Supporting Information

Thermo-Induced Decarboxylative α-C(sp³)-H Fluoroalkylation of

Glycine Derivatives with Fluorinated Peroxy Esters

Zi-Hang Yuan,^{a†} Hong Xin,^{a†} Jing-Qi Tao,^a Ying-Jie Ma,^a Xin-Hua Duan^{a,b} and Li-Na Guo^{*a}

^a Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.

^b State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.

E-mail: guoln81@xjtu.edu.cn

Table of Contents

1. General Information	S2
2. Starting Materials	S3
3. General Procedures for the Difluoroalkylation of Ethyl N-Phenylglycinate 1a with Peroxy Ester 2a	S6
4. Representative Procedure for the Difluoroalkylation of Glycine Derivatives 1 with Peroxy Esters 2	S9
5. Representative Procedure for the Reaction of Ethyl <i>N</i> -Phenylglycinate 1a with Peroxy Esters 5	S10
6. Telescoped Procedure	S10
7. Derivatizations of Products	S11
8. Mechanism Studies	S12
9. Preliminary Screening	S13
10. Characterization of Products	S14
11. References	S31
12. 1H NMR and 13C NMR Spectra of Starting Materials 2 and Products 3, 4, and 6,7a	S32

1. General Information

All reactions were conducted in 10 mL oven-dried sealed tube under N₂ atmosphere. Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification. ¹H, ¹⁹F and ¹³C NMR spectra were recorded on a Bruker 400 MHz (100 MHz for ¹³C NMR) spectrometer at ambient temperature. Chemical shift are reported in ppm from TMS with the solvent resonance as internal standard (CDCl₃: ¹H NMR: δ = 7.26; ¹³C NMR: δ = 77.16; DMSO: ¹H NMR: δ = 2.50; ¹³C NMR: δ = 39.52; CFCl₃ as an external standard and low field is positive). Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), td (triplet of doublets), qd (quartet of doublets) and m (multiplet). FT-IR spectra were recorded on a Bruker V 70 spectrometer and only major peaks are reported in cm-1. HRMS were obtained on a WATERS I-Class VION IMS Q-Tof. Melting points were measured using open glass capillaries in a SGW® X-4A apparatus. Analytical TLC: aluminum backed plates pre-coated (0.25 mm) with Merck Silica Gel 60F-254. Compounds were visualized by exposure to UV-light or by dipping the plates in KMnO₄ stain followed by heating.

2. Starting Materials

2.1 Glycine Derivatives

All *N*-arylglycine esters and amides 1 were prepared according to the literature.¹⁻²

2.2 General Procedure for the Synthesis of Fluorine-Contained Peroxy Esters 2a-2l:

A solution of DMAP (0.5 mmol), TBHP (70% in water, 6.0 mmol, 1.2 equiv.), and 2,2-difluorophenylacetic acid (5.0 mmol, 1.0 equiv.) in DCM (10 mL) was cooled to 0 °C over 20 min, then DCC (5.5 mmol, 1.1 equiv.) was added. The reaction mixture was stirred at room temperature. After completion as detected by TLC, the solution was filtered, the filter liquor was concentrated on a rotary evaporator under vacuum at $10 \sim 15$ °C, and the residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to give the corresponding fluorine-contained peroxy esters **2a-2l**.

All fluorine-contained peroxy esters heated and concentrated by rotovap at below 30 °C and stored under -20 °C. We have never experienced a safety problem with these materials.

2.3 Characterization of Staring Materials

Tert-butyl-2,2-difluoro-2-phenylethaneperoxoate (2a):

colorless oil (88%, 107.4 mg); $R_f = 0.55$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400FMHz, CDCl₃) δ 7.61 (d, J = 8.0 Hz, 2H), 7.51 – 7.45 (m, 3H), 1.27 (s, 9H); ⁹F NMR (376 M42, CDCl₃) δ 102.00 (s, 2F); ¹³C NMR (100 MHz, CDCl₃) δ 161.7 (t, J = 36.0 Hz), 132.2 (t, J = 25.0 Hz), 131.4 , 128.8 , 125.2 (t, J = 6.0 Hz), 113.4 (t, J = 253.0 Hz), 82a5, 25.8 ppm; IR (neat): v_{max} 3068, 2362, 2116, 1764, 1695, 1516, 1452, 1366, 1264, 1188, 752 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₅F₂O₃ [M+H]⁺ 245.0984, found 245.0995.

Tert-butyl 2,2-difluoro-2-(3-fluorophenyl)ethaneperoxoate (2b):

colorless pil (81%, 106.1 mg); $R_f = 0.60$ (petroleum ether/ethyl acetate = 25:1); ¹H NMR (400 MHz_OCDCL) δ 7.48 – 7.43 (m, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 9.2 Hz, 1H), 7121 ($Q_{J} = 8.4$ Hz, 1H), 1.28 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃) δ - 102.94 (s, 2F), -110.68 – -110.74 (m, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 163.8 (d, $J = 256_{0}$ Hz), 12th 2 (t, $J = 35_{0}$ Hz), 134.6 – 134.0 (td, J =

25.0, 7.0 Hz), 130.8 (d, J = 8.0 Hz), 121.1 (td, J = 6.0, 3.0 Hz), 118.7 (d, J = 21.0 Hz), 112.84 (dt, J = 12.0, 6.0 Hz), 112.6 (t, J = 253.0 Hz), 85.7, 25.8; **IR (neat)**: v_{max} 3083, 1799, 1707, 1694, 1679, 1596, 1486, 1393, 1369, 1135, 794 cm⁻¹; **HRMS (ESI)** calcd for C₁₂H₁₄F₃O₃ [M+H]⁺ 263.0889, found 263.0896.

Tert-butyl 2-(3-chlorophenyl)-2,2-difluoroethaneperoxoate (2c):

colorless oil (69%, 95.9 mg); $R_f = 0.60$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHz,

CDCl₃) δ 7.60 (s, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.44 – 7.40 (m, 1H), 1.29 (s, 9H); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -102.11 (s, 2F); ¹³C **NMR** (100 MHz, CDCl₃) δ 161.2 (t, J = 35.0 Hz), 135.0, 134.0 (t, J = 26.0 Hz), 131.6, 130.2, 125.7 (t, J = 6.0 Hz), 123.6 (t, J = 6.0 Hz), 112.7 (t, J = 254.0 Hz), 85.7, 25.9; **IR (neat)**: υ_{max} 3074, 1798, 1708, 1679, 1494, 1399, 1369, 982, 830 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₄ClF₂O₃ [M+H]⁺ 279.0594, found 279.0584.

Tert-butyl 2-(3-bromophenyl)-2,2-difluoroethaneperoxoate (2d):

colorless oil (68%, 109.5 mg); $R_f = 0.40$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 8.0 Hz, H), 7.85 (t, J = 8.0 Hz, 1H), 1.29 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃) δ -102.17 (s, 2F): ¹³C NMB (100 MHz, CDCl₃) δ 161.1 (t, J = 35.0 Hz), 134.6, 134.1 (t, J = 25.0Hz), 130.4, 128.5 (t, J = 6.0 Hz), 124.0 (t, J = 6.0 Hz), 122.8, 112.5 (t, J = 253.0 Hz) 85.7, ²⁵S.8; **IR** (**neat**): v_{max} (ESI) calcd for C₁₂H₁₄BrF₂O₃ [M+H]⁺ 323.0089, found 323.0087.

Tert-butyl 2,2-difluoro-2-(m-tolyl)ethaneperoxoate (2e):

colorless oil (83%, 107.1 mg); $R_f = 0.50$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHz, CDCl₃) & 7.41 – 7.39 (m, 2H), 7.36 – 7.34 (m, 2H), 7.33 – 7.30 (m, H), 2.39 (s, 3H), 1.29 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃) & -101.79 (s, 2F); ¹³C NMR (100 MHz, CDCl₃) & 161.8 (t, J = 36.0 Hz), 138.7, 132.1 (t, J = 25.0 Hz), 132.1, 28.7, 125.7 (t,26 = 6.0 Hz), 122.3 (t, J = 6.0 Hz), 113.5 (t, J = 253.0 Hz), 85.5, 25.8, 21.3; **IR (neat)**: v_{max} 3059, 1798, 1766, 1725, 1694, 1612, 1515, 1370, 1313, 856 cm⁻¹; HRMS (ESI) calcd for C₁₃H₁₇F₂O₃ [M+H]⁺ 259.1140, found 259.1132.

Tert-butyl 2,2-difluoro-2-(4-fluorophenyl)ethaneperoxoate (2f):

colorless oil (86%, 112.7 mg); $\mathbf{R}_{f} = 0.60$ (petroleum ether/ethyl acetate = 25:1); ¹**H NMR** (400 MHz, CDCl₃) § 7.60 (dd, J = 8.4, 6.8 Hz, 2H), 7.15 (t, J = 8.8 Hz, 2H), 1.27 (s, 9H); ¹⁰**F NMR** (376 MHz, CDCl₃) δ -101.12 (s, 2F), -108.17 – -108.20 (m, 1F); ¹³**C NMR** (400 MHz, CDCl₃) δ 164.4 (d, J = 251.0 Hz), 161.5 (t, J = 36.0 Hz), 128.3 (td, J = 28.0, 3.0 **M**z), 127.8 – 127 (6 (m), 116.0 (d, J = 23.0 Hz), 113.1 (t, J = 253.0 Hz), 85.6, 25.8; **IR** (**neat**): v_{max} 3086, 1798, 1768, 1513, 1369, 1266, 1084, 985, 840 cm⁻¹; **HRMS** (**ESI**) calcd for C₁₂H₁₄F₃O₃ [M+H]⁺ 263.0889, found 263.0891.

Tert-butyl 2-(4-chlorophenyl)-2,2-difluoroethaneperoxoate (2g):

colorless oil (72%, 100.1 mg); $R_f = 0.50$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHE, CDCl₃) δ 7.53 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 1.26 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃) δ -101.82 (s, 2F); ¹³C NMR (100 MHz, CDCl₃) δ 61.2 (t, J = 36.0 Hz), 137.7 (t, J = 2.0 Hz), 130.7 (t, J = 25.0 Hz), 129.1, 126.8 (t, J = 6.0 Hz), 113.0 (2gJ = 253.0 Hz), 85.6, 25.7; IR (neat): v_{max} 3074, 1798, 1766, 1678, 399, 1369, 1265, 1138, 982, 830 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₄ClF₂O₃ [M+H]⁺ 279.0594, found 279.0580.

Tert-butyl 2-(4-bromophenyl)-2,2-difluoroethaneperoxoate (2h):

colorless oil (75%, 120.8 mg); $R_f = 0.40$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 1.28 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃) δ -101.98 (s, 2F); ¹³C NMR (100 MHz, CDCl₃) δ 161.3 (t, J = 36.0 Hz), 132.1, 131.5, 127.0 (t, J = 6.0 Hz), 126.1 (t, J = 2.0 Hz), 113.1 (t, J = 253.0 Hz)H85.7, 25.9; IR (neat): v_{max} 3075, 1915, 1766, 1595, 1485, 1449, 1359, 1295, 1185, 1139, 825 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₄BrF₂O₃ [M+H]⁺ 323.0089, found 323.0073.

Tert-butyl 2-(3,5-dimethylphenyl)-2,2-difluoroethaneperoxoate (2i):

colorless oil (78%, 106.1 mg); $R_f = 0.50$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MELZFCDCl₃) & 7.21 (s, 2H), 7.12 (s, 1H), 2.35 (s, 6H), 1.29 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃) & 101.63 (s, 2F); ¹³C NMR (100 MHz, CDCl₃) & 161.9 (t, J = 35.0 Hz), 138.6, 32.9, 132.1 (d, J = 25.0Hz), 122.9 (t, J = 6.0 Hz), 113.6 (t, J = 253.0 Hz), 85.4, 25.8, 21.2; IR (neat): v_{max} 3055, 1799, 1767, 1708, 1612, 1458, 1370, 1231, 099, 984, 994 cm⁻¹; HRMS (ESI) calcd for C₁₄H₁₉F₂O₃ [M+H]⁺ 273.1296, found 273.1297.

Tert-butyl 2,2-difluoro-2-(p-tolyl)ethaneperoxoate (2j):

colorless oil (82%, 105.8 mg); $R_f = 0.50$ (petroleum ether/ethyl acetate = 20:1); ¹H **NMR** (400 MHz, CDCl₃) § 7.50 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H), 1.29 (s, 9H); ¹⁹H NMR (376 MHz, CDCl₃) δ -101.93 (s, 2F); ¹³C NMR (100 MHz, CDCl₂) δ 161.8 (to J = 36.0 Hz), 141.7, 129.4, 129.3 (t, J = 25.0 Hz), 125.1 (t, J = 6.0Hz), 113.6 (t, J **2**_j253.0 Hz), 85.3, 25.7, 21.2; **IR (neat)**: υ_{max} 3089, 1766, 1612, 1515, 1370, 1393, 1098, 1050, 981, 750 cm⁻¹; **HRMS (ESI)** calcd for C₁₃H₁₇F₂O₃ [M+H]⁺ 259.1140, found 259.1135.

Tert-butyl 2,2-difluoro-2-(4-methoxyphenyl)ethaneperoxoate (2k):

colorless oil (78%, 106.9 mg); $\mathbf{R}_{f} = 0.60$ (petroleum ether/ethyl acetate = 10:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.51 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.4 Hz, 2H), 3.80 (s, 3H), 1.26 (s, 9H); ¹⁹**H** NMR (376 MHz, CDCl₃) δ -100.52 (s, 2F); ¹³**C** NMR (100 MHz, CDCl₃) δ 164:9 (t, J = 36.0 Hz), 161.8, 126.9 (t, J = 6.0 Hz), 124.2 (t, J = 26.0 Hz), 14.1, 113.6 (t, J = 253.0 Hz), 85.4, 55.3, 25.8; **IR (neat)**: v_{max} 3061, 1797, 1766, 1616, 1539, 1464, 1423, 1392, 1137, 982, 837 cm⁻¹; **HRMS (ESI)** calcd for C₁₃H₁₇F₂O₄ [M+H]⁺ 275.1089, found 275.1086.

