Supporting Information

Stereo-divergent synthesis of silyl-enynes via palladium-catalyzed coupling of alkynes and iodosilanes

Kun-Long Song,1 Bin Wu,1 Wan-Er Gan,1 Yan Zeng,1 Yu-Jie Zhang,1 Jian Cao*1 and Li-Wen Xu*1,2

1College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China

2State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, P. R. China

E-mail: caojian@hznu.edu.cn; liwenxu@hznu.edu.cn

Table of Contents

<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General information</td>
<td>2</td>
</tr>
<tr>
<td>Table S1-S2 Optimization of reaction conditions</td>
<td>3-4</td>
</tr>
<tr>
<td>Typical procedure for the synthesis of 3, 4, 5 and 6</td>
<td>5-23</td>
</tr>
<tr>
<td>Typical procedure for the synthesis of esters 7 and 8</td>
<td>23-24</td>
</tr>
<tr>
<td>NMR spectra</td>
<td>25-82</td>
</tr>
<tr>
<td>Crystallographic data</td>
<td>83-84</td>
</tr>
</tbody>
</table>
General information

Unless otherwise noted, all reactions were carried out under N₂ atmosphere. All reagents were from commercial sources and used as received without further purification. All solvents were dried by standard techniques and distilled prior to use. Column chromatography was performed on silica gel (300-400 meshes) using petroleum ether (bp. 60–90 °C) and ethyl acetate as eluent. ¹H NMR (400 MHz), ¹³C NMR (100 MHz), ²⁹Si NMR (79 MHz) spectra were recorded on a Bruker Avance (400 MHz) spectrometer and ¹⁹F NMR (471 MHz) spectra were recorded on a Bruker Avance (500 MHz) spectrometer, using CDCl₃ as the solvent and TMS as internal standard; chemical shifts were quoted in parts per million and J values were given in hertz. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, dd = double doublet, ddd = double doublet of doublets, t = triplet, dt = double triplet, q = quatriplet, m = multiplet, br = broad. High resolution mass spectrometry (HRMS) was performed on a Waters Micromass (APCI-TOF and ESI-TOF).
Optimization of Reaction Conditions

Reaction of alkynes and iodosilanes.

Table S1: Optimization of ligands.\(^a\)

\[
\begin{align*}
\text{1a} & \quad \text{Me}_2\text{SiI} & \quad \text{Pd}_2(\text{dba})_3 & \quad (2.5 \text{ mol\%}) & \quad \text{Ligand} & \quad (5 \text{ mol\%}) & \quad \text{Et}_3\text{N} & \quad \text{DCE} & \quad 40^\circ\text{C} & \quad 12 \text{ h} & \quad \text{isolated yield}.
\end{align*}
\]

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Yield</th>
<th>E/Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PPh)(_3)_P</td>
<td>81%</td>
<td>24:76</td>
</tr>
<tr>
<td>(MeO-PPh)(_3)_P</td>
<td>73%</td>
<td>20:74</td>
</tr>
<tr>
<td>(F-PPh)(_3)_P</td>
<td>56%</td>
<td>17:58</td>
</tr>
<tr>
<td>(Cl-PPh)(_3)_P</td>
<td>77%</td>
<td>20:80</td>
</tr>
<tr>
<td>(F_3C-PPh)(_3)_P</td>
<td>69%</td>
<td>38:62</td>
</tr>
<tr>
<td>(Me-PPh)(_3)_P</td>
<td>51%</td>
<td>16:84</td>
</tr>
<tr>
<td>(tBu-PPh)(_3)_P</td>
<td>70%</td>
<td>5:95</td>
</tr>
<tr>
<td>(Pr-PPh)(_3)_P</td>
<td>63%</td>
<td>19:81</td>
</tr>
<tr>
<td>(HBF_4)</td>
<td>92%</td>
<td>37:63</td>
</tr>
<tr>
<td>(iPr)_2PCy_2</td>
<td>60%</td>
<td>36:64</td>
</tr>
<tr>
<td>(Ph-PPh)(_3)_P</td>
<td>60%</td>
<td>93:7</td>
</tr>
<tr>
<td>(Ph-PPh)(_3)_P</td>
<td>42%</td>
<td>74:26</td>
</tr>
<tr>
<td>(Me_2N)PCy_2</td>
<td>60%</td>
<td>81:19</td>
</tr>
<tr>
<td>(Ph-O)P(Ph)(_3)_P</td>
<td>56%</td>
<td>75:25</td>
</tr>
<tr>
<td>(Ph-O)P(Ph)(_3)_P</td>
<td>83%</td>
<td>80:20</td>
</tr>
<tr>
<td>(Ph-PPh)(_3)_P</td>
<td>78%</td>
<td>95:5</td>
</tr>
<tr>
<td>(Ph-PPh)(_3)_P</td>
<td>17%</td>
<td>40:60</td>
</tr>
</tbody>
</table>

\(^a\) Reaction conditions: 1a (1.0 mmol), Me_SiI (1.0 mmol), Pd_2(dba)_3 (2.5 mol\%), ligand (5 mol\%), Et_3N (3.5 mmol), DCE (0.5 mL), 40 °C for 12 h, isolated yield.
Table S2: Optimization of catalysts, temperature and solvents.\(^a\)

