Q. Zhang, E. Li, P. Jia and N. Li, Y. Huang, Phosphine-Catalyzed Intramolecular Rauhut-Currier Reaction: Enantioselective Synthesis of Hydro-2h-indole Derivatives, *Org. Biomol. Chem.*, 2017, **15**, 7097-7101.

S7. D. Xu, Y. Zhao, D. Song, Z. Zhong, S. Feng, X. Xie, X. Wang and X. She, (3+2)-Annulation of *p*-Quinamine and Aryne: A Strategy To Construct the Multisubstituted Hydrocarbazoles, *Org. Lett.*, 2017, 9, 3600-3603.