Tert-butyl 2-(4-(tert-butyl)phenyl)-2,2-difluoroethaneperoxoate (2l):

colorless oil (85%, 109.7 mg); $R_f = 0.60$ (petroleum ether/ethyl acetate = 10:1); ¹H **NMR** (400 MHz, CDCl₃) δ 7.61 (d, J = 8.0 Hz, 2H), 7.42 (t, J = 7.6 Hz, 3H), 7.32 (t, J = 7.6 Nz, 2H), 7.48 (d, J = 7.6 Hz, 3H), 2.29 (s, 3H), 1.23 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃) δ -99.25 (s, 2F); ¹³C NMR (100 MHz, CDCl₃) δ 161.5 (t, J = 35.0 Hz), 136.3 (t, J = 3.0 Hz), 131.9, 131.1 130.3 (t, J = 23.0 Hz), 125.9, 114.1 (t, J = 253.0 Hz), 85.3, 03.0, 25.7, 19.5; **IR (neat**): v_{max} 3071, 1799, 1766, 1708, 1609, 1455, 1367, 1187, 1074, 980, 843 cm⁻¹; **HRMS (ESI)** calcd for C₁₃H₁₇F₂O₃ [M+H]⁺ 259.1140, found 259.1131.

3. General Procedures for the Difluoroalkylation of Ethyl *N*-Phenylglycinate 1a with Peroxy Ester 2a

3.1 Thermolysis Strategy (General Procedure A)

An oven-dried 10 mL sealed tube equipped with a magnetic stir bar was charged with ethyl *N*-phenylglycinate **1a** under N₂ atmosphere (See **Table S1**). Subsequently, a solution of peroxy ester **2a** in solvent (x mL) was added via syringes. The tube was capped with a pressure screw cap and then stirred at specified temperature for specified time. After the reaction completed, the mixture was concentrated in *vacuo*. Purification of the crude product by flash chromatography (silica gel; petroleum ether/ethyl acetate = 20 : 1) yields the desired product **3a** as colorless oil.

Table S1 Optimization of the Reaction of Ethyl N-Phenylglycinate 1a and Peroxy Ester 2a

Temperature

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), CH₃CN (2.0 mL), x °C, for 8 h, under N₂. ^{*b* 19}F NMR using PhCF₃ as an internal standard.

Solvent

5	DCE	59
6	CH ₃ CN	51

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), solvent (2.0 mL), 80 °C, for 8 h, under N₂. ^{*b* 19}F NMR yields using PhCF₃ as an internal standard.

Ratio of 1a:2a

Entry	Temperature (°C)	Yields (%) ^b
1	80	65
2	100	78
3	120	84
4	140	85
H 0 + (1a		$\begin{array}{c} 2.0 \text{ mL} \\ \text{C}, 8 \text{ h} \end{array} \xrightarrow{H} \begin{array}{c} 0 \\ \text{F} \\ \text{F} \\ \text{3a} \end{array}$
Entry	1a:2a	Yield (%) <i>b</i>
1	1:1	43
2	1:1.5	59
3	1:2	65
4	1:2.5	66

^{*a*} Reaction conditions: 1a : 2a = 1 : x, DCE (2.0 mL), 80 °C, for 8 h, under N₂. ^{*b* 19}F NMR yields using PhCF₃ as an internal standard.

Temperature

^{*a*} Reaction conditions: 1a (0.2 mmol, 1.0 equiv.), 2a (0.4 mmol, 2.0 equiv.), DCE (2.0 mL), x °C, for 8 h,Ounder N₂.

^{<i>b</i>} ¹⁹ F NMR	Hyteld justing PhCF ₃ as $N = 1$	an internal standard.	DCE (2.0 mL)		0
Time	~ 0 ` '		Temperature (x °C),	, 8 h F	
\bigcirc	1a ₀ + - N - - - - +		DCE (2.0 mL) 120 °C, x (h)	$\rightarrow \qquad \qquad$	
-	Entry	Time	(h)	Yield (%) ^b	
-	1	2		43	
	2	4		49	
	3	6		63	
	4	8		67	
	5	10		84	
	6	12		99 (93) ^c	
	7	14		99	

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol, 2.0 equiv.), DCE (2.0 mL), 120 °C, for x h, under N₂. ^{*b* 19}F NMR yield using PhCF₃ as an internal standard. ^{*c*} Yields of isolated products.

Concentration

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol, 2.0 equiv.), DCE (x mL), 120 °C, for 12 h, under N₂. ^{*b*} Yields of isolated products.

3.2 Photo-induced Strategy (General Procedure B)

An oven-dried 10 mL sealed tube equipped with a magnetic stirrer was charged with ethyl *N*-phenylglycinate **1a**, photocatalyst, under N₂ atmosphere (See **Table S2**). Subsequently, a solution of peroxy ester **2a** in solvent (2 mL) was added via syringes. The tube was capped with a pressure screw cap and then stirred under the irradiation of a 10 W blue LED ($\lambda = 460-470$ nm; distance app. 1.0 cm from the bulb) for a specified time at room temperature. After the reaction completed, the mixture was concentrated in *vacuo*. Purification of the crude product by flash chromatography on silica gel (petroleum ether/ethyl acetate = 20 : 1) yields the desired product **3a** as colorless oil. **Table S2** Optimization of the Reaction of Ethyl N phenylglycinate 1a and text

 Table S2 Optimization of the Reaction of Ethyl N-phenylglycinate 1a and tertbutyl-2,2-difluoro-2-phenylethaneperoxoate 2a

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol, 2.0 equiv.), CH₃CN (2.0 mL), Photocatalyst (5 mol%), for 24 h, rt, under N₂, isolated yields were given. ^{*b*} DCE as solvent (2.0 mL), for 24 h, under N₂, isolated yield was given.

4. Representative Procedure for the Difluoroalkylation of Glycine Derivatives 1 with Peroxy Esters 2

An oven-dried 10 mL sealed tube equipped with a magnetic stirrer was charged with ethyl *N*-phenylglycinate **1** (0.2 mmol, 1.0 equiv.) under N₂ atmosphere. Subsequently, a solution of peroxy ester **2** (0.4 mmol, 2.0 equiv.) in DCE (2.0 mL) was added *via* syringes. The tube was capped with a pressure screw cap and then stirred at 120 °C for 12 h. After the reaction completed, the mixture was concentrated in *vacuo*. Purification of the crude product by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10 : 1 to 30 : 1) yields the desired products **3-4**.

5. Representative Procedure for the Reaction of Ethyl *N*-Phenylglycinate 1a with Peroxy Esters 5

An oven-dried 10 mL sealed tube equipped with a magnetic stirrer was charged with ethyl *N*-phenylglycinate 1 (0.2 mmol, 1.0 equiv.) under N₂ atmosphere. Subsequently, a solution of peroxy ester 5 (0.4 mmol, 2.0 equiv.) in DCE (2.0 mL) was added *via* syringes. The tube was capped with a pressure screw cap and then stirred at 120 °C for 12 h. After the reaction completed, the mixture was concentrated in *vacuo*.

Purification of the crude product by flash chromatography on silica gel; (petroleum ether/ethyl acetate = 10 : 1 to 30 : 1) yields the desired products **6**.

6. Telescoped Procedure

6.1 The Two-Step Difluoroalkylation Reaction of 1a with 2a

A solution of DMAP (0.02 mmol), TBHP (70% in water, 0.24 mmol) and 2a' (0.4 mmol) was cooled to 0 °C over 20 min, then DCC (0.22 mmol) was added. The mixture was stirred at room temperature for 6 h. After completion as detected by TLC, the solution was diluted by petroleum ether to extract the white solid to give the corresponding peroxy ester 2a, which was used for the next reaction without further purification.

An oven-dried 10 mL sealed tube equipped with a magnetic stirrer was charged with ethyl *N*-phenylglycinatl **1a** (0.2 mmol, 1.0 equiv.) under N₂ atmosphere. Subsequently, a solution of peroxy ester **2a** (0.4 mmol, 2.0 equiv.) in DCE (2.0 mL) was added *via* syringes. The tube was capped with a pressure screw cap and then stirred at specified temperature for specified time. After the reaction completed, the mixture was concentrated in *vacuo*. Purification of the crude product by flash chromatography on silica gel (petrolrum ether/ethyl acetate = 20 : 1) yields the desired product **3a** (53.7 mg, 88%).

6.2 Larger Scale Two-Step Difluoroalkylation Reaction of 1c with 2a

A solution of DMAP (0.2 mmol), TBHP (70% in water, 2.4 mmol), and 2a' (2.0 mmol) was cooled to 0 °C over 20 min, then DCC (2.2 mmol) was added. The mixture was stirred at room temperature for 6 h. After completion as detected by TLC, the solution was diluted by petroleum ether to extract the white solid to give the corresponding peroxy ester 2a, which was used for the next reaction without further purification.

An oven-dried 10 mL sealed tube equipped with a magnetic stirrer was charged with ethyl *N*-phenylglycinate **1c** (0.2 mmol, 1.0 equiv.) under N₂ atmosphere. Subsequently, a solution of peroxy ester **2a** (0.4 mmol, 2.0 equiv.) in DCE (2.0 mL) was added *via* syringes. The tube was capped with a pressure screw cap and then stirred at specified temperature for specified time. After the reaction completed, the mixture was concentrated in *vacuo*. Purification of the crude product by flash chromatography

on silica gel (petrolrum ether/ethyl acetate = 10 : 1) yields the desired product **3c** (252 mg, 75%).

7. Derivatizations of Product

To a solution of reductive product **3a** (0.2 mmol, 1.0 equiv.) in THF (10 mL) was added lithium aluminium tetrahydride (0.42 mmol, 2.1 equiv.) at room temperature. The reaction mixture was stirred for 6 h. After completion as detected by TLC, the reaction was quenched with saturated ammonium chloride aqueous solution. The aqueous layer was extracted with ethyl acetate; the combined organic layer was dried over sodium sulfate, filtered and concentrated under the reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to afford fluorine-contained amino alcohol **7a** in 97% yield.

8. Mechanism Studies

8.1 Radical Trapping Experiments

An oven-dried 10 mL sealed tube equipped with a magnetic stirrer was charged with ethyl *N*-phenylglycinate **1a** (0.2 mmol, 1.0 equiv.), TEMPO (0.4 mmol, 2.0 equiv.) under N₂ atmosphere. Subsequently, a solution of peroxy ester **2a** (0.4 mmol, 2.0 equiv.) in DCE (2.0 mL) were added *via* syringes. The tube was capped with a pressure screw cap and then stirred at 120 °C for 12 h.

When 2.0 equiv of TEMPO was added to the reaction of ethyl *N*-phenylglycinate **1a** with peroxy ester **2a** under the general procedure A, the reaction was completely suppressed and the TEMPO-adduct product was detected by LC-HRMS. (**HRMS (ESI)** calcd for $C_{16}H_{24}F_2NO$ [M+H]⁺ 284.1820, found 284.1814). This result indicates that a radical intermediate might be involved in this transformation

When 2.0 equiv of BHT was added of to the reaction of 1a with peroxy ester 2a under the general procedure A, no desired product 3a was observed. This result indicates that a radical intermediate might be involved in this transformation.

8.2 The Reaction of Imine 8 with Peroxy Ester 2

An oven-dried 10 mL sealed tube equipped with a magnetic stir bar was charged with ethyl-2-(phenylimino)acetate **8a** (0.2 mmol, 1.0 equiv.), under N₂ atmosphere. Subsequently, a solution of peroxy ester **2a** (0.4 mmol, 2.0 equiv.) in DCE (2.0 mL) were added via syringes. The tube was capped with a pressure screw cap and then stirred at 120 °C for 12 h. When ethyl-2-(phenylimino)acetate **8a** was used instead of **2a** under

the standard conditions, the product 3a was isolated in 15% yield. This result indicates that ethyl-2-(phenylimino)acetate 8a was not the major intermediate in this transformation.

9. Preliminary screening

Conditions	Result
Qing' s condtion ³ :	1a and 2a decomposed
Blue LEDs 30 W, Ir[dF(CF ₃)ppy] ₂ (dtbpy)BF ₄]	No desired product
BIOMe/BIOAC, NMP, rt.	
Zhu's condition ⁴ :	1a and 2a decomposed
Blue LEDs 30 W, Ir[dF(CF ₃)ppy] ₂ (dtbpy)BF ₄]	No desired product
PhI(OAc) ₂ , DMAc, rt.	
Wan and Wu's condition ⁵ :	76% recovered starting material 1a
AgNO ₃ , DMSO, K ₂ S ₂ O ₈ /(NH ₄) ₂ S ₂ O ₈ , 60 °C	22% recovered starting material 2a
	No desired product

10. Characterization of Products

Ethyl 3,3-difluoro-3-phenyl-2-(phenylamino)propanoate (3a):

colorless oil (93%, 56.7 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHz, DM80-d₆) δ 7.65 – 7.62 (m, 2H), 7.49 – 7.47 (m, 3H), 7.06 (t, J = 8.0 Hz, 2H), 6.78 (n, J = 7.6 Hz, 2H), 6.61 (t, J = 7.2 Hz, 1H), 6.20 (d, J = 8.0 Hz, 1H), 5.02 – 4.98 (m, 1H), 4.07 (q, J = 7.2 Hz, 2H), 1.05 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, DM80-d₆) δ^2 -99 27 (d, J = 246.7, 9.8 Hz, 1F), -101.75 (dd, J = 245.9, 16.17 Hz, 1F); ¹³C NMR (100 MHz DMSO-d₆) δ 168.2 (d, J = 3.0 Hz), 146.5, 134.14 (t, J = 25.0 Hz), 30.4, 128.8, ¹²8.3, 125.7 (t, J = 6.0 Hz), 120.5 (t, J = 250.0 Hz), 117.6, 113.2, 61.3 (dd, J = 31.0, 27.0 Hz), 61.1, 13.9; **IR (neat)**: v_{max} 3060, 1737, 1646, 1602, 1506, 1017, 883 cm⁻¹; **HRMS (ESI)** calcd for C₁₇H₁₈F₂NO₂ [M+H]⁺ 306.1300, found 306.1310.