![Catalyst Reaction Diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>[Pd]</th>
<th>Ligand</th>
<th>Temp (°C)</th>
<th>Solvent</th>
<th>3a(E)+4a(Z)</th>
<th>3a(E):4a(Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(_2)(dba)(_3)</td>
<td>/</td>
<td>40</td>
<td>DCE</td>
<td>51</td>
<td>22:78</td>
</tr>
<tr>
<td>2</td>
<td>Pd(_2)(dba)(_3)-CHCl(_3)</td>
<td>L5</td>
<td>40</td>
<td>DCE</td>
<td>79</td>
<td>4:96</td>
</tr>
<tr>
<td>3</td>
<td>Pd(dba)(_2)</td>
<td>L5</td>
<td>40</td>
<td>DCE</td>
<td>75</td>
<td>5:95</td>
</tr>
<tr>
<td>4</td>
<td>Pd(OAc)(_2)</td>
<td>L5</td>
<td>40</td>
<td>DCE</td>
<td>68</td>
<td>4:96</td>
</tr>
<tr>
<td>5</td>
<td>Pd(acac)(_2)</td>
<td>L5</td>
<td>40</td>
<td>DCE</td>
<td>71</td>
<td>5:95</td>
</tr>
<tr>
<td>6</td>
<td>Pd(cod)Cl(_2)</td>
<td>L5</td>
<td>40</td>
<td>DCE</td>
<td>71</td>
<td>9:91</td>
</tr>
<tr>
<td>7</td>
<td>Pd(MeCN)(_3)Cl(_2)</td>
<td>L5</td>
<td>40</td>
<td>DCE</td>
<td>63</td>
<td>8:92</td>
</tr>
<tr>
<td>8</td>
<td>Pd(_2)(dba)(_3)-CHCl(_3)</td>
<td>L5</td>
<td>r.t. (23)</td>
<td>DCE</td>
<td>65</td>
<td>4:96</td>
</tr>
<tr>
<td>9</td>
<td>Pd(_2)(dba)(_3)-CHCl(_3)</td>
<td>L5</td>
<td>30</td>
<td>DCE</td>
<td>78</td>
<td>4:96</td>
</tr>
<tr>
<td>10</td>
<td>Pd(_2)(dba)(_3)-CHCl(_3)</td>
<td>L5</td>
<td>40</td>
<td>DCE</td>
<td>80</td>
<td>4:96</td>
</tr>
<tr>
<td>11</td>
<td>Pd(_2)(dba)(_3)-CHCl(_3)</td>
<td>L5</td>
<td>50</td>
<td>DCE</td>
<td>72</td>
<td>4:96</td>
</tr>
<tr>
<td>12</td>
<td>Pd(_2)(dba)(_3)-CHCl(_3)</td>
<td>L5</td>
<td>60</td>
<td>DCE</td>
<td>70</td>
<td>7:93</td>
</tr>
<tr>
<td>13</td>
<td>Pd(_2)(dba)(_3)-CHCl(_3)</td>
<td>L5</td>
<td>70</td>
<td>DCE</td>
<td>62</td>
<td>8:92</td>
</tr>
<tr>
<td>14</td>
<td>Pd(_2)(dba)(_3)-CHCl(_3)</td>
<td>L5</td>
<td>40</td>
<td>Toluene</td>
<td>82</td>
<td>4:96</td>
</tr>
<tr>
<td>15</td>
<td>Pd(_2)(dba)(_3)-CHCl(_3)</td>
<td>L5</td>
<td>40</td>
<td>1,4-dioxane</td>
<td>85</td>
<td>5:95</td>
</tr>
<tr>
<td>16</td>
<td>Pd(_2)(dba)(_3)-CHCl(_3)</td>
<td>L5</td>
<td>40</td>
<td>EtN</td>
<td>56</td>
<td>7:93</td>
</tr>
<tr>
<td>17</td>
<td>Pd(_2)(dba)(_3)-CHCl(_3)</td>
<td>L12</td>
<td>40</td>
<td>1,4-dioxane</td>
<td>83</td>
<td>95:5</td>
</tr>
</tbody>
</table>

\(^a\) Reaction conditions: 1a (1.0 mmol), Me\(_3\)SiI (1.0 mmol), [Pd] (5 mol%), L5/L12 (5 mol%), Et\(_3\)N (3.5 mmol), solvent (0.5 mL) for 12 h, isolated yield.
Typical procedure for the synthesis of 3a.

A 10 mL Schlenk flask equipped with a magnetic stirbar and rubber septum was flame-dried, allowed to cool to room temperature under vacuum, and refilled with N₂. The flask was briefly opened, charged with the given L12 (14.4 mg, 0.025 mmol) and palladium catalyst (13.0 mg, 0.0125 mmol), and the septum was replaced. The flask was evacuated and refilled with nitrogen 3 times. 1,4-dioxane (0.5 mL), alkyne 1a (132 mg, 0.13 mL, 1 mmol), triethylamine (0.5 mL, 3.5 mmol) and Me₃SiI (200 mg, 0.14 mL, 1 mmol) were added sequentially via syringe at room temperature with stirring. The reaction was allowed to stir at 40 °C in an oil bath for 12 h after the addition was completed. The reaction mixture was quenched by water. The aqueous layer was extracted with ethyl acetate (3 x 15 mL). The combined organic layers were washed with saturated aqueous sodium chloride solution (30 mL), dried over anhydrous sodium sulfate, filtered, concentrated in vacuo, and under reduced pressure and then purified by silica column (PE) to get the product 3a.

(E)-(2,4-bis(3-methoxyphenyl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (140.0 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (t, J = 8.0 Hz, 1H), 7.22-7.17 (m, 1H), 7.07-7.02 (m,
2H), 7.01-6.97 (m, 2H), 6.90-6.83 (m, 2H), 6.48 (s, 1H), 3.81 (s, 3H), 3.75 (s, 3H), 0.00 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 159.32, 159.31, 141.6, 138.9, 129.4, 129.1, 124.3, 120.9, 116.3, 115.0, 113.9, 113.7, 91.9, 89.6, 55.29, 55.26, 0.0. 29Si NMR (79 MHz, CDCl$_3$) δ -8.7. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{21}$H$_{25}$O$_2$Si, 337.1618; found 337.1608.

![3b](image)

(E)-(2,4-di-m-tolylbut-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (126.2 mg, 83%). 1H NMR (400 MHz, CDCl$_3$) δ 7.30-7.25 (m, 5H), 7.24-7.09 (m, 3H), 6.45 (s, 1H), 2.38 (s, 3H), 2.31 (s, 3H), 0.0 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 141.0, 140.7, 139.5, 138.0, 137.6, 132.3, 129.2, 129.1, 128.84, 128.82, 128.3, 128.0, 125.5, 123.2, 92.1, 89.8, 21.5, 21.3, 0.1. 29Si NMR (79 MHz, CDCl$_3$) δ -8.9. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{21}$H$_{25}$Si, 305.1720; found 305.1709.

![3c](image)

(E)-(2,4-bis(3-chlorophenyl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (154.8 mg, 90%). 1H NMR (400 MHz, CDCl$_3$) δ 7.47-7.40 (m, 2H), 7.36-7.23 (m, 5H), 7.22 (d, $J = 7.6$ Hz,
1H), 6.53 (s, 1H), 0.00 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 143.5, 142.1, 137.3, 134.3, 134.1, 131.5, 129.8, 129.6, 129.5, 128.7, 128.5, 128.3, 126.5, 124.9, 92.7, 88.5, 0.0. 29Si NMR (79 MHz, CDCl$_3$) δ -8.4. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{19}$H$_{19}$Cl$_2$Si, 345.0628; found 345.0633.

