# **Supporting Information**

# for

# Three Component Synthesis of β-Aminoxy Amides

Linwei Zeng,<sup>†a</sup> Shuheng Xu,<sup>†b</sup> Sunliang Cui,<sup>\*b</sup> and Fengzhi Zhang<sup>\*a</sup>

<sup>a</sup> College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China

<sup>b</sup> Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China

<sup>†</sup>These authors contributed equally to this work

Email: zhangfengzhi@zjut.edu.cn;

slcui@zju.edu.cn.

# **Contents**

| 1.  | General Information                       | S2         |
|-----|-------------------------------------------|------------|
| 2.  | Starting Materials                        | S3         |
| 3.  | Typical Procedure for The Synthesis of 4a | S4         |
| 4.  | Gram-Scale Reaction                       | S4-S5      |
| 5.  | Step-wise Reaction                        | S5         |
| 6.  | Crossover reaction                        | <b>S</b> 6 |
| 7.  | <b>Characterization of Products</b>       | S6-S19     |
| 8.  | X- Ray Crystallographic Data              | S20-S22    |
| 9.  | References                                | S23        |
| 10. | <b>Copies of NMR Spectra</b>              | S24-S77    |

### **1.** General Information

Reactions were monitored by thin layer chromatography (TLC) using silicycle precoated silica gel plates. Column chromatography was performed over silica gel (200– 300mesh).

Melting points were measured with X-4 micro melting point apparatus.

HRMS were performed on Agilent Technologies 6546-LC/Q-TOF mass spectrometer (ESI-TOF) (Pharmaceutical Informatics Institute, Zhejiang University).

<sup>1</sup>H NMR spectra and <sup>13</sup>C NMR spectra were recorded on a Bruker AV-600 spectrometer (College of Life Sciences, Zhejiang University), a Bruker AV-500 spectrometer (Pharmaceutical Informatics Institute, Zhejiang University) or a WNMR-I-400 spectrometer (Department of Chemistry, Zhejiang University) in chloroform-*d* (CDCl<sub>3</sub>, contain internal TMS). Chemical shifts of <sup>1</sup>H NMR spectra were reported in ppm with the internal TMS signal at 0 ppm as a standard, and chemical shifts of <sup>13</sup>C NMR spectra were reported in ppm with the chloroform signal at 77.16 ppm as a standard.<sup>1</sup> The data is being reported as (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, hept = heptet, dd = double doublet, dt = double of triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration).

Solvents, such as ethyl acetate (EA), petroleum ether (PE) were obtained commercially and used without further purification unless otherwise noted. Methanol (MeOH) purified by distillation after treating with magnesium rod; toluene (PhMe), 1,4-dioxane (dioxane) and tetrahydrofuran (THF) were purified by distillation after treating with sodium; dichloromethane (CH<sub>2</sub>Cl<sub>2</sub>), acetonitrile (MeCN), 1,2dichloroethane (DCE) were purified by distillation after treating with CaH<sub>2</sub>.

# 2. Starting Materials



Figure S1. Starting materials

All starting materials are listed as Figure S1. *N*-hydroxamic acids **1a** and **2a** were commercially available; Ynamides were prepared according to the reported methods (Figure S2). Ynamides **2a-2h** were synthesized via the **method A**,<sup>2</sup> and ynamide **2i** was obtained by the **method B**.<sup>3</sup> Aldehydes **3a-3k** were commercially available, and **3l** was synthesized according to the reported procedure.<sup>4</sup>



Figure S2. Synthesis of ynamides

#### 3. Typical Procedure for The Synthesis of 4a



An oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with *N*-hydroxysuccinimide **1a** (23 mg, 0.2 mmol), ynamide **2a** (42 mg, 0.2 mmol) and *p*-nitrobenzaldehyde **3a** (31 mg, 0.2 mmol), and then purged with argon three times. Anhydrous CH<sub>2</sub>Cl<sub>2</sub> (2 mL) was added as solvent and the mixture was stirred for 3 h until **1a** and **2a** were completely consumed. BF<sub>3</sub>·Et<sub>2</sub>O (5  $\mu$ L, 20 mol%) was added and the reaction was stirred for another 5 mins. TLC analysis showed that the completion of the reaction. The reaction mixture was concentrated to obtain the residue, which was purified by silica gel column chromatography eluting with PE/EA = 3/1 to give the desired product 3-((2,5-dioxopyrrolidin-1-yl)oxy)-*N*-methyl-3-(4-nitrophenyl)-*N*-tosylpropanamide **4a** (58 mg, 61% yield) as a white solid.

#### 4. Gram-Scale Reaction



An oven-dried flask tube equipped with a magnetic stirrer bar was charged with *N*-hydroxysuccinimide **1a** (576 mg, 5 mmol), ynamide **2a** (1.05 g, 5 mmol) and *p*-nitrobenzaldehyde **3a** (775 mg, 5 mmol), and then purged with argon three times. Anhydrous CH<sub>2</sub>Cl<sub>2</sub> (50 mL) was added as solvent and the mixture was stirred for 3 h until **1a** and **2a** were completely consumed. BF<sub>3</sub>·Et<sub>2</sub>O (120  $\mu$ L, 20 mol%) was added and the reaction was stirred until TLC analysis showed the completion of the reaction. The reaction mixture was concentrated to obtain the residue, which was purified by silica gel column chromatography eluting with PE/EA = 3/1 to give the desired product 3-((2,5-dioxopyrrolidin-1-yl)oxy)-*N*-methyl-3-(4-nitrophenyl)-*N*-tosylpropanamide **4a** (1.35 g, 57% yield) as a white solid.