Ethyl 3,3-difluoro-3-phenyl-2-(p-tolylamino)propanoate (3b):

colorless oil (92%, 58.7 mg); R = 0.5 (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHz, DMSO-d) δ 7.63 – 7.62 (m, 2H), 7.49 – 7.57 (m, 3H), 6.87 (d, *J* = 8.4 Hz, 2H), 6.67 (d, *J* = 8.4 Hz, 2H), 5 94 (d, *J* = 10.8 Hz, 1H), 4.95 – 4.85 (m, 1H), 4.06 (q, *J* = 7.2 Hz, 3H), 2 13 (s, 3H), 1 05 (t, *J* = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, DMSOd₆/W -99.18 (dd, F = 245.5, 9.4 Hz, 1F), -101.95 (dd, *J* = 245.5, 15.8 Hz, 1F); ¹³C NMR (100 MHz, DMSO-d₆) δ 168.3 (d, *J* = 3.0 Hz), 144.2, 134.2 (t, *J* = 26.0 Hz), 130.4, 29.2, 128.3, 126.2, 125.6 (t, *J* = 6.0 Hz), 120.5 (t, *J* = 250.0 Hz), 113.4, 61.7 (dd, *J* = 31.0, 27.0 Hz), 61.1, 20.0, 13.8; **IR (neat)**: v_{max} 3060, 1736, 1516, 1453, 1371, 1234, 1043, 936, 847 cm⁻¹; **HRMS (ESI)** calcd for C₁₈H₂₀F₂NO₂ [M+H]⁺ 320.1456, found 320.1463.

Ethyl 3,3-difluoro-2-((4-methoxyphenyl)amino)-3-phenylpropanoate (3c):

colorless oil (81%, 54.3 mg); $R_f = 0.4$ (petroleum ether/ethyl acetate = 10:1); ¹H NMR 400 MHz, DMSO-d₆) δ 7.63 – 7.62 (m, 2H), 7.49 – 7.48 (m, 3H), 6.70 (q, *J* = 8.8 Hz, 4H), 5.76 (d, *J* = 14.2 Hz, 1H), 4.91 – 4.82 (m, 1H), 4.05 (q, *J* = 6.8 Hz, 2H), 3.62 (s, 3H), 1.04 (t, *J* = 6.8 Hz, 3H); ¹⁹F NMR (376 MHz, DMSO-d₆) δ -98.24 (dd, *J* = 245.5, 9.0 Hz, 1F), -101.69 (dd, *J* = 245.9, 16.2 Hz, 1F); ¹³C NMR (100 MHz, DMSO-d₆) δ 68.5 (d, *J* = 4.6 dHz), 152.0, 140.4, 134.3 (t, *J* = 25.0 Hz), 130.4, 128.3, 125.7 (t, *J* = 0.0 Hz), 120.5 (t, *J* = 250.0 Hz), 14.7, 114.3, 62.3 (dd, *J* = 31.0, 27.0 Hz), 61.1, 55.2, 13.8; **IR (neat)**: v_{max} 3070, 1765, 1674, 1451, 1147, 963, 750 cm⁻¹; **HRMS (ESI)** calcd for C₁₈H₂₀F₂NO₃ [M+H]⁺ 336.1406, found 336.1418.

Ethyl 3,3-difluoro-2-((4-fluorophenyl)amino)-3-phenylpropanoate (3d):

colorless oil (83%, 53.6 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHz, DMSO-dJ) δ 7.63 – 7.61 (m, 2H), 7.48 – 7.47 (m, 3H), 6.90 (t, J = 8.8 Hz, 2H), 6.78 – 6.76 (m, 210), 6.17 (d, J = 10.8 Hz, 1H), 5.02 – 4.92 (m, 1H), 4.06 (q, J = 6.8 Hz, 2H), 1F04 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (376 MHz, DMSO-d₆) δ -99.35 (dd, J = 245.5, 9.8 Hz,^F1F), -101.70 (dd, J = 245.5, 15.8 Hz, 1F), -127.46 – -127.39 (m, 1F); ¹³C NMR (100 MHz, DMSO-d₆) δ 168.2 (d, J = 3.8 Hz), 155.2 (d, J = 231.0 Hz), 143.2, 134.1 (t, J = 25.0 Hz), 130.4, 128.3, 125.7 (t, J = 6.0 Hz), 120.5 (t, J = 247.0 Hz), 115.1 (d, J = 22.0 Hz), 114.4 (d, J = 7.0 Hz), 61.8 (dd, J = 30.0, 27.0 Hz), 61.2, 13.8; IR(neat): v max 3067, 1741, 1694, 1370, 1313, 929, 824 cm⁻¹; HRMS (ESI) calcd for C₁₇H₁₇F₃NO₂ [M+H]⁺ 324.1205, found 324.1215.

Ethyl 2-((4-chlorophenyl)amino)-3,3-difluoro-3-phenylpropanoate (3e):

colorless oil (92%, 62.4 mg); R_{15} 0.4 (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHz, DMSO-d) δ 7.63 – 7 61 (m, 2H), 7.48 – 4.47 (m, 3H), 7.08 (d, J = 8.8 Hz, 2H), 6.80 ($4, J^{\mathbb{N}}$ 8,8 Hz, 2H), 6.47 (d, J = 10.4 Hz, 1H), 5.07 – 4.98 (m, 1H), 4.06 (q, $T = 7.2 \text{ Hz}, 2 \text{ Hz}, 4 (t, J = 7.2 \text{ Hz}, 3 \text{ H}); {}^{19}\text{F} \text{ NMR} (376 \text{ MHz}, \text{DMSO-d}_6) \delta - 99.68 (dd, J)$ $T = \frac{G}{48.16}, 11.3 \text{ ff}(z, 1F), -101.17 \text{ (dd}, J = 248.16, 15.4 \text{ Hz}, 1F); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, 1F)$ \mathbb{D} MSO-d₆) δ 167.9 (d, $J \neq 4.0$ Hz), 145.6, 134.0 (t, J = 26.0 Hz), 130.4, 128.5, 128.3, 125.7 (t, J = 7.0 Hz), 120.9, 120.5 (t, J = 248.0 Hz), 114.7, 61.2, 61.2 (dd, J = 31.0),27.0 Hz), 14.3; IR (neat): v max 3062, 1736, 1563, 1448, 1371, 1300, 1234, 1098, 1043, 936, 847 cm⁻¹; HRMS (ESI) calcd for C₁₇H₁₇ClF₂NO₂ [M+H]⁺ 340.0910, found 340.0917.

Ethyl 2-((4-bromophenyl)amino)-3,3-difluoro-3-phenylpropanoate (3f):

colorless oil (77%, 59.0 mg); $R_{\lambda} = 0.5$ (petroleum ether/ethyl acetate = 15:1); ¹H NMR (400 MHz, DMSO- \mathcal{G}_{6}) δ 7.63 – 7.61 (m, 2H), 7.48 – 7.47 (m, 3H), 7.19 (d, J = 8.8 Hz, 2H), 6,76 td, J = 8.8 Hz, 2H), 6,50 (d, J = 10.4 Hz, 1H), 5.07 – 4.98 (m, 1H), 4.06 (q, = 8.8 Hz, H_{1} , 104 (t, J = 7.2 Hz, 3H); 19 F NMR (376 MHz, DMSO-d₆) δ -99.02 (dd, \mathbb{B}^{r} 246.7, 9.4 Hz, \mathbb{H}^{r}), -102.00 (dd, J = 246.7, 16.2 Hz, 1F); ¹³C NMR (100 MHz, $DMSO-d_6$) δ 1**87**.8 (\dot{a} , $\mathcal{J} = 4.0 \text{ Hz}$), 146.0, 134.0 (t, J = 24.0 Hz), 131.3, 130.5, 128.3, 125.7 (t, J = 6.0 Hz), 120.5 (t, J = 249.0 Hz), 115.2, 108.4, 61.2, 61.1 (dd, J = 30.0, 27.0 Hz), 13.8; IR (neat): v max 3036, 1763, 1647, 1599, 1429, 1283, 1233, 1102, 943, 880 cm⁻¹; **HRMS (ESI)** calcd for $C_{17}H_{17}BrF_2NO_2$ [M+H]⁺ 384.0405, found 384.0415.

Ethyl 3,3-difluoro-3-phenyl-2-(m-tolylamino)propanoate (3g):

colorless oil (90%, 57.4 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR 400 MHz, $DMSO-d_6$) δ 7.64 – 7.62 (m, 2H), 7.49 – 7.47 (m, 3H), 6.94 (t, J = 7.6 Hz, H) 6.58×10^{-55} (m, 2H), 6.44 (d, J = 7.2 Hz, 1H), 6.09 (d, J = 10.8 Hz, 1H), 4.98 - 10.584.89 (m, 11<u>H</u>). 4.07 (g, J = 14.2, 7.2 Hz, 2H), 1.05 (s, 3H), 0.81 (t, J = 7.2 Hz, 3H); ¹⁹F **MAR** (376 μ IHZ, DMSO- d_6) δ -99.22 (dd, J = 245.5, 9.8 Hz, 1F), -102.00 (dd, J =245.5, 46.2 Hg, 152 C NMR (100 MHz, DMSO-d₆) δ 168.3 (d, J = 4.0 Hz), 146.5, 137.9, 134.2 (t, J = 25.0 Hz), 130.4, 128.7, 128.3, 125.8 (t, J = 6.0 Hz), 120.5 (t, J = 120.5 (t, J250.0 Hz), 118.0, 113.9, 110.5, 61.4 (dd, J = 31.0, 27.0 Hz), 61.1, 21.7, 14.3; **IR (neat)**: υ_{max} 3061, 1736, 1447, 1371, 1301, 1223, 1098, 1043, 936, 785 cm⁻¹; HRMS (ESI) calcd for C₁₈H₂₀F₂NO₂ [M+H]⁺ 320.1456, found 320.1468.

Ethyl 2-((3-chlorophenyl)amino)-3,3-difluoro-3-phenylpropanoate (3h):

polorless oil (84%, 57.0 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 15:1); ¹H NMR (400 MHz, DMSO-d₆) δ 7.64 – 7.62 (m, 2H), 7.49 – 7.47 (m, 3H), 7.05 (t, J = 8.0 Hz, 1 H), 6.87 (9, 1 H), 6.75 (d, J = 8.0 Hz, 1H), 6.64 - 6.60 (m, 2H), 5.12 (m, 1H), 4.08 (q, $(7.2 \text{ Hz}_{\text{F}2\text{H}})$, 1.05 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, DMSO-d₆) δ -99.68 (dd, F ĊI 3h

J = 245.2, 10.2 Hz, 1F), -101.16 (dd, J = 245.2, 15.0 Hz, 1F); ¹³C NMR (101 MHz, DMSO-d₆) δ 167.9 (d, J = 4.0 Hz), 148.3, 134.0 (t, J = 25.0 Hz), 133.5, 130.5, 130.3, 128.4, 125.8 (t, J = 6.0 Hz), 120.5 (t, J = 249.0 Hz), 117.0, 112.7, 112.7, 61.3, 60.8 (dd, J = 30.0, 28.0 Hz), 14.3; **IR (neat)**: v_{max} 3067, 1741, 1598, 1514, 1482, 1451, 1371, 1324, 1246, 1159, 1028, 916, 762 cm⁻¹; **HRMS (ESI)** calcd for C₁₇H₁₇ClF₂NO₂ [M+H]⁺ 340.0910, found 340.0916.

Ethyl 2-((3-bromophenyl)amino)-3,3-difluoro-3-phenylpropanoate (3i):

colorless oil (71%, 54.4 mg), $R_f = 0.4$ (petroleum ether/ethyl acetate = 15:1); ¹H NMR 400 MHz, $PMSQ-d_6$) δ 7.63 6.78 6.73 (m, 2H), **6**.58 (d, 2H), 1.05 (tF J 7.2 Hz, 3H); I = 10.4 Hz, 1H), 5.14 – 5.05 (m, 1H), 4.07 (q, J = 7.2 Hz, 2H), 1.05 (tF J 7.2 Hz, 3H); I^9 F NMR (376 MHz, DMSO-d_6) δ -99.69 (dd, J = 245.5, 10.2 Hz), -101.10 (dd, J = 2 45.5, 16.9 Hz); I^3 C NMR (100 MHz, DMSO-d_6) δ 167.5 (d, J = 4.0 H2), 148.4, 134.0 (t, J = 25.0 Hz), 130.6, 130.5, 128.3, 125.7, 122.1, 120.5 (t, J = 249.0 Hz), 119.9, 115.6, 112.0, 61.2, 60.5 (dd, J = 31.0, 28.0 Hz), 14.3; IR (neat): v_{max} 3065, 1736, 1597, 1476, 1453, 1372, 1237, 1044, 847 cm⁻¹; HRMS (ESI) calcd for C₁₇H₁₇BrF₂NO₂ [M+H]⁺ 384.0405, found 384.0415.

Ethyl 2-((3,5-dimethylphenyl)amino)-3,3-difluoro-3-phenylprop-anoate (3j):

colorless oil (83%, 55.3 mg); $\mathbf{R}_{f} = 0.4$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHz, DMSO-di) δ 7.63 + 7.61 (m, 2H), 7.49 - 7.47 (m, 3H), 6.37 (s, 2H), 6.26 (s, 1H), 5.95 (d, J = 10.6 Hz, 1H), 4.94 - 4.85 (m, 1H), 4.09 (q, J = 7.2 Hz, 2H), 2.11 (s, 6H), 1.06 (F, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, DMSO-d₆) δ -99.21 (dd, J = 245.5, 9.4 Hz, 1F), -102.18 (dd, J = 245.5, 15.0 Hz, 1F); ¹³C NMR (100 MHz, DMSO-d₆) δ 168.3 (d, \mathbf{s}_{f} = 3.0 Hz), 146 4, 137.7, 134.2 (t, J = 25.0 Hz), 130.4, 128.3, 125.7 (t, J = 5.0 Hz), 120.4 (t, J = 249.0 Hz), 119.6, 111.2, 61.4 (dd, J = 31.0, 27.0 Hz), 61.1, 21.6, 13.8; **IR (neat)**: υ_{max} 2989, 1917, 1834, 1742, 1605, 1516, 1371, 1193, 821 cm⁻¹; **HRMS (ESI)** calcd for C₁₉H₂₂F₂NO₂ [M+H]⁺ 334.1613, found 334.1619.