![3d](image)

(\textit{E})-(2,4-di(naphthalen-2-yl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (154.3 mg, 82%). 1H NMR (400 MHz, CDCl$_3$) δ 8.12 (s, 1H), 8.07 (s, 1H), 8.01-7.94 (m, 3H), 7.89-7.82 (m, 3H), 7.80 (d, $J = 8.4$ Hz, 1H), 7.69-7.51 (m, 5H), 6.78 (s, 1H), 0.14 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 142.0, 139.3, 138.2, 133.12, 133.06, 133.0, 132.9, 131.7, 128.5, 128.2, 128.1, 127.9, 127.4, 126.8, 126.6, 126.48, 126.45, 126.3, 120.7, 92.7, 90.5, 0.2. 29Si NMR (79 MHz, CDCl$_3$) δ -8.6. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{27}$H$_{25}$Si, 377.1720; found 377.1725.

![3e](image)

(\textit{E})-(2,4-bis(2-fluorophenyl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (100.4 mg, 65%). 1H NMR (400 MHz, CDCl$_3$) δ 7.49 (d, $J = 6.8$ Hz, 1H), 7.45-7.33 (m, 3H), 7.23 (t, $J = 7.6$ Hz, 1H), 7.20-7.10 (m, 3H), 6.78 (s, 1H), 0.02 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ
162.6 (d, $J = 252.0$ Hz), 159.6 (d, $J = 247.2$ Hz), 145.5, 133.6 (d, $J = 0.7$ Hz), 131.9, 131.0 (d, $J = 3.2$ Hz), 130.1 (d, $J = 8.0$ Hz), 129.9 (d, $J = 8.0$ Hz), 128.0 (d, $J = 16.0$ Hz), 124.0 (d, $J = 3.6$ Hz), 123.9 (d, $J = 3.6$ Hz), 115.8 (d, $J = 21.6$ Hz), 115.5 (d, $J = 20.8$ Hz), 111.9 (d, $J = 15.6$ Hz), 96.3 (d, $J = 3.6$ Hz), 82.5, -0.7. 29Si NMR (79 MHz, CDCl$_3$) δ -8.1. 19F NMR (471 MHz, CDCl$_3$) δ -109.7, -114.5. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{19}$H$_{19}$F$_2$Si, 313.1219; found 313.1211.

$^{(E)}$-(2,4-bis(2-bromophenyl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (90.7 mg, 42%). 1H NMR (400 MHz, CDCl$_3$) δ 7.60 (d, $J = 8.0$ Hz, 1H), 7.55 (dd, $J = 8.0$, 1.2 Hz, 1H), 7.44 (dd, $J = 7.6$, 1.6 Hz, 1H), 7.33-7.29 (m, 2H), 7.24-7.18 (m, 2H), 7.12 (td, $J = 7.6$, 1.6 Hz, 1H), 6.65 (s, 1H), -0.10 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 144.2, 140.9, 137.6, 133.4, 132.8, 132.5, 130.9, 129.5, 127.2, 127.0, 125.8, 125.5, 123.0, 95.0, 88.7, -0.6. 29Si NMR (79 MHz, CDCl$_3$) δ -8.1. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{19}$H$_{19}$Br$_2$Si, 434.9617; found 434.9594.

$^{(E)}$-(2,4-diphenylbut-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (118.8 mg, 86%). 1H NMR (400 MHz, CDCl$_3$) δ 7.56-7.49 (m, 4H), 7.44-7.37 (m, 3H), 7.36-7.33 (m, 3H), 6.55 (s, 1H), 0.04 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 141.4, 140.7, 139.2, 131.7, 128.4, 128.3, 128.1, 128.1, 123.4, 92.3, 89.7, 0.1. 29Si NMR (79 MHz, CDCl$_3$) δ -8.72.
HRMS (APCI-TOF) m/z: [M + H]^+ Calcd for C_{19}H_{21}Si, 277.1407; found 277.1413.

(E)-(2,4-di(1,1'-biphenyl)-4-yl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. White solid. (156.3 mg, 73%). mp 116-118 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.59 (m, 6H), 7.58-7.51 (m, 6H), 7.50-7.43 (m, 4H), 7.40-7.35 (m, 2H), 6.54 (s, 1H), 0.04 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 141.6, 141.1, 141.0, 140.7, 140.4, 139.7, 138.8, 132.2, 129.0, 128.94, 128.90, 127.8, 127.6, 127.2, 127.13, 127.08, 126.8, 122.3, 93.0, 89.6, 0.2. ²⁹Si NMR (79 MHz, CDCl₃) δ -8.9. HRMS (APCI-TOF) m/z: [M + H]^+ Calcd for C_{31}H_{29}Si, 429.2033; found 429.2034.

(E)-(2,4-di-p-tolylbut-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (114.1 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.37 (m, 4H), 7.20 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.46 (s, 1H), 2.42 (s, 3H), 2.37 (s, 3H), 0.03 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 140.3, 139.4, 138.4, 138.0, 137.9, 131.6, 129.1, 128.8, 128.3, 120.4, 91.9, 89.7, 21.6, 21.4, 0.2. ²⁹Si NMR (79 MHz, CDCl₃) δ -8.9. HRMS (APCI-TOF) m/z: [M + H]^+ Calcd for C_{21}H_{25}Si, 305.1720; found 305.1713.
(E)-dimethyl 4,4’-(4-(trimethylsilyl)but-3-en-1-yn-1,3-diyl)dibenzoate

The mobile phase for flash chromatography: PE. Colorless oil. (147.0 mg, 90%). 1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 8.4 Hz, 2H), 7.97 (d, J = 8.4 Hz, 2H), 7.54-7.46 (m, 4H), 6.58 (s, 1H), 3.92 (s, 3H), 3.89 (s, 3H), -0.04 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 166.5, 166.3, 144.7, 143.9, 137.6, 131.4, 129.7, 129.6, 129.4, 128.3, 94.2, 89.2, 52.10, 52.07, -0.2. 29Si NMR (79 MHz, CDCl3) δ -8.4. HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C23H24NaO4Si, 415.1336; found 415.1327.

