Facile Synthesis of Diverse Hetero Polyaromatic Hydrocarbons

(PAHs) via Styryl Diels-Alder Reaction of Conjugated Diynes

Jingwen Wei, ${ }^{a}$ Mengjia Liu, ${ }^{a}$ Xiaohan Ye, ${ }^{\text {a }}$ Shuyao Zhang, ${ }^{\text {a }}$ Elaine Sun, ${ }^{\text {a }}$ Chuan Shan, ${ }^{a}$ Lukasz Wojtas, ${ }^{\text {a }}$ Xiaodong Shi*, ${ }^{\text {a }}$
${ }^{a}$ Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States

I. General Methods and Materials S2
II. General Procedures S2
III. Condition Optimization S9
IV. Optical Properties S10
V. ORTEP Drawing of the Crystal Structures S11
VII. Compounds Characterization S20
VIII. NMR Spectra Data S47

I. General Methods and Materials

All of the reactions dealing with air and/or moisture-sensitive compounds were carried out under an atmosphere of argon using oven/flame-dried glassware and standard syringe/septa techniques. Unless otherwise noted, all commercial reagents and solvents were obtained from the commercial provider and used without further purification. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on Bruker Avance NEO- 600 MHz and NEO- 400 MHz spectrometers. Chemical shifts were reported relative to internal tetramethylsilane ($\delta 0.00 \mathrm{ppm}$) or $\mathrm{CDCl}_{3}(\delta 7.26 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ and CDCl_{3} ($\delta 77.00 \mathrm{ppm}$) for ${ }^{13} \mathrm{C}$. Flash column chromatography was performed on 230-430 mesh silica gel. Analytical thin layer chromatography was performed with precoated glass baked plates (250μ) and visualized by fluorescence and by charring after treatment with potassium permanganate stain. Chirality determination was measured in Agilent 1260 infinity HPLC system. HRMS were recorded on Agilent 6320 TOF MS/Agilent 1200 HPLC spectrometer and an Agilent 7890 GC-MS QTOF 7200 and 6540 LC/QTOF spectrometer in the mass-spec facility in the University of South Florida.

II. General Procedures

2.1 General procedure for the synthesis of 3a-3v

Method A: Synthesis of diynes S3
To a round bottom flask with CuCl (1.1 equiv.) add 30% (v/v) $\mathrm{nBuNH}_{2}(0.25 \mathrm{M})$ aqueous solution at $0{ }^{\circ} \mathrm{C}$. Fill flask with argon and add $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$ until the blue color disappeared. Refill flask with argon again. A solution of terminal alkyne $\mathbf{S} 1$ (1 equiv.) in DCM (1 M) (was then added, followed by the slow addition of a solution of bromoalkyne $\mathbf{S} 2$ (2 equiv.) in DCM (1 M) over 5 minutes. The reaction mixture was stirred until terminal alkyne disappear on TLC, quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to give the desired product.

Method B: Synthesis of cinnamic acid S6

To a solution of aryl formaldehyde $\mathbf{S 4}$ (1.0 equiv) and malonic acid $\mathbf{S 5}$ (1.2 equiv) in dry pyridine (0.1 M) was added slowly of piperidine (0.05 equiv.) at room temperature. Then warm the mixture to $95^{\circ} \mathrm{C}$ for 3 h . The solvent was then poured into a beaker with 1 M cold hydrochloric
acid, and the crude products were collected by filtration. Products are further dried by lyophilizer.

Method C: Synthesis of 3a-3v

To a round bottom flask with diynes $\mathbf{S 3}$ (1 equiv.), cinnamic acid $\mathbf{S 6}$ (1.5 equiv.), 4dimethylaminopyridine (0.1 equiv.) in anhydrous DCM at room temperature add EDC (2 equiv,) slowly. Track the reaction by TLC. The reaction was quenched with water and extracted with EtOAc for three times. The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired products 3a3v.

Method C: Synthesis of $\mathbf{3 q}$
To a solution of amide $\mathbf{S 3}$ (1.0 equiv.), PPh_{3} (2.0 equiv.), cinnamic alcohol $\mathbf{S 7}$ (2.0 equiv.) in anhydrous THF (0.1 M) under argon at $0^{\circ} \mathrm{C}$ was added slowly of DIAD (2.2 equiv.). Then warm the mixture to room temperature for 3 h . The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired product 3q.

Method D: Synthesis of 3r

To a round bottom flask with $\mathbf{S 7}$ (1 equiv.), propargyl bromide (1.2 equiv.) in anhydrous DMF at $0^{\circ} \mathrm{C}$ add NaH (1.2 equiv, 60% dispersion in mineral oil) slowly. After stirring for 30 min , the reaction solution was warmed up the room temperature for 4 h . The reaction was quenched with water and extracted with EtOAc for three times. The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired product $\mathbf{S 8}$. Treat $\mathbf{S 8}$ with method \mathbf{A} to produce the desired product $\mathbf{3 r}$.