Ethyl 2-((2,3-dimethylphenyl)amino)-3,3-difluoro-3-phenylprop-anoate (3k):

colorless oil (79%, 52.6 mg); $\mathbf{R}_{f} = 0.5$ (petroleum ether/ethyl acetate = 20:1); ¹**H** NMR (400 MHMeDMSO-d) δ 7.65 – 7.63 (m, 2H), 7.50 – 7.49 (m, 3H), 6.88 (t, J = 8.0, 1H), 6.**W**(dd, z = 1648, 7.2 Hz, 2H), 5.01 – 4.92 (m, 1H), 4.60 (d, J = 10.4 Hz, 1H), 4.09 (q, J = 7.2 Hz, 2H), 2.17 (s, 3H), 2.00 (s, 3H), 1.07 (t, J = 7.2 Hz, 3H); ¹⁹**F** NMR (376 MHz, DMSO-dq, δ -9.5F (dd, J = 245.2, 9.4 Hz, 1F), -102.05 (dd, J = 245.2, 14.7 Hz, F); ¹³**C** NMR (100 MHz, DMSO-d₆) δ 168.4 (d, J = 3.0 Hz), 143.7, 136.4, 133.9 (t, J = 25.0 Hz), 130.5, 128.4, 125.8, 125.7 (t, J = 6.0 Hz), 122.0, 121.0, 120.6 (t, J = 247.0Hz), 110.2, 62.3 (dd, J = 31.0, 28.0 Hz), 61.6, 20.3, 13.7, 12.4; **IR (neat)**: υ_{max} 3062, 1738, 1647, 1590, 1746, 1372, 1307, 1100, 1046, 760 cm⁻¹; **HRMS (ESI)** calcd for C₁₉H₂₂F₂NO₂ [M+H]⁺ 334.1613, found 334.1618.

Cyclopropylmethyl 3,3-difluoro-3-phenyl-2-(phenylamino) propanoate (31):

colorless oil (78%, 51.6 mg); $\mathbf{R}_{f} = 0.5$ (petroleum ether/ethyl acetate = 15:1); ¹H NMR (400 MHz, \mathbf{PMSO} -d₆) δ 7.65 – 7.63 (m, 2H), 7.49 – 7.47 (m, J = 5.4 Hz, 3H), 7.06 (t,

F 31 J = 7.6 Hz, 2H), 6.78 (d, J = 8.0 Hz, 2H), 6.61 (t, J = 7.2 Hz, 1H), 6.20 (d, J = 10.4 Hz, 1H), 5.04 – 4.95 (m, 1H), 3.93 – 3.821 (m, 2H), 1.00 – 0.91 (m, 1H), 0.44 (d, J = 7.2 Hz, 2H), 0.17 (s, 2H); ¹⁹**F** NMR (376 MHz, DMSO-d₆) δ -99.06 (dd, J = 245.9, 9.8Hz), -101.68 (dd, J = 245.9, 15.8 Hz); ¹³**C** NMR (100 MHz, DMSO-d₆) δ 168.4 (d, J = 4.0 Hz), 146.6, 134.2 (t, J = 25.0 Hz), 130.4, 128.8, 128.3, 125.7 (t, J = 6.0 Hz), 120.6 (t, J = 249.0 Hz), 117.7, 113.3, 69.7, 61.3 (dd, J = 31.0, 27.0 Hz), 9.5, 3.1; **IR (neat)**: v_{max} 3043, 1765, 1627, 1515, 1270, 1246, 1026, 820 cm⁻¹; **HRMS (ESI)** calcd for C₁₉H₂₀F₂NO₂ [M+H]⁺ 332.1456, found 332.1439.

Cyclohexylethyl 3,3-difluoro-3-phenyl-2-(phenylamino)propanoate (3m):

colorless oil (71%, 55.0 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 10:1); ¹H NMR 400 MHz, DMSO-d₆) δ 7.65 – 7.34 (m, 2H), 7.45 – 7.47 (m, 3H), 7.05 (t, *J* = 8.0 Hz, 2H), 6.77 (d, *J* = 8.0 Hz, 2H), 6.61 (t, *J* = 7.2 Hz, 1H), 6.61 (d, *J* = 10.8 Hz, 1H), 4.79 4.98 (m, 1H), 4.06 (t, *J* = 6.4 Hz, 2H), 1.60 – 1.52 (m, 5H), 1.32 (q, *J* = 6.8 Hz, 2H), 1.34 – 1.29 (m, 4H), 116 – 1.07 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-d₆) δ -98.97 (d, *J* = 246.3, 9.0 Hz, 1F), -101.98 (d, *J* = 246.3, 16.5 Hz, 1F); ¹³C NMR (100 MHz, DMSO-d₆) δ 168.4 (d, *J* = 4.0 Hz), 46.6, 134.2 (t, *J* = 25.0 Hz), 130.5, 128.8, 128.3, 125.7 (t, *J* = 6.0 Hz), 120.5 (t, *J* = 247.0 Hz), 117.7, 113.3, 62.93, 61.3 (dd, *J* = 31.0, 27.0 Hz), 35.3, 33.2, 32.4, 26.0, 25.6 25.6 ; **IR (neat)**: v max 3044, 2124, 1764, 1677, 1515, 1376, 1272, 1244, 1026, 820 cm⁻¹; **HRMS (ESI)** calcd for C₂₃H₂₈F₂NO₂ [M+H]⁺ 388.2082, found 388.2079.

Cyclopentyl 3,3-difluoro-3-phenyl-2-(phenylamino)propanoate (3n):

white solid (76%, 52.4 mg); m.p.: 98.6-99.1 °C; $R_f = 0.5$ (petroleum ether/ethyl acetate = 15:1); ¹**H** NMR (400 MHz, DMSO-d₆) δ 7.65 – 7.63 (m, 2H), 7.49 – 7.48 (m, 3H), 7.06 (t, *J* = 8.0 Hz, 2H), 6.61 (t, *J* = 6.8 Hz, 1H), 6.19 (d, *J* = 0.8 Hz, 1H), 5.03 (s, 1H), 4.99 – 6.90 (m, 1H), 1.72 – 1.60 (m, 2H), 1.53 – 1.42 (m, 5H), 1.29 – 1.24 (m, 1H); ¹⁹**F** NMR (376 MHz, DMSO-d₆) δ -99.29 (dd, *J* = 245.5, 4.7 Hz), -190.61 (eta, *J* = 245.9, 11.3 Hz); ¹³**C** NMR (100 MHz, DMSO-d₆) δ 167.9 (d, *J* = 4.0 Hz), 146.7, 134.2 (t, *J* = 25.0 Hz), 130.5, 128.8, 128.4, 125.7 (t, *J* = 6.0 Hz), 120.6 (t, *J* = 247.0 Hz), 117.7, 113.3, 78.1, 61.3 (dd, *J* = 32.0, 28.0 Hz), 32.0, 31.9, 23.1, 23.0; **IR (neat)**: υ_{max} 3096, 1736, 1603, 1508, 1451, 1368, 1308, 1249, 1104, 956, 835 cm⁻¹; **HRMS (ESI)** calcd for C₂₀H₂₂F₂NO₂ [M+H]⁺ 346.1613, found 346.1606.

Cycloheptyl 3,3-difluoro-3-phenyl-2-(phenylamino)propanoate (30):

colorless oil (72%, 55.8 mg); R_{f} = 0.4 (petroleum ether/ethyl acetate = 15:1); ¹H NMR 400 MHz, DMSO d₆) δ 7.65 + 7 63 (m, 2H), 7.49 - 7.48 (m, 3H), 7.06 (t, *J* = 7.6 Hz, 2H), 6.77 (d), *J* = 7.6 Hz, 2H), 6.61 (t, *J* = 6.8 Hz, 1H), 6.18 (d, *J* = 10.4 Hz, 1H), 4.98 4.88 (m, 1<u>H</u>), 4.82 - 4.77 (m, 1H), 1.77 - 1.71 (m, 1H), 1.58 - 1.53 (m, 7H), 1.36 -1.23 (m, 4H); ¹⁹F NMR (376 MHz, DMSO-d₆) δ -100.07 (dd, *J* = 245.5, 14.3 Hz, 1F), 100.94 (dd, *J* = 245.5 + 11.7 Hz, F); ¹³C NMR (100 MHz, DMSO-d₆) δ 167.5 (d, *J* = 3.0 Hz), 146.6, 134.2 (t, *J* = 25.0 Hz), 130.5, 128.8, 128.4, 125.7 (t, *J* = 6.0 Hz), 120.5 (t, *J* = 248.0 Hz), 117.7, 113.3, 75.9, 61.5 (t, *J* = 28.0 Hz), 33.0, 32.8, 28.2, 22.1, 22.1; **IR (neat)**: υ_{max} 3045, 1765, 1646, 1547, 1538, 1515, 1273, 1244, 1052, 1027, 820 cm⁻¹; **HRMS (ESI)** calcd for C₂₂H₂₆F₂NO₂ [M+H]⁺ 374.1926, found 374.1917.

(2R,5S)-2-Isopropyl-5-methylcyclohexyl 3,3-difluoro-3-phenyl-2-(phenylamino) propanoate (3p):

colorless oil (50%, 41.5 mg); $\mathbf{R}_{f} = 0.3$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHz, DMSO-d₆) δ **1**.66 (d, J = 6.4 Hz, 2H), 7.49 (s, 3H), 7.05 (t, J = 7.2 Hz, 2H), 677 (t, J = 8.0 Hg, 2H), 6.62 (s, 1H), 6.17 (t, J = 9.6 Hz, 1H), 4.99 – 4.90 (m, 1H), 4.59 – 4.50 (m, H), 182 – 76 (m, H), 1.58 (s, 2H), 1.39 – 1.25 (m, 3H), 0.94 (q, J = 11.6, 2H) 0.84 – 0.80 (m, 4H), 0.69 (d, J = 6.4 Hz, 2H), 0.54 (d, J = 6.4 Hz, 2H), 0.45 (d, J = 6.4 Hz, 2H), 0.45 (d, J = 6.4 Hz, 2H); ¹⁹ NHK (376 MHz, DMSO-d₆) δ -99.22 (dd, J = 245.5, 9.8 Hz), -102.00 (dd, J = 245.5, 16.1 Hz); ¹³C NMR (100 MHz, DMSO-d₆) δ 167.8 (d, J = 4.0Hz), 146.5 (d, **3P** = 6.0 Hz), 134 1 (t, J = 25.0 Hz), 130.4, 128.6 (d, J = 5.0 Hz), 128.3, 125.7 (dd, J = 13.0, 6.0 Hz), 120.4 (t, J = 247.0 Hz), 117.5 (d, J = 9.0 Hz), 113.9 (d, J = 23.0 Hz), 74.9 (d, J = 20.0 Hz), 62.0 – 61.2 (m), 46.0, 33.5 (d, J = 2.0 Hz), 30.6 (d, J = 12.0 Hz), 25.2, 24.5, 22.3 (d, J = 18.0 Hz), 21.7 (d, J = 3.0 Hz), 20.5 (d, J = 7.0 Hz), 15.5 (d, J = 27.0 Hz); **IR (neat)**: v_{max} 3054, 1736, 1648, 1618, 1453, 1371, 1301, 1043, 847 cm⁻¹; **HRMS (ESI)** calcd for C₂₅H₃₂F₂NO₂ [M+H]⁺ 416.2396, found 416.2402.

Allyl 3,3-difluoro-3-phenyl-2-(phenylamino)propanoate (3q):

colorless oil (52%, 33.0 mg); $R_f = 0.4$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHz, DMSO-d₆) § 7.65 2H), 6.77 (H J = [7.6 Hz, 2H), 6.60 (t, J = 7.2 Hz, 1H), 6.26 (d, J = 10.8 Hz, 1H), 5.82 5 / 2 (m, 1H), 5.29 - 5.14 (m, 2H), 5.12 - 5.02 (m, 1H), 4.59 - 4.58 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-d₆) § -97.83 (dd, J = 245.9, 8.3 Hz, 1F), -102.77 (dd, J = 245.9, 17.3 Hz, 1F); ¹³C NMR (100 MHz, DMSO-d₆) § 168.09 (d, J = 3.0 Hz), 146.5, 130.5, 128.9, 128.4, 125.8 (t, J = 6.0 Hz), 120.6 (t, J = 250.0 Hz), 118.1, 117.8, 113.3, 65.5, 61.2 (dd, J = 32.0, 27.0 Hz); IR (neat): v max 3043, 1765, 1706, 1692, 1676, 1538, 1455, 1375, 1244, 1025, 821 cm⁻¹; HRMS (ESI) calcd for C₁₈H₁₈F₂NO₂ [M+H]⁺ 318.1300, found 318.1289.

Benzyl 3,3-difluoro-3-phenyl-2-(phenylamino)propanoate (3r):

colorless oil (75%, 55.1 mg); R_f 0.4 (petroleum ether/ethyl acetate = 20:1); ¹H NMR 400 MHz, DMSO-d₆) δ 7.64 – 7.62 (m, 2H), 7.49 – 7.43 (m, 3H), 7.33 – 7.31 (m, 3H), 7.22 \sim 20 (m, 2H) 07.06 (t, γ = 7.6 Hz, 2H), 6.79 (d, J = 8.0 Hz, 2H), 6.62 (t, J = 7.2 Hz, 1H), 6-28 (d, J = 10.8 Hz, Hz, 1H), 6-28 (d, J = 10.8 Hz, NSO-d₆) δ F98.16 (dd, J = 245.9, 8.6 Hz, 1F), -102.09 (dd, J = 245.9, 16.5 Hz, 1F); ³C NMR (109 MHz, DMSO-d₆) δ 168.3 (d, J = 4.0 Hz), 146.5, 135.3, 134.1 (t, J = 25.0 Hz), 130.4, 128.8, 128.3, 128.1, 127.9, 125.7 (t, J = 6.0 Hz), 120.6 (t, J = 247.0 Hz), 117.7, 113.3, 66.6, 61.3 (dd, J = 31.0, 27.0 Hz); **IR (neat)**: υ_{max} 3042, 2362, 1765, 1676, 1646, 1609, 1375, 1244, 1025, 757 cm⁻¹; **HRMS (ESI)** calcd for $C_{22}H_{20}F_2NO_2$ [M+H]⁺ 368.1456, found 368.1450.