(E)-(2,4-bis(4-fluorophenyl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (140.5 mg, 86%). 1H NMR (400 MHz, CDCl3) δ 7.46-7.38 (m, 4H), 7.11-6.97 (m, 4H), 6.46 (s, 1H), -0.01 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 162.7 (d, J = 245.0 Hz), 162.6 (d, J = 248.0 Hz), 141.8, 137.9, 136.7 (d, J = 3.2 Hz), 133.6 (d, J = 8.4 Hz), 130.1 (d, J = 8.0 Hz), 119.3 (d, J = 3.6 Hz), 115.7 (d, J = 22.0 Hz), 115.1 (d, J = 21.6 Hz), 91.8, 88.7, 0.1. 29Si NMR (79 MHz, CDCl3) δ -8.7. 19F NMR (471 MHz, CDCl3) δ -110.4, -114.0. HRMS (APCI-TOF) m/z: [M + H]^+ Calcd for C19H19F2Si, 313.1219; found 313.1223.
(E)-(2,4-bis(4-chlorophenyl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. White solid. (141.2 mg, 82%). mp 60-62 °C. 1H NMR (400 MHz, CDCl3) δ 7.40-7.33 (m, 6H), 7.32-7.26 (m, 2H), 6.51 (s, 1H), 0.00 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 142.6, 138.9, 137.6, 134.5, 134.1, 132.9, 129.7, 128.8, 128.4, 121.6, 92.7, 88.7, 0.1. 29Si NMR (79 MHz, CDCl3) δ -8.6. HRMS (APCI-TOF) m/z: [M + H]+ Calcd for C19H19Cl2Si, 345.0628; found 345.0619.

(3l)

(E)-(2,4-bis(4-bromophenyl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. White solid. (183.6 mg, 85%). mp 75-77 °C. 1H NMR (400 MHz, CDCl3) δ 7.50 (d, $J = 8.4$ Hz, 2H), 7.45 (d, $J = 8.4$ Hz, 2H), 7.32-7.26 (m, 4H), 6.51 (s, 1H), 0.00 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 142.6, 139.4, 137.6, 133.1, 131.7, 131.3, 130.0, 122.8, 122.3, 122.1, 92.8, 88.8, 0.1. 29Si NMR (79 MHz, CDCl3) δ -8.6. HRMS (APCI-TOF) m/z: [M + H]+ Calcd for C19H19Br2Si, 434.9617; found 434.9593.
(Z)-(2,4-di(thiophen-2-yl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (82.1 mg, 57%). 1H NMR (400 MHz, CDCl$_3$) δ 7.47-7.44 (m, 1H), 7.34-7.32 (m, 1H), 7.31-7.28 (m, 1H), 7.27-7.24 (m, 1H), 7.21 (d, J = 4.8 Hz, 1H), 7.13 (d, J = 4.8 Hz, 1H), 6.42 (s, 1H), 0.05 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 141.2, 141.0, 133.4, 129.9, 128.8, 128.2, 125.4, 125.3, 123.9, 122.3, 91.4, 84.1, 0.0. 29Si NMR (79 MHz, CDCl$_3$) δ -9.1. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{15}$H$_{17}$Si$_2$, 289.0535; found 289.0527.

(E)-(2,4-di(1H-inden-2-yl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (45.8 mg, 26%). 1H NMR (400 MHz, CDCl$_3$) δ 7.31-7.25 (m, 4H), 7.19-7.09 (m, 3H), 7.07-7.00 (m, 3H), 6.20 (s, 1H), 3.51 (s, 2H), 3.46 (s, 2H), 0.16 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 147.6, 145.0, 144.2, 143.4, 143.1, 137.5, 136.9, 133.8, 130.8, 127.4, 127.0, 126.7, 126.0, 125.5, 123.7, 121.8, 121.6, 93.4, 90.0, 42.6, 38.0, -0.6. 29Si NMR (79 MHz, CDCl$_3$) δ -9.2. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{25}$H$_{25}$Si, 353.1720; found 353.1722.
(Z)-(2,4-bis(3-methoxyphenyl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (142.8 mg, 85%). 1H NMR (400 MHz, CDCl$_3$) δ 7.36 (dt, $J = 7.6, 1.2$ Hz, 1H), 7.33-7.26 (m, 3H), 7.15-7.13 (m, 1H), 7.06 (dd, $J = 2.8, 1.6$ Hz, 1H), 6.95-6.85 (m, 2H), 6.68 (s, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 0.33 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 159.7, 159.5, 141.0, 138.3, 136.9, 129.6, 129.4, 124.4, 124.1, 118.6, 116.6, 114.8, 113.9, 111.8, 93.9, 89.4, 55.4, -0.7. 29Si NMR (79 MHz, CDCl$_3$) δ -7.32. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{21}$H$_{25}$O$_2$Si, 337.1618; found 337.1610.

(Z)-(2,4-di-m-tolylbut-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (106.5 mg, 70%). 1H NMR (400 MHz, CDCl$_3$) δ 7.62 (s, 1H), 7.40 (s, 1H), 7.36-7.26 (m, 4H), 7.19 (dd, $J = 11.9, 7.7$ Hz, 2H), 6.70 (s, 1H), 2.45 (s, 3H), 2.42 (s, 3H), 0.38 (s, 7H). 13C NMR (100 MHz, CDCl$_3$) δ 139.6, 138.2, 137.9, 137.4, 132.0, 129.4, 129.1, 128.6, 128.5, 128.3, 126.7, 123.3, 94.1, 89.4, 21.7, 21.4, -0.7. 29Si NMR (79 MHz, CDCl$_3$) δ -8.0. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{21}$H$_{25}$Si, 305.1720; found 305.1724.
(Z)-(2,4-bis(3-chlorophenyl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (142.8 mg, 83%). 1H NMR (400 MHz, CDCl$_3$) δ 7.75 (s, 1H), 7.68-7.60 (m, 1H), 7.55 (t, $J = 1.6$ Hz, 1H), 7.44 (d, $J = 7.6$ Hz, 1H), 7.40-7.27 (m, 4H), 6.76 (s, 1H), 0.38 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 141.1, 140.2, 135.4, 134.50, 134.45, 131.2, 129.8, 129.7, 129.0, 128.4, 126.2, 124.8, 124.3, 92.7, 90.1, -0.8. 29Si NMR (79 MHz, CDCl$_3$) δ -7.51. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{19}$H$_{19}$Cl$_2$Si, 345.0628; found 345.0643.

(Z)-(2,4-di(naphthalen-2-yl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (154.0 mg, 82%). 1H NMR (400 MHz, CDCl$_3$) δ 8.43 (s, 1H), 8.20 (s, 1H), 8.03 (d, $J = 7.6$ Hz, 2H), 7.93 (dd, $J = 10.8$, 6.0 Hz, 5H), 7.75 (d, $J = 8.4$ Hz, 1H), 7.67-7.53 (m, 4H), 6.99 (s, 1H), 0.54 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 138.3, 137.2, 136.8, 133.4, 133.3, 133.1, 133.0, 131.4, 128.7, 128.3, 128.2, 128.0, 127.9, 127.7, 126.9, 126.8, 126.4, 126.4, 125.8, 123.7, 120.7, 94.6, 90.1, -0.6. 29Si NMR (79 MHz, CDCl$_3$) δ -7.7. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{27}$H$_{25}$Si, 377.1720; found 377.1713.
(Z)-(2,4-bis(2-fluorophenyl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (113.9 mg, 73%). 1H NMR (400 MHz, CDCl$_3$) δ 7.55 (td, $J = 8.0, 2.0$ Hz, 1H), 7.35 (td, $J = 7.6, 1.6$ Hz, 1H), 7.21-7.09 (m, 2H), 7.06-6.90 (m, 4H), 6.58 (s, 1H), 0.22 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 162.9 (d, $J = 252.0$ Hz), 160.0 (d, $J = 250.4$ Hz), 145.1 (d, $J = 5.6$ Hz), 133.3 (d, $J = 1.6$ Hz), 131.8, 130.2 (d, $J = 11.2$ Hz), 130.1, 129.5 (d, $J = 8.4$ Hz), 128.5 (d, $J = 10.8$ Hz), 124.15 (d, $J = 4.0$ Hz), 124.10 (d, $J = 4.0$ Hz), 116.3 (d, $J = 22.8$ Hz), 115.7 (d, $J = 20.8$ Hz), 112.0 (d, $J = 15.6$ Hz), 94.7 (d, $J = 3.2$ Hz), 86.3, -0.9. 29Si NMR (79 MHz, CDCl$_3$) δ -7.9. 19F NMR (471 MHz, CDCl$_3$) δ -109.2, -115.5. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{19}$H$_{19}$F$_2$Si, 313.1219; found 313.1203.

(Z)-(2,4-bis(2-bromophenyl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (151.2 mg, 70%). 1H NMR (400 MHz, CDCl$_3$) δ 7.63-7.60 (m, 2H), 7.54-7.47 (m, 2H), 7.37-7.24 (m, 2H), 7.21-7.11 (m, 2H), 6.38 (s, 1H), 0.39 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 145.4, 142.9, 136.9, 133.4, 133.2, 132.6, 130.2, 129.6, 129.0, 127.4, 127.1, 125.6, 125.4, 121.5, 93.7, 92.6, -0.7. 29Si NMR (79 MHz, CDCl$_3$) δ -7.6. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{19}$H$_{19}$Br$_2$Si, 434.9617; found 434.9590.
(Z)-(2,4-diphenylbut-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (105.4 mg, 76%). 1H NMR (400 MHz, CDCl$_3$) δ 7.87 (d, $J = 7.6$ Hz, 2H), 7.64 (dd, $J = 7.6$, 2.1 Hz, 2H), 7.51-7.37 (m, 6H), 6.78 (s, 1H), 0.44 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 139.5, 137.7, 137.2, 131.5, 128.6, 128.4, 128.3, 126.1, 123.4, 94.0, 89.7, -0.7. 29Si NMR (79 MHz, CDCl$_3$) δ -7.88. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{19}$H$_{21}$Si, 277.1407; found 277.1413.

(Z)-(2,4-di([1,1'-biphenyl]-4-yl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. White solid. (156.2 mg, 73%). mp 65-67 °C. 1H NMR (400 MHz, CDCl$_3$) δ 7.94 (d, $J = 8.0$ Hz, 2H), 7.74-7.65 (m, 10H), 7.52 (t, $J = 7.6$ Hz, 4H), 7.47-7.37 (m, 2H), 6.82 (s, 1H), 0.45 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 141.3, 141.1, 140.7, 140.4, 138.4, 137.7, 136.8, 132.0, 129.0, 128.9, 127.8, 127.5, 127.3, 127.12, 126.6, 122.3, 94.1, 90.3, -0.6. 29Si NMR (79 MHz, CDCl$_3$) δ -7.8. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{31}$H$_{29}$Si, 429.2033; found 429.2035.
(Z)-(2,4-di-p-tolylbut-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. White solid. (82.1 mg, 54%). mp 45-47 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.68 (d, \(J = 8.0\) Hz, 2H), 7.46 (d, \(J = 8.0\) Hz, 2H), 7.20 (d, \(J = 7.6\) Hz, 4H), 6.63 (s, 1H), 2.40 (s, 3H), 2.39 (s, 3H), 0.34 (s, 9H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 138.7, 138.2, 137.2, 136.8, 136.0, 131.4, 129.3, 129.1, 126.0, 120.5, 94.1, 89.2, 21.7, 21.3, -0.7. \(^{29}\)Si NMR (79 MHz, CDCl\(_3\)) \(\delta\) -8.1. HRMS (APCI-TOF) m/z: [M + H]\(^{+}\) Calcd for C\(_{21}\)H\(_{25}\)Si, 305.1720; found 305.1731.

(Z)-dimethyl 4,4'-((4-(trimethylsilyl)but-3-en-1-yn-1,3-diyl)-dibenzoate

The mobile phase for flash chromatography: PE. White solid. (188.2 mg, 96%). mp 97-99 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.04-8.01 (m, 4H), 7.77 (d, \(J = 8.4\) Hz, 2H), 7.56 (d, \(J = 8.4\) Hz, 2H), 6.82 (s, 1H), 3.90 (s, 3H), 3.89 (s, 3H), 0.32 (s, 9H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 166.7, 166.3, 143.2, 141.6, 135.8, 131.3, 129.9, 129.8, 129.73, 129.68, 127.6, 125.9, 93.5, 91.7, 52.3, 52.1, -0.9. \(^{29}\)Si NMR (79 MHz, CDCl\(_3\)) \(\delta\) -7.5. HRMS (APCI-TOF) m/z: [M + H]\(^{+}\) Calcd for C\(_{23}\)H\(_{25}\)O\(_4\)Si, 393.1517; found 393.1519.
(Z)-(2,4-bis(4-fluorophenyl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. White solid. (127.9 mg, 82%). mp 54-56 °C. 1H NMR (400 MHz, CDCl3) δ 7.74 (dd, J = 8.4, 5.2 Hz, 2H), 7.53 (dd, J = 8.4, 5.6 Hz, 2H), 7.09 (td, J = 8.8, 3.2 Hz, 4H), 6.63 (s, 1H), 0.35 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 163.0 (d, J = 246.0 Hz), 162.8 (d, J = 249.0 Hz), 137.5 (d, J = 0.9 Hz), 135.9, 135.6 (d, J = 3.2 Hz), 133.4 (d, J = 8.4 Hz), 127.8 (d, J = 8.4 Hz), 119.4 (d, J = 3.6 Hz), 116.0 (d, J = 22.4 Hz), 115.3 (d, J = 21.6 Hz), 93.1, 89.1 (d, J = 1.6 Hz), -0.8. 29Si NMR (79 MHz, CDCl3) δ -7.9. 19F NMR (471 MHz, CDCl3) δ -110.2, -113.8. HRMS (APCI-TOF) m/z: [M + H]+ Calcd for C19H19F2Si, 313.1219; found 313.1207.

