Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Electronic Supplementary Material

Asymmetric living supramolecular polymerization of an achiral aza-BODIPY dye by solvent-mediated chirality induction and memory

Jiahui Ding, Hongfei Pan, Houchen Wang, Xiang-Kui Ren, Zhijian Chen*

School of Chemical Engineering and Technology, The National Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China Email: zjchen@tju.edu.cn

Table of Contents

1. Materials and Methods	3
2. Data analysis for temperature-dependent spectroscopic studies	5
3. Aggregation studies by spectroscopic methods and AFM	6
4. Studies on the seeded supramolecular polymerization in MCH/limonene mixture	and
the racemization process	12
5. References	14

1. Materials and Methods

Chemicals and Reagents: Unless otherwise specified, all the chemicals were purchased from commercial suppliers and did not require further purification when used. Aza-BODIPY dye **1** was synthesized as described previously.¹

UV/Vis spectroscopy: UV/Vis absorption spectra were recorded on an Agilent Technologies Cary 300 UV/Vis spectrophotometer equipped with a SPV 1×1 temperature controller. The solvents for spectroscopic studies were spectroscopic grade and used as received. The spectra were recorded in quartz cuvettes and the extinction coefficients ε was calculated according to Lambert-Beer's law.

Circular dichroism (CD) spectroscopy: CD spectra were recorded on a Jasco J-810 spectrophotometer equipped with Jasco CDF 426S temperature controller.

Atomic force microscopy: AFM measurements were performed under ambient conditions using a Bruker Dimension icon spectra system operating in tapping mode. Silicon cantilevers with a resonance frequency of 300 kHz were used. The sample for AFM was prepared by drop-casting (S)- and (R)-limonene solution of dye 1 (c= 1.0×10^{-5} M) on mica surface and evaporating the solvent.

Transmission electron microscopy: Transmission electron microscopy (TEM) measurements were performed on a JEM-1400 transmission electron microscope, operating at an acceleration voltage of 120 kV. For the observation of aggregates, 400-mesh copper grids coated with carbon was dipped in a drop of sample solution of dye 1. About 1 min after the deposition, the grid was placed on filter paper to remove solvent. Staining was performed by a drop of uranyl acetate aqueous solution (0.5 % wt) onto the copper grid. After 10 min, the liquid on the grid was removed with filter paper.

Fourier transform infrared (FT-IR) Spectroscopy: FT-IR measurements were performed on a Bruker ALPHA II infrared spectrometer. The liquid sample was prepared by holding appropriate amount of solution of dye **1** between two KBr crystal tablets. Press it into a uniform and transparent film with tablet press.

Preparation of the Aggregates II_L: Aza-BODIPY dye 1 (1.0 - 4.0 mg) was dissolved with 100 mL either (S)-limonene or (R)-limonene. By keeping the solutions at room

temperature for 8 to 20 h, **Agg. II**_L of dye **1** in (*S*)- and (*R*)-limonene was obtained. The formation of **Agg. II**_L was confirmed by UV/Vis absorption spectra.

Preparation of the Aggregates IM: Aza-BODIPY dye **1** (1.0 - 4.0 mg) was dissolved with 100 mL MCH. By keeping the solutions at room temperature for 8 to 20 h, **Agg. IIM** of dye **1** in MCH was obtained. Then the solution was cooled rapidly at the rate of 10 K/min so that the **Agg. IM** was obtained. The formation of **Agg. IM** was confirmed by UV/Vis absorption spectra.

Experimental operation for multiple cyclic Living supramolecular polymerization: Firstly, the seeds of **Agg. II**_L (Seed_{Agg. IIL}) was prepared by applying sonication to a **Agg. II**_L solution in (*S*)-limonene ($c_T = 5.0 \times 10^{-6}$ M) for 5 min in a water bath at 293 K. And the freshly prepared **Agg. IM** was obtained by rapid cooling of the hot monomer solution of dye **1** in MCH ($c_T = 5.0 \times 10^{-6}$ M) from 343 K to 278 K (10 K min⁻¹) which was in a kinetically trapped inactive state. Then the equal amounts of **Agg. IM** at 278 K (1.5 mL) was injected into **Seed_{Agg. IIL}** (1.5 mL) which has already been cooled down to 278 K. After that the mixture was warmed to 283 K to initiate the first cycle of multiple cycles of living polymerization process and kept at this temperature. After the complete transformation from **Agg. IM** to **Agg. IIL**, half volume of the solution was removed and the remaining half was cooled down to 278 K. Then the equal amounts of **Agg. IM** in pure MCH at 278 K (1.5 mL) was injected into the remaining solution of the first cycle and the mixture was heated to 283 K again and maintain this temperature until the transformation process was finished. The solution was cooled down to 278 K to prepare for the next cycle and the operation was repeated.

2. Data analysis for temperature-dependent spectroscopic studies

For the process of temperature-dependent research, the summation of the fractions of two species is equal to 1 if monomer and aggregate species are involved. The α_{mon} and α_{agg} represent the fraction of monomer and aggregates. When there were only monomer and one type of aggregate existing in process of temperature-dependent study, the α_{agg} could obtained by the Eq. S1:

$$\alpha_{agg}(T) = 1 - \frac{\varepsilon(T) - \varepsilon_{agg}}{\varepsilon_{mon} - \varepsilon_{agg}}$$
(S1)

For CD spectroscopic data, $\Delta \varepsilon_{agg}$ was used instead of ε_{agg} in equation (S1).

The data points of the molar fraction of aggregated molecules obtianed in experiment as a function of temperature can be fitted by using the nucleation-elongation model (Eq. S2 and Eq. S3, for the enucleation and elongation regime respectively) proposed by Meijer et al.^{2, 3} Acordingly, thermodynamic parameters including the the dimensionless equilibrium constant K_a (for the activation step at the elongation temperature), elongation temperature T_e , and the elongation enthalpy change ΔH_e . The average length of the stack N_n (T_e) at T_e is given by Eq. S4.

$$\alpha_{\rm agg} = K_{\rm a}^{1/3} exp(2/3 K_{\rm a}^{-1/3} - 1) \left[\frac{\Delta H_{\rm e}}{RT_{\rm e}^2} (T - T_{\rm e}) \right]$$
(S2)

$$\alpha_{\text{agg}} = \alpha_{\text{SAT}} \left\{ 1 - exp \left[-\frac{\Delta H_{\text{e}}}{RT_{\text{e}}^2} (T - T_{\text{e}}) \right] \right\}$$
(S3)

$$N_{\rm n}(T_{\rm e}) = \frac{1}{K_{\rm a}^{1/3}}$$
 (S4)

The standard enthalpy change (ΔH°) and standard entropy change (ΔS°) can be determined according to the linear relationship in the van't Hoff plot applying Eq. S5, where *R* is the ideal gas constant.⁴

$$\ln\left[\frac{1}{c_{\rm T}}\right] = -\frac{\Delta H^{\rm o}}{RT_{\rm e}} + \frac{\Delta S^{\rm o}}{R}$$
(S5)

3. Aggregation studies by spectroscopic methods and AFM

Fig. S1 Temperature-dependent UV/Vis absorption spectra of dye 1 in (S)-limonene (c_T = 1.0×10^{-5} M) upon cooling from 343 K to 273 K at 0.5 K min⁻¹. Inset: Changes of the molar extinction absorption coefficient monitored at 750 nm.

Fig. S2 Temperature-dependent UV/Vis absorption spectra of dye 1 in (*R*)-limonene ($c_T = 1.0 \times 10^{-5}$ M) upon (a) rapid cooling at 10 K min⁻¹ and (b) slow cooling at 0.5 K min⁻¹ from 343 K to 273 K. Insets: Changes of the molar extinction absorption coefficient monitored at 750 nm.

Fig. S3 UV/Vis absorption spectra (top) and CD (bottom) spectra of dye 1 in (S)limonene $(1.0 \times 10^{-5} \text{ M})$ and (R)-limonene $(1.0 \times 10^{-5} \text{ M})$ at 273 K, respectively.

Fig. S4 Temperature-dependent CD spectra of dye 1 cooling from 343 K to 273 K in (*R*)-limonene $(1.0 \times 10^{-5} \text{ M})$ at 0.5 K min⁻¹. Inset: The calculated plot of molar fraction of Agg. II_L versus temperatures (monitored at 608 nm).

Fig. S5 Temperature-dependent UV/Vis absorption spectra of dye **1** in (a) (*S*)-limonene ($c_{\rm T} = 1.0 \times 10^{-5}$ M) and (b) (*R*)-limonene ($c_{\rm T} = 1.0 \times 10^{-5}$ M) upon heating from 273 K to 343 K at 0.5 K min⁻¹.

Fig. S6 (a) Molar fraction of Agg. II_L in (*S*)-limonene monitored by temperaturedependent UV/Vis absorption spectra at 595 nm in the heating process from 273 K to 343 K at the rate of 0.5 K min⁻¹. (b) The van't Hoff plot for heating process of Agg. II_L in (*S*)-limonene (5.0×10^{-6} M to 5.0×10^{-5} M).

Fig. S7 (a) Molar fraction of Agg. II_L in (*R*)-limonene monitored by temperaturedependent UV/Vis absorption spectra at 595 nm in the heating process from 273 K to 343 K at the rate of 0.5 K min⁻¹. (b) The van't Hoff plot for heating process of Agg. II_L in (*R*)-limonene (5.0×10^{-6} M to 5.0×10^{-5} M).

	(S)-Limonene		(<i>R</i>)-Lii	nonene
$c_{\rm T}/10^{-5}~{ m M}$	$T_{\rm e}/$	$\Delta H_{ m e}/$	$T_{\rm e}$ /	$\Delta H_{ m e}/$
	Κ	kJ mol ⁻¹	Κ	kJ mol ⁻¹
0.5	324 ± 0.5	-173 ± 2.5	324 ± 0.6	-175 ± 1.6
1.0	327 ± 0.3	-173 ± 2.1	327 ± 0.8	-175 ± 2.8
2.0	332 ± 0.4	-170 ± 1.8	332 ± 0.5	-172 ± 1.9
5.0	337 ± 0.4	-174 ± 3.4	337 ± 0.6	-174 ± 2.5

Table S1 Thermodynamic parameters of aza-BODIPY 1 in chiral limonene solution.

Fig. S8 (a) TEM image for **Agg. II**_L in (S)-limonene solution $(1.0 \times 10^{-5} \text{ M})$. (b) Zoomed image of one left-handed (M) nanofiber along the blue dashed box of (a)

Fig. S9 AFM height image by drop-casting (a) (S)-limonene and (b) (R)-limonene solution $(5.0 \times 10^{-5} \text{ M})$ of dye 1 and the statistical graph of M and P helices.

Fig. S10 FT-IR spectra of the N-H and C=O stretching vibration region for monomeric dye **1** ($c_{\rm T} = 1.0 \times 10^{-5}$ M) in CHCl₃, and **Agg. II**_L in (S)-limonene ($c_{\rm T} = 1.0 \times 10^{-5}$ M).

4. Studies on the seeded supramolecular polymerization in MCH/limonene mixture and the racemization process

Fig. S11 The kinetic curves for the transformation of Agg. I_M to Agg. II_L monitored by CD spectroscopy at 283 K in the mixed solvent of (*S*)-limonene/MCH ($c_T = 5.0 \times 10^{-6}$ M) from 9:1 to 2:8.

Fig. S12 The initial (red) and final (black) UV/Vis absorption spectra (a) and CD spectra (b) for each cycle of the LSP process in MCH/limonene ([Seed_{Agg}. IIL in (S)-limonene] = [Agg. I_M in MCH] = 5.0×10^{-6} M).

5. References

- H. Wang, Y. Zhang, Y. Chen, H. Pan, X. Ren and Z. Chen, Living Supramolecular Polymerization of an Aza-BODIPY Dye Controlled by a Hydrogen-Bond-Accepting Triazole Unit Introduced by Click Chemistry, *Angew. Chem. Int. Ed.*, 2020, 59, 5185-5192.
- P. Jonkheijm, P. van der Schoot, A. P. H. J. Schenning and E. W. Meijer, Probing the solvent-assisted nucleation pathway in chemical self-assembly, *Science*, 2006, 313, 80-83.
- 3 G. Fernández, M. Stolte, V. Stepanenko and F. Würthner, Cooperative Supramolecular Polymerization: Comparison of Different Models Applied on the Self-Assembly of Bis(merocyanine) Dyes, *Chem.-Eur. J.*, 2013, **19**, 206-217.
- 4 P. A. Korevaar, S. J. George, A. J. Markvoort, M. M. J. Smulders and E. W. Meijer, Pathway complexity in supramolecular polymerization, *Nature*, 2012, **481**, 492-496.