Method E: Synthesis of 3s and 3t

To a round bottom flask with alcohol (1 equiv.), cinnamic acid S6 (1.5 equiv.), 4dimethylaminopyridine (0.1 equiv.) in anhydrous DCM at room temperature add EDC (2 equiv,) slowly. Track the reaction by TLC. The reaction was quenched with water and extracted with EtOAc for three times. The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired products $\mathbf{S 9}$. Treat $\mathbf{S 9}$ with method A to produce the desired product 3 s and $\mathbf{3 t}$.

Method F: Synthesis of 3u

To a round bottom flask with dimethyl malonate (1 equiv.), propargyl bromide (1.2 equiv.) in anhydrous acetone at room temperature add $\mathrm{Ka}_{2} \mathrm{CO}_{3}$ (5 equiv.). After stirring for 12 h , the reaction was quenched with water and extracted with EtOAc for three times. The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired product $\mathbf{S 1 0}$. Treat $\mathbf{S 1 0}$ with method \mathbf{A} to produce the desired product $\mathbf{S 1 1}$. Then treat $\mathbf{S 1 1}$ with method C to produce the desired product 3u.

2.2 Procedure for 1a

To a solution of amide $\mathbf{S} 1$ (1.0 equiv.), PPh_{3} (2.0 equiv.), cinnamic alcohol $\mathbf{S 7}$ (2.0 equiv.) in anhydrous THF (0.1 M) under argon at $0^{\circ} \mathrm{C}$ was added slowly of DIAD (2.2 equiv.). Then warm the mixture to room temperature for 3 h . The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired product S12.
To a solution of amide $\mathbf{S 1 2}$ (1.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (0.1 equiv.), CuI (0.05 equiv.) in anhydrous THF under argon at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ (5 equiv.), followed adding PhI (1.5 equiv.). Then sir the mixture at room temperature for 3 h . The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired product 1a.

2.3 Procedure for 1ac(1ad)

1a

DCM, rt., 12 h

To a solution of amide $\mathbf{1 a}$ (1.0 equiv in anhydrous $\mathrm{DCM}(0.1 \mathrm{M})$ at room temperature was added JohnPhosAu(MeCN)SbF 6 (0.1 equiv.). After 12 h , the reaction is messy because of the
decomposition of $\mathbf{1 a c}$. The product $\mathbf{1 a c}$ is not stable and easily decompose during separation. We use MeOH as nucleophile trapping 1ac to produce product 1ad. To a solution of amide $\mathbf{1 a}$ (1.0 equiv.) and MeOH (10 equiv.) in anhydrous $\mathrm{DCM}(0.1 \mathrm{M}$) at room temperature was added JohnPhosAu(MeCN)SbF 6 (0.1 equiv.). The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired product 1ad.

2.4 Procedure for 2a

To a solution of amide $\mathbf{S 1}$ (1.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (0.1 equiv.), CuI (0.05 equiv.) in anhydrous THF under argon at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ (5 equiv.), followed adding PhI (1.5 equiv.). Then sir the mixture at room temperature for 3 h . The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired product S13.
To a round bottom flask with amine $\mathbf{S 1 3}$ (1 equiv.), cinnamic acid S6 (1.5 equiv.), 4dimethylaminopyridine (0.1 equiv.) in anhydrous DCM at room temperature add EDC (2 equiv,) slowly. Track the reaction by TLC. The reaction was quenched with water and extracted with EtOAc for three times. The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired product 2a.

2.5 Procedure for 2ab,2ea

The resulting mixture of $\mathbf{2 a}(0.2 \mathrm{mmol})$ in xylene $(10 \mathrm{~mL})$ in a 20 mL vail was heated under 160 ${ }^{\circ} \mathrm{C}$ for 48 h in dark. Track the reaction by TLC. The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired product 2ab.

The resulting mixture of $\mathbf{2 e}(0.2 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ in a 20 mL vail was heated under 80 ${ }^{\circ} \mathrm{C}$ for 12 h dark. The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired product 2ea with 58% conversion and 53% yield.

2.6 Procedure for 2b-2e

To a round bottom flask with amine (1 equiv.), cinnamic acid $\mathbf{S 6}$ (1.5 equiv.), 4dimethylaminopyridine (0.1 equiv.) in anhydrous DCM at room temperature add EDC (2 equiv,) slowly. Track the reaction by TLC. The reaction was quenched with water and extracted with EtOAc for three times. The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired product $\mathbf{2 b} \mathbf{- 2} \mathbf{e}$.