(Z)-(2,4-bis(4-chlorophenyl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. White solid. (128.6 mg, 75%). mp 66-68 °C. 1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 4H), 6.70 (s, 1H), 0.35 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 138.8, 137.7, 135.7, 134.8, 134.3, 132.7, 129.0, 128.5, 127.4, 121.6, 93.1, 90.1, -0.8. 29Si NMR (79 MHz, CDCl3) δ -7.69. 19F NMR (471 MHz, Chloroform-d) δ -110.2, -113.8. HRMS (APCI-TOF) m/z: [M + H]+ Calcd for C19H19Cl2Si, 345.0628; found 345.0618.
(Z)-(2,4-bis(4-bromophenyl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. White solid. (181.4 mg, 84%). mp 66-68 °C. 1H NMR (400 MHz, CDCl$_3$) δ 7.61 (d, $J = 8.4$ Hz, 2H), 7.55-7.47 (m, 4H), 7.39 (d, $J = 8.4$ Hz, 2H), 6.70 (s, 1H), 0.34 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 139.0, 138.2, 135.8, 132.8, 131.9, 131.5, 127.7, 123.0, 122.5, 122.0, 93.1, 90.2, -0.8. 29Si NMR (79 MHz, CDCl$_3$) δ -7.6. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{19}$H$_{19}$Br$_2$Si, 434.9617; found 434.9603.

(Z)-(2,4-di(thiophen-2-yl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (79.2 mg, 55%). 1H NMR (400 MHz, CDCl$_3$) δ 7.57 (d, $J = 1.6$ Hz, 1H), 7.52 (d, $J = 2.0$ Hz, 1H), 7.37 (d, $J = 4.8$ Hz, 1H), 7.33 (dd, $J = 5.2$, 3.2 Hz, 1H), 7.28 (dd, $J = 5.2$, 3.2 Hz, 1H), 7.20 (d, $J = 4.8$ Hz, 1H), 6.51 (s, 1H), 0.30 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 142.3, 135.8, 131.7, 129.7, 128.7, 126.0, 125.7, 125.1, 123.0, 122.4, 89.0, 88.0, -0.7. 29Si NMR (79 MHz, CDCl$_3$) δ -7.95. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{13}$H$_{17}$S$_2$Si, 289.0535; found 289.0528.
Z-(2,4-di(1H-inden-2-yl)but-1-en-3-yn-1-yl)trimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (51.1 mg, 29%). 1H NMR (400 MHz, CDCl$_3$) δ 7.52-7.40 (m, 4H), 7.36-7.26 (m, 3H), 7.24-7.18 (m, 3H), 6.39 (s, 1H), 3.69 (s, 2H), 3.64 (s, 2H), 0.36 (s, 9H).

13C NMR (100 MHz, CDCl$_3$) δ 147.6, 145.0, 144.2, 143.4, 143.1, 137.4, 136.9, 133.8, 130.8, 127.4, 127.0, 126.7, 125.9, 125.5, 123.74, 123.73, 121.8, 121.6, 93.4, 90.0, 42.6, 38.0, -0.6. 29Si NMR (79 MHz, CDCl$_3$) δ -8.2. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{25}$H$_{25}$Si, 353.1720; found 353.1721.

E-(2,4-diphenylbut-1-en-3-yn-1-yl)dimethyl(phenyl)silane

The mobile phase for flash chromatography: PE. Colorless oil. (133.5 mg, 79%). 1H NMR (400 MHz, CDCl$_3$) δ 7.67-7.59 (m, 2H), 7.61-7.54 (m, 2H), 7.55-7.48 (m, 2H), 7.50-7.42 (m, 3H), 7.44-7.35 (m, 6H), 6.77 (s, 1H), 0.29 (s, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 140.41, 140.37, 139.2, 138.8, 133.8, 131.7, 129.1, 128.43, 128.38, 128.2, 128.1, 128.0, 123.3, 92.3, 90.2, -1.3. 29Si NMR (79 MHz, CDCl$_3$) δ -13.2. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{24}$H$_{23}$Si, 339.1564; found 339.1554.
(E)-benzyl(2,4-diphenylbut-1-en-3-yn-1-yl)dimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (151.4 mg, 86%). 1H NMR (400 MHz, CDCl$_3$) δ 7.57-7.50 (m, 2H), 7.49-7.34 (m, 8H), 7.30 (t, $J = 7.6$ Hz, 2H), 7.17 (t, $J = 7.6$ Hz, 1H), 7.06 (d, $J = 7.2$ Hz, 2H), 6.53 (s, 1H), 2.16 (s, 2H), -0.02 (s, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 140.6, 140.1, 139.7, 139.2, 131.7, 128.41, 128.38, 128.35, 128.26, 128.15, 124.3, 123.3, 92.3, 90.1, 26.5, -1.9. 29Si NMR (79 MHz, CDCl$_3$) δ -8.1. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{25}$H$_{25}$Si, 353.1720; found 353.1708.