3,3-Difluoro-N,3-diphenyl-2-(phenylamino)propanamide (3s):

white solid (62%, 43.6 mg); n.p.: 231.4-232.1 °C; $R_f = 0.3$ (petroleum ether/ethyl acetate = 10.1); ¹**H** NMR (400 MHz, DMSO-d₆) δ 10.29 (s, 1H), 7.61 (s, 2H), 7.54 – 7.48 (n. 5H), 7.32 (t, 7.72 Hz, 2H), 7.10 – 7.04 (m, 3H), 6.73 (d, *J* = 8.0 Hz, 2H), 6.59 (t, *J* = 7.2 Hz, 1H), 6.07 (d, *J* = 10.4 Hz, 1H), 5.00 – 4.91 (m, 1H); ¹⁹F NMR (376 MHz, DMSQ-d₆) δ -95.92 (dd, *J* = 246.3, 6.0 Hz, 1F), -105.41 (dd, *J* = 246.3, 16.5 Hz, 1F); ¹³C NMB (100 MHz, DMS O-d₆) δ 165.6 (d, *J* = 3.0 Hz), 146.7, 138.2, 134.7 (t, *J* = 25.0 Hz), 130.3, 128.9, 128.3, 125.6 (t, *J* = 6.0 Hz), 123.9, 119.7 (t, *J* = 249.0 Hz), 119.3, 117.6, 117.7, 113.3, 61.8 (dd, *J* = 34.0, 26.0 Hz); **IR (neat)**: υ_{max} 3057, 1767, 1692, 1602, 1552, 1499, 1446, 1315, 1251, 1027, 822, 756 cm⁻¹; **HRMS (ESI)** calcd for C₂₁H₁₉F₂N₂O [M+H]⁺ 353.1460, found 353.1469.

3,3-Difluoro-N-(4-methoxyphenyl)-3-phenyl-2-(phenylamino)propanamide (3t):

white solid (53%, 40.5 mg); m.p.: 238.5-238.9 °C; $R_f = 0.3$ (petroleum ether/ethyl acetate = 5:1); ¹**H** NMF (490 MHz, DMSO-d₆) δ 10.14 (s, 1H), 7.59 (s, 2H), 7.48 – 7.41 (m, 5N), 7.05 (t, I = 7.6 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 6.73 (d, J = 7.6 Hz, 2H), 6.59 (t, J = 7.4 Hz, 1H), 6.00 (d, J = 10.4 Hz, 1H), 4.94 – 4.86 (m, 1H), 3.71 (s, 3H); ⁴**F** NMF (376 NHz, DMSO-d₆) δ -96.36 (dd, J = 245.5, 6.4 Hz, 1F), -104.95 (dd, J = 245.5, 16.9 Hz 1E), ¹³C NMR (100 MHz, DMSO-d₆) δ 165.0 (d, J = 4.0 Hz), 155.7, 46.8, 134.7 (t, J = 26.0 Hz), 131.3, 130.3, 128.9, 128.3, 125.6 (t, J = 6.0 Hz), 121.0, 118.5 (t, J = 249.0 Hz), 114.0, 113.3, 61.8 (dd, J = 32.0, 26.0 Hz), 55.2; **IR (neat)**: υ max 3059, 1765, 1688, 1647, 1605, 1510, 1374, 1243, 1053, 828 cm⁻¹; **HRMS (ESI)** calcd for C₂₂H₂₁F₂N₂O₂ [M+H]⁺ 383.1565, found 383.1573.

3,3-Difluoro-N-(4-fluorophenyl)-3-phenyl-2-(phenylamino)propanamide (3u):

white solid (66%, 48.8 mg); m.p.: 275.2-275.7 °C; $R_f = 0.3$ (petroleum ether/ethyl acetate = 6;1); ¹**D** NMR (400 MHz, DMSO-d₆) δ 10.38 (s, 1H), 7.62 – 7.60 (m, 2H), 7.58 – 7.53 (m, 5H), 7.59 – 7.48 (m, 2H), 7.17 (t, *J* = 8.8 Hz, 2H), 7.06 (t, *J* = 7.6 Hz, 2H), 6.73 (d, *J* = 7.6 Hz, 2H), 6.60 (t, *J* = 7.6 Hz, 1H), 6.09 (d, *J* = 10.8 Hz, 1H), 4.97 – 4.88 (m, 1H); ⁴**F** NMR (376 MHz, DMSO-d₆) δ -96.13 (dd, *J* = 245.9, 6.3 Hz, 1F), 05.28 (dd, $3\overline{u}$ 245.9, 17.7 Hz, 1F), -118.32 – -118.39 (m, 1F); ¹³**C** NMR (100 MHz, DMSO-d₆) δ 165.6 (d, *J* = 3.0 Hz), 158.3 (d, *J* = 241.0 Hz), 146.7, 134.6 (t, *J* = 25.0 Hz), 134.6 (d, *J* = 2.0 Hz), 130.3, 128.6 (d, *J* = 57.0 Hz), 127.6, 125.6 (t, *J* = 6.0 Hz), 121.1 (d, *J* = 8.0 Hz), 120.4 (t, *J* = 249.0 Hz) 117.6, 115.5 (d, *J* = 22.0 Hz), 113.2, 61.8 (dd, *J* = 33.0, 26.0 Hz); **IR (neat)**: v max 3061, 1766, 1692, 1605,1508, 1315, 1249, 1054, 837 cm⁻¹; **HRMS (ESI)** calcd for C₂₁H₁₈F₃N₂O [M+H]⁺ 371.1365, found 371.1371.

3,3-Difluoro-3-phenyl-2-(phenylamino)-1-(pyrrolidin-1-yl)propan-1-one (3v):

white solid (57%, 40.2 mg); m.p.: 211.2-211.9 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate = 10:1); **H NMR** (400 MHz, DMSO-d₆) δ 7.59 – 7.57 (m, 2H), 7.48 – 7.46 (m,

3H), 7.04 (t, J = 7.2 Hz 2H), 6.75 (d, J = 7.2 Hz, 2H), 6.59 (t, J = 5.6 Hz 1H), 5.84 (d, J = 10.8 Hz, 1H), 5.00 – 4.92 (m, 1H), 3.26 – 3.20 (m, 4H), 1.75 – 1.65 (m, 4H); ¹⁹F **NMR** (376 MHz, DMSO-d₆) δ -99.24 (dd, J = 244.4, 7.5 Hz, 1F), -101.74 (dd, J = 244.4, 12.0 Hz, 1F); ¹³C **NMR** (100 MHz, DMSO-d₆) δ 164.9 (d, J = 3.0 Hz), 146.8, 134.6 (t, J = 26.0 Hz), 130.2, 128.8, 128.1, 125.9 (t, J = 6.0 Hz), 121.3 (t, J = 249.0 Hz), 117.4, 113.3, 59.0 (dd, J = 20.0, 28.0 Hz), 46.3, 45.8, 25.5, 23.5; **IR (neat)**: v_{max} 3056, 1646, 1601, 1504, 1312, 1281, 1257, 1160, 1031, 889 cm⁻¹; **HRMS (ESI)** calcd for C₁₉H₂₁F₂N₂O [M+H]⁺ 353.1435, found 353.1447.

N-benzyl-3,3-difluoro-3-phenyl-2-(phenylamino)propanamide (3w):

white solid (90%, 65.9 mg); mp.: 246.5-247.3 °C; $R_f = 0.3$ (petroleum ether/ethyl acetate = 10, 1); **H NMR** (400 MHz, DMSO-d₆) δ 8.75 (t, J = 5.2 Hz, 1H), 7.59 – 7.57 (m, 2H), 7.48 – 7.46 (m, 3H), 7129 – 7.23 (m, 3H), 7.11 – 7.04 (m, 4H), 6.74 (d, J = 8.0 Hz, 2H), 6.617 (t, J = 7.2 Hz, 2H), 5.93 (d, J = 10.4 Hz, 1H), 4.91 – 4.82 (m, 1H), 4.31 (qd, J = 15.2, 6.0 Hz, 2H); ¹⁹F NMR (376 MHz, DMSO-d₆) δ -97.35 (dd, J = 245.5, 8.0 Hz, 1F), -**1**03.54 (dd, J = 245.5, 17.6 Hz, 1F); ¹³C NMR (100 MHz, DMSO-d₆) δ 166.7 (d, J = 3.0 Hz), 146.8, 138.5, 134.8 (t, J = 25.0 Hz), 130.2, 128.8, 128.3, 127.1, 126.9, 125.7 (t, J = 6.0 Hz), 121.0 (t, J = 249.0 Hz), 120.4, 117.4, 113.4, 61.3 (dd, J = 32.0, 26.0 Hz), 42.3; **IR (neat**): v_{max} 3061, 2362, 1767, 1676, 1602, 1504, 1449, 1316, 1256, 1028, 755 cm⁻¹; **HRMS (ESI)** calcd for C₂₂H₂₁F₂N₂O [M+H]⁺ 367.1616, found 367.1621.

3,3-Difluoro-N-(furan-2-ylmethyl)-3-phenyl-2-(phenylamino)propanamide (3x):

white solid (67%, 47.7 mg); n.p.: 261.7-262.5 °C; $R_f = 0.5$ (petroleum ether/ethyl acetate = 1); ¹**H** NMR (400 MHz, DMSO-d₆) δ 8.72 (t, J = 5.2 Hz, 1H), 7.58 (s, 1H), 7.55 – 1.53 (n, 2H), 7.45 – 7.44 (m, 3H), 7.03 (t, J = 8.0 Hz, 2H), 6.68 (d, J = 8.4 Hz, 2H), 6.58 (t, J = 7.2 Hz, 7H), 6.38 (s, 1H), 6.14 (d, J = 3.2 Hz, 1H), 5.90 (d, J = 10.4 Hz, 1H), 4.86 – 4.77 (m, 1H), 4.30 (d, J = 5.2 Hz, 2H); ¹⁹F NMR (376 MHz, DMSO-d₆) δ -96.20 (2d, J = 245.9, 7.1 Hz, 1F), -104.84 (dd, J = 245.9, 17.3 Hz, 1F); ¹³C NMR (100 MHz, DMSO-d₆) δ 166.6 (d, J = 3.0 Hz), 151.4, 146.8, 142.3, 134.7 (t, J = 25.0 Hz), 130.1, 128.8, 128.2, 125.6 (t, J = 6.0 Hz), 120.9 (t, J = 249.0 Hz), 117.4, 113.2, 110.4, 107.0, 61.0 (dd, J = 32.0, 27.0 Hz), 35.7; **IR (neat)**: v_{max} 3060, 2361, 1765, 1665, 1602, 1448, 1250, 1151, 1054, 1025, 882 cm⁻¹; **HRMS (ESI)** calcd for $C_{20}H_{19}F_2N_2O_2$ [M+H]⁺ 357.1409, found 357.1418.

Methyl (3,3-difluoro-3-phenyl-2-(phenylamino)propanoyl)-methioninate (3y):

colorless oil (52%, 43.9 mg, dr = 1:1); $R_f = 0.4$ (petroleum ether/ethyl acetate = 10:1); **H NMR** (400 MHz, DMSO-d₆) δ 8.70 (dd, J = 8.0, 1.2 Hz, 1H), 7.57 – 7.57 (m, 2H), 7.48 – 7.46 (m, 9H), 7.05 (dd, J = 14.0, 7.6 Hz, 2H), 6.71 (d, J = 8.0 Hz, 2H), 6.59 (t, J = 7.2 Hz, NH), 5.87 (dd, J = 21.6, 10.4 Hz, 1H), 4.90 – 4.80 (m, 1H), 4.47 – 4.38 (m, 1H), 3.d0 (d, J = 2.8 Hz, 3H), 2.39 – 2.18 (m, 3H), 1.98 (s, 2H), 1.94 (s, 1H), 1.89 – 1.80 (m, 1H); ¹⁹ NMR (3%6 MHz, DMSO-d₆) δ -96.05 (dd, J = 247.0, 7.1 Hz, 0.5F), -98.56 (dd, J = 247.03, 16.9 Hz, 0.5F); ¹³C NMR (100 MHz, DMSO-d₆) δ 171.7, 171.4, 166.8 (d, J = 7.0 Hz), 146.7, 146.7, 134.6 (td, J = 32.3, 7.0 Hz), 134.6 (td, J = 32.3, 7.0 Hz) 130.2, 130.1, 128.7, 128.2, 128.2, 125.6 (t, J = 7.0 Hz), 120.8 (t, J = 252.0 Hz), 117.5, 117.4, 113.4, 113.3, 61.0 (dd, J = 53.0, 27.0 Hz), 52.0, 52.0, 50.9, 50.7, 30.8, 30.6, 29.2, 29.0, 14.5, 14.4; **IR (neat)**: v_{max} 3061, 1736, 1647, 1562, 1549, 1453, 1372, 1300, 1234, 1098, 1043, 936 cm⁻¹; **HRMS (ESI)** calcd for C₂₁H₂₅F₂N₂O₃S [M+H]⁺ 423.1548, found 423.1556.

Methyl 3-(3,3-difluoro-3-phenyl-2-(phenylamino)propanamido)propanoate (3z): colorless oil (63%, 45.6 mg); $R_f = 0.3$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, DMSO-d₆) δ 897 (t, J = 4.8 Hz, 1H), 7.54 – 7.53 (m, 2H), 7.46 – 7.45 (m, 3H); 7.03 (t, J = 7.6 Hz, 2H), 6.68 (d, J = 8.0 Hz, 2H), 6.58 (t, J = 7.2 Hz, 1H), 5.83 (d, J = 10.2 Hz, 1H), 4.80 – 4.71 (m, 1H), 3.57 (s, 3H), 3.32 – 3.21 (m, 2H), 2.42 – 2.29 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-d₆) δ -97.75 (dd, J = 245.2, 7.9 Hz, 1F), -103.60 (dd, J = 245 3z (62 Hz, 1F); ¹³C NMR (100 MHz, DMSO-d₆) δ 171.6, 166.8 (d, J = 2.0 Hz), 146.8, 134.7 (t, J = 22.0 Hz), 130.2, 128.8, 128.2, 125.6 (t, J = 6.0 Hz), 120.9 (t, J = 249.0 Hz), 117.4, 113.2, 61.0 (dd, J = 31.0, 26.0 Hz), 51.4, 34.7, 33.3; IR (neat): v_{max} 3061, 1738, 1678, 1604, 1453, 1372, 1244, 1052, 755 cm⁻¹; HRMS (ESI) calcd for C₁₉H₂₁F₂N₂O₃ [M+H]⁺ 363.1514, found 363.1526.