2.7 General procedure for the synthesis of $\mathbf{4 a - 4 s}$ and $6 a$

To a 20 mL vail with $3(0.2 \mathrm{mmol})$ in toluene (10 mL) was added 10% JohnPhosAu(TA-H)SbF 6 $(17 \mathrm{mg}), 10 \% \mathrm{Cu}(\mathrm{OTf})_{2}(7.2 \mathrm{mg})$ subsequently. The resulting mixture was heated under $80^{\circ} \mathrm{C}$ for 12 h in air under dark. Track the reaction by TLC. The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired product 4a-4s or $\mathbf{6 a}$.

2.8 Procedure for the synthesis of 5aa and 5ab

To a round bottom flask with $\mathbf{4 0}$ or $\mathbf{4 a}$ (1 equiv.) in DMSO (0.1 M) was added NaN_{3} (2 equiv.) slowly at room temperature. Then warm the mixture to $120^{\circ} \mathrm{C}$ and stir for 12 h . The reaction was quenched with water and extracted with EtOAc for three times. The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired product 5aa or 5ab. Both 5aa and 5ab have poor solubility in $\mathrm{CDCl}_{3}, d 6$ DMSO. We used $\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}(10: 1)$ as solvent for NMR.

2.9 Procedure for the synthesis of 5a-5d

To a round bottom flask successively added triazole 5aa (1 equiv.), arylboronic acid (2 equiv.), THF (0.1 M), pyridine (2 equiv.) and $\mathrm{Cu}(\mathrm{OAc})_{2}$ (0.1 equiv.) at room temperature. The bottle was
equipped with an oxygen balloon above. Then warm the mixture to $63^{\circ} \mathrm{C}$ and stir for 12 h . Track the reaction by TLC. The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired products $\mathbf{5 a} \mathbf{-}$ 5d.

2.10 Procedure for the synthesis of 7a-7d

To a round bottom flask with 4 (1 equiv.) in dry THF (0.1 M) was added LiAlH_{4} (2 equiv.) slowly at room temperature. Then warm the mixture to $60^{\circ} \mathrm{C}$ and stir for 3 h . Track the reaction by TLC. The reaction was quenched with water and extracted with EtOAc for three times. The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired products 7a-7d.

2.11 Procedure for the synthesis of 8a-8d

To a round bottom flask with $\mathbf{7 a}, 7 \mathbf{b}, 7 \mathbf{d}$ (1 equiv.) in $\mathrm{DCM}(0.1 \mathrm{M}$) was added JohnPhosAu(MeCN)SbF 6 (0.1 equiv.) at room temperature in dark. (7 c was added $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$) at room temperature in dark). Then stir the mixture for 4 h . The solvent was then removed under reduced pressure to get products $\mathbf{S 1 4}$. Without purification, to the flask with S10 was added DMSO and NaOH (1 M aq., 3 equiv.) at room temperature. Then warm the mixture to $80^{\circ} \mathrm{C}$ and stir for 2 h. Track the reaction by TLC. The reaction was quenched with water and extracted with EtOAc for three times. The solvent was then removed under reduced pressure, and the crude product was purified by column chromatography on silica gel to afford the desired products 8a-8d.

2.11 Procedure for the 2a-2e ISDDA reaction

Condition A: The resulting mixture of $\mathbf{2 a - 2 e}(0.2 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ in a 20 mL vail was heated under $80{ }^{\circ} \mathrm{C}$ for 12 h dark. 2a-2d have no conversion. 2e afford the desired product 2 ea with 58% conversion and 53% yield.

Condition B: To a 20 mL vail with $2 \mathbf{2 a - 2 e}(0.2 \mathrm{mmol})$ in toluene (10 mL) was added 10% JohnPhosAu(TA-H)SbF $6(17 \mathrm{mg}), 10 \% \mathrm{Cu}(\mathrm{OTf})_{2}(7.2 \mathrm{mg})$ subsequently. The resulting mixture
was heated under $80^{\circ} \mathrm{C}$ for 12 h in air under dark. 2a have no conversion. 2b and 2c starting materials decomposed and no clear products are identified. For 2d, head-to-head coupling products are detected as literature reported. ${ }^{1} \mathbf{2 e}$ afford the desired product $\mathbf{2 e a}$ with 100% conversion and 40% yield.

Reference

1 M. Kreuzahler and G. Haberhauer, Cyclopropenylmethyl Cation: A Concealed Intermediate in Gold(I)-Catalyzed Reactions, Angew. Chem. Int. Ed., 2020, 59, 17739-17749.

III. Condition Optimization

3.1 Optimization condition table ${ }^{[a][b]}$

	 3a	[Au], addictive			
Entry	Au Catalyst (10\%)	Additive (10\%)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Solvents	$\begin{gathered} \text { Yield (\%) } \\ 2 \mathrm{a} \end{gathered}$
1	-	-	80	toluene	55
2	JohnPhos(TA-H)AuSbF6	-	80	toluene	84
3	JohnPhos(TA-H)AuSbF6	$\mathrm{Cu}(\mathrm{OTf})_{2}$	80	toluene	95
4	JohnPhos(TA-H)AuSbF6	$\mathrm{Ga}(\mathrm{OTf})_{3}$	80	toluene	14
6	JohnPhos(TA-H)AuSbF6	$\mathrm{Zn}(\mathrm{OTf})_{2}$	80	toluene	77
7	JohnPhos(TA-H)AuSbF6	$\mathrm{Fe}(\mathrm{OTf})_{3}$	80	toluene	5
8	JohnPhos(TA-H)AuSbF6	CuCl	80	toluene	77
9	JohnPhos(TA-H)AuSbF6	CuCl_{2}	80	toluene	80
10	JohnPhos(TA-H)AuSbF6	$\mathrm{Cu}(\mathrm{OAc})_{2}$	80	toluene	72
11	JohnPhos(TA-H)AuSbF6	$\mathrm{Cu}(\mathrm{acac})_{2}$	80	toluene	65
12	JohnPhos(TA-H)AuSbF6	CuSO_{4}	80	toluene	89
13	JohnPhos(TA-H)AuSbF6	CuOTf	80	toluene	84
14	JohnPhos(TA-H)AuSbF6	CuI	80	toluene	84
15	$\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$	-	80	toluene	69
16	$\mathrm{PPh}_{3} \mathrm{AuCl}$	AgSbF_{6}	80	toluene	34
17	$\mathrm{PPh}_{3}(\mathrm{TA}-\mathrm{H}) \mathrm{AuSbF}_{6}$	-	80	toluene	75
18	$\mathrm{IPrAuNTf}_{2}$	-	80	toluene	51
19	JohnPhosAuCl	AgSbF_{6}	80	toluene	60
20	XPhos(TA-H)AuSbF6	AgSb	80	toluene	68
21		$\mathrm{Ga}(\mathrm{OTf})_{3}$	80	toluene	22
22	-	$\mathrm{Cu}(\mathrm{OTf})_{2}$	80	toluene	46
23	-	$\mathrm{Zn}(\mathrm{OTf})_{2}$	80	toluene	52
24	-	CuSO_{4}	80	toluene	54
25	-	AgSbF_{6}	80	toluene	48
26	JohnphosAuNTf ${ }_{2}$		80	toluene	76
27	XphosAuNTf ${ }_{2}$	-	80	toluene	65
28	JohnPhos(MeCN) AuSbF_{6}	-	80	toluene	17
29	JohnPhos(2,4-NO2-TA)AuSbF6	-	80	toluene	77
30	5\% JohnPhos(TA-H)AuSbF6	$5 \% \mathrm{Cu}(\mathrm{OTf})_{2}$	80	toluene	75
31	JohnPhos(TA-H)AuSbF6	$\mathrm{Cu}(\mathrm{OTf})_{2}$	80	MeCN	50
32	JohnPhos(TA-H)AuSbF6	$\mathrm{Cu}(\mathrm{OTf})_{2}$	80	DCE	24
33	JohnPhos(TA-H)AuSbF6	$\mathrm{Cu}(\mathrm{OTf})_{2}$	80	DMSO	60
34	JohnPhos(TA-H)AuSbF6	$\mathrm{Cu}(\mathrm{OTf})_{2}$	80	DMF	67
35	JohnPhos(TA-H)AuSbF6	$\mathrm{Cu}(\mathrm{OTf})_{2}$	rt.	toluene	0
36	JohnPhos(TA-H)AuSbF6	$\mathrm{Cu}(\mathrm{OTf})_{2}$	60	toluene	26(conv.30\%)
37	JohnPhos(TA-H)AuSbF6	$\mathrm{Cu}(\mathrm{OTf})_{2}$ (under light)	80	toluene	88
38	JohnPhos(TA-H)AuSbF 6	$\mathrm{Cu}(\mathrm{OTf})_{2}$ (under argon)	80	toluene	27

IV. Optical Properties

Fluorescence detection Procedures: A series of stock solution of compound $\mathbf{8 a - 8 d}\left(10^{-5} \mathrm{~mol} / \mathrm{L}\right)$ was prepared by dissolving the corresponding amount of compound powder in DCE, which was stored in the dark. For fluorescence detection, 5 mL stock solutions were used. The fluorescence spectra of mixed solutions were recorded with the corresponding excitation wavelength at room temperature (298 K).

Name	$\lambda^{\text {ex }}(\mathrm{nm})$	$\lambda^{\text {em }}(\mathrm{nm})$	$\Delta \lambda(\mathrm{nm})$
8a	254	$360 \& 379$	125
8c	286	$384 \& 406$	120
8d	248	$366 \& 432$	184
8b	287	370	83

V. ORTEP Drawing of the Crystal Structure

X-ray diffraction data were measured on Bruker D8 Venture PHOTON II CMOS diffractometer equipped with a $\mathrm{Cu} \mathrm{K} \alpha$ INCOATEC ImuS micro-focus source $(\lambda=1.54178 \AA$). Indexing was performed using APEX4 [1] (Difference Vectors method). Data integration and reduction were performed using SaintPlus [2]. Absorption correction was performed by multi-scan method implemented in SADABS [3]. Space group was determined using XPREP implemented in APEX3 [1]. Structure was solved using SHELXT [4] and refined using SHELXL-2018/3 [5] (full-matrix least-squares on F2) through OLEX2 interface program [6]. Ellipsoid plot was done with Platon [7]. 5ab, 6a: Hydrogen atoms of -NH groups were found from difference Fourier map and was freely refined.6a: Disordered chloroform molecule were refined with restraints. All remaining hydrogen atoms were refined using riding model. Data and refinement conditions are shown in Tables S1-S4.
[1] Bruker (2022). APEX4. Bruker AXS LLC, Madison, Wisconsin, USA.
[2] Bruker SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.
[3] Krause, L., Herbst-Irmer, R., Sheldrick, G. M., Stalke, D. (2015).
"Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination" J. Appl. Cryst. 48, 3-10.
[4] Sheldrick, G. M. (2015). "SHELXT - Integrated space-group and crystal-structure determination", Acta Cryst. A71, 3-8.
[5] Sheldrick, G. M. (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8
[6] Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program (2009). J. Appl. Cryst., 42, 339-341 [7] A.L.Spek, The Program PLATON is designed as a Multipurpose Crystallographic Tool. 1980-2021 A.L.Spek, Utrecht University, Utrecht, The Netherlands. Acta Cryst. 2020, E76, 1-11

Table S1 Crystal data and structure refinement for $\mathbf{4 j}$.

Identification code	4 j
Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{BrFNO}_{3} \mathrm{~S}$
Formula weight	534.39
Temperature/K	100.00
Crystal system	monoclinic
Space group	P21/n
a/Å	7.9493(2)
b/ \AA	24.1157(5)
c/Å	11.4002(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	91.3000(10)
$\gamma /{ }^{\circ}$	90
Volume/ ${ }^{3}$	2184.89(8)
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.625
μ / mm^{-1}	3.806
$\mathrm{F}(000)$	1080.0
Crystal size $/ \mathrm{mm}^{3}$	$0.2 \times 0.05 \times 0.03$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ} 7.332$ to 159.172	
Index ranges	$-9 \leq \mathrm{h} \leq 10,-30 \leq \mathrm{k} \leq 30,-14 \leq 1 \leq 13$
Reflections collected	52092
Independent reflections	$4705\left[\mathrm{R}_{\text {int }}=0.0530, \mathrm{R}_{\text {sigma }}=0.0201\right]$
Data/restraints/parameters	4705/0/308
Goodness-of-fit on F^{2}	1.057
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0290, \mathrm{wR}_{2}=0.0702$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0339, \mathrm{wR}_{2}=0.0733$
Largest diff. peak/hole / e $\AA^{-3} 0.33 /-0.48$	

Figure S1. Ellipsoid plot of $\mathbf{4 j}$. Anisotropic displacement parameters were drawn at 50% probability level.
CCDC: 2161060

Table S2 Crystal data and structure refinement for 4s.	
Identification code	4 s
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{O}_{2}$
Formula weight	284.30
Temperature/K	100.00
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	16.0281(2)
b/Å	5.29640 (10)
c/Å	16.7488(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	99.9850(10)
γ°	90
Volume/ \AA^{3}	1400.29(4)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.349
μ / mm^{-1}	0.690
$F(000)$	592.0
Crystal size $/ \mathrm{mm}^{3}$	$0.26 \times 0.07 \times 0.03$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ} 5.598$ to 160.1	
Index ranges	$-20 \leq h \leq 20,-6 \leq k \leq 6,-21 \leq 1 \leq 21$
Reflections collected	26828
Independent reflections	3037 [$\left.\mathrm{R}_{\text {int }}=0.0426, \mathrm{R}_{\text {sigma }}=0.0206\right]$
Data/restraints/parameters	3037/0/199
Goodness-of-fit on F^{2}	1.056
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0359, \mathrm{wR}_{2}=0.0946$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0402, \mathrm{wR}_{2}=0.0989$
Largest diff. peak/hole / e $\AA^{-3} 0.20 /-0.24$	

Figure S2. Ellipsoid plot of 4s. Anisotropic displacement parameters were drawn at 50\% probability level.
CCDC: 2161061

Table S3 Crystal data and structure refinement for 5ab.

Identification code	5 ab
Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$
Formula weight	480.53
Temperature/K	296.00
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	9.2159(2)
b/Å	24.1709(5)
c/Å	21.1041(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	101.4372(7)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	4607.73(16)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.385
μ / mm^{-1}	1.565
F(000)	2000.0
Crystal size/mm ${ }^{3}$	$0.19 \times 0.16 \times 0.04$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection $/{ }^{\circ} 5.624$ to 160.73	
Index ranges	$-11 \leq \mathrm{h} \leq 11,-29 \leq \mathrm{k} \leq 30,-26 \leq 1 \leq 26$
Reflections collected	99565
Independent reflections	$10021\left[\mathrm{R}_{\text {int }}=0.0503, \mathrm{R}_{\text {sigma }}=0.0250\right]$
Data/restraints/parameters	10021/0/641
Goodness-of-fit on F^{2}	1.044
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0430, \mathrm{wR}_{2}=0.1153$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0522, \mathrm{wR}_{2}=0.1242$
Largest diff. peak/hole / e $\AA^{-3} 0.31 /-0.48$	

Figure S3. Ellipsoid plot of 5ab. Anisotropic displacement parameters were drawn at 50\% probability level.
CCDC: 2161059

Table S4 Crystal data and structure refinement for 6a.

Identification code	6a
Empirical formula	$\mathrm{C}_{45.91} \mathrm{H}_{38.84} \mathrm{Cl}_{1.83} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$
Moiety formula	$\mathrm{C}_{41} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}, \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}, 0.916\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
Formula weight	841.72
Temperature/K	100.00
Crystal system	triclinic
Space group	P-1
a/Å	10.6653(3)
b/Å	12.1532(3)
c/Å	16.9707(5)
$\alpha /{ }^{\circ}$	70.450(1)
$\beta /{ }^{\circ}$	89.007(1)
$\gamma /{ }^{\circ}$	74.967(1)
Volume/ \AA^{3}	1996.1(1)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.400
μ / mm^{-1}	2.327
$F(000)$	877.0
Crystal size $/ \mathrm{mm}^{3}$	$0.2 \times 0.13 \times 0.03$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ} 5.542$ to 158.934	
Index ranges	$-13 \leq \mathrm{h} \leq 12,-15 \leq \mathrm{k} \leq 15,-21 \leq 1 \leq 21$
Reflections collected	40341
Independent reflections	8344 [$\left.\mathrm{R}_{\text {int }}=0.0364, \mathrm{R}_{\text {sigma }}=0.0240\right]$
Data/restraints/parameters	8344/10/568
Goodness-of-fit on F^{2}	1.045
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0367, \mathrm{wR}_{2}=0.0946$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0402, \mathrm{wR}_{2}=0.0977$
Largest diff. peak/hole / e $\AA^{-3} 0.45 /-0.48$	

Figure S4. Ellipsoid plot of 6a. Anisotropic displacement parameters were drawn at 50\% probability level. Chloroform molecule is disordered.
CCDC: 2161058

VI. Compound Characterization

1a

N-cinnamyl-4-methyl- N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide

1a was prepared following the Procedure 2.2 and purified by column chromatography (Hexane:
Ethyl acetate $=10: 1$) in 75% yield as white solid.
${ }^{1}$ H NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.23(\mathrm{~m}, 10 \mathrm{H}), 7.09-7.07(\mathrm{~m}$, $2 \mathrm{H}), 6.61(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dt}, J=15.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 4.06-4.05(\mathrm{~m}, 2 \mathrm{H})$, 2.35 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 143.5,136.17,136.03,134.9,131.5,129.6,128.6,128.4,128.14$, 128.06, 127.87, 126.6, 123.1, 122.2, 85.8, 81.8, 48.9, 36.9, 21.4

HRMS m/z (ESI) calcd. for C25H24NO2S $+(\mathrm{M}+\mathrm{H})^{+} 402.1523$, found 402.1540

1ad
3-(methoxy(phenyl)methyl)-4-phenyl-1-tosyl-1,2,3,4-tetrahydropyridine
1ad was prepared following the Procedure 2.3 and purified by column chromatography (Hexane: Ethyl acetate $=10: 1$) in 85% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-6.98$ (m, $8 \mathrm{H}), 6.83-6.81(\mathrm{~m}, 2 \mathrm{H}), 5.68(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{td}, J=11.4,3.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.52(\mathrm{dt}, J=16.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 4 \mathrm{H}), 2.77(\mathrm{dd}, J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 143.6,141.0,139.0,138.5,133.2,129.7,127.78,127.73,127.4$, 126.4, 126.2, 122.8, 83.2, 57.0, 45.6, 44.74, 44.58, 21.5

HRMS m/z (ESI) calcd. for C26H28NO3S $+(\mathrm{M}+\mathrm{H})^{+} 434.1785$, found 434.1785

2a
N -(3-phenylprop-2-yn-1-yl)- N -tosylcinnamamide
2a was prepared following the Procedure 2.4 and purified by column chromatography (Hexane:
Ethyl acetate $=5: 1$) in 83% yield as white solid.
${ }^{1} H$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.51(\mathrm{~m}$, $2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{dt}, J=6.1,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}$, 3 H).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.3,146.6,145.0,136.7,134.4,131.8,130.7,129.7,129.0$, 128.59, 128.40, 128.24, 128.0, 122.3, 117.6, 84.3, 83.8, 36.3, 21.6

HRMS m/z (ESI) calcd. for C25H22NO3S $+(\mathrm{M}+\mathrm{H})^{+} 416.1315$, found 416.1311

4-phenyl-2-tosyl-2,3-dihydro-1H-benzo[f]isoindol-1-one
2ab was prepared following the General Procedure 2.5 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 45% yield as white solid.
${ }^{1} H$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.34(\mathrm{t}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 166.2,145.2,135.8,135.41,135.37,134.9,133.36,133.30,130.0$, $129.8,129.4,129.1,128.8,128.5,128.2,127.4,126.7,126.0,125.6,49.6,21.7$
HRMS m/z (ESI) calcd. for C25H20NO3S $+(\mathrm{M}+\mathrm{H})^{+} 414.1159$, found 414.1182

2b
N-(prop-2-yn-1-yl)- N-tosylcinnamamide
2b was prepared following the General Procedure 2.6 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 92% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.93-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H})$, $7.39(\mathrm{td}, J=3.9,2.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.29(\mathrm{q}, J=12.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.75(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $2.31(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ((151 MHz; CDCl3): $\delta 165.2,146.7,145.2,136.5,134.3,130.8,129.8,129.0,128.4$, 127.9, 117.4, 78.4, 72.6, 35.4, 21.7

HRMS m/z (ESI) calcd. for C19H18NO3S $+(\mathrm{M}+\mathrm{H})^{+} 340.1002$, found 340.0989

N-(but-2-yn-1-yl)- N-tosylcinnamamide
2c was prepared following the General Procedure 2.6 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 83% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=$ $6.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{dt}, J=5.3,2.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{q}, J=$ $2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.4,146.4,144.9,136.7,134.4,130.7,129.6,128.9,128.4$, 128.0, 117.6, 80.7, 73.8, 36.1, 21.6, 3.6

HRMS m/z (ESI) calcd. for C20H20NO3S $+(\mathrm{M}+\mathrm{H})^{+} 354.1159$, found 354.1179

N -(3-bromoprop-2-yn-1-yl)-N-tosylcinnamamide
2d was prepared following the General Procedure 2.6 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 75% yield as white solid.
${ }^{1} H$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}$, 2 H), 7.40 (dquintet, $J=5.0,2.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.75$ ($\mathrm{s}, 2 \mathrm{H}$), 2.41 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.2,146.8,145.2,136.4,134.3,130.8,129.8,129.0,128.4$, 127.8, 117.4, 74.7, 44.6, 36.5, 21.7

HRMS m/z (ESI) calcd. for C19H17BrNO3S $+(\mathrm{M}+\mathrm{H})^{+} 418.0108$, found 418.0105

2e
N-(4-oxo-4-phenylbut-2-yn-1-yl)- N-tosylcinnamamide
$\mathbf{2 e}$ was prepared following the General Procedure 2.6 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 85% yield as white solid.
${ }^{1} H$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta \quad 8.02-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.94-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 177.1,165.2,147.1,145.6,136.29,136.14,134.28,134.24,130.9$, 130.1, 129.6, 129.0, 128.59, 128.49, 127.8, 117.3, 88.6, 81.8, 35.7, 21.6

HRMS m/z (ESI) calcd. for C26H22NO4S $+(\mathrm{M}+\mathrm{H})^{+} 444.1265$, found 444.1275

4-benzoyl-2-tosyl-2,3-dihydro-1H-benzo[f]isoindol-1-one

2ea was prepared following the General Procedure 2.5 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 53% yield (58% conversion) as white solid.
${ }^{1}$ H NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.80-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 4.88 (s, 2H), 2.42 (s, 3H).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 196.3,165.3,145.5,136.6,135.1,134.7,133.5,133.26,133.06$, $132.5,130.3,129.94,129.82,129.64,129.2,128.2,128.0,127.6,127.3,125.8,49.0,21.7$
HRMS m/z (ESI) calcd. for C26H20NO4S $+(\mathrm{M}+\mathrm{H})^{+} 442.1108$, found 442.1120

N-(5-phenylpenta-2,4-diyn-1-yl)- N-tosylcinnamamide
3a was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 84% yield as yellow solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=15.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}$, $J=5.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 9 \mathrm{H}), 4.89(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}$, 3H).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.2,146.9,145.4,136.3,134.3,132.6,130.9,129.9,129.5$, $129.0,128.5,127.9,121.3,117.3,77.9,73.3,69.1,36.4,21.7$
HRMS m/z (ESI) calcd. for C27H22NO3S $+(\mathrm{M}+\mathrm{H})^{+} 440.1315$, found 440.1313

3b
N-(5-(p-tolyl)penta-2,4-diyn-1-yl)- N-tosylcinnamamide
3b was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 85% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=$ $6.5,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=5.1,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.35(\mathrm{q}, J=11.5 \mathrm{~Hz}, 5 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 4.88 (s, 2H), $2.39(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.2,146.8,145.3,139.8,136.4,134.3,132.6,130.8,129.9$, $129.2,129.0,128.5,127.9,118.2,117.4,78.2,76.7,72.7,69.3,36.4,21.68,21.64$
HRMS m/z (ESI) calcd. for C28H24NO3S+ $(\mathrm{M}+\mathrm{H})^{+} 454.1472$, found 454.1500

3c

N-(5-(4-methoxyphenyl)penta-2,4-diyn-1-yl)- N-tosylcinnamamide

3c was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 80% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.93-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.51(\mathrm{~m}, 2 \mathrm{H})$, 7.43-7.40 (m, 5H), 7.35-7.32 (m, 3H), 6.85-6.83 (m, 2H), 4.88 (s, 2H), 3.82 ($\mathrm{s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (151 MHz ; CDCl3): $\delta 165.2,160.5,146.8,145.2,136.4,134.35,134.28,130.8,129.9$, $129.0,128.5,127.9,117.4,114.2,113.2,78.1,76.4,72.2,69.4,55.4,36.4,21.7$
HRMS $\mathrm{m} / \mathrm{z}(\mathrm{ESI})$ calcd. for $\mathrm{C} 28 \mathrm{H} 24 \mathrm{NO} 4 \mathrm{~S}+(\mathrm{M}+\mathrm{H})^{+} 470.1421$, found 470.1443

N-(5-(4-chlorophenyl)penta-2,4-diyn-1-yl)- N -tosylcinnamamide
3d was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 82% yield as white solid.
${ }^{1} H$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.92-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=7.2$, $2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.2,146.9,145.3,136.4,135.6,134.3,133.8,130.8,129.9$, 129.00, 128.88, 128.5, 127.8, 119.8, 117.3, 77.7, 76.6, 74.3, 68.8, 36.4, 21.7

HRMS $\mathrm{m} / \mathrm{z}(\mathrm{ESI})$ calcd. for $\mathrm{C} 27 \mathrm{H} 21 \mathrm{ClNO} 3 \mathrm{~S}+(\mathrm{M}+\mathrm{H})^{+} 474.0926$, found 474.0949

3e

N-(nona-2,4-diyn-1-yl)- N-tosylcinnamamide

3e was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 90% yield as white solid.
${ }^{1} H$ NMR $\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=$ $7.1,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{ddd}, J=8.1,7.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.91$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.2,146.7,145.1,136.4,134.3,130.8,129.8,129.0,128.4$, $127.9,117.4,81.1,70.0,69.6,64.5,36.2,30.1,21.9,21.7,18.9,13.5$

HRMS m/z (ESI) calcd. for C25H26NO3S+ (M+H)+ 420.1628, found 420.1627

N-tosyl- N-(5-(triisopropylsilyl)penta-2,4-diyn-1-yl)cinnamamide
3f was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 79% yield as white solid.
${ }^{1} H$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=$ $7.2,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}$, 21H).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.2,146.9,145.2,136.3,134.3,130.8,129.8,129.0,128.5$, 127.9, 117.4, 88.9, 84.2, 71.1, 69.7, 36.1, 21.6, 18.5, 11.2

HRMS m/z (ESI) calcd. for C30H38NO3SSi $+(\mathrm{M}+\mathrm{H})^{+} 520.2337$, found 520.2331

(E)-3-(4-methoxyphenyl)- N-(5-phenylpenta-2,4-diyn-1-yl)- N-tosylacrylamide
$\mathbf{3 g}$ was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 76% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=$ $8.4,1.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~s}$, 2H), 3.85 (s, 3H), 2.39 (s, 3H).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.4,161.9,146.8,145.2,136.5,132.6,130.3,129.8,129.4$, $128.4,127.9,127.1,121.4,114.7,114.4,77.8,73.4,72.5,69.0,55.4,36.3,21.7$
HRMS m/z (ESI) calcd. for C28H24NO4S $+(\mathrm{M}+\mathrm{H})^{+} 470.1421$, found 470.1392

3h
(E)-3-(2-methoxyphenyl)- N-(5-phenylpenta-2,4-diyn-1-yl)- N-tosylacrylamide

3h was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 75% yield as colorless oil.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.98-7.93(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.89(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.8,158.9,145.1,142.8,136.5,132.6,132.0,130.2,129.8$, $129.4,128.4,128.0,123.3,121.4,120.8,118.0,111.2,77.8,77.3,73.4,69.0,55.5,36.4,21.7$
HRMS m/z (ESI) calcd. for C28H24NO4S $+(\mathrm{M}+\mathrm