(E)-(2,4-diphenylbut-1-en-3-yn-1-yl)triethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (33.4 mg, 21%). 1H NMR (400 MHz, CDCl$_3$) δ 7.48-7.43 (m, 4H), 7.38-7.35 (m, 3H), 7.33-7.28 (m, 3H), 6.42 (s, 1H), 0.86 (t, $J = 8.0$ Hz, 9H), 0.45 (q, $J = 8.0$ Hz, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 141.1, 140.1, 138.5, 131.8, 128.4, 128.3, 128.23, 128.17, 128.1, 123.4, 92.6, 89.4, 7.6, 4.7. 29Si NMR (79 MHz, CDCl$_3$) δ -1.4. HRMS (ESI-TOF) m/z: [M + Na]$^+$ Calcd for C$_{22}$H$_{26}$NaSi, 341.1696; found 341.1713.
(Z)-(2,4-diphenylbut-1-en-3-yn-1-yl)dimethyl(phenyl)silane

The mobile phase for flash chromatography: PE. Colorless oil. (150.4 mg, 89%). 1H NMR (400 MHz, CDCl$_3$) δ 7.98 (d, $J = 7.6$ Hz, 2H), 7.89-7.84 (m, 2H), 7.60-7.52 (m, 7H), 7.51-7.44 (m, 4H), 6.99 (s, 1H), 0.81 (s, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 139.4, 138.8, 138.5, 135.1, 134.0, 131.5, 129.1, 128.58, 128.4, 127.9, 126.2, 123.2, 94.7, 89.7, -1.7. 29Si NMR (79 MHz, CDCl$_3$) δ -12.3. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{24}$H$_{23}$Si, 339.1564; found 339.1557.

(Z)-benzyl(2,4-diphenylbut-1-en-3-yn-1-yl)dimethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (162.0 mg, 92%). 1H NMR (400 MHz, CDCl$_3$) δ 7.75 (d, $J = 7.2$ Hz, 2H), 7.55 (dd, $J = 7.6$, 2.4 Hz, 2H), 7.40-7.27 (m, 6H), 7.21 (t, $J = 7.6$ Hz, 2H), 7.12-7.03 (m, 3H), 6.60 (s, 1H), 2.45 (s, 2H), 0.32 (s, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 140.0, 139.4, 138.0, 135.6, 131.5, 128.7, 128.6, 128.5, 128.45, 128.42, 128.3, 126.1, 124.2, 123.2, 94.5, 89.7, 25.6, -2.7. 29Si NMR (79 MHz, CDCl$_3$) δ -7.2. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{25}$H$_{25}$Si, 353.1720; found 353.1710.
(Z)-(2,4-diphenylbut-1-en-3-yn-1-yl)triethylsilane

The mobile phase for flash chromatography: PE. Colorless oil. (40.0 mg, 25%). 1H NMR (400 MHz, CDCl$_3$) δ 7.84-7.76 (m, 2H), 7.60-7.52 (m, 2H), 7.45-7.32 (m, 6H), 6.66 (s, 1H), 1.08 (t, $J = 7.7$ Hz, 9H), 0.94-0.84 (m, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 139.9, 137.9, 135.0, 131.5, 128.6, 128.5, 128.4, 128.3, 126.2, 123.5, 93.1, 90.0, 7.8, 4.1. 29Si NMR (79 MHz, CDCl$_3$) δ -0.5. HRMS (ESI-TOF) m/z: [M + Na]$^+$ Calcd for C$_{22}$H$_{26}$NaSi, 341.1696; found 341.1713.

Procedures for the synthesis of 7 and 8.

(Z)-(4-bromobut-3-en-1-yne-1,3-diyl)dibenzene

A vial was charged with 4a (138 mg, 0.5 mmol) and NBS (106.8 mg, 0.6 mmol). Then DCM (6 mL) was added and the reaction mixture was stirred at 40 °C in an oil bath for 12 h. Upon reaction completion, the reaction mixture was diluted with DCM (5 mL) and water (10 mL) was then added. The organic layer was separated, and the aqueous layer was extracted with DCM (2×10 mL). The combined organic layer was dried over Na$_2$SO$_4$ and concentrated under reduced pressure to give the crude product. The mobile phase for flash chromatography: PE. Colorless oil. (114.2 mg, 81%). 1H NMR (400 MHz, CDCl$_3$) δ 7.72-7.59 (m, 4H), 7.46-7.36 (m, 6H), 7.06 (s, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 136.9, 131.9, 130.4, 129.0, 128.8, 128.7, 128.5, 126.4, 122.8, 113.3, 98.0, 86.7. HRMS (APCI-TOF) m/z: [M + H]$^+$ Calcd for C$_{16}$H$_{12}$Br, 283.0117; found
(Z)-(4-iodobut-3-en-1-yne-1,3-diyldibenzene)

To a magnetically stirred solution of 4a (138 mg, 0.5 mmol) in acetonitrile (5 mL) was added N-iodosuccinimide (NIS) (56 mg, 0.25 mmol) in one portion at 0 °C. After 30 min, another portion of NIS (56 mg, 0.25 mmol) was added. After 2.5 h, the reaction mixture was allowed to warm to room temperature and was stirred for another hour, time after which NIS (28 mg, 0.13 mmol) was added. After another 30 min, NIS (28 mg, 0.13 mmol) was added and the mixture was further stirred for 30 min. A saturated aqueous solution of Na₂S₂O₃ was then added to the reaction mixture and the resulting aqueous layer was extracted 3 times with diethyl ether. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered and the solvent removed in vacuo to give a yellow oil. The mobile phase for flash chromatography: PE. Colorless oil. (140.3 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.64 (m, 4H), 7.47-7.36 (m, 6H), 7.27 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 136.6, 131.9, 129.0, 128.72, 128.69, 128.5, 126.4, 122.8, 96.9, 90.2, 87.1. HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₂I, 330.9978; found 330.9957.
4a
100 MHz, CDCl₃

4a
70 MHz, CDCl₃
\text{Diagram of chemical structure and spectra.}

\text{Caption:}

- 79 MHz, CDCl\textsubscript{3}
- 400 MHz, CDCl\textsubscript{3}

\text{Note:}

- Chemical shift values indicated in the spectra.
-高峰期: 7.55, 7.56, 7.57, 7.58, 7.59, 7.60, 7.61, 7.62, 7.63, 7.64, 7.65, 7.66, 7.67, 7.68, 7.69, 7.70, 7.71, 7.72, 7.73, 7.74, 7.75, 7.76, 7.77, 7.78, 7.79, 7.80, 7.81, 7.82, 7.83, 7.84, 7.85, 7.86, 7.87, 7.88, 7.89, 7.90, 7.91, 7.92, 7.93, 7.94, 7.95, 7.96, 7.97, 7.98, 7.99, 8.00, 8.01, 8.02, 8.03, 8.04, 8.05, 8.06, 8.07, 8.08, 8.09, 8.10, 8.11, 8.12, 8.13, 8.14, 8.15, 8.16, 8.17, 8.18, 8.19, 8.20, 8.21, 8.22, 8.23, 8.24, 8.25, 8.26, 8.27, 8.28, 8.29, 8.30, 8.31, 8.32, 8.33, 8.34, 8.35, 8.36, 8.37, 8.38, 8.39, 8.40, 8.41, 8.42, 8.43, 8.44, 8.45, 8.46, 8.47, 8.48, 8.49, 8.50, 8.51, 8.52, 8.53, 8.54, 8.55, 8.56, 8.57, 8.58, 8.59, 8.60, 8.61, 8.62, 8.63, 8.64, 8.65, 8.66, 8.67, 8.68, 8.69, 8.70, 8.71, 8.72, 8.73, 8.74, 8.75, 8.76, 8.77, 8.78, 8.79, 8.80, 8.81, 8.82, 8.83, 8.84, 8.85, 8.86, 8.87, 8.88, 8.89, 8.90, 8.91, 8.92, 8.93, 8.94, 8.95, 8.96, 8.97, 8.98, 8.99, 9.00, 9.01, 9.02, 9.03, 9.04, 9.05, 9.06, 9.07, 9.08, 9.09, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.17, 9.18, 9.19, 9.20, 9.21, 9.22, 9.23, 9.24, 9.25, 9.26, 9.27, 9.28, 9.29, 9.30, 9.31, 9.32, 9.33, 9.34, 9.35, 9.36, 9.37, 9.38, 9.39, 9.40, 9.41, 9.42, 9.43, 9.44, 9.45, 9.46, 9.47, 9.48, 9.49, 9.50, 9.51, 9.52, 9.53, 9.54, 9.55, 9.56, 9.57, 9.58, 9.59, 9.60, 9.61, 9.62, 9.63, 9.64, 9.65, 9.66, 9.67, 9.68, 9.69, 9.70, 9.71, 9.72, 9.73, 9.74, 9.75, 9.76, 9.77, 9.78, 9.79, 9.80, 9.81, 9.82, 9.83, 9.84, 9.85, 9.86, 9.87, 9.88, 9.89, 9.90, 9.91, 9.92, 9.93, 9.94, 9.95, 9.96, 9.97, 9.98, 9.99, 10.00.
Crystallographic data for 3m (CCDC 2131880)

![Chemical structure](image)

Table S3 Crystal data and structure refinement for mo211211a_pl.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>mo211211a_pl</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C_{19}H_{18}Br_{2}Si</td>
</tr>
<tr>
<td>Formula weight</td>
<td>434.24</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>296.15</td>
</tr>
<tr>
<td>Crystal system</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_12_12_1</td>
</tr>
<tr>
<td>a/Å</td>
<td>6.1450(14)</td>
</tr>
<tr>
<td>b/Å</td>
<td>15.369(4)</td>
</tr>
<tr>
<td>c/Å</td>
<td>20.888(5)</td>
</tr>
<tr>
<td>α/°</td>
<td>90</td>
</tr>
<tr>
<td>β/°</td>
<td>90</td>
</tr>
<tr>
<td>γ/°</td>
<td>90</td>
</tr>
<tr>
<td>Volume/Å³</td>
<td>1972.7(8)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>ρ_{calc}/cm³</td>
<td>1.462</td>
</tr>
<tr>
<td>μ/mm⁻¹</td>
<td>4.165</td>
</tr>
<tr>
<td>F(000)</td>
<td>864.0</td>
</tr>
<tr>
<td>Crystal size/mm³</td>
<td>0.15 × 0.15 × 0.12</td>
</tr>
<tr>
<td>Radiation</td>
<td>MoKα (λ = 0.71073)</td>
</tr>
<tr>
<td>2θ range for data collection°</td>
<td>3.29 to 61.052</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-8 ≤ h ≤ 8, -21 ≤ k ≤ 21, -28 ≤ l ≤ 27</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>21792</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>5645 [R_{int} = 0.1323, R_{sigma} = 0.1309]</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>5645/0/203</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>0.962</td>
</tr>
<tr>
<td>Final R indexes [I>=2σ(I)]</td>
<td>R₁ = 0.0549, wR₂ = 0.1061</td>
</tr>
<tr>
<td>Final R indexes [all data]</td>
<td>R₁ = 0.1665, wR₂ = 0.1363</td>
</tr>
<tr>
<td>Largest diff. peak/hole / e Å⁻³</td>
<td>0.60/-0.46</td>
</tr>
<tr>
<td>Flack parameter</td>
<td>-0.011(18)</td>
</tr>
</tbody>
</table>
Crystallographic data for 4m (CCDC 2141725)

Table S4 Crystal data and structure refinement for mo211215a.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>mo211215a</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C_{19}H_{18}Br_{2}Si</td>
</tr>
<tr>
<td>Formula weight</td>
<td>434.24</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>296.15</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>C2/c</td>
</tr>
<tr>
<td>a/Å</td>
<td>28.886(8)</td>
</tr>
<tr>
<td>b/Å</td>
<td>6.1944(12)</td>
</tr>
<tr>
<td>c/Å</td>
<td>22.938(6)</td>
</tr>
<tr>
<td>α/°</td>
<td>90</td>
</tr>
<tr>
<td>β/°</td>
<td>111.585(9)</td>
</tr>
<tr>
<td>γ/°</td>
<td>90</td>
</tr>
<tr>
<td>Volume/Å³</td>
<td>3816.4(16)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>ρ calc./g/cm³</td>
<td>1.512</td>
</tr>
<tr>
<td>μ /mm⁻¹</td>
<td>4.306</td>
</tr>
<tr>
<td>F(000)</td>
<td>1728.0</td>
</tr>
<tr>
<td>Crystal size/mm³</td>
<td>0.15 × 0.15 × 0.12</td>
</tr>
<tr>
<td>Radiation</td>
<td>MoK α (λ = 0.71073)</td>
</tr>
<tr>
<td>2θ range for data collection/°</td>
<td>3.82 to 61.052</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-41 ≤ h ≤ 40, -8 ≤ k ≤ 8, -27 ≤ l ≤ 32</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>17550</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>5243 [R_{int} = 0.0902, R_{sigma} = 0.1131]</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>5243/0/202</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>0.973</td>
</tr>
<tr>
<td>Final R indexes [I>2σ(D)]</td>
<td>R₁ = 0.0546, wR₂ = 0.0950</td>
</tr>
<tr>
<td>Final R indexes [all data]</td>
<td>R₁ = 0.1907, wR₂ = 0.1268</td>
</tr>
<tr>
<td>Largest diff. peak/hole / e Å⁻³</td>
<td>0.37/0.55</td>
</tr>
</tbody>
</table>