#### 5. Step-wise Reaction

An oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with *N*-hydroxysuccinimide **1a** (23 mg, 0.2 mmol) and ynamide **2a** (42 mg, 0.2 mmol), and then purged with argon three times. Anhydrous CH<sub>2</sub>Cl<sub>2</sub> (2 mL) was added as solvent and the mixture was stirred for 3 h until **1a** and **2a** were completely consumed. The mixture was concentrated to obtain the residue, which was further purified by silica gel column chromatography eluting with PE/EA = 5/1 to give **5a** (64 mg, 98% yield).

An oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with **5a** (64 mg, 0.2 mmol) and *p*-nitrobenzaldehyde **3a** (31 mg, 0.2 mmol), and then purged with argon three times. Anhydrous CH<sub>2</sub>Cl<sub>2</sub> (2 mL) was added as solvent. BF<sub>3</sub>·Et<sub>2</sub>O (5  $\mu$ L, 20 mol%) was added and the reaction was stirred for another 5 mins. TLC analysis showed that the completion of the reaction. The reaction mixture was concentrated to obtain the residue, which was purified by silica gel column chromatography eluting with PE/EA = 3/1 to give the desired product 3-((2,5-dioxopyrrolidin-1-yl)oxy)-*N*-methyl-3-(4-nitrophenyl)-*N*-tosylpropanamide **4a** (59 mg, 63% yield) as a white solid.

### 6. Crossover reaction



An oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with **5b** (38 mg, 0.1 mmol), **5c** (39 mg, 0.1 mmol) and *p*-nitrobenzaldehyde **3a** (31 mg, 0.2 mmol), and then purged with argon three times. Anhydrous  $CH_2Cl_2$  (2 mL) was added as solvent. BF<sub>3</sub>·Et<sub>2</sub>O (5 µL, 20 mol%) was added and the reaction was stirred for another 10 mins. TLC analysis showed the formation of **4m** and **4u**. The crossover products were not detected (See the TLC analysis). **4m** and **4u** were isolated in 61% and 66% yields, respectively.

### 7. Characterization of Products



# 3-((2,5-dioxopyrrolidin-1-yl)oxy)-N-methyl-3-(4-nitrophenyl)-N-

#### tosylpropanamide

4a: White solid (58 mg, 61% yield), m. p. 162.4-164.2 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  8.17 (d, *J* = 7.8 Hz, 2H), 7.77 (d, *J* = 7.2 Hz, 2H), 7.63 (d, *J* = 7.8 Hz, 2H), 7.36 (d, *J* = 7.2 Hz, 2H), 5.87 (t, *J* = 6.0 Hz, 1H), 3.69 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 6.0 Hz, 1H), 3.31 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 4.8 Hz, 1H), 3.21 (s, 3H), 2.58 (s, 4H), 2.46 (s, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 171.0, 169.1, 148.3, 145.4, 144.0, 135.6, 130.1, 128.7, 127.6, 123.7, 82.3, 42.7, 33.0, 25.3, 21.7.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>21</sub>H<sub>22</sub>N<sub>3</sub>O<sub>8</sub>S, 476.1128; found, 476.1130.



3-((2,5-dioxopyrrolidin-1-yl)oxy)-N-methyl-3-phenyl-N-tosylpropanamide

**4b:** White solid (52 mg, 61% yield), m. p. 162.3-164.1 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.81 – 7.76 (m, 2H), 7.45 – 7.38 (m, 2H), 7.36 – 7.30 (m, 5H), 5.84 (dd,  $J_1$  = 7.2 Hz,  $J_2$  = 5.4 Hz, 1H), 3.68 (dd,  $J_1$  = 18.0 Hz,  $J_2$  = 7.2 Hz, 1H), 3.27 (dd,  $J_1$  = 17.4 Hz,  $J_2$  = 4.8 Hz, 1H), 3.23 (s, 3H), 2.49 (s, 4H), 2.44 (s, 3H). <sup>13</sup>**C NMR (150 MHz, CDCl<sub>3</sub>)**  $\delta$  171.4, 169.9, 145.2, 136.6, 135.9, 130.0, 129.4, 128.6, 128.0, 127.8, 83.2, 42.4, 33.1, 25.3, 21.7.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>21</sub>H<sub>23</sub>N<sub>2</sub>O<sub>6</sub>S, 431.1277; found, 431.1273.



#### 3-(4-chlorophenyl)-3-((2,5-dioxopyrrolidin-1-yl)oxy)-N-methyl-N-

#### tosylpropanamide

4c: White solid (53 mg, 57% yield), m. p. 177.0-178.5 °C.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.78 – 7.73 (m, 2H), 7.38 – 7.32 (m, 4H), 7.30 – 7.27

(m, 2H), 5.79 (t, J = 6.0 Hz, 1H), 3.64 (dd,  $J_1 = 17.4$  Hz,  $J_2 = 6.6$  Hz, 1H), 3.27 (dd,  $J_1 = 17.4$  Hz,  $J_2 = 6.0$  Hz, 1H), 3.22 (s, 3H), 2.52 (s, 4H), 2.45 (s, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 171.3, 169.6, 145.3, 135.9, 135.4, 135.3, 130.1, 129.4, 128.9, 127.7, 82.6, 42.4, 33.1, 25.4, 21.8.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>21</sub>H<sub>22</sub>ClN<sub>2</sub>O<sub>6</sub>S, 465.0887; found, 465.0892.



3-((2,5-dioxopyrrolidin-1-yl)oxy)-N-methyl-N-tosyl-3-(4-

#### (trifluoromethyl)phenyl)propenamide

4d: White solid (51 mg, 51% yield), m. p. 115.7-117.6 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.79 – 7.73 (m, 2H), 7.61 – 7.53 (m, 4H), 7.34 (d, J = 7.8 Hz, 2H), 5.86 (dd,  $J_I = 6.6$  Hz,  $J_2 = 6.0$  Hz 1H), 3.67 (dd,  $J_I = 17.4$  Hz,  $J_2 = 7.2$  Hz, 1H), 3.28 (dd,  $J_I = 18.0$  Hz,  $J_2 = 5.4$  Hz, 1H), 3.22 (s, 3H), 2.55 (s, 4H), 2.45 (s, 3H). <sup>13</sup>**C NMR (150 MHz, CDCl<sub>3</sub>)**  $\delta$  171.3, 169.5, 145.4, 140.9, 135.8, 131.4 (q, J = 33.0 Hz), 130.1, 128.2, 127.7, 125.6 (q, J = 3.0 Hz), 124.0 (q, J = 270.0 Hz), 82.7, 42.8, 33.2, 25.4, 21.8.

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) δ -62.76.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>22</sub>H<sub>22</sub>F<sub>3</sub>N<sub>2</sub>O<sub>6</sub>S, 499.1151; found, 499.1145.



3-(4-cyanophenyl)-3-((2,5-dioxopyrrolidin-1-yl)oxy)-N-methyl-N-

#### tosylpropanamide

4e: White solid (52 mg, 57% yield), m. p. 122.6-124.2 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.78 – 7.72 (m, 2H), 7.64 – 7.59 (m, 2H), 7.58 – 7.54 (m, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 5.81 (t, *J* = 6.0 Hz, 1H), 3.65 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 6.6 Hz, 1H), 3.27 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 5.4 Hz, 1H), 3.20 (s, 3H), 2.55 (s, 4H), 2.45 (s, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 171.1, 169.2, 145.4, 142.0, 135.6, 132.3, 130.0, 128.5, 127.6, 118.3, 113.0, 82.5, 42.5, 33.0, 25.3, 21.7.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>22</sub>H<sub>22</sub>N<sub>3</sub>O<sub>6</sub>S, 456.1229; found, 456.1230.



**3-((2,5-dioxopyrrolidin-1-yl)oxy)**-*N*-methyl-**3-(***o*-tolyl)-*N*-tosylpropanamide **4f:** White solid (56 mg, 63% yield), m. p. 144.0-146.0 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.80 (d, J = 7.8 Hz, 2H), 7.41 (dd,  $J_1$  = 7.8 Hz,  $J_2$  = 1.2 Hz, 1H), 7.34 (d, J = 8.4 Hz, 2H), 7.21 (td,  $J_1$  = 7.2 Hz,  $J_2$  = 1.8 Hz, 1H), 7.17 (td,  $J_1$  = 7.8 Hz,  $J_2$  = 1.8 Hz, 1H), 7.17 (td,  $J_1$  = 7.8 Hz,  $J_2$  = 1.8 Hz, 1H), 7.13 (dd,  $J_1$  = 7.8 Hz,  $J_2$  = 1.8 Hz, 1H), 6.11 (dd,  $J_1$  = 7.2 Hz,  $J_2$  = 4.2 Hz, 1H), 3.69 (dd,  $J_1$  = 17.4 Hz,  $J_2$  = 7.2 Hz, 1H), 3.25 (s, 3H), 3.15 (dd,  $J_1$  = 18.0 Hz,  $J_2$  = 4.2 Hz, 1H), 2.55 – 2.45 (m, 4H), 2.44 (s, 3H), 2.41 (s, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 171.6, 170.2, 145.1, 136.7, 135.9, 135.1, 130.7, 129.9, 129.0, 127.8, 127.1, 126.2, 79.6, 42.4, 33.1, 25.3, 21.7, 19.2.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>22</sub>H<sub>25</sub>N<sub>2</sub>O<sub>6</sub>S, 445.1433; found, 445.1433.



3-((2,5-dioxopyrrolidin-1-yl)oxy)-N-methyl-3-(3-nitrophenyl)-N-

#### tosylpropanamide

4g: White solid (51 mg, 54% yield), m. p. 159.6-160.4 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  8.27 (t, *J* = 1.8 Hz, 1H), 8.18 (dd, *J*<sub>1</sub> = 8.4 Hz, *J*<sub>2</sub> = 1.8 Hz, 1H), 7.82 (dt, *J*<sub>1</sub> = 7.8 Hz, *J*<sub>2</sub> = 1.2 Hz, 1H), 7.80 – 7.75 (m, 2H), 7.53 (t, *J* = 7.8 Hz, 1H), 7.36 (d, *J* = 7.8 Hz, 2H), 5.83 (t, *J* = 6.0 Hz, 1H), 3.71 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 6.6 Hz, 1H), 3.32 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 6.0 Hz, 1H), 3.23 (s, 3H), 2.58 (s, 4H), 2.45 (s, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 171.1, 169.2, 148.2, 145.4, 139.1, 135.6, 134.0, 130.1, 129.6, 127.6, 124.1, 122.7, 82.3, 42.5, 33.0, 25.3, 21.7.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>21</sub>H<sub>22</sub>N<sub>3</sub>O<sub>8</sub>S, 476.1128; found, 476.1126.



3-(3-bromo-4-fluorophenyl)-3-((2,5-dioxopyrrolidin-1-yl)oxy)-*N*-methyl-*N*-tosylpropanamide

**4h:** White solid (58 mg, 55% yield), m. p. 143.7-144.9 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.77 (d, *J* = 7.8 Hz, 2H), 7.62 (dd, *J*<sub>1</sub> = 6.6 Hz, *J*<sub>2</sub> = 2.4 Hz, 1H), 7.42 - 7.32 (m, 3H), 7.07 (t, *J* = 8.4 Hz, 1H), 5.74 (t, *J* = 6.0 Hz, 1H), 3.63 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 6.6 Hz, 1H), 3.28 - 3.21 (m, 4H), 2.56 (s, 4H), 2.45 (s, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 171.3, 169.4, 159.5 (d, *J* = 247.5 Hz), 145.4, 135.8, 134.4 (d, *J* = 4.5 Hz), 133.2, 130.1, 128.8 (d, *J* = 7.5 Hz), 127.7, 116.7 (d, *J* = 22.5 Hz), 109.2 (d, *J* = 22.5 Hz), 82.0, 42.6, 33.1, 25.4, 21.8.

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) δ -105.90.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>21</sub>H<sub>21</sub>BrFN<sub>2</sub>O<sub>6</sub>S, 527.0288; found, 527.0291.



3-((2,5-dioxopyrrolidin-1-yl)oxy)-N-methyl-3-(naphthalen-1-yl)-N-

#### tosylpropanamide

**4i:** Yellow solid (47 mg, 49% yield), m. p. 145.2-146.1 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  8.23 (d, J = 8.4 Hz, 1H), 7.87 – 7.81 (m, 2H), 7.82 – 7.77 (m, 2H), 7.69 (dd,  $J_1$  = 7.2 Hz,  $J_2$  = 1.2 Hz, 1H), 7.54 (ddd,  $J_1$  = 8.4 Hz,  $J_2$  = 6.6 Hz,  $J_3$  = 1.2 Hz, 1H), 7.49 (ddd,  $J_1$  = 7.8 Hz,  $J_2$  = 6.6 Hz,  $J_3$  = 1.2 Hz, 1H), 7.45 (dd,  $J_1$  = 8.4 Hz,  $J_2$  = 7.2 Hz, 1H), 7.32 (d, J = 7.8 Hz, 2H), 6.67 (dd,  $J_1$  = 7.2 Hz,  $J_1$  = 3.6 Hz, 1H), 3.87 (dd,  $J_1$  = 18.0 Hz,  $J_2$  = 7.8 Hz, 1H), 3.29 – 3.24 (m, 4H), 2.55 – 2.45 (m, 4H), 2.44 (s, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 171.7, 170.4, 145.2, 136.0, 133.8, 133.0, 130.8, 129.9, 129.8, 129.0, 128.0, 126.9, 126.0, 125.5, 125.3, 123.4, 79.7, 42.8, 33.2, 25.4, 21.8.
HRMS (ESI-TOF) *m/z*: (M+H)<sup>+</sup> calcd. For C<sub>25</sub>H<sub>25</sub>N<sub>2</sub>O<sub>6</sub>S, 481.1433; found, 481.1434.



3-((2,5-dioxopyrrolidin-1-yl)oxy)-N-methyl-3-(thiophen-2-yl)-N-

#### tosylpropanamide

4j: White solid (33 mg, 38% yield), m. p. 144.6-145.7 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.81 (d, *J* = 7.8 Hz, 2H), 7.39 – 7.32 (m, 3H), 7.14 (d, *J* = 3.6 Hz, 1H), 6.98 – 6.94 (m, 1H), 6.05 (t, *J* = 6.0 Hz, 1H), 3.77 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 6.6 Hz, 1H), 3.45 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 4.8 Hz, 1H), 3.25 (s, 3H), 2.55 (s, 4H), 2.45 (s, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 171.3, 169.4, 145.3, 138.9, 135.9, 130.1, 128.3, 127.8, 127.5, 127.0, 78.3, 42.7, 33.2, 25.4, 21.8.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>19</sub>H<sub>21</sub>N<sub>2</sub>O<sub>6</sub>S<sub>2</sub>, 437.0841; found, 437.0844.



(*E*)-3-((2,5-dioxopyrrolidin-1-yl)oxy)-*N*-methyl-5-phenyl-*N*-tosylpent-4-enamide 4k: White solid (30 mg, 33% yield), m. p. 122.0-123.3 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.79 (d, *J* = 7.8 Hz, 2H), 7.37 – 7.26 (m, 7H), 6.64 (d, *J* = 15.6 Hz, 1H), 6.13 (dd, *J*<sub>1</sub> = 15.6 Hz, *J*<sub>2</sub> = 9.0 Hz, 1H), 5.37 (dt, *J*<sub>1</sub> = 9.0 Hz, *J*<sub>2</sub> = 6.0 Hz, 1H), 3.48 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 6.0 Hz, 1H), 3.27 – 3.20 (m, 4H), 2.58 (s, 4H), 2.43 (s, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 171.6, 169.4, 145.2, 136.9, 136.0, 135.6, 130.1, 128.81, 128.77, 127.7, 127.1, 124.7, 83.4, 41.2, 33.2, 25.4, 21.8.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>23</sub>H<sub>25</sub>N<sub>2</sub>O<sub>6</sub>S, 457.1433; found, 457.1430.



**3-((2,5-dioxopyrrolidin-1-yl)oxy)-***N***-methyl-5-phenyl-***N***-tosylpent-4-ynamide 41:** Yellow solid (36 mg, 40% yield), m. p. 56.0-58.0 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.85 – 7.80 (m, 2H), 7.42 – 7.37 (m, 2H), 7.38 – 7.27 (m, 5H), 5.75 (dd,  $J_I$  = 7.2 Hz,  $J_2$  = 5.4 Hz, 1H), 3.65 (dd,  $J_I$  = 18.0 Hz,  $J_2$  = 7.2 Hz, 1H), 3.43 (dd,  $J_I$  = 18.0 Hz,  $J_2$  = 5.4 Hz, 1H), 3.28 (s, 3H), 2.67 (s, 4H), 2.42 (s, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  171.3, 168.9, 145.3, 135.8, 132.0, 130.2, 129.3, 128.5, 127.8, 121.6, 89.1, 83.6, 72.8, 42.3, 33.2, 25.5, 21.8.



N-benzyl-3-((2,5-dioxopyrrolidin-1-yl)oxy)-3-(4-nitrophenyl)-N-

#### (phenylsulfonyl)propenamide

4m: Yellow solid (61 mg, 57% yield), m. p. 45.9-47.4 °C.

<sup>1</sup>**H NMR (500 MHz, CDCl<sub>3</sub>)**  $\delta$  8.11 – 8.04 (m, 2H), 7.80 – 7.73 (m, 2H), 7.68 – 7.61 (m, 1H), 7.54 – 7.47 (m, 2H), 7.48 – 7.41 (m, 2H), 7.29 – 7.23 (m, 3H), 7.24 – 7.16 (m, 2H), 5.78 (t,  $J_1$  = 6.5 Hz, 1H), 5.08 (d, J = 16.0 Hz, 1H), 4.92 (d, J = 16.0 Hz, 1H), 3.57 (dd,  $J_1$  = 17.0 Hz,  $J_2$  = 6.0 Hz, 1H), 3.23 (dd,  $J_1$  = 17.5 Hz,  $J_2$  = 6.5 Hz, 1H), 2.57 – 2.43 (m, 4H).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 171.0, 169.3, 148.3, 143.7, 139.2, 136.0, 134.2, 129.4, 128.8, 128.03, 127.99, 127.8, 123.7, 82.4, 49.8, 42.5, 25.3.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>26</sub>H<sub>24</sub>N<sub>3</sub>O<sub>8</sub>S, 538.1284; found, 538.1280.



*N*-benzyl-3-((2,5-dioxopyrrolidin-1-yl)oxy)-*N*-(naphthalen-1-ylsulfonyl)-3-(4nitrophenyl)propenamide

**4n:** White solid (59 mg, 50% yield), m. p. 81.6-83.8 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  8.21 (s, 1H), 7.97 – 7.81 (m, 5H), 7.71 (t, *J* = 7.2 Hz, 1H), 7.64 (t, *J* = 7.8 Hz, 2H), 7.39 – 7.17 (m, 7H), 5.74 (t, *J* = 6.0 Hz, 1H), 5.17 (d, *J* =

15.6 Hz, 1H), 4.98 (d, J = 15.6 Hz, 1H), 3.58 (dd,  $J_1 = 17.4$  Hz,  $J_2 = 5.4$  Hz, 1H), 3.28 (dd,  $J_1 = 17.4$  Hz,  $J_2 = 6.6$  Hz, 1H), 2.52 – 2.36 (m, 4H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 171.0, 169.2, 148.1, 143.6, 136.1, 135.9, 135.3, 131.9, 130.01, 129.99, 129.7, 129.6, 128.8, 128.6, 128.2, 128.13, 128.09, 128.0, 123.5, 122.2, 82.5, 49.6, 42.5, 25.3.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>30</sub>H<sub>26</sub>N<sub>3</sub>O<sub>8</sub>S, 588.1441; found, 588.1440.



N-benzyl-3-((2,5-dioxopyrrolidin-1-yl)oxy)-N-(methylsulfonyl)-3-(4-

#### nitrophenyl)propenamide

**40:** Yellow solid (35 mg, 37% yield), m. p. 54.6-55.1 °C.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**  $\delta$  8.24 – 8.15 (m, 2H), 7.67 – 7.58 (m, 2H), 7.38 – 7.25 (m, 5H), 5.89 (dd,  $J_1$  = 7.6 Hz,  $J_2$  = 4.4 Hz, 1H), 5.02 (d, J = 16.0 Hz, 1H), 4.95 (d, J = 16.0 Hz, 1H), 3.66 (dd,  $J_1$  = 17.6 Hz,  $J_1$  = 7.6 Hz, 1H), 3.20 (s, 3H), 3.12 (dd,  $J_1$  = 17.6 Hz,  $J_2$  = 4.8 Hz, 1H), 2.65 – 2.58 (m, 4H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 171.2, 170.2, 148.4, 143.8, 135.8, 129.1, 128.7, 128.3, 127.7, 123.9, 82.7, 49.4, 43.04, 42.99, 25.4.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>21</sub>H<sub>22</sub>N<sub>3</sub>O<sub>8</sub>S, 476.1128; found, 476.1133.



N-benzyl-3-((2,5-dioxopyrrolidin-1-yl)oxy)-3-(4-nitrophenyl)-N-

#### tosylpropanamide

**4p:** White solid (50 mg, 45% yield), m. p. 68.0-69.4 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  8.10 – 8.05 (m, 2H), 7.65 – 7.60 (m, 2H), 7.48 – 7.43 (m, 2H), 7.31 – 7.24 (m, 5H), 7.24 – 7.17 (m, 2H), 5.79 (t, *J* = 6.6 Hz, 1H), 5.06 (d, *J* = 16.2 Hz, 1H), 4.90 (d, *J* = 15.6 Hz, 1H), 3.56 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 6.0 Hz, 1H), 3.24 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>1</sub> = 6.6 Hz, 1H), 2.58 – 2.46 (m, 4H), 2.45 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 171.1, 169.2, 148.2, 145.5, 143.6, 136.1, 136.0, 130.0, 128.8, 128.7, 128.0, 127.8, 123.6, 82.4, 49.6, 42.4, 25.3, 21.7.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>27</sub>H<sub>26</sub>N<sub>3</sub>O<sub>8</sub>S, 552.1441; found, 552.1437.



3-((2,5-dioxopyrrolidin-1-yl)oxy)-N-isopropyl-3-(4-nitrophenyl)-N-

#### tosylpropanamide

4q: Yellow solid (54 mg, 54% yield), m. p. 109.2-111.0 °C.

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 7.8 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 7.8 Hz, 2H), 5.87 (t, J = 6.0 Hz, 1H), 4.30 (hept, J = 6.6 Hz, 1H), 3.70 (dd,  $J_I$  = 17.4 Hz,  $J_2$  = 6.6 Hz, 1H), 3.36 (dd,  $J_I$  = 17.4 Hz,  $J_2$  = 6.0 Hz, 1H), 2.60 (s, 4H), 2.47 (s, 3H), 1.31 (d, J = 7.2 Hz, 3H), 1.28 (d, J = 6.6 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  171.1, 169.3, 148.3, 145.3, 144.2, 136.7, 130.2, 128.9, 127.6, 123.7, 82.6, 53.6, 44.2, 25.4, 21.8, 20.4.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>23</sub>H<sub>26</sub>N<sub>3</sub>O<sub>8</sub>S, 504.1441; found, 504.1445.



3-((2,5-dioxopyrrolidin-1-yl)oxy)-*N*-(2-methylallyl)-3-(4-nitrophenyl)-*N*tosylpropanamide 4r: White solid (46 mg, 45% yield), m. p. 146.6-147.9 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  8.13 (d, J = 8.4 Hz, 2H), 7.80 (d, J = 7.8 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 7.8 Hz, 2H), 5.82 (t, J = 5.4 Hz, 1H), 4.87 (s, 1H), 4.66 (s, 1H), 4.44 (d, J = 17.4 Hz, 1H), 4.27 (d, J = 17.4 Hz, 1H), 3.51 (dd,  $J_I$  = 17.4 Hz,  $J_2$  = 6.0 Hz, 1H), 3.13 (dd,  $J_I$  = 17.4 Hz,  $J_2$  = 5.4 Hz, 1H), 2.61 – 2.48 (m, 4H), 2.45 (s, 3H), 1.70 (s, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 171.2, 169.2, 148.3, 145.4, 143.8, 139.8, 136.1, 129.7, 128.7, 128.6, 123.7, 112.1, 82.1, 51.5, 41.9, 25.4, 21.8, 20.2.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>24</sub>H<sub>26</sub>N<sub>3</sub>O<sub>8</sub>S, 516.1441; found, 516.1440.



*N*-(2-((*tert*-butyldimethylsilyl)oxy)ethyl)-3-((2,5-dioxopyrrolidin-1-yl)oxy)-3-(4nitrophenyl)-*N*-tosylpropanamide

4s: White solid (74 mg, 60% yield), m. p. 138.6-140.0 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  8.17 – 8.12 (m, 2H), 7.84 – 7.78 (m, 2H), 7.60 – 7.55 (m, 2H), 7.32 (d, *J* = 7.8 Hz, 2H), 5.83 (dd, *J*<sub>1</sub> = 6.6 Hz, *J*<sub>2</sub> = 5.4 Hz, 1H), 3.96 (dt, *J*<sub>1</sub> = 15.0 Hz, *J*<sub>2</sub> = 5.4 Hz, 1H), 3.87 (dt, *J*<sub>1</sub> = 15.0 Hz, *J*<sub>2</sub> = 6.6 Hz, 1H), 3.83 – 3.73 (m, 2H), 3.59 (dd, *J*<sub>1</sub> = 18.0 Hz, *J*<sub>2</sub> = 6.6 Hz, 1H), 3.24 (dd, *J*<sub>1</sub> = 18.0 Hz, *J*<sub>2</sub> = 5.4 Hz, 1H), 2.58 – 2.49 (m, 4H), 2.45 (s, 3H), 0.77 (s, 9H), -0.01 – -0.05 (m, 6H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 171.2, 169.8, 148.3, 145.2, 144.0, 136.5, 129.8, 128.7, 128.2, 123.8, 81.9, 61.7, 48.4, 42.6, 25.8, 25.4, 21.8, 18.3, -5.4.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>28</sub>H<sub>38</sub>N<sub>3</sub>O<sub>9</sub>SSi, 620.2098; found, 620.2095.



methyl *N*-(3-((2,5-dioxopyrrolidin-1-yl)oxy)-3-(4-nitrophenyl)propanoyl)-*N*-tosyl-*L*-alaninate

4t: White solid (22 mg, 20% yield), m. p. 83.6-84.9 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  8.20 – 8.14 and 8.14 – 8.06 (m, 2H), 7.90 – 7.86 and 7.85 – 7.80 (m, 2H), 7.65 – 7.57 and 7.50 – 7.44 (m, 2H), [7.41 (d, *J* = 7.8 Hz) and 7.40 – 7.36 (m)] (2H), [5.82 (dd, *J*<sub>1</sub> = 7.2 Hz, *J*<sub>2</sub> = 6.0 Hz) and 5.76 (dd, *J*<sub>1</sub> = 7.8 Hz, *J*<sub>2</sub> = 5.4 Hz)] (1H), 4.88 – 4.81 (m, 1H), [3.73 (dd, *J*<sub>1</sub> = 18.0 Hz, *J*<sub>2</sub> = 5.4 Hz) and 3.59 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 6.6 Hz)] (1H), 3.65 and 3.45 (s, 3H), [3.41 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 6.0 Hz) and 3.28 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 7.8 Hz)] (1H), 2.63 – 2.56 (m, 4H), 2.49 (s, 3H), 1.54 and 1.44 (d, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 170.9, 170.8, 169.8, 169.7, 168.3, 148.2, 145.8, 143.7, 136.0, 130.2, 130.1, 129.0, 128.9, 127.9, 127.8, 123.6, 123.4, 82.4, 82.1, 56.1, 56.0, 52.6, 52.4, 42.4, 42.2, 25.3, 25.3, 21.8, 21.7, 16.04, 15.97.

**HRMS (ESI-TOF)** *m/z*: (M+H)<sup>+</sup> calcd. For C<sub>24</sub>H<sub>26</sub>N<sub>3</sub>O<sub>10</sub>S, 548.1339; found, 548.1342.



#### 3-((1,3-dioxoisoindolin-2-yl)oxy)-N-methyl-3-(4-nitrophenyl)-N-

#### tosylpropanamide

**4u:** White solid (68 mg, 65% yield), m. p. 133.2-135.1 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  8.19 – 8.13 (m, 2H), 7.78 – 7.72 (m, 4H), 7.75 – 7.69 (m, 2H), 7.70 – 7.65 (m, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 5.90 (t, *J* = 6.6 Hz, 1H), 3.74 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 6.0 Hz, 1H), 3.52 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 7.2 Hz, 1H), 3.21 (s, 3H), 2.46 (s, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 169.0, 163.5, 148.4, 145.5, 144.4, 135.8, 134.8, 130.3, 129.2, 128.7, 127.5, 123.8, 123.7, 84.2, 42.6, 33.2, 21.8.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>25</sub>H<sub>22</sub>N<sub>3</sub>O<sub>8</sub>S, 524.1128; found, 524.1127.



#### 3-(4-chlorophenyl)-3-((1,3-dioxoisoindolin-2-yl)oxy)-N-methyl-N-

#### tosylpropanamide

4v: White solid (57 mg, 56% yield), m. p. 126.3-127.6 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.77 – 7.69 (m, 6H), 7.42 – 7.38 (m, 2H), 7.36 – 7.32 (m, 2H), 7.29 – 7.25 (m, 2H), 5.82 (t, *J* = 6.6 Hz, 1H), 3.69 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 6.0 Hz, 1H), 3.48 (dd, *J*<sub>1</sub> = 17.4 Hz, *J*<sub>2</sub> = 6.6 Hz, 1H), 3.21 (s, 3H), 2.45 (s, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 169.3, 163.6, 145.3, 135.9, 135.6, 135.3, 134.6, 130.2, 129.6, 128.8, 127.6, 127.5, 127.2, 123.6, 84.4, 42.3, 33.2, 21.8.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>25</sub>H<sub>22</sub>ClN<sub>2</sub>O<sub>6</sub>S, 513.0887; found, 513.0889.



#### 3-((1,3-dioxoisoindolin-2-yl)oxy)-N-methyl-3-(o-tolyl)-N-tosylpropanamide

4w: White solid (45 mg, 46% yield), m. p. 115.0-116.5 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.80 – 7.75 (m, 2H), 7.76 – 7.70 (m, 2H), 7.72 – 7.67 (m, 2H), 7.45 (dd,  $J_1$  = 7.8 Hz,  $J_2$  = 1.2 Hz, 1H), 7.33 (d, J = 7.8 Hz, 2H), 7.23 – 7.14 (m, 2H), 7.12 (dd,  $J_1$  = 7.8 Hz,  $J_2$  = 1.8 Hz, 1H), 6.16 (t, J = 6.6 Hz, 1H), 3.73 (dd,  $J_1$  = 17.4 Hz,  $J_2$  = 6.6 Hz, 1H), 3.48 (dd,  $J_1$  = 17.4 Hz,  $J_2$  = 6.0 Hz, 1H), 3.21 (s, 3H), 2.45 (s, 3H), 2.43 (s, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 169.8, 163.7, 145.0, 137.4, 135.9, 135.1, 134.4, 130.6, 130.0, 129.0, 128.8, 127.5, 127.3, 126.1, 123.4, 81.4, 42.0, 33.0, 21.7, 19.2.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>26</sub>H<sub>25</sub>N<sub>2</sub>O<sub>6</sub>S, 493.1433; found, 493.1430.



*N*-(1-((2,5-dioxopyrrolidin-1-yl)oxy)vinyl)-*N*,4-dimethylbenzenesulfonamide 5a: White solid (64 mg, 98% yield), m. p. 132.9-133.7 °C.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.84 – 7.79 (m, 2H), 7.32 (d, J = 8.4 Hz, 2H), 4.61 (d, J = 3.6 Hz, 1H), 4.54 (d, J = 3.6 Hz, 1H), 3.15 (s, 3H), 2.76 (s, 4H), 2.43 (s, 3H).
<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 169.7, 152.5, 144.3, 134.8, 129.8, 128.2, 92.0, 36.6, 25.7, 21.7.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>14</sub>H<sub>17</sub>N<sub>2</sub>O<sub>5</sub>S, 325.0858; found, 325.0855.



*N*-(1-((1,3-dioxoisoindolin-2-yl)oxy)vinyl)-*N*,4-dimethylbenzenesulfonamide **5b:** White solid, m. p. 118.6-119.5 °C.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 – 7.83 (m, 4H), 7.81 – 7.77 (m, 2H), 7.30 (d, J = 7.8 Hz, 2H), 4.72 (d, J = 4.2 Hz, 1H), 4.67 (d, J = 3.6 Hz, 1H), 3.23 (s, 3H), 2.39 (s,

3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 162.2, 153.5, 144.2, 135.0, 129.7, 128.9, 128.3, 124.0, 90.6, 36.3, 21.7.

**HRMS (ESI-TOF)** m/z: (M+H)<sup>+</sup> calcd. For C<sub>18</sub>H<sub>17</sub>N<sub>2</sub>O<sub>5</sub>S, 373.0858; found, 373.0855.



*N*-benzyl-*N*-(1-((2,5-dioxopyrrolidin-1-yl)oxy)vinyl)benzenesulfonamide

**5c:** White solid, m. p. 121.7-122.9 °C.

<sup>1</sup>**H NMR (600 MHz, CDCl**<sub>3</sub>) δ 7.93 – 7.88 (m, 2H), 7.61 – 7.54 (m, 1H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.41 – 7.35 (m, 2H), 7.33 – 7.26 (m, 3H), 4.73 (s, 2H), 4.62 (d, *J* = 3.0 Hz, 1H), 4.38 (d, *J* = 3.6 Hz, 1H), 2.71 (s, 4H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 169.7, 149.8, 139.4, 135.5, 133.2, 129.4, 129.1, 128.5, 128.2, 128.1, 95.8, 52.1, 25.7.

**HRMS (ESI-TOF)** *m/z*: (M+H)<sup>+</sup> calcd. For C<sub>18</sub>H<sub>17</sub>N<sub>2</sub>O<sub>5</sub>S, 387.1015; found, 387.1015.

# 8. X- Ray Crystallographic Data

Compound **4b** was crystallized from petroleum ether / dichloromethane. Intensity data for **4b** was collected on Bruker D8 Venture Ims3.0. The details of crystal data collection and refinement of **4b** is summarized in Table **S1**.





**Figure S3.** X-ray crystallographic structure **4b** (ORTEP view with 50% thermal ellipsoid contour probability)

| CCDC code                                     | 1883882                                                          |  |
|-----------------------------------------------|------------------------------------------------------------------|--|
| Empirical formula                             | $C_{21}H_{22}N_2O_6S$                                            |  |
| Formula weight                                | 430.46                                                           |  |
| Temperature/K                                 | 170                                                              |  |
| Crystal system                                | triclinic                                                        |  |
| Space group                                   | P-1                                                              |  |
| a / Å                                         | 8.9610(3)                                                        |  |
| b / Å                                         | 10.1919(3)                                                       |  |
| c / Å                                         | 11.3979(3)                                                       |  |
| α/°                                           | 89.228(1)                                                        |  |
| β/ <b>°</b>                                   | 84.590(1)                                                        |  |
| $\gamma/^{\circ}$                             | 89.609(1)                                                        |  |
| Volume/Å <sup>3</sup>                         | 1036.22(5)                                                       |  |
| Z                                             | 2                                                                |  |
| $ ho \ { m calc} \ g \ / \ cm^3$              | 1.380                                                            |  |
| μ / mm <sup>-1</sup>                          | 0.197                                                            |  |
| F(000)                                        | 452.0                                                            |  |
| Crystal size / mm <sup>3</sup>                | 0.362 × 0.299 × 0.226                                            |  |
| Radiation                                     | MoKa ( $\lambda = 0.71073$ )                                     |  |
| $2\theta$ range for data collection / °       | 2.28 to 35.4                                                     |  |
| Index ranges                                  | $-15 \le h \le 13,$<br>$-18 \le k \le 18,$<br>$-20 \le 1 \le 20$ |  |
| Reflections collected                         | 33755                                                            |  |
| Independent reflections                       | 12284 [ $R_{int} = 0.1011$ , $R_{sigma} = 0.0572$ ]              |  |
| Data / restraints / parameters                | 12284/0/273                                                      |  |
| Goodness-of-fit on F <sup>2</sup>             | 1.035                                                            |  |
| Final R indexes [I>=2 $\sigma$ (I)]           | $R_1 = 0.0572, wR_2 = 0.0587$                                    |  |
| Final R indexes [all data]                    | $R_1 = 0.1011, wR_2 = 0.0794$                                    |  |
| Largest diff. peak / hole / e Å <sup>-3</sup> | 0.581/-0.406                                                     |  |

Table S1. Crystal data and structure refinements for 4b.

# 9. References

- 1. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.
- Mansfield, S. J.; Campbell, C. D.; Jones, M. W.; Anderson, E. A. *Chem. Commun.* 2015, *51*, 3316.
- 3. Witulski, B.; Gossmann, M. Chem. Commun. 1999, 1879.
- 4. Paioti, P.; Abboud, K.; Aponick, A. J. Am. Chem. Soc. 2016 138, 2150.

# **10.Copies of NMR Spectra**









<sup>1</sup>H NMR: 600 MHz in CDCl<sub>3</sub>





fl (ppm)









S31


































<sup>1</sup>H NMR: 600 MHz in CDCl<sub>3</sub>







S48







<sup>1</sup>H NMR: 500 MHz in CDCl<sub>3</sub>









<sup>1</sup>H NMR: 600 MHz in CDCl<sub>3</sub>













<sup>1</sup>H NMR: 600 MHz in CDCl<sub>3</sub>







S58























S66









<sup>13</sup>C NMR: 150 MHz in CDCl<sub>3</sub>



42.33

-33.15

-21.79










0 100 f1 (ppm) 





--2.395

3.230



<sup>1</sup>H NMR: 600 MHz in CDCl<sub>3</sub>









<sup>1</sup>H NMR: 600 MHz in CDCl<sub>3</sub>

5c





0 100 f1 (ppm)