Ethyl 3,3-difluoro-2-(phenylamino)-3-(p-tolyl)propanoate (4a):

colorless oil (91%, 58.1 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHz_HDMSO-d₆) δ 7.51 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 7.6 Hz, 2H), 7.06 (t, J = 8.0 Hz, 2H), 6.76 (d, J = 8.0 Hz, 2H), 6.61 (t, J = 7.2 Hz, 1H), 6.16 (d, J = 10.8 Hz, 1H), 4.97 F 488 (m, 1H), 4.09 (q, J = 7.2 Hz, 2H), 2.32 (s, 3H), 1.06 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (176 MHz, DMSO-d₆) δ -98.48 (dd, J = 245.2, 9.0 Hz, 1F), -101.55 (dd, J = 245.2, 1548 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 168.3 (d, J = 4.0 Hz), 146.6, 140.1, 131.3 (t, J = 26.0 Hz), 128.8, 128.8, 125.6 (t, J = 6.0 Hz), 120.6 (t, J = 249.0 Hz), 118.2, 113.2, 61.3 (dd, J = 31.0, 27.0 Hz), 61.1, 20.8, 13.8; **IR (neat)**: v_{max} 3060, 1736, 1647, 1561, 1453, 1371, 1165, 1008, 936 cm⁻¹; **HRMS (ESI)** calcd for C₁₈H₂₀F₂NO₂ [M+H]⁺ 320.1456, found 320.1462.

Ethyl 3-(4-(tert-butyl)phenyl)-3,3-difluoro-2-(phenylamino) propanoate (4b):

colorless oil (78%, 56.3 mg); $R_f = 0.4$ (petroleum ether/ethyl acetate = 15:1); ¹H NMR (400 MHz DMSO-d₆) δ 7.55 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.06 (t, J = 7.6 Hz, 2H), 6.76 (d, J = 7.6 Hz, 2H), 6.01 (t, J = 7.2 Hz, 1H), 6.18 (d, J = 10.8 Hz, 1H), 4.98 – 4.90 (m, 1H), 4.06 (q, J = 7.2 Hz, 2H), 1.28 (s, 9H), 1.03 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (β 76 MHz, DMSO-d₆) δ -98.45 (dd, J = 245.5, 9.4 Hz, 1F), -101.57 (dd, J = 245.5, 148 Hz, 4F); ¹³C NMR (100 MHz, DMSO-d₆) δ 168.3 (d, J = 4.0 Hz), 153.0, 146.5, 128.8, 128.4, 125.5 (t, J = 6.0 Hz), 125.1, 120.6 (t, J = 248.0 Hz), 117.6, 113.3, 61.3 (dd, J = 31.0, 26.0 Hz), 61.1, 34.5, 30.9, 13.8; **IR (neat)**: υ_{max} 3058, 1736, 1647, 1453, 1371, 1301, 1043, 847 cm⁻¹; **HRMS (ESI)** calcd for C₂₁H₂₆F₂NO₂ [M+H]⁺ 362.1926, found 362.1936.

Ethyl 3,3-difluoro-3-(4-methoxyphenyl)-2-(phenylamino)propanoate (4c):

colorless oil (65%, 41.2 mg); R = 0.5 (petroleum ether/ethyl acetate = 10:1); ¹H NMR 400 MHz, **D**MSQ-d₆) δ 7.55 (d, J = 8.4 Hz, 2H), 7.06 (t, J = 8.0 Hz, 2H), 7.00 (d, J = 8.4 Hz, 2H), 6.75 (d) J = 8.0 Hz, 2H), 6.60 (t, J = 7.2 Hz, 1H), 6.17 (d, J = 10.4 Hz, H) 4.97 F4.88 (m 1H), 4.07 (q, J = 6.8 Hz, 2H), 3.77 (s, 3H), 1.07 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (3 6 MHz, DMSO-d₆) δ -97.55 (dd, J = 244.8, 9.0 Hz, 1F), -100.49 (dd, J = 244.8, 15.8 Hz, 1F); ¹⁵ONMR (100 MHz, DMSO-d₆) δ 168.4 (d, J = 3.0 Hz), 160.7, 146.6, 128.8, 127.3 (t, J = 6.0 Hz), 126.2 (t, J = 26.0 Hz), 120.7 (t, J = 249.0 Hz), 117.6, 113.6, 113.2, 61.4 (dd, J = 32.0, 28.0 Hz), 61.1, 55.3, 13.9; **IR (neat)**: v_{max} 3045, 1765, 1678, 1646, 1539, 1245, 1053, 1027, 820 cm⁻¹; **HRMS (ESI)** calcd for C₁₈H₂₀F₂NO₃ [M+H]⁺ 336.1405, found 336.1403.

Ethyl 3,3-difluoro-3-(4-fluorophenyl)-2-(phenylamino)propanoate (4d):

colorless oil (83%, 53.6 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 15:1); ¹H NMR (400 MHz, DMSQ-d₆) δ 7.71 – 7.68 (m, 2H), 7.31 (t, J = 8.8 Hz, 2H), 7.05 (t, J = 8.0Hz, 2H); 6.76 (d, $J \ominus 8.0$ Hz, 2H), 6.61 (t, J = 7.2 Hz, 1H), 6.22 (d, J = 10.4 Hz, 1H), 5.06 – 4.97F(m, 1H), 4.08 (q, J = 7.2 Hz, 2H), 1.07 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, DMSQ-d₆) δ -98/31 (dd, J = 246.3, 9.0 Hz, 1F), -100.93 (dd, J = 246.5, 16.2 Hz, F), -110.64 **4d**-110.70 (IF, 1F); ¹³C NMR (100 MHz, DMSO-d₆) δ 168.2 (d, J = 3.0Hz), 163.2 (d, J = 245.0 Hz), 146.5, 13.06 (t, J = 25.0 Hz), 128.8, 128.4 (dd, J = 15.0, 6.0 Hz), 120.3 (t, J = 249.0 Hz), 117.8, 115.3 (d, J = 22.0 Hz), 113.3, 61.2, 61.1 (dd, J = 31.0, 27.0 Hz), 14.3; **IR (neat)**: v_{max} 3045, 1765, 1547, 1515, 1375, 1243, 1053, 1028, 820 cm⁻¹; **HRMS (ESI)** calcd for C₁₇H₁₇F₃NO₂ [M+H]⁺ 324.1205, found 324.1197.

Ethyl 3-(4-chlorophenyl)-3,3-difluoro-2-(phenylamino)propanoate (4e):

colorless oil (68%, 46.1 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR 400 MHz, $\square MSD-d_6$) δ 7.66 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.05 (t, J = 8.0 Hz, 2H), 6.75 (d, J = 8.0 Hz, 2H), 6.61 (t, J = 7.2 Hz, 1H), 6.21 (d, J = 10.8 Hz, H) 5.01 - F4.98 (m, 1H), 4.09 (q, J = 7.2 Hz, 2H), 1.08 (t, J = 7.2 Hz, 3H); ¹⁹F NMR 376 MHz, $\square MSD-d_6$) δ -98.85 (dd, J = 246.3, 9.4 Hz, 1F), -101.87 (dd, J = 246.3, 16.2 Hz, 1F); ¹³C4NMR (400 MHz, $\square MSO-d_6$) δ 168.1 (d, J = 3.0 Hz), 146.5, 135.3, 133.1 (t, J = 26.0 Hz), 128.8, 128.4, 127.8 (t, J = 6.0 Hz), 120.3 (t, J = 249.0 Hz), 117.7, 113.3, 61.3, 61.0 (dd, J = 31.0, 27.0 Hz), 13.8; **IR (neat)**: v_{max} 3058, 1743, 1676, 1603, 1531, 1499, 1456, 1310, 1052, 824 cm⁻¹; **HRMS (ESI)** calcd for C₁₇H₁₇ClF₂NO₂ [M+H]⁺ 340.0910, found 340.0914.

Ethyl 3-(4-bromophenyl)-3,3-difluoro-2-(phenylamino)propanoate (4f):

colorless oil (82%, 62.8 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 15:1); ¹H NMR (400 MHz, DMSO-d₆) δ 7.69 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 7.6 Hz, 2H), 7.06 (t, J = 7.2 HZ, 2H), 6.76 (d, J = 7.6 Hz, 2H), 6.61 (t, J = 6.8 Hz, 1H), 6.18 (d, J = 10.8 Hz, H), 5.96 F 4-97 (m, 1H), 4.09 (q, J = 7.2 Hz, 2H), 1.08 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, IDMSO-d₆) δ -99.01 (dd, J = 246.7, 9.0 Hz, 1F), -102.00 (dd, J = 246.7, 16.2 4f Br Hz, 1F); ¹³C NMR (100 MHz, DMSO-d₆) δ 168.0 (d, J = 3.0 Hz), 146.4, 133.4 (t, J = 25.0 Hz), 131.3, 128.8, 128.0 (t, J = 6.0 Hz), 124.1, 120.3 (t, J = 249.0 Hz), 117.7, 113.3, 61.3, 61.0 (dd, J = 27.0, 23.0 Hz), 13.8; **IR (neat)**: v _{max} 3061, 1736, 1647, 1453, 1371, 1098, 1043, 936 cm⁻¹; **HRMS (ESI)** calcd for C₁₇H₁₇BrF₂NO₂ [M+H]⁺ 384.0405, found 384.0414.

Ethyl 3,3-difluoro-2-(phenylamino)-3-(m-tolyl)propanoate (4g):

colorless oil (56%, 35.7 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 15:1); ¹H NMR (400 MHz₁ DMSO-d₆) δ 7.44 – 7.29 (m, 5H), 7.06 (t, *J* = 7.6 Hz, 2H), 6.77 (d, *J* = 8.0 Hz, 2H), 6.61 (t, *J* = 7.2 Hz, 1H), 6.16 (d, *J* = 10.4 Hz, 1H), 4.98 – 4.89 (m, 1H), 4.06 (q, *J* = 7.2 Hz, 2H), 2.35 (s, 3H), 1.04 (t, *J* = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, DMSO-d₆) δ -99.28 fdd, f = 244.8, 9.4 Hz, 1F), -101.70 (dd, *J* = 245.2, 15.4 Hz, 1F); ¹³C NMR (100 MHz, DMSO-d₆) δ 168.2 (d, *J* = 4.0 Hz), 146.6, 137.7, 134.1 (t, *J* = 26.0 Hz), 31.0, 128.8; 128.2 fdd, (t, *J* = 6.0 Hz), 122.8 (t, *J* = 6.0 Hz), 120.5 (t, *J* = 249 Hz), 17.6, 113.3, 61.4 (dd, *J* = 30.0, 27.0 Hz), 61.1, 20.9, 13.8; **IR (neat)**: $\upsilon_{max} 3061, 1737, 1606, 1549, 1449, 1235, 1044, 847 cm⁻¹;$ **HRMS (ESI)**calcd for C₁₈H₂₀F₂NO₂ [M+H]⁺ 320.1456, found 320.1463.

Ethyl 3,3-difluoro-3-(3-fluorophenyl)-2-(phenylamino)propanoate (4h):

colorless oil (81%, 52.3 mg); $R_f = 0.6$ (petroleum ether/ethyl acetate = 15:1); ¹H NMR (400 MHz, DMSO-d₆) δ 7.71 – 7.68 (m, 2H), 7.31 (t, *J* = 8.8 Hz, 2H), 7.05 (t, *J* = 8.8 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 6.61 (t, *J* = 7.2 Hz, 1H), 6.22 (d, *J* = 10.4 Hz, 1H), 5.06 – 4.97 (m, 1H), 4.08 (q, *J* = 7.2 Hz, 2H), 1.07 (t, *J* = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, DMSO-d₁) δ -98.31 (dd, *J* = 246.3, 9.0 Hz, 1F), -100.93 (dd, *J* = 246.3, 16.2 Hz, F), 110.63 **ah** 110.70 (m, IF); ¹³C NMR (100 MHz, DMSO-d₆) δ 168.2 (d, *J* = 4.0 Hz), 63.2 (d, *J* = 245.9 Hz), 46.5, 130.6 (t, *J* = 26.0 Hz), 129.3, 128.4 (dd, *J* = 15.0, 6.0 Hz), 120.3 (t, *J* = 249.0 Hz), 117.7, 115.3 (d, *J* = 22.0 Hz), 113.3, 61.2, 61.1 (dd, *J* = 31.0, 26.0 Hz), 13.9; IR (neat): υ_{max} 3043, 1835, 1765, 1676, 1375, 1244, 1025, 757 cm⁻¹; HRMS (ESI) calcd for C₁₇H₁₇F₃NO₂ [M+H]⁺ 324.1205, found 324.1198.

Ethyl 3-(3-chlorophenyl)-3,3-difluoro-2-(phenylamino)propanoate (4i):

colorless oil (76%, 51.5 mg); $R_f = 0.4$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHz+DMSO-d₆) δ 7.72 (s, 1H), 7.62 – 7.57 (m, 2H), 7.53 – 7.49 (m, 1H), 7.06 (t, J = 8.4 Mz, 2H), 6.08 (d, J = 8.0 Hz, 2H), 6.61 (t, J = 7.2 Hz, 1H), 6.23 (d, J = 10.8 Hz, 1H), 543 F-594 (m, 1H), 4.09 (q, J = 7.2 Hz, 2H), 1.07 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, DMSO-d₆) δ -99.14 (dd, J = 246.7, 9.8 Hz, 1F), -101.92 (dd, J = 246.3, 16.2 Hz, 1F); ¹³C⁴NMR (100 MHz, DMSO-d₆) δ 168.0 (d, J = 4.0 Hz), 146.5, 136.3 (t, J = 26.0 Hz), 133.1, 130.5, 130.4, 128.8, 125.9 (t, J = 6.0 Hz), 124.5 (t, J = 6.0 Hz), 119.9 (t, J = 250.0 Hz), 117.7, 113.3, 61.3, 60.9 (dd, J = 31.0, 27.0 Hz), 13.8; **IR (neat)**: υ_{max} 3062, 1736, 1649, 1562, 1549, 1371, 1098, 1043, 936 cm⁻¹; **HRMS (ESI)** calcd for C₁₇H₁₇ClF₂NO₂ [M+H]⁺ 340.0910, found 340.0919.

Ethyl 3-(3-bromophenyl)-3,3-difluoro-2-(phenylamino)propanoate (4j):

colorless oil (76%, 58.2 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 15:1); ¹H NMR 400 MHz DMSO-d₆) δ 7.86 (s, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.48 – 742 (m, 1H9, 7.06 (t, J = 8.0 Hz, 2H), 6.79 (d, J = 8.0 Hz, 2H), 6.61 (t, J = 7.2Hz, 1H), 6.26 (d, J = 10.8 Hz, 1H), 5.15 – 5.05 (m, 1H), 4.09 (q, J = 6.8 Hz, 2H), 1.07 (t, J = 6.8 Hz, 3 H); ¹⁹F NMR (376 MHz, DMSO-d₆) δ -99.14 (dd, J = 246.3, 9.4 Hz, F), -101.964 dd, J = 246.7, 17.3 Hz, 1F); ¹³C NMR (100 MHz, DMSO-d₆) δ 168.1 (d, J = 4.0 Hz), 146.5Bt 36.5 (t, J = 26.0 Hz), 133.4, 130.6, 128.8, 128.7 (t, J = 7.0 Hz), 124.9 (t, J = 6.0 Hz), 121.6, 119.9 (t, J = 250.0 Hz), 117.8, 113.3, 61.3, 60.9 (dd, J =30.0, 27.0 Hz), 13.9; **IR (neat)**: v_{max} 3043, 1766, 1677, 1455, 1425, 1374, 1248, 1025, 757 cm⁻¹; **HRMS (ESI)** calcd for C₁₇H₁₇BrF₂NO₂ [M+H]⁺ 384.0405, found 384.0415.

Ethyl 3-(3,5-dimethylphenyl)-3,3-difluoro-2-(phenylamino)-propanoate (4k):

colorless oil (85%, 56.6 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 15:1); ¹H NMR (400 MHz, DMSO-d₆) δ 7.23 (s, 2H), 7.11 (s, 1H), 7.07 (t, J = 7.2, 2H), 6.79 (d, J = 7.6Hz, 2R), 6.82 (t, J = 7.2 Hz, 1H), 6.15 (d, J = 10.4 Hz, 1H), 4.96 – 4.87 (m, 1H), 4.06 (q, J = 68 Hz, 2H), 2.30 (se 6H), 1.04 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (376 MHz, DMSOd₆) δ -99.39F(dd, J = 244.4, 10.2 Hz, 1F), -101.64 (dd, J = 244.4, 14.7 Hz, 1F); ¹³C NMR (101 MHz, DMSO-d₆) δ 168.3 (d, J = 4.0 Hz), 146.6, 137.6, 134.1 (t, J = 24.0Hz), 131.7, 128.8, $J_{23.3}$ (t, J = 5.0 Hz), 120.5 (t, J = 249.0 Hz), 117.7, 113.3, 61.5 (dd, J = 30.0, 27.0 Hz), 61.1, 20.8, 13.8; **IR (neat)**: υ_{max} 3061, 1647, 1453, 1371, 1301, 1043, 847 cm⁻¹; **HRMS (ESI)** calcd for C₁₉H₂₂F₂NO₂ [M+H]⁺ 334.1613, found 334.1619.

Ethyl 3,3-difluoro-2-(phenylamino)butanoate (41):

colorless oil (53%, 25.8 mg); $R_f = 0.6$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHz] DMSO-d₆) δ 1.10 (t, J = 7.2 Hz, 2H), 6.78 (d, J = 8.0 Hz, 2H), 6.64 (t, J = 7.2 Hz, 1H), 6.15Q(d, J = 10.4 Hz, 1H), 4.72 – 4.63 (m, 1H), 4.16 (qd, J = 6.8, 2.0 Hz, 2H), 4.76 ft, $J_{\overline{Me}}^{-1}$ 19.6 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, DMSO-d₆) δ -93.37^E/₄ -94.20 (m, 1F), -95.55 – -96.39 (m, 1F); ¹³C NMR (100 MHz, DMSO-d₆) δ 168.7 (dd, J = 3.0, 2.0 Hz), 146.8, 128.9, 122.7 (t, J = 244.0Hz), 117.6, 113.2, 61.2, 60.4 (dd, J = 27.0, 29.0 Hz), 21.0 (t, J = 25.0 Hz), 14.0; **IR (neat)**: v_{max} 3076, 1733, 1648, 1613, 1454, 1372, 1238, 1098, 937 cm⁻¹; **HRMS (ESI)** calcd for C₁₂H₁₆F₂NO₂ [M+H]⁺ 244.1143, found 244.1148.

Ethyl 3-fluoro-3-methyl-2-(phenylamino)butanoate (4m):

colorless oil (72%, 34.4 mg); $R_f = 0.6$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR 400 MHz DMSO-d₆) δ 7.09 (t, J = 8.0 Hz, 2H), 6.73 (d, J = 8.0 Hz, 2H), 6.61 (t, J = 7.2 Hz, 1H), 5.839(d, J = 10.4 Hz, 1H), 4.22 (dd, J = 16.0, 10.0 Hz, 2H), 4.12 (q, J = 7.2 Hz, 2H), 1.51 (d, J = 5.2 Hz, 3H), 1.45 (d, J = 4.8 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H); ⁹F NMR (376 MHz, DMSO-d₆) δ -141.66 - -146.41 (m, 1F); ¹³C NMR (100 MHz, DMSO-d₆) δ 171.1 (d, J = 2.0 Hz), 147.5, 128.9, 117.1, 113.0, 95.6 (d, J = 174.0 Hz), 62.8 (d, J = 24.0 Hz), 60.5, 24.8 (d, J = 23.0 Hz), 23.9 (d, J = 23.0 Hz) 14.1; **IR (neat)**: v_{max} 3043, 1765, 1646, 1538, 1455, 1374, 1273, 1244, 1027, 756 cm⁻¹; **HRMS (ESI)** calcd for C₁₃H₁₉FNO₂ [M+H]⁺ 240.1394, found 240.1385.

Ethyl 3-fluoro-2-(phenylamino)butanoate (4n):

colorless oil (58%, 26.1 mg, dr = 1:1); $R_f = 0.6$ (petroleum ether/ethyl acetate = 20:1); **H NMR** (400 MHz, DMSO-d₆) δ 7.07 (t, J = 7.6 Hz, 2H), 6.70 (d, J = 8.0 Hz, 2H), 6.58 (t, J = 7.2 Hz, 1H), 5.88 (d, J = 9.6 Hz, 1H), 5.23 – 5.17 (m, 0.5H), 5.11 – 5.05 (m, 0.5H), 4.37 (dd, J = 10.0, 3.2 Hz, 0.5H), 4.30 (dd, J = 10.0, 3.2 Hz, 0.5H), 4.13 (q, J = 7.2 Hz, 2H), 1.42 (d, J = 6.0 Hz, 1.5H), 1.35 (d, J = 6.0 Hz, 1.5H), 1.18 (t, J = 7.2Hz, 3H). ¹⁹F NMR (376 MHz, DMSO-d₆) δ -180.85 – -183.78 (m, 1F). ¹³C NMR (100 MHz, DMSO-d₆) δ 171.0 (d, J = 4.0 Hz), 147.9, 128.8, 116.8, 112.7, 90.5 (d, J = 171.0Hz), 60.8, 59.6 (d, J = 20.0 Hz), 17.4 (d, J = 22.0 Hz), 14.1. **IR (neat)**: υ_{max} 3074, 1591, 1460, 1379, 1330, 1024, 908 cm⁻¹; **HRMS (ESI)** calcd for C₁₂H₁₇FNO₂ [M+H]⁺ 226.1238, found 226.1228.

Ethyl 3,3-dimethyl-2-(phenylamino)butanoate (6a):

 $\begin{array}{l} \textbf{(a)} \textbf{(b)} \textbf{(c)} \textbf{$

Ethyl 2-(1-methylcyclohexyl)-2-(phenylamino)acetate (6b):

colorless oil (66%, 36.3 mg), $R_f = 0.5$ (petroleum ether/ethyl acetate = 25:1); ¹H NMR (400 MHz, CDCI) δ 7.16 (t, J = 8.0 Hz, 2H), 6.72 (t, J = 7.2 Hz, 1H), 6.67 (d, J = 8.0 Hz, 2H), 4.14 (q, $J \oplus 7.2$ Hz, 3H), 3.94 (d, J = 10.8 Hz, 1H), 1.64 – 1.48 (m, 8H), 1.34 – 1.81 (m, 2H), 1.23 (t, J = 7.2 Hz, 3H), 1.04 (s, 3H); ¹³C NMR (100 MHz, CDCI₃) δ 173.3, 147.8, 129.3, 118.2, 1 13.8, 64.4, 60.5, 37.1, 34.9, 34.9, 26.1, 21.7, 21.6, 20.3, 14.3. **6b**

Ethyl 2-(adamantan-1-yl)-2-(phenylamino)acetate (6c):

yellow solid (70%, 43.8 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 15:1); ¹H NMR (400 MHz, CDCP) δ 7.16 (t, J = 8.0 Hz, 2H), 6.71 (t, J = 7.2 Hz, 1H), 6.66 (d, J = 7.6 Hz, 2H), 4.20 (s, 1H), 4.15 (q, J = 7.2 Hz, 2H), 3.66 (s, 1H), 2.03 (s, 3H), 1.82 – 1.58 m, 12H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 147.8, 129.2, 18.1, 113.7, 66.4, 60.5, 38 9, 36.8, 36.3, 28.3, 14.3.

Ethyl 2-cyclebexyl-2-(phenylamino)acetate (6d):

yellow solid (79%, 41.2 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 25:1); ¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, J = 8.0 Hz, 2H), 6.73 (t, J = 7.2 Hz, 1H), 6.64 (d, J = 7.6 Hz, 2H), All8 (e, J = 14.4, 7.2 Hz, 2H), 3.88 (d, J = 6.0 Hz, 1H), 1.88 – 1.70 (m, 7H), 1.27 – 1.15 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 147.3, 129.2, 118.2, 113.5, 60.8, 60.8, 43.2, 29.3, 29.0, 25.3, 25.1, 14.3.

Ethyl 2-cyclggentyl-2-(phenylamino)acetate (6e):

colorless oil (76%, 37.5 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 25:1); ¹H NMR (400 MHzHCDGI₃) δ 7.17 (t, J = 7.6 Hz, 2H), 6.73 (t, J = 7.2 Hz, 1H), 6.64 (d, J = 8.0Hz, 2H), 4.17 (q, J = 7.2 Hz, 2H), 4.11 (s, 1H), 3.87 (d, J = 7.6 Hz, 1H), 2.30 – 2.20 (m, 1H), 1.88–1.80 (m, 1H), 1.75 – 1.56 (m, 5H), 1.52 – 1.43 (m, 2H), 1.24 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCI₃) δ 173.6, 147.4, 129.2, 118.0, 113.4, 62.0, 60.8, 41.3, 29.6, 29.1, 26.1, 26.1, 14.3.

Ethyl phenylvalinate (6f):

colorless oil (65%, 28.7 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 30:1); ¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, J = 8.0 Hz, 2H), 6.73 (t, J = 7.2 Hz, 1H), 6.65 (d, J = 8.0 Hz, 2H), 4.18 (q, $J \Theta 7.2$ Hz, 2H), 3.86 (s, 1H), 2.17 – 2.09 (m, 1H), 1.26 (t, J = 7.2 Hz, 4H), 1.04 (dd, J = 11.6, 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 147.3, 129.2, 118.1, **6**[13.5, 62.4, 60.8, 31.5, 19.0, 18.7 14.3.

Ethyl 4-cyclohexyl-2-(phenylamino)butanoate (6g):

colorless oil (61%, 35.3 mg); $R_f = 0.5$ (petroleum ether/ethyl acetate = 20:1); ¹H NMR (400 MHz, CDCl₃ $O\delta$ 7.17 (t, J = 8.0 Hz, 2H), 6.73 (t, J = 7.2 Hz, 1H), 6.62 (d, J = 8.0 Hz, 2H), 4.18 (g, f = 7.2 Hz, 2H), 4.12 (s, 1H), 4.02 (s, 1H), 1.86 – 1.64 (m, 8H), 1.33 (s, 2H), 1.27 – 1 21 (m, 5H), 0.92 – 0.87 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 146.9, 129.2, 118.1, 113.3, 60.9, 56.8, 37.4, 33.2, 33.1, 33.0, 30.4, 26.5, 26.2, 26.1, 4.2. **6g**

Ethyl phenylphenylalaninate (6h):

colorless oil (78%, 42.0 mg); $R_f = 0.4$ (petroleum ether/ethyl acetate = 25:1); ¹H NMR (400 MHz₁CDC₁₃) δ 7.27 – 7.23 (m, 4H), 7.18 – 7.14 (m, 3H), 6.73 (t, J = 7.6 Hz, 1H), 6.60 (a) $J \stackrel{N}{=} 7.6$ Hz, 2H), 4.34 (s, 1H), 4.16 (s, 1H), 4.11 (qd, J = 12.8, 10.8 Hz, 2H), 3.17 – 3.07 (m, 2H), 1.16 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 146.4, 136.4, 129.3, 128.4, 26.9, 118.3, 113.6, 61.1, 57.7, 38.6, 14.1. **6h**

3,3-Difluoro-3-phenyl-2-(phenylamino)propan-1-ol (7a):

colorless oil (97%, 51.0 mg); $R_f = 0.4$ (petroleum ether/ethyl acetate = 15:1); ¹H NMR 400 MH2HDMSO-d₆) δ 7.57 – 7.55 (m, 2H), 7.47 – 7.45 (m, 3H), 7.03 (t, *J* = 7.6 Hz, 2H), 6.68 (d, *J* = 80Hz, 2H), 6.52 (t, *J* = 7.2 Hz, 1H), 5.61 (d, *J* = 8.8 Hz, 1H), 4.80 (t, *J* = 5.6 HE, H), 4.11 – 4.06 (m, 1H), 3.69 – 3.65 (m, 1H), 3.48 – 3.42 (m, 1H); ¹⁹F NMR (376 MH2, DMSO-d₆) δ -99.65 (dd, *J* = 245.9, 11.7 Hz), -102.02 (dd, *J* = 245.2, 2.4 Hz); ¹³**CaNMR** (100 MHz, DMSO-d₆) δ 148.5, 135.3 (t, *J* = 25.0 Hz), 130.0, 128.7, 128.3, 125.6 (t, *J* = 6.0 Hz), 122.7 (t, *J* = 246.0 Hz), 116.2, 112.2, 60.1 (t, *J* = 26.0 Hz), 59.7; **IR (neat)**: υ_{max} 2982, 1766, 1627, 1604, 1538, 1509, 1426, 1272 cm⁻¹; **HRMS** (**ESI**) calcd for C₁₅H₁₆F₂NO [M+H]⁺ 264.1194, found 264.1187.

11. Refenrences

- C. Wang, M. Guo, R. Qi, Q. Shang, Q. Liu, S. Wang, L. Zhao, R. Wang and Z. Xu, Angew. Chem. Int. Ed., 2018, 57, 15841–15846.
- 2. H. Xin, Z.-H. Yuan, M. Yang, M. Wang, X.-H. Duan and L.-N. Guo, *Green. Chem.* 2021, **23**, 9549–9553.
- 3. B. Yang, X.-H. Xu and F.-L. Qing, Org. Lett., 2016, 18, 5956–5959.
- 4. Y. Zhou, Z. Xiong, J. Qiu, L. Kong and G. Zhu, Org. Chem. Front., 2019, 6, 1022– 1026.
- 5. H. Zhao, G. Ma, X. Xie, Y. Wang, J. Hao and W. Wan, *Chem. Commun.*, 2019, **55**, 3927–3930.

12. ¹H NMR, ¹⁹F NMR and ¹³C NMR Spectra of Starting Materials 2 and Products 3, 4, and 6,7a ¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 3a:

7.647 7.647 7.647 7.624 7.624 7.077 7.077 7.077 7.077 7.073 6.038 6.0590 6.590 6.6590 6.6590 6.6590 6.6590 6.6590 6.6590 6.6590 6.798 6.197 4.997 4.041 4.041 1.0481.

-98.928 -98.954 -99.581 -99.607 -101.403 -101.446 -101.446 -102.057

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3a:

¹³C NMR (DMSO-d₆, 100 MHz) spectrum of compound 3a:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3b:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 3c:

.631 .615 .615 .490 .476 .727 .727 .705 .690	7775 747 908 883 883 883 883 883 883 883 884 884 064 0046 0029 0129
566661111	25 4444444 4444 46 8 8

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3c:

¹³C NMR (DMSO-d₆, 100 MHz) spectrum of compound 3c:

¹H NMR (DMSO-d₆, 376 MHz) spectrum of compound 3d:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 3e:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3e:

¹³C NMR (DMSO-d₆, 100 MHz) spectrum of compound 3e:

4.5 fl (ppm)

6.0

7.0

7.5

5.5

3.0

3. 5

2.5

2. 0

1.5

9.0

8.5

8.0

0.0

0.5
¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3f:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 3g:

	•/		0	
1001	0101040	044000 - 00 50	3	040
40000	m m r n 4 n r	v 4 m - 0 m 0 4	S	r v m
99944	0000440	0000000		000
n n n n n				
		4 4 4 4 4 4 4 4		

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3g:

¹³C NMR (DMSO-d₆, 100 MHz) spectrum of compound 3g:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3h:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 3i:

S41

S42

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3j:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 3k:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3e:

¹³C NMR (DMSO-d₆, 100 MHz) spectrum of compound 3k:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 31:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 31:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 3m:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3m:

¹³C NMR (DMSO-d₆, 100 MHz) spectrum of compound 3m:

F́ 3n

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3n:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 30:

¹H NMR (DMSO-d₆, 376 MHz) spectrum of compound 3p:

¹H NMR (DMSO-d₆, 100 MHz) spectrum of compound 3p:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 3q:

7.653 7.653 7.653 7.640 7.640 7.670 7.670 7.670 7.670 7.070 7.6703 7.070 7.070 7.07037.0703

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3q:

160 150 140 130 120 110 100 fl (ppm)

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 3r:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3r:

¹³C NMR (DMSO-d₆, 100 MHz) spectrum of compound 3r:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 3s:

¹³C NMR (DMSO-d₆, 100 MHz) spectrum of compound 3s:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3t:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 3u:

-100 fl (ppm)

-90

-70 -80

-60

-10

-20

-40

ò

-00

-140 -150 -160 -170 -180

-200

-190

-110 -120 -130

S60

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3v:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 3w:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3w:

9.0 5. 5 4.5 fl (ppm) 3. 5 3. 0 2.5 2. 0 0.0 8.5 8.0 5. 0 4.0 1. 5 1. 0 0.5

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3x:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 3y:

 $\begin{array}{c} 8.710\\ 8.710\\ 8.669\\ 8.669\\ 7.551\\ 7.571\\ 7.555\\ 7.756\\ 7.7475\\ 7.556\\ 7.7475\\ 7.556\\ 7.756\\$

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3e:

-95.711 -95.730 -96.368 -96.387 -96.387 -98.218 -98.242 -98.893 -98.893 -98.893 -98.893 -98.893 -98.893 -91.02 -93.377 -102.386 -104.022 -104.654	10101-
--	--------

-100 fl (ppm) 0 -10 -20 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -30 -40 -60 -70 -80 -90

¹³C NMR (DMSO-d₆, 100 MHz) spectrum of compound 3y:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 3z:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 4a:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 4a:

¹³C NMR (DMSO-d₆, 100 MHz) spectrum of compound 4a:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 4b:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 4c:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 4c:

 \cap

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 4d:

140 130 120 110 100 fl (ppm)

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 4e:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 4e:

¹³C NMR (DMSO-d₆, 100 MHz) spectrum of compound 4e:

4.5 fl (ppm) 4.0 2.5

2.0

1.5

1.0

0.5

0.0

3. 5

3.0

9.0

8.5

8.0

6.5

6. 0

5.5

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 4f:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 4h:

0 -10

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 4i:

		• /	/ 1	
0 00 7 10	20000	108007	0 - 50 0 400 0 1 4	
0-08	01010	3-10080	0 0 0 0 0 0 0 0 0	
1000	0.00.0	100100	001000110	
1111		00000	0 0 0 0 0 0 v t 4 4 4	

¹⁹H NMR (DMSO-d₆, 376 MHz) spectrum of compound 4i:

¹³C NMR (DMSO-d₆, 100 MHz) spectrum of compound 4i:

4.0

5. 5

8.5

8.0

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 4j:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 4k:

-99.054 -99.081 -99.704 -99.731 -101.293 -101.332 -101.332 -101.942 -101.982

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 4k:

¹³C NMR (DMSO-d₆, 100 MHz) spectrum of compound 4k:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 41:

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 4m:

L 0	040400040	1010001
-++00004-	400040100	1004104
1001100088	00000000	0444HHH
000000011	4 4 4 4 4 4 4 A M	
in the v		

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 4m:

-10 -100 -110 fl (ppm) -20 -30 -40 -50 -60 -70 -80 -90 -120 -130 -140 -150 -160 -170 -180 -190 -200

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 4n:

¹H NMR (CDCl₃, 400 MHz) spectrum of compound 6c:

180 160 140	735	117	669	699	650	
L'LL	9.	9	9	9	9	

+.196 +.178 4.160 4.142 \4.124 -3.662

0 -	00								-
$\circ \infty$	5	F.	E	64	60	57	26	24	22
21	-	-	-	7	7	5	7	5	-

¹³C NMR (CDCl₃, 100 MHz) spectrum of compound 6c:

140 130 120 110 100 fl (ppm) 70 60

¹H NMR (CDCl₃, 400 MHz) spectrum of compound 6d:

92	22	52	46	28	10	48	29
-	-	-	5	1	5	0	9.0
L	E	5	é	2	2	9	9

4.170 4.170 4.152 3.884 3.889 $\begin{array}{c} 1.883\\ 1.854\\ 1.1794\\ 1.172\\ 1.172\\ 1.172\\ 1.1697\\ 1.1238\\ 1.1238\\ 1.154\\ 1.154\end{array}$

¹³C NMR (CDCl₃, 100 MHz) spectrum of compound 6d:

¹H NMR (CDCl₃, 400 MHz) spectrum of compound 6e:

5	5	5	8	0	2	-	-	3	5	8	0	0	0	-	-	-	8	6	2	3	5	8	0	5	5	0	_	-	2	-	8	-	3	5	6	4	-	9	3	4	5	6	-
8	9	4	4	3	-	5	3	6	5	5	4	-	8	9	9	4	4	2	5	4	2	-	0	∞	5	9	5	3	2	-	6	∞	9	-	6	6	8	9	5	3	5	3	0
-	_	-		-	-	9	9	-	-	-	_	_	∞	∞	\sim	0	∞	∞	-	-	-	-	-	9	9	9	9	9	9	9	5	5	5	5	4	4	4	4	4	4	2	0	0
5	5	5	vo.	vo.	vo.	vo.	vo.	+	+	+	+	+	~	~	~i	ai				_				_	_	_	_	_		-			_						_	_			_
· _	1	· .	Y	~	Y	Y	Y	7	Y	4	7	4	1		1		1	1	1	1		11	1.1	1	1	1	1	1	10	1	1	1	-	1	11	1	1	1	1	1	1	1	-

¹³C NMR (CDCl₃, 100 MHz) spectrum of compound 6e:

120 110 100 f1 (ppm)

¹H NMR (CDCl₃, 400 MHz) spectrum of compound 6f:

194	174	154	750	732	714	655	635
Ľ.	E.	F.	6.	·9	9	6.	9

4.191 4.191 4.173 4.173 4.173 3.860 $\begin{array}{c} 2.169\\ 2.152\\ 2.135\\ 2.119\\ 2.119\\ 2.119\\ 2.119\\ 1.276\\ 1.276\\ 1.276\\ 1.276\\ 1.276\\ 1.238\\ 1.238\\ 1.238\\ 1.238\\ 1.238\\ 1.238\\ 1.228\\ 1.022\end{array}$

¹³C NMR (CDCl₃, 100 MHz) spectrum of compound 6f:

¹H NMR (CDCl₃, 400 MHz) spectrum of compound 6g:

-7.170 -7.170 -6.748 -6.730 -6.730 -6.631 -6.631 -6.611	4.208 4.190 4.172 4.154 4.154 4.120 4.022	1.860 1.845 1.831 1.831 1.768 1.768 1.768 1.768 1.703 1.676 1.676 1.639 1.331 1.676 1.249 1.231 1.249 1.2311 1.231

¹H NMR (CDCl₃, 100 MHz) spectrum of compound 6g:

¹H NMR (CDCl₃, 400 MHz) spectrum of compound 6h:

4 3 3 1 0 7 1 3 0 6 6 7 0 0	8 8 8 8 9 8 7 7 1 8 4 7 8 9 4	500
0 8 9 4 7 8 9 9 4 5 8 6 1 - 6	4000010000001000	L 0 4
0011111111000	001111100011111	
LLLLLLLL00000	4 4 4 4 4 4 4 40 0 0 0 0 0 0 0 0	

¹H NMR (DMSO-d₆, 400 MHz) spectrum of compound 7a:

¹⁹F NMR (DMSO-d₆, 376 MHz) spectrum of compound 7a:

¹³C NMR (DMSO-d₆, 100 MHz) spectrum of compound 7a:

-148.49 r135.54 -135.29 -135.04	-129.96 -128.66 -128.65 -125.55 -125.55 -125.53 -125.13 -125.13 -125.13 -125.13 -125.13 -125.13 -125.13 -125.13 -122.67 -116.17 -116.17 -116.17 -116.17 -116.16 -116.17 -116.16 -106.16 -106.16 -106.16 -106.1	-60.34 -60.08 -59.82

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (cpm)

¹H NMR (CDCl₃, 400 MHz) spectrum of compound 2a:

¹H NMR (CDCl₃, 400 MHz) spectrum of compound 2b:

484	464	451	445	431	401	381	326	303	260	230	209	188	
5	5	L.	5	E	5	5	5	5	5	5	5	5	

¹⁹F NMR (CDCl₃, 376 MHz) spectrum of compound 2b:

-1.281

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 fl (ppm) -110 -115 -130 -145 -120 -125 -135 -140

¹⁹F NMR (CDCl₃, 376 MHz) spectrum of compound 2c:

¹H NMR (CDCl₃, 400 MHz) spectrum of compound 2d:

401	0 00 00	66	6
500	N 4 0	40	0
101	220	$\omega \omega$	3
550	- FF	55	5
	5	1-	
	1		

F F O Br 2d

--102.170

-1.288

¹⁹F NMR (CDCl₃, 376 MHz) spectrum of compound 2d:

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹⁹F NMR (CDCl₃, 376 MHz) spectrum of compound 2e:

¹H NMR (CDCl₃, 400 MHz) spectrum of compound 2f:

616	595	169 147 125	
E.E.	55	111	

¹⁹F NMR (CDCl₃, 376 MHz) spectrum of compound 2f:

-1.274

S106

¹⁹F NMR (CDCl₃, 376 MHz) spectrum of compound 2g:

¹H NMR (CDCl₃, 400 MHz) spectrum of compound 2h:

Br 2h

---101.978

-1.284

¹⁹F NMR (CDCl₃, 376 MHz) spectrum of compound 2h:

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

3.5 6.0 0.5 9.0 8.5 8.0 6.5 5.5 5. 0 4.5 fl (ppm) 4.0 3. 0 2. 5 2.0 1.5 1.0 0.0 7.5 7.0

¹⁹F NMR (CDCl₃, 376 MHz) spectrum of compound 2i:

¹H NMR (CDCl₃, 400 MHz) spectrum of compound 2j:

-2.389

Me 2j

--101.935

¹⁹F NMR (CDCl₃, 376 MHz) spectrum of compound 2j:

-60 -65 -70 -75 -95 -100 -105 fl (ppm) -110 -115 -80 -85 -90 -120 -125 -130 -135 -145 -140

S113

130 120 110 100 f1 (ppm)

--99.249

¹⁹F NMR (CDCl₃, 376 MHz) spectrum of compound 21:

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

¹³C NMR (CDCl₃, 100 MHz) spectrum of compound 21:

