Supplementary Information

Stereoselective Synthesis of $\mathbf{1 , 3 , 5}$-Trienes from Alkynones and Allyl Carbonyl Compounds Through C-C $\boldsymbol{\sigma}$-Bond Cleavage under Transition-Metal-Free Conditions

Lu Cheng, \dagger Mengdan, Wang, \dagger Yajie Yang, \dagger Zongkang Wang, \dagger Yilin Zhu, \dagger Lingkai Kong, ${ }^{*} \dagger$ Yanzhong Li*†
\dagger School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
$\$$ School of Chemistry and Chemical Engineering, Linyi University, Shuangling Road, Linyi, Shandong, 276000, China

Fax: (+86) 021-54340096, E-mail: yzli@chem.ecnu.edu.cn

Table of contents

1. General information 3
2. Synthesis of substrates 4
2.1 Synthesis of Acetyenic Ketones 1 4
2.2 Synthesis of allyl ketones 2 4
3. Experimental Section 6
4.1 General procedure for the synthesis of trienes 3 6
4.2 General procedure for the synthesis of chromones 5 6
4.3 Characterization data of products 7
4.4 Further transformations of $\mathbf{3 y}$ 21
4.5 Synthesis of $\mathbf{1 0}$ 23
4.6 Synthesis of $\mathbf{3 y}{ }^{\prime}$ 24
4. References 25
5. Copies of NMR spectra 27
6. 1.0 mmol scale reactions for the preparation of $\mathbf{3 a}$ 69
7. X-Ray Crystal Structure of 31 (CCDC: 2156724) 70
8. X-Ray Crystal Structure of $\mathbf{3} \mathbf{y}^{\prime}(\mathrm{CCDC}: 2119670)$ 72
9. X-Ray Crystal Structure of $\mathbf{1 0}$ (CCDC: 2122766) 73

1. General information

Unless otherwise stated, all experiments were carried out under the atmosphere of nitrogen gas. Visualization of spots on TLC plate was accomplished with UV light (254 nm). All commercial reagents were used without further purification. Reactions were monitored by thin layer chromatography. Purification of reaction products was carried out by flash chromatography on silica gel (200~300 mesh). NMR spectra were recorded on Bruker AV-500 or Brucker AV-600 NMR spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra was recorded with tetramethylsilane ($\delta=0.00 \mathrm{ppm}$) as internal reference; ${ }^{13} \mathrm{C}$ NMR spectra was recorded with $\mathrm{CDCl}_{3}(\delta=77.00 \mathrm{ppm})$ as internal reference. The following abbreviations (or combinations thereof) were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{m}=$ multiplet. High-resolution mass spectra were performed on a mass spectrometer with a TOF (for EI or ESI) or FTICR (for MALDI) analyzer. Single crystal X-ray diffraction data was collected in Bruker SMARTAPEX diffractiometers.

2. Synthesis of substrates

2.1 Synthesis of Acetyenic Ketones 1

All the substrates 1 are known compounds and have been prepared according to methods reported in the previous literature.

1 a

$1 \mathbf{e}$

$1 i$

1 m

4b

1b

1c

1d

$1 f$

1 g

1h

11
1k

10

4d
$\mathbf{1 a} \mathbf{- 1 d}, \mathbf{1 g}, \mathbf{1 k}, \mathbf{4 b}{ }^{1} ; \mathbf{1 f}, \mathbf{1 1}, \mathbf{1 o}^{2} ; \mathbf{1 e}^{\mathbf{3}} ; \mathbf{1 i} \mathbf{- 1}^{\mathbf{4}}{ }^{4} ; \mathbf{1 h}^{5} ; \mathbf{1 m}^{6} ; \mathbf{1 n}^{7} ; \mathbf{4 a}, \mathbf{4 c}, \mathbf{4 d}^{8}$

2.2 Synthesis of allyl ketones 2

All the substrates 2 are known compounds and have been prepared according to methods reported in the previous literature.

2a

$2 q$

2u

2b

2r

2v

$2 y$
$2 y$
$\mathbf{2 a}, \mathbf{2 s}, \mathbf{2 t}^{9} ; \mathbf{2 v}, \mathbf{2 w}, \mathbf{2 r}^{10} ; \mathbf{2 o}, \mathbf{2 x}^{11} ; \mathbf{2 b}, \mathbf{2 y}, \mathbf{2 z}, \mathbf{2 u}, \mathbf{2 p}, \mathbf{2 q}{ }^{12}$

4. Experimental Section

4.1 General procedure for the synthesis of trienes 3

In an oven-dried Schlenk tube was charged with a stir bar, alkynones $\mathbf{1 a}(0.30 \mathrm{mmol}$, 1.0 equiv.), (E)-allyl ketones $\mathbf{2 a}$ ($0.36 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.6 \mathrm{mmol}, 2.0$ equiv.) and DMSO (3.0 mL). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 4 hours. Upon completion of the reaction, the reaction mixture was cooled down to room temperature and then quenched by water. The aqueous layer was extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The pure products 3a were isolated by column chromatography on silica gel (eluted with PE/EA, 12:1).

4.2 General procedure for the synthesis of chromones 5

In an oven-dried Schlenk tube was charged with a stir bar, alkynones $\mathbf{4 a}$ or $\mathbf{1 b}(0.30$ mmol, 1.0 equiv.), (E)- allyl ketones $\mathbf{2 a}$ or $\mathbf{2 z}$ (0.36 mmol , 1.2 equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.6$ $\mathrm{mmol}, 2.0$ equiv.) and DMSO (3.0 mL). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours. Upon completion of the reaction, the reaction mixture was cooled down to room temperature and then quenched by water. The aqueous layer was extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The pure products 5a or 5d were isolated by column chromatography on silica gel (eluted with PE/EA, 10:1).

4.3 Characterization data of products

(2Z,3Z,5E)-2-(hydroxy(phenyl)methylene)-1-(4-methoxyphenyl)-3,6-
diphenylhexa-3,5-dien-1-one (3a). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=12: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($111.4 \mathrm{mg}, 81 \%$ yield). m.p. $148-150{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.23(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}$, $2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 1 \mathrm{H})$, 6.68-6.65 (m, 3H), $6.49(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 189.89,189.24,161.71,141.44,137.29,137.21,136.95,134.72,131.28$, $130.24,130.02,129.29,128.61,128.36,127.78$, 127.59, 127.31, 126.49, 126.46, 126.42, 113.09, 108.99, 55.17. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 459.1955$, found: 459.1955 .

(2Z,3Z,5E)-2-(hydroxy(phenyl)methylene)-3,6-diphenyl-1-(p-tolyl)hexa-3,5-dien-1-one (3b). Following the general procedure, the crude product was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=20: 1, \mathrm{v} / \mathrm{v})$ to provide the title compound as a yellow solid ($108.9 \mathrm{mg}, 82 \%$ yield). m.p. $166-168^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl_{3}) $\delta 18.09(\mathrm{~s}, 1 \mathrm{H})$, $7.48-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.08(\mathrm{~m}, 7 \mathrm{H}), 6.98$ - $6.92(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 190.29,189.96,141.48,141.17,137.24,136.79,134.71$, $134.15,131.28,130.40,128.62,128.46,128.43,128.31,127.78,127.73,127.62$, $127.39,127.27,126.49,126.44,109.35,21.43$. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+}: 443.2006$, found: 443.1997 .

(2Z,3Z,5E)-1-(3,4-dimethoxyphenyl)-2-(hydroxy(phenyl)methylene)-3,6-
diphenylhexa-3,5-dien-1-one (3c). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=10: 1 \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($96.7 \mathrm{mg}, 66 \%$ yield). m.p. $183-185{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.02(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}$, $5 \mathrm{H}), 7.24-7.10(\mathrm{~m}, 8 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (125 MHz ,
$\left.\mathrm{CDCl}_{3}\right) 189.84,189.15,151.25,147.86,141.17,137.14,137.09,136.90,134.81,131.20$, 130.33, 129.48, 128.63, 128.44, 127.85, 127.63, 127.40, 127.37, 126.49, 126.32, 126.29, 121.90, 110.97, 109.96, 108.94, 55.75, 55.51. HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 511.1880$, found: 511.1880.

(2Z,3Z,5E)-2-(hydroxy(phenyl)methylene)-1-(naphthalen-2-yl)-3,6-diphenylhexa-3,5-dien-1-one (3d). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=15: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($97.6 \mathrm{mg}, 68 \%$ yield). m.p. $182-184^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $18.02(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31$ $-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 5 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.95-$ $6.93(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.38,188.95,141.68,137.05,136.54,134.50,134.38$, 133.16, 131.10, 131.07, 129.85, 129.57, 128.45, 128.03, 128.01, 127.85, 127.66, 126.95, 126.50, 126.40, 126.36, 125.73, 125.50, 124.96, 123.94, 111.63. HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 479.2006$, found: 479.2006

(2Z,3Z,5E)-2-(hydroxy(phenyl)methylene)-1-(1-methyl-1H-indol-2-yl)-3,6-diphenylhexa-3,5-dien-1-one (3e). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=15: 1$, v / v) to provide the title compound as a yellow solid ($80.9 \mathrm{mg}, 68 \%$ yield). m.p. $122-124{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.02(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.41(\mathrm{~m}$, $1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.09(\mathrm{~m}, 9 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H})$, $6.94(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.62,185.42,141.31,139.29,137.06,136.65,136.37$, 134.96, 134.27, 131.45, 130.41, 128.61, 128.47, 127.80, 127.73, 127.40, 127.38, 126.44, 126.23, 126.12, 124.63, 122.35, 120.03, 110.22, 109.88, 32.13. HRMS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 504.1934$, found: 504.1932.

(2Z,3Z,5E)-1-(4-fluorophenyl)-2-(hydroxy(phenyl)methylene)-3,6-diphenylhexa-3,5-dien-1-one (3f). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=30: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a
yellow solid ($60.3 \mathrm{mg}, 45 \%$ yield). m.p. $105-107^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $18.03(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.31$ $(\mathrm{m}, 4 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.80(\mathrm{~m}$, $2 \mathrm{H}), 6.64(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.13,189.29,164.01(\mathrm{~d}, J=250.0 \mathrm{~Hz}), 141.31,137.09,136.86,136.49,135.15$, 133.25 (d, $J=3.75 \mathrm{~Hz}$), $131.44,130.75,130.08$ (d, $J=8.75 \mathrm{~Hz}$), 128.73, 128.51, 128.00 , 127.78, 127.51, 126.55, 126.47, 126.12, 114.93 (d, $J=21.3 \mathrm{~Hz}$), 109.45. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{FO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 469.1574$, found: 469.1577

(4-fluorophenyl)(4'-phenyl-[1,1':2',1'-terphenyl]-3'-yl)methanone (3f') Following the general procedure, the crude product was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a white solid ($47.6 \mathrm{mg}, 37 \%$ yield). m.p. 162-164 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H})$, $7.53(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 10 \mathrm{H}), 6.96-6.93$ (m, 2H). ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.24,162.08(\mathrm{~d}, J=246.3 \mathrm{~Hz}), 141.45$, $140.45,140.07,139.64,139.38,138.11,137.32,136.54$ (d, $J=3.75 \mathrm{~Hz}$), 132.98, 132.34, $131.42(\mathrm{~d}, J=8.75 \mathrm{~Hz}), 131.17,130.04,129.85,128.98$, 128.38, 128.21, 128.19, 127.54, $127.05,115.12(\mathrm{~d}, J=21.3 \mathrm{~Hz})$. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{FO}[\mathrm{M}+\mathrm{H}]^{+}: 429.1649$, found: 429.1649

(2Z,3Z,5E)-1-(furan-2-yl)-2-(hydroxy(phenyl)methylene)-3,6-diphenylhexa-3,5-dien-1-one ($\mathbf{3 g}$). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=20: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($79.1 \mathrm{mg}, 63 \%$ yield). m.p. $104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.14$ $(\mathrm{s}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.10(\mathrm{~m}, 12 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.58(\mathrm{~m}$, $1 \mathrm{H}), 6.31-6.29(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 187.40, 177.67, 149.08, $146.43,140.60$, 136.98, 136.57, 135.40, 135.38, 132.28, 130.41, 128.65, 128.62, 127.96, 127.66, 127.56, 127.51, 126.60, 126.12, 125.99, 120.13, 112.36, 107.40. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 441.1461$, found: 441.1461.

(4Z,5Z,7E)-4-(hydroxy(phenyl)methylene)-5,8-diphenylocta-5,7-dien-3-one (3h).

Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=50: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow oil (54.8 $\mathrm{mg}, 48 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.56(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.48$ $-7.45(\mathrm{~m} 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.87$ $(\mathrm{m}, 2 \mathrm{H}), 6.66-6.59(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 1 \mathrm{H}) 2.28-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.03-1.00(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.11,182.34,140.90,137.04,136.00,135.90$, $135.15,131.36,130.55,128.71,128.66,127.94,127.78$, 127.75, 127.67, 126.55, 126.06, 126.01, 109.18, 30.83, 8.85. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 381.1849, found: 381.1846.

(2Z,3Z,5E)-1-cyclohexyl-2-(hydroxy(phenyl)methylene)-3,6-diphenylhexa-3,5-dien-1-one(3i). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=50: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($88.7 \mathrm{mg}, 68 \%$ yield). m.p. $163-165{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.99$ (s, $1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H})$, 7.14-7.11 (m, 2H), 6.92-6.84(m, 2H), 6.60 (d, $J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.41(\mathrm{~m}, 1 \mathrm{H})$, 1.69-1.61 (m, 2H), 1.57-1.39(m, 5H), 1.15-1.09(m, 1H), 1.05-1.00(m, 1H), 0.90 $-0.84(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.43,186.29,141.47,137.14,136.61$, $136.19,134.75,131.25,130.47,128.65,128.61,127.83$, 127.67, 127.61, 126.50, $126.24,126.21,108.63,44.59,29.55,28.94,25.66,25.56,25.42$. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 435.2319$, found: 435.2316 .

(4Z,5Z,7E)-4-(hydroxy(phenyl)methylene)-2,2-dimethyl-5,8-diphenylocta-5,7-
dien-3-one ($\mathbf{3 j}$). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=60: 1 \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($46.6 \mathrm{mg}, 38 \%$ yield). m.p. $142-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.58$ (s, $1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H})$, 7.18-7.14 (m, 1H), 7.09-7.03 (m, 2H), 6.98-6.91 (m, 1H), 6.84-6.79 (m, 1H), 6.60 - $6.55(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.63,189.58,142.04$, $137.56,137.20,136.27,134.72,132.01,129.58,128.72,128.52,127.93,127.47$, 127.34, 127.05, 126.92, 126.56, 126.45, 108.13, 43.06, 28.57. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 409.2162$, found: 409.2159 .

(2Z,3Z,5E)-2-(hydroxy(phenyl)methylene)-3-(4-methoxyphenyl)-1,6-diphenylhexa-3,5-dien-1-one $\mathbf{(3 k}$). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=20: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($89.4 \mathrm{mg}, 65 \%$ yield). m.p. $172-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.01(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.21$ $(\mathrm{m}, 3 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 4 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 190.15$, $158.97,137.33,137.04,136.11,134.09,133.82,130.60,129.67,128.59,127.65,127.59$, 127.43, 126.47, 126.37, 113.76, 109.58, 55.18. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}$ $+\mathrm{Na}{ }^{+}: 481.1774$, found: 481.1775 .

(2Z,3Z,5E)-3-(3-chlorophenyl)-2-(hydroxy(phenyl)methylene)-1,6-diphenylhexa-3,5-dien-1-one (3I). Following the general procedure, the crude product was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=15: 1, \mathrm{v} / \mathrm{v})$ to provide the title compound as a yellow solid ($105.6 \mathrm{mg}, 76 \%$ yield). m.p. $172-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $18.00(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.15$ $(\mathrm{m}, 4 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J$ $=20.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.38,143.45,136.90,136.82,135.79$, $135.17,134.33,132.33,130.75,129.51,128.66,128.07,127.77,127.38,127.18$, $126.59,126.29,125.88,124.57,109.05$. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{ClO}_{2} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}{ }^{+}: 485.1279$, found: 485.1279

(2Z,3Z,5E)-2-(hydroxy(phenyl)methylene)-3-(4-iodophenyl)-1,6-diphenylhexa-
3,5-dien-1-one (3m). Following the general procedure, the crude product was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1, \mathrm{v} / \mathrm{v})$ to provide the title compound as a yellow solid ($99.8 \mathrm{mg}, 60 \%$ yield). m.p. $157-159{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$18.01(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.14$ $(\mathrm{m}, 4 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J$ $=20,0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.31,141.04,137.41,136.96,136.84$, $135.55,135.50,131.86,130.79,128.67,128.06,128.03,127.79,127.39,126.57$, 125.99, 108.92, 92.91. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{IO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 555.0812$, found: 555.1744 .

(2Z,3E,5E)-2-(hydroxy(phenyl)methylene)-1,6-diphenyl-3-(thiophen-2-yl)hexa-3,5-dien-1-one (3n). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=15: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($87.3 \mathrm{mg}, 67 \%$ yield). m.p. $110-112{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $18.06(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.17$ $(\mathrm{m}, 6 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 1 \mathrm{H}) 6.82-6.79(\mathrm{~m}$, $1 \mathrm{H}), 6.59(\mathrm{~d} J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d} J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.18,147.61,137.11,136.90,134.76,130.90,130.77$, 130.46, 128.66, 127.87, 127.77, 127.63, 127.43, 126.50, 125.43, 125.17, 124.98, 109.13. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 457.1233$, found: 457.1233

(2Z,3Z,5E)-2-(hydroxy(phenyl)methylene)-6-(4-methoxyphenyl)-1,3-
diphenylhexa-3,5-dien-1-one (30). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=15: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($72.9 \mathrm{mg}, 53 \%$ yield). m.p. $165-167{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.00(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 4 \mathrm{H}) 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}$, $4 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 6 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 1 \mathrm{H})$, $6.60(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz , CDCl_{3}) $\delta 190.29,159.46,141.59,137.07,135.30,134.43,131.61,130.56,130.02$, $128.28,127.78,127.65,127.46,127.05,126.37,124.38,114.09,109.65,55.31$. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 459.1955$, found: 459.1955

(2Z,3Z,5E)-2-(hydroxy(phenyl)methylene)-1,3-diphenyl-6-(p-tolyl)hexa-3,5-dien-
1-one (3p). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=30: 1 \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid $\left(71.7 \mathrm{mg}, 54 \%\right.$ yield). m.p. $166-168{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.00(\mathrm{~s}, 1 \mathrm{H})$, 7.51-7.48 (m, 4H), 7.34-7.32 (m, 2H), 7.25-7.20(m, 4H), 7.17-7.15 (m, 3H), 7.14 $-7.08(\mathrm{~m}, 6 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=15,0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=20,0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.30,141.54,137.85,137.05,135.93$, 134.81, 134.40, 131.51, 130.56, 129.35, 128.29, 127.65, 127.46, 127.15, 126.43, 125.39, 109.62, 21.28. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 443.2006$, found: 443.2006.

4-((1E,3Z,5Z)-5-benzoyl-6-hydroxy-4,6-diphenylhexa-1,3,5-trien-1-

$\mathbf{y l}$)benzonitrile ($\mathbf{3 q}$). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=10: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($28.6 \mathrm{mg}, 21 \%$ yield). m.p. $190-192{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $18.00(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.14$ (m, 4H), 7.10-7.05 (m, 2H), 6.94-6.88 (m, 1H), 6.61 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ (d, J $=20.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.30,141.57,141.17,139.55,136.82$, $132.39,132.21,130.75,130.26,129.65,128.42,127.85,127.74,127.43,126.72$, 126.68, 119.00, 110.50, 109.36. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 454.1802, found: 454.1802 .

(2Z,3Z,5E)-6-(3-fluorophenyl)-2-(hydroxy(phenyl)methylene)-1,3-diphenylhexa-3,5-dien-1-one (3r). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=20: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($111.2 \mathrm{mg}, 83 \%$ yield). m.p. $135-137{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $18.02(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}) 7.19-7.09$ $(\mathrm{m}, 7 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.60-6.56(\mathrm{~m}$, $1 \mathrm{H}), 6.40(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.33$, $163.12(\mathrm{~d}, J=$
243.8 Hz), 141.44, $139.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 137.78,137.02$, 133.34, 133.32, 130.78, $130.68,130.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 128.39,127.74,127.50,126.63,122.28(\mathrm{~d}, J=2.5 \mathrm{~Hz})$, $114.56(\mathrm{~d}, J=21.3 \mathrm{~Hz}) 112.85(\mathrm{~d}, J=21.3 \mathrm{~Hz})$, 109.51. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 447.1755$, found: 447.1755

(2Z,3Z,5E)-6-(4-fluorophenyl)-2-(hydroxy(phenyl)methylene)-1,3-diphenylhexa-
3,5-dien-1-one (3s). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=20: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($91.1 \mathrm{mg}, 68 \%$ yield). m.p. $175-177^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $18.01(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.08$ (m, 7H), 7.02-6.97 (m, 2H), 6.87-6.81 (m, 1H), 6.58 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40$ (d, J $=20.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.34,162.43(J=246.3 \mathrm{~Hz}), 141.50$, $137.05,136.72,133.44,131.12,130.68,128.39,128.02(J=7.50 \mathrm{~Hz}), 127.73,127.51$, 127.37, 126.54, $126.10(J=2.50 \mathrm{~Hz}), 115.67(\mathrm{~d}, ~ J=22.5 \mathrm{~Hz}), 109.59$. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{FO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 469.1574$, found: 469.1575

(2Z,3Z,5E)-6-(4-chlorophenyl)-2-(hydroxy(phenyl)methylene)-1,3-diphenylhexa-3,5-dien-1-one (3t). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=15: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($70.8 \mathrm{mg}, 51 \%$ yield). m.p. $198-200^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $18.01(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20$ (m, 4H), 7.18-7.08 (m, 7H), 6.93-6.86(m, 1H), $6.58(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J$ $=20.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.29,141.41,137.27,136.96$, 135.64, 133.31, 133.20, 130.91, 130.64, 128.79, 128.34, 127.69, 127.57, 127.51, 127.44, 127.42, 126.80, 126.54, 109.50. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{ClO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 485.1279, found: 485.1279 .

(2Z,3Z,5E)-2-(hydroxy(p-tolyl)methylene)-1,3,6-triphenylhexa-3,5-dien-1-one (3u) Following the general procedure, the crude product was purified by column
chromatography ($\mathrm{PE} / \mathrm{EA}=30: 1 \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($42.5 \mathrm{mg}, 32 \%$ yield). m.p. $169-171^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}^{\text {NMR }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.12(\mathrm{~s}, 1 \mathrm{H})$, 7.47-7.45 (m, 4H), 7.36-7.35 (m, 2H), 7.31-7.30(m, 4H), 7.22-7.10 (m, 7H), 6.98 - $6.92(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.29,189.95,141.47,141.17,137.24,136.79,134.70,134.14,131.27$, 130.40 , 128.62, 128.43, 128.31, 127.78, 127.72, 127.62, 127.39, 127.26, 126.49, 126.43, 109.34, 21.43. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 443.2006$, found: 443.2006 .

(4'-methyl-4'-phenyl-[1,1':2',1'-terphenyl]-3'-yl)(phenyl)methanone (3u'). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=45: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a white solid ($29.3 \mathrm{mg}, 23 \%$ yield). m.p. $168-170{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.71-7.70(\mathrm{~m}$, 2H), 7.56-7.55 (m, 2H), 7.36-7.35 (m, 2H), 7.25-7.18 (m, 13H), 7.13-7.11 (m, 2H), $2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.89, 143.83, 142.27, 140.59, 140.26, 140.17, 139.77, 139.19, 138.16, 134.80, 132.47, 130.94, 130.25, 129.83, 129.79, 128.93, 128.91, 128.30, 128.03, 127.99, 127.38, 126.99, 126.84, 77.25, 77.00, 76.75, 21.64. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 447.1719$, found: 447.1846 .

(2Z,3Z,5E)-2-(hydroxy(4-methoxyphenyl)methylene)-1,3,6-triphenylhexa-3,5-
dien-1-one ($\mathbf{3 v}$). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=15: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($41.3 \mathrm{mg}, 30 \%$ yield). m.p. $126-128{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.23$ (s, $1 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.22-$ $7.10(\mathrm{~m}, 7 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.64(\mathrm{~m}, 3 \mathrm{H}), 6.49(\mathrm{~d} J=20.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 189.89,189.23,161.70,141.43,137.28,137.20,136.94,134.72$, 131.27, 130.24, 130.02, 129.28, 128.61, 128.36, 127.77, 127.59, 127.31, 127.30, $126.48,126.46,126.41,113.09,108.98,55.17$. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{O}_{3}[\mathrm{M}+$ $\mathrm{H}]^{+}: 459.1955$, found: 459.1946 .

(4'-methoxy-4'-phenyl-[1,1':2',1'-terphenyl]-3'-yl)(phenyl)methanone

Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=40: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a white solid ($42.3 \mathrm{mg}, 32 \%$ yield). m.p. $158-160{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79-7.77(\mathrm{~m}$, $2 \mathrm{H}), 7.56-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.21-7.20(\mathrm{~m}, 5 \mathrm{H})$, 6.81-6.79 (m, 2H), $3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.91, 163.47, 142.18, 140.67, 140.34, 140.02, 139.83, 139.26, 138.33, 132.49, 132.46, 130.86, 130.36, $129.89,129.84,128.93,128.36,128.08,128.04,127.45,127.01,126.88,113.51,55.44$.
HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 441.1849$, found: 441.1846.

(2Z,3Z,5E)-2-((4-fluorophenyl)(hydroxy)methylene)-1,3,6-triphenylhexa-3,5-
dien-1-one (3w). Following the general procedure, the crude product was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=30: 1, \mathrm{v} / \mathrm{v})$ to provide the title compound as a yellow solid ($116.5 \mathrm{mg}, 87 \%$ yield). m.p. $112-114{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.99$ $(\mathrm{s}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}$, $4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 1 \mathrm{H})$, $6.83-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.11,189.25,164.02(\mathrm{~d}, J=249.0 \mathrm{~Hz}), 141.32,136.90,136.90$, $136.51,135.15,133.28(J=3.0 \mathrm{~Hz}), 131.45,130.71,130.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 128.71$, $128.50,127.98,127.76,127.51,126.55,126.47,126.15,114.90(\mathrm{~d}, ~ J=22.5 \mathrm{~Hz}), 109.47$.
HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 447.1755$, found: 447.1759.

(2Z,3Z,5E)-2-((3-bromophenyl)(hydroxy)methylene)-1,3,6-triphenylhexa-3,5-
dien-1-one ($\mathbf{3 x}$). Following the general procedure, the crude product was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1: 1, \mathrm{v} / \mathrm{v})$ to provide the title compound as a yellow solid ($129.4 \mathrm{mg}, 85 \%$ yield). m.p. $136-138{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $17.85(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~m}$, $7 \mathrm{H}), 7.24-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 1 \mathrm{H})$, $6.64(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $190.22,188.61,141.25,138.92,137.05,136.63,136.08,135.25,133.35,131.54$, $130.89,130.56,129.18,128.67,128.46,127.94,127.76,127.56,127.48,126.53$, 126.44, 126.01, 125.97, 121.72, 109.70. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]$ +:501.1826, found: 501.1830.

(2Z,3Z,5E)-2-(hydroxy(4-methoxyphenyl)methylene)-1-(4-methoxyphenyl)-3,6-diphenylhexa-3,5-dien-1-one (3y). Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=20: 1: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($71.7 \mathrm{mg}, 49 \%$ yield). m.p. $168-170{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.40(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.30-$ $7.29(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J$ $=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.63(\mathrm{~m}, 4 \mathrm{H}), 6.51(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.93,161.42,141.41,137.27,137.25,134.68,131.25,129.79$, $129.61,128.58,128.40,127.72,127.34,126.51,126.49,126.43,113.01,108.52$, 77.26, 77.00, 76.75, 55.13. HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 489.2060$, found: 489.2062.

(4'-methoxy-4'-phenyl-[1,1':2', $1^{\prime \prime}$-terphenyl]-3'-yl)(4-methoxyphenyl)methanone ($\mathbf{3} \mathbf{y}^{\prime}$) Following the general procedure, the crude product was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=15: 1: 1, \mathrm{v} / \mathrm{v})$ to provide the title compound as a white solid $\left(22.0 \mathrm{mg}, 16 \%\right.$ yield). m.p. $190-192{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.77$ $(\mathrm{m}, 2 \mathrm{H}), 7.53-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 8 \mathrm{H}), 7.15-7.14(\mathrm{~m}$, $2 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $196.91,163.39,158.70,141.76,140.53,140.02,139.89,139.08,137.91,132.94$, $132.44,132.32,130.91,130.38,129.82,128.88,128.30,128.05,127.37,126.76$, 113.53, 113.45, 55.40, 55.19. HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 471.1955, found: 471.1957

3-((1Z,3E)-1,4-diphenylbuta-1,3-dien-1-yl)-2-phenyl-4H-chromen-4-one (5a) Following the general procedure, the crude product was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1: 1, \mathrm{v} / \mathrm{v})$ to provide the title compound as a yellow solid ($58.3 \mathrm{mg}, 46 \%$ yield) m.p. $174-176{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30-$ $8.28(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ $-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 9 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}$,
$J=12.01 \mathrm{H}), 6.73-6.67(\mathrm{~m}, 1 \mathrm{H}), 6.64-6.61(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(150$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.02,162.54,156.25,140.12,137.21,135.19,133.78,133.63$, 133.02, 131.04, 130.53, 128.51, 128.43, 128.20, 128.18, 127.65, 127.44, 126.55, 125.92, 125.90, 125.18, 123.19, 120.42, 118.03. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 449.1512$, found: 449.1513.

6-chloro-3-((1Z,3E)-1,4-diphenylbuta-1,3-dien-1-yl)-2-phenyl-4H-chromen-4-one (5b)
Following the general procedure, the crude product was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1: 1, \mathrm{v} / \mathrm{v})$ to provide the title compound as a yellow solid ($71.3 \mathrm{mg}, 52 \%$ yield) m.p. $195-197{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25$ $8.23(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.34-$ $7.31(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 10 \mathrm{H}), 6.96(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.61(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.89,162.78,154.56,139.89,137.11,135.48$, $134.00,133.15,132.65,131.22,131.13,130.75,128.54,128.45,128.26,128.17$, 127.76, 127.52, 126.56, 125.88, 125.84, 125.69, 124.09, 120.46, 119.82. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{ClO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 483.1122$, found: 483.1130.

3-((1Z,3E)-1,4-diphenylbuta-1,3-dien-1-yl)-2-(4-methoxyphenyl)-4H-chromen-4one (5c)
Following the general procedure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=10: 1: 1, \mathrm{v} / \mathrm{v}$) to provide the title compound as a yellow solid ($56.3 \mathrm{mg}, 41 \%$ yield) m.p. $82-84^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28-8.26$ $(\mathrm{m}, 1 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.24(\mathrm{~m}$, 4H), 7.24-7.20 (m, 3H), 7.18-7.14 (m, 1H), $7.01(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.78$ $(\mathrm{m}, 2 \mathrm{H}), 6.74-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathbf{C D C l}_{3}$) $\delta 177.00,162.18,161.29,156.15,140.02,137.25,135.14,134.01$, 133.63, 130.86, 129.99, 128.54, 128.41, 127.61, 127.45, 126.56, 126.51, 126.00, 125.88, 125.21, 125.03, 123.10, 119.38, 117.91, 113.68, 55.23. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+: 479.1618$, found: 479.1628 .

3-((1Z,3E)-1,4-diphenylbuta-1,3-dien-1-yl)-2-(p-tolyl)-4H-chromen-4-one (5d)
Following the general procedure, the crude product was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1: 1, \mathrm{v} / \mathrm{v})$ to provide the title compound as a yellow solid ($83.1 \mathrm{mg}, 63 \%$ yield) m.p. $182-184{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29-$ $8.27(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.28-$ $7.19(\mathrm{~m}, 7 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ - $6.68(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $177.04,162.56,156.21,140.93,140.05,137.25,135.10,133.84,133.68,130.86$, $130.12,128.95,128.50,128.40,128.12,127.59,127.41,126.53,126.49,125.98$, $125.88,125.07,123.13,119.94,117.98,21.40$. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 463.1669$, found: 463.1671 .

3-((1Z,3E)-1-(4-methoxyphenyl)-4-phenylbuta-1,3-dien-1-yl)-2-phenyl-4H-chromen-4-one (5e)
Following the general procedure, the crude product was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1: 1, \mathrm{v} / \mathrm{v})$ to provide the title compound as a yellow solid ($65.2 \mathrm{mg}, 48 \%$ yield) m.p. $234-236{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30-$ $8.27(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ - $7.43(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.16-$ $7.14(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.58$ $(\mathrm{d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 177.06,162.38$, $159.15,156.25,137.38,134.23,133.75,133.22,133.05,132.74,130.52,129.22$, $128.40,128.20,128.15,127.44,127.09,126.56,126.44,126.06,125.15,123.20$, $120.47,118.02,114.01,55.22$. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 479.1618, found: 479.1625.

3-((1Z,3E)-1-(3-chlorophenyl)-4-phenylbuta-1,3-dien-1-yl)-2-phenyl-4H-chromen-4-one (5f)
Following the general procedure, the crude product was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1: 1, \mathrm{v} / \mathrm{v})$ to provide the title compound as a yellow solid ($90.3 \mathrm{mg}, 65 \%$ yield) m.p. $145-147{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25-$ $8.23(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.33-$ $7.31(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 10 \mathrm{H}), 6.96(\mathrm{~d}, J=15,0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.62(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.89,162.78,154.56,139.89,137.11,135.48$, $134.00,133.15,132.65,131.22,131.13,130.75,128.54,128.45,128.26,128.17$, $127.76,127.52,126.56,125.88,125.84,125.69,124.09,120.46,119.82,77.25,77.00$, 76.75. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{ClO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 483.1122, found: 483.1136 .

3-((1Z,3E)-1-(4-fluorophenyl)-4-phenylbuta-1,3-dien-1-yl)-2-phenyl-4H-chromen-4-one (5g)
Following the general procedure, the crude product was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=10: 1: 1, \mathrm{v} / \mathrm{v})$ to provide the title compound as a yellow solid ($84.5 \mathrm{mg}, 63 \%$ yield) m.p. $184-186{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30-$ $8.27(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ - $7.45(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.96-$ $6.92(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=20.0 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.96,162.69,162.22(J=246.3 \mathrm{~Hz}), 156.22$, $137.09,136.34(J=5.00 \mathrm{~Hz}), 135.31,133.89,132.89,132.48,131.00,130.65,128.44$, $128.25,128.12,127.48(J=8.75 \mathrm{~Hz}), 127.45,126.56,126.52,125.75,125.28,123.12$, $120.25,118.06,115.43(J=22.5 \mathrm{~Hz})$. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{FO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]$ ${ }^{+}$: 467.1418 , found: 467.1429 .

4.4 Further transformations of 3y

Procedure for preparation of $\mathbf{6}^{13}$: To an oven-dried 10 mL sealed tube charged with a PTFE-coated magnetic stirring bar, $\mathbf{3 y}(0.2 \mathrm{mmol}, 1.0$ equiv., 97.7 mg$), p$ toluenesulfonic acid monohydrate ($0.6 \mathrm{mmol}, 30 \mathrm{~mol} \%, 11.4 \mathrm{mg}$), and phenylhydrazine $\left(2.0 \mathrm{mmol}, 10.0\right.$ equiv., 216.3 mg) are diluted in 2 mL ethanol and stirred at $80^{\circ} \mathrm{C}$. Upon the completion of reaction monitored by TLC, the reaction was quenched with water, and the aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (10 mL), dried over MgSO_{4}, and concentrated under reduced pressure the pure product was isolated by column chromatography on silica gel (PE: EA $=15: 1, \mathrm{v}: \mathrm{v})$ as white solid. $(83.6 \mathrm{mg}, 75 \%)$.

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.30(\mathrm{~m}$, $2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 7 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 1 \mathrm{H})$, 6.77-6.75 (m, 2H), 6.62-6.6.57 (m, 3H), $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13}$ C NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.24,159.16,150.37,142.19,140.89,140.10,137.37,134.06,130.87$, $130.63,128.71,128.43,128.33,128.29$, 127.47, 127.26, 127.22, 126.80, 126.47, $126.36,125.79,124.78,122.45,116.66,113.65,113.63,55.02,54.94$. m.p. $74-76^{\circ} \mathrm{C}$ HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 561.2537$, found: 561.2542

Procedure for preparation of $\mathbf{8}^{14}$: To an oven-dried 10 mL sealed tube charged with a PTFE-coated magnetic stirring bar, $\mathbf{3 y}(0.2 \mathrm{mmol}, 1.0$ equiv., 97.7 mg), DMAP (0.02 $\mathrm{mmol}, 10 \mathrm{~mol} \%, 2.4 \mathrm{mg})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.22 \mathrm{mmol}, 1.1$ equiv., 22.3 mg$)$ are diluted in 2 $\mathrm{mLDCM} . \mathrm{Boc}_{2} \mathrm{O}(0.3 \mathrm{mmol}, 1.5$ equiv., 65.5 mg$)$ was added to the reaction vessel, and the reaction was stirred for 2 h at room temperature. Upon the completion of reaction monitored by TLC, the solution was transferred to a separatory funnel, and NaHSO_{4} $(0.5 \mathrm{M}, 10 \mathrm{~mL})$ was added. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with
brine (10 mL), dried over MgSO_{4}, and concentrated under reduced pressure, the pure product was isolated by column chromatography on silica gel (PE: EA $=12: 1, \mathrm{v}: \mathrm{v}$) as yellow solid. ($80.6 \mathrm{mg}, 68 \%$)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99-7.97 \mathrm{M}, 2 \mathrm{H}$), 7.55-7.53 (m, 2H), 7.46-7.44 (m, 2H), $7.29-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.86-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.63(\mathrm{~m}, 3 \mathrm{H})$, $6.54(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 192.96,163.12,160.40,151.46,150.29,139.88,137.33,137.12,135.23$, 131.46, 131.19, 130.64, 129.13, 128.43, 128.41, 127.64, 127.54, 126.93, 126.75, $126.58,126.56,125.72,113.56,113.44,83.65,55.33,55.06,27.42$. m.p. $69-71{ }^{\circ} \mathrm{C}$ HRMS (ESI) calcd for $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 611.2404$, found: 611.2408

Procedure for preparation of $\mathbf{7}^{15}$: To an oven-dried 10 mL Schlenk tube charged with a PTFE-coated magnetic stirring bar, $\mathbf{3 y}$ ($0.2 \mathrm{mmol}, 1.0$ equiv., 97.7 mg) are diluted in dry THF and methanol (THF: $\mathrm{MeOH}=1: 1$, v: v) at $0{ }^{\circ} \mathrm{C}$. $\mathrm{NaBH}_{4}(0.6 \mathrm{mmol}, 3.0$ equiv., 22.7 mg) was added to the reaction vessel, and the reaction was stirred for 2 h at room temperature under N_{2} atmosphere. Upon the completion of reaction monitored by TLC, and the reaction was quenched with water, and the aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (10 mL), dried over MgSO_{4}, and concentrated under reduced pressure, the pure product was isolated by column chromatography on silica gel (PE: $\mathrm{EA}=9: 1, \mathrm{v}: \mathrm{v}$) as white solid. ($76.6 \mathrm{mg}, 81 \%$)

${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89$ - $7.87(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.12(\mathrm{~m}$, 8H), 6.99-6.90 (m, 4H), 6.73-6.67(m, 3H), 3.81 (s, 3H), 3.67 (s, 3H). ${ }^{13}$ C NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.57,162.62,160.56,142.62,139.14,138.04,137.32,135.40,134.94$, 131.87, 131.76, 131.01, 129.81, 128.60, 128.41, 127.60, 127.56, 127.21, 126.49, $126.47,126.15,113.94,113.41,55.34,55.09$. m.p. $71-73{ }^{\circ} \mathrm{C}$ HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 473.2111$, found: 473.2116

Procedure for preparation of $\mathbf{9}^{16}$: To an oven-dried 10 mL sealed tube charged with a PTFE-coated magnetic stirring bar, $\mathbf{3 y}(0.2 \mathrm{mmol}, 1.0$ equiv., 97.7 mg) are diluted in 2 mL dry THF at $0^{\circ} \mathrm{C}$. Vinylmagnesium bromide solution (0.1 M in THF, $8 \mathrm{~mL}, 0.8 \mathrm{mmol}$) was added dropwise and the reaction mixture was slowly allowed to reach room temperature overnight. Upon the completion of reaction monitored by TLC, the reaction
was quenched with Sat . $\mathrm{NH}_{4} \mathrm{Cl}$-solution $(10 \mathrm{~mL})$, and the aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (10 mL), dried over MgSO_{4}, and concentrated under reduced pressure, the pure product was isolated by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=15: 1, \mathrm{v}: \mathrm{v}$) as white soild. (9 (isomer 1): $44.0 \mathrm{mg}, 44 \%, 9$ (isomer 2): $40.4 \mathrm{mg}, 41 \%$).

9 (isomer 1) ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H})$, 7.29-7.21 (m, 5H), 7.19-7.10 (m, 6H), 6.89-6.78 (m, 3H), 6.64-6.62 (m, 2H), 6.48 -6.39 (m, 2H), 5.30 (dd, $J=10.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (dd, $J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ (s, $3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.13,163.45,159.08,147.04$, $141.02,140.33,137.94,137.38,136.99,134.56,131.99,131.05,130.77,130.30$, $130.08,128.53,127.96,127.64,127.44,127.15,126.96,126.53,121.35,113.64,113.03$, 55.41, 55.07. m.p. $82-84{ }^{\circ} \mathrm{C}$ HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 499.2268$, found: 499.2273

9 (isomer 2) ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-6.69(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.37-7.35 (m, 2H), 7.30-7.26 (m, 4H), 7.25-7.20 (m, 5H), 6.91-6.83 (m, 2H), 6.80 - 6.73 (m, 3H), 6.66-6.64 (m, 2H), 5.36 (dd, $J=10.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=17.2$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 195.77, 162.71, 159.33, 145.57, 140.12, 138.94, 137.88, 137.54, 137.29, 135.30, 132.14, 131.72, $131.69,130.33,130.09,128.62,128.35,127.78$, 127.61, 127.24, 127.12, 126.51, 122.14, 113.50, 113.04, 55.25, 55.11. m.p. $81-83{ }^{\circ} \mathrm{C}$ HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{O}_{3}$. [M + H] ${ }^{+}: 499.2268$, found: 499.2269

4.5 Synthesis of 10

To an oven-dried 10 mL Schlenk tube charged with a PTFE-coated magnetic stirring bar, 1a ($0.3 \mathrm{mmol}, 1.0$ equiv., 70.9 mg), 2v ($0.36 \mathrm{mmol}, 1.2$ equiv., 90.8 mg) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.6 \mathrm{mmol}, 2.0$ equiv., 195.5 mg) are diluted in dry DCE and the reaction was stirred for 4 h at room temperature under N_{2} atmosphere. Upon the completion of
reaction monitored by TLC, and the reaction was quenched with water, and the aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (10 mL), dried over MgSO_{4}, and concentrated under reduced pressure, the pure product was isolated by column chromatography on silica gel (PE: $\mathrm{EA}=8: 1, \mathrm{v}: \mathrm{v}$) as yellow solid. ($60.5 \mathrm{mg}, 41 \%$)

${ }^{1} \mathbf{H}$ NMR ($600 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) Obtained as 1.5: 1 isomer. major isomer: $\delta 8.11-8.09$ $(\mathrm{m}, 3 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 4 \mathrm{H}), 6.94-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.83-6.80(\mathrm{~m}$, $3 \mathrm{H}), 6.27(\mathrm{~d}, J=18 \mathrm{~Hz}, 1 \mathrm{H}) 4.05(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$; miner isomer δ $8.06-8.04(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.48(\mathrm{~d}, J=18 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.90$ $(\mathrm{s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$; other peaks are overlapped with the other isomer. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 198.00$, 197.59, 195.28, 194.69, 164.20, 163.85, 163.55, 163.35, $141.63,140.08,139.79,139.64,136.93,136.00,134.21,133.64,132.51,132.45$, 132.30 , 130.68, 130.35, 129.91, 129.74, 129.59, 129.50, 129.34, 128.44, 128.23, $128.12,128.00,127.93,127.74,127.71,127.37,126.66,126.48,125.30,123.88,113.95$, $113.60,113.51,55.55,55.48,55.39,55.32,45.27,44.04$. m.p. 185-187 ${ }^{\circ} \mathrm{C}$ HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 511.1880$, found: 511.1875.

4.6 Synthesis of 3y'

To an oven-dried 10 mL Schlenk tube charged with a PTFE-coated magnetic stirring bar, 10 (0.1 mmol , 1.0 equiv., 48.9 mg) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol}$, 2.0 equiv., 65.2 mg) are diluted in dry DMSO and the reaction was stirred for 3 h at $60^{\circ} \mathrm{C}$ under N_{2} atmosphere. Upon the completion of reaction monitored by TLC, and the reaction was quenched with water, and the aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (10 mL), dried over MgSO_{4}, and concentrated under reduced pressure, the pure product was isolated by column chromatography on silica gel (PE: EA=15: 1, v: v) as $\mathbf{3 y}{ }^{\prime} .(20.2 \mathrm{mg}, 43 \%)$

5. References

[1] Wang, M.; Yang Y.; Song B.; Yin L.; Yan S.; Li Y. Selective Insertion of Alkynes into C-C σ Bonds of Indolin-2-ones: Transition-Metal-Free Ring Expansion Reactions to Seven-Membered-Ring Benzolactams or Chromone Derivatives. Org. Lett. 2020, 22, 155-159
[2] Yuan, Y.; Tan, H.; Kong, L.; Zheng, Z.; Xu, M.; Huang, J.; Li, Y. Transition-metalfree $\mathrm{C}-\mathrm{C} \sigma$-bond activation of α-aryl ketones and subsequent Zn -catalyzed intramolecular cyclization: synthesis of tetrasubstituted furans. Org. Biomol. Chem. 2019, 17, 2725-2733.
[3] Wang, M.; Kong, L.; Wang, Y.; Song, B.; Sun, Y., Tang, R.; Li, Y.; Sequential C-C σ-Bond Cleavage/(sp^{2}) $\mathrm{C}-\mathrm{O}$ Bond Formation via $\mathrm{C}-\mathrm{H}$ Functionalization toward Pyranoindolones Fused with Medium-Sized Ring. Org. Lett. 2018, 20, 6130-6134.
[4] Cox, R. J.; Ritson, D. J.; Dane, T. A.; Berge, J.; Charmant, J. P.; Kantacha, A., Room temperature palladium catalysed coupling of acyl chlorides with terminal alkynes. Chem Commun. 2005, 8, 1037-1039.
[5] Chan, K. H.; Leong, W. K.; Jaouen, G.; Leclerq, L.; Top, S.; Vessières, A., Organometallic cluster analogues of tamoxifen: Synthesis and biochemical assay. J. Organomet. Chem. 2006, 691, 9-19.
[6] He, H.; Yin, W.; He, H.; Zhang, Y.; Luo, D., A Highly Active CuI/TMEDA Catalytic System for the Coupling Reaction of Acid Chlorides with Terminal Alkynes under Solvent-Free Conditions. Synthesis 2014, 46, 2617-2621.
[7] Oshimoto, K.; Tsuji, H.; Kawatsura, M., Synthesis of benzoxazoles via the coppercatalyzed hydroamination of alkynones with 2-aminophenols. Org. Biomol. Chem. 2019, 17, 4225-4229.
[8] Zhang, F.; Yao, Q.; Yuan, Y.; Xu, M.; Kong, L.; Li Y. Base-mediated insertion reaction of alkynes into carbon-carbon sigma-bonds of ethanones: synthesis of hydroxydienone and chromone derivatives, Org. Biomol. Chem., 2017, 15, 2497-2500.
[9] Kong, X.; Song, J.; Liu, J.; Meng, M.; Yang, S.; Zeng, M.; Zhan, X.; Li, C.; Fang, X., Bronsted base-catalyzed annulation of allyl ketones and alkynyl 1,2-diketones. Chem Commun. 2018, 54, 4266-4269.
[10] Shabalin, D. A.; Ivanova, E. V.; Ushakov, I. A.; Schmidt, E. Y.; Trofimov, B. A., Regioselective Synthesis of 2-Acylbutadienes from beta, gamma-Unsaturated Ketones. Synthesis-Stuttgart 2019, 51, 3825-3833.
[11] Akula, P. S.; Hong, B.-C.; Lee, G.-H., Catalyst- and Substituent-Controlled Switching of Chemoselectivity for the Enantioselective Synthesis of Fully Substituted Cyclobutane Derivatives via $2+2$ Annulation of Vinylogous Ketone Enolates and Nitroalkene. Org. Lett. 2018, 20, 7835-7839.
[12] Zhang, H.; He, J.; Chen, Y.; Zhuang, C.; Jiang, C.; Xiao, K.; Su, Z.; Ren, X.; Wang, T., Regio- and Stereoselective Cascade of beta, gamma-Unsaturated Ketones by Dipeptided Phosphonium Salt Catalysis: Stereospecific Construction of DihydrofuroFused [2,3-b] Skeletons. Angew. Chem. Int. Ed. Engl. 2021, 60, 19860-19870.
[13] Köhling, P.; Schmidt, M.-A.; Eilbracht, P., Tandem Hydroformylation/Fischer

Indole Synthesis: A Novel and Convenient Approach to Indoles from Olefins. Org. Lett. 2003, 5, 3213-3216.
[14] Quasdorf, W.-K.; Riener M.; Petrova, V.-K.; Garg K.-N., Suzuki-Miyaura Coupling of Aryl Carbamates, Carbonates, and Sulfamates. J. Am. Chem. Soc. 2009, 131, 17748-17749.
[15] Zhou, X.; Zhang, G.; Huang, R.; Huang, H., Palladium-Catalyzed Allyl-Allyl Reductive Coupling of Allylamines or Allylic Alcohols with H_{2} as Sole Reductant. Org. Lett. 2021, 23, 365-369.
[16] Zhu, S.; Lu, X; Luo, Y.; Zhang, W.; Jiang, H.; Yan, M.; Zeng, W., Ruthenium(II)Catalyzed Regioselective Reductive Coupling of α-Imino Esters with Dienes. Org. Lett. 2013, 15, 1440-1443.

6．Copies of NMR spectra

 N

壴気 へ人

蓇各导
べ人
$\stackrel{\overline{\tilde{m}}}{\stackrel{-}{\sim}}$

[^0]
 $\|$ \qquad

il

呙合等

c1－03－073－c．2．fid

影奇导	¢	
人下守	＋	－¢ ¢ ¢ ¢ ¢ ¢ ¢
\downarrow		\rightarrow

		 		哭

1
$\begin{array}{lllllllllllllllllll}144 & 142 & 140 & 138 & 136 & 134 & 132 & 130 & 128 & 126 & 124 & 122 & 120 & 118 & 116 & 114 & 112 & 110 & 108 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}$

[^1]

cl-01-066-500-c-2/2 (

$\begin{array}{llllllllllllllllllllllllll}142 & 141 & 140 & 139 & 138 & 137 & 136 & 135 & 134 & 133 & 132 & 131 & 130 & 129 & 128 & 127 & 126 & 125 & 12\end{array}$

[^2]

c1-01-071-c. 2 fid ∞

\qquad l a Ul Muldu du

$$
\begin{array}{lllllllllllllllllllll}
\hline & 138 & 137 & 136 & 135 & 134 & 133 & 132 & 131 & 130 & 129 & 128 & 127 & 126 & 125 & 124 \\
\hline
\end{array}
$$

\circ
0
0
i
i

c1-01-080-3-c. 2. fic

\qquad

c1－01－089－c．2．fid

人天

へ人

c1-03-021-2-c. 1. fid

| 144 | 143 | 142 | 141 | 140 | 139 | 138 | 137 | 136 | 135 | 134 | 133 | 132 | 131 | 130 | 129 | 128 | 127 | 126 | 125 |
| :--- |

f1 (ppm)

O- ©

$\bar{\sim} \underset{\sim}{\sim}{ }_{\sim}^{\infty}$

$$
\underset{\sim}{N}
$$

$\underbrace{\text { 141 }}_{1_{142}}$

| 10 | 230 | 1 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 $1 \underbrace{\text { © }}$

[^3]

$\stackrel{\square}{\square}$

c1-06-031-2-c/1

c1-06-026-c/1

$\mathrm{cl}-06-030-2-\mathrm{c} / 1$

\qquad

c1-04-074-4-c. 2. fid

\|hen																										
21	20	19	18	17	16	15	14	13	12	11	10	${ }_{9}$	$\begin{gathered} 1 \\ 8 \\ (\mathrm{ppm}) \end{gathered}$		${ }_{6}$	5	4		2	1	0	-1	-2	-3	-4	${ }_{-5}$

7 (isomer 1)

$\left.\begin{array}{lllllllllllllllllllllllllll}148 & 146 & 144 & 142 & 140 & 138 & 136 & 134 & 132 & 130 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}\right)$

[^4]

7 (isomer 2)

c1-04-073-x-2-c. 1. fid
\&
志 ${ }_{\text {@ }}^{\sim}$

in

\qquad

7. 1.0 mmol scale reactions for the preparation of $\mathbf{3 a}$

In a schlenk tube 1-(4-methoxyphenyl)-3-phenylprop-2-yn-1-one 1a ($1.0 \mathrm{mmol}, 236.3$ mg), (E)-1,4-diphenylbut-3-en-1-one 2a ($1.2 \mathrm{mmol}, 266.7 \mathrm{mg}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.0 \mathrm{mmol}$, $651.6 \mathrm{mg})$ and DMSO $(10.0 \mathrm{~mL})$ were stirred at $60^{\circ} \mathrm{C}$. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate $=12: 1$) afforded desired compound 3a (yellow solid, $343.92 \mathrm{mg}, 75 \%)$.

8. X-Ray Crystal Structure of 31 (CCDC: 2156724)

(2Z,3Z,5E)-3-(3-chlorophenyl)-2-(hydroxy(phenyl)methylene)-1,6-diphenylhexa-3,5-dien-1-one (31).
Sample preparation for crystal growth: Compound $31(50 \mathrm{mg})$ was dissolved in the mixed solvent of dichloromethane/petroleum ether $=3 \mathrm{ml} / 6 \mathrm{ml}$ in a 50 mL round-bottom flask. The yellow single crystal of $\mathbf{3 1}$ was obtained by slowly evaporating mixed solvent at room temperature under air.

Table 1. Crystal data and structure refinement for 31

Identification code	3l
Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{ClO}_{2}$
Formula weight	462.94
Temperature	$213(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=10.4144(4) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=20.4948(8) \AA \quad \beta=91.1890(10)^{\circ}$.
$\mathrm{c}=11.3123(5) \AA$	
Volume	$\gamma=90^{\circ}$.
Z	$2413.99(17) \AA^{3}$
Density (calculated)	4
Absorption coefficient	$1.274 \mathrm{Mg} / \mathrm{m}^{3}$
F(000)	$0.185 \mathrm{~mm}{ }^{-1}$
Crystal size	968
Theta range for data collection	$0.20 \times 0.15 \times 0.100 \mathrm{~mm}^{3}$
Index ranges	2.682 to 25.998°.
Reflections collected	$-12<=\mathrm{h}<=12,-25<=\mathrm{k}<=25,-13<=1<=13$
Independent reflections	32059
Completeness to theta $=25.242^{\circ}$	$4709[\mathrm{R}(\mathrm{int})=0.0339]$
Absorption correction	99.5%

Max. and min. transmission	0.7456 and 0.6806
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$4709 / 0 / 309$
Goodness-of-fit on F^{2}	1.036
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0373, \mathrm{wR} 2=0.0896$
R indices (all data)	$\mathrm{R} 1=0.0469, \mathrm{wR} 2=0.0973$
Extinction coefficient	$0.013(2)$
Largest diff. peak and hole	0.204 and $-0.224 \mathrm{e} . \AA^{-3}$

8. X-Ray Crystal Structure of 3y' (CCDC: 2119670)

(4'-methoxy-4'-phenyl-[1,1':2',1'-terphenyl]-3'-yl)(4-methoxyphenyl)methanone (3y')
Sample preparation for crystal growth: Compound $\mathbf{3 y}{ }^{\prime}(50 \mathrm{mg})$ was dissolved in the mixed solvent of dichloromethane/petroleum ether $=3 \mathrm{ml} / 6 \mathrm{ml}$ in a 50 mL round-bottom flask. The white single crystal of $\mathbf{3 y}$ ' was obtained by slowly evaporating mixed solvent at room temperature under air.

Table 2. Crystal data and structure refinement for $\mathbf{3} \mathbf{y}^{\prime}$.

Identification code	$\mathbf{3 y}$

Empirical formula	$\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{O}_{3}$
Formula weight	470.54
Temperature	296(2) K
Wavelength	0.71073 A
Space group	P 21/c
Unit cell dimensions	$\begin{array}{\|ll\|} \hline \mathrm{a}=14.2205(8) \AA & \alpha=90^{\circ} . \\ \mathrm{b}=9.9027(6) \AA & \beta=93.389(2)^{\circ} . \\ \mathrm{c}=17.0375(12) \AA & \gamma=90^{\circ} . \\ \hline \end{array}$
Volume	2395.1(3) \AA^{3}
Z	4
Density (calculated)	$1.305 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.082 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	992.0
Index ranges	$-19<=\mathrm{h}<=19,-13<=\mathrm{k}<=13,-23<=1<=23$
Completeness to theta $=29.975^{\circ}$	99.7 \%
Max. and min. transmission	0.746 and 0.698
R indices (all data)	$\mathrm{R} 1=0.0475, \mathrm{wR} 2=0.1341$

9. X-Ray Crystal Structure of 10 (CCDC: 2122766)

1,5-bis(4-methoxyphenyl)-3-phenyl-2-styrylpent-2-ene-1,5-dione (10)

Sample preparation for crystal growth: Compound $\mathbf{1 0}^{\prime}(50 \mathrm{mg})$ was dissolved in the mixed solvent of dichloromethane/petroleum ether $=3 \mathrm{ml} / 6 \mathrm{ml}$ in a 50 mL round-bottom flask. The yellow single crystal of $\mathbf{1 0}$ was obtained by slowly evaporating mixed solvent at room temperature under air.

Table 3. Crystal data and structure refinement for $\mathbf{1 0}$

Identification code	$\mathbf{1 0}$
Empirical formula	$\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{4}$
Formula weight	488.55

Temperature	293(2) K
Wavelength	0.71073 £
Crystal system	Monoclinic
Space group	P 21/c
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=11.0647(3) \AA & \alpha=90^{\circ} \\ \mathrm{b}=23.0493(8) \AA & \beta=92.0670(10)^{\circ} \\ \mathrm{c}=10.4440(3) \AA & \gamma=90^{\circ} \end{array}$
Volume	2661.84(14) \AA^{3}
Z	4
Density (calculated)	$1.219 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.079 \mathrm{~mm}^{-1}$
F(000)	1032
Crystal size	$0.200 \times 0.150 \times 0.120 \mathrm{~mm}^{3}$
Theta range for data collection	2.553 to 25.999°.
Index ranges	$-12<=\mathrm{h}<=13,-28<=\mathrm{k}<=28,-12<=1<=12$
Reflections collected	27068
Independent reflections	$5218[\mathrm{R}(\mathrm{int})=0.0668]$
Completeness to theta $=25.242^{\circ}$	99.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.5367
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5218 / 0/337
Goodness-of-fit on F^{2}	1.025
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0474, \mathrm{wR} 2=0.1142$
R indices (all data)	$\mathrm{R} 1=0.0728, \mathrm{wR} 2=0.1331$
Extinction coefficient	0.018(3)
Largest diff. peak and hole	0.135 and -0.190 e. \AA^{-3}

[^0]:

[^1]:

[^2]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & & & \\ \text { f1 ppm) }\end{array}$

[^3]:

[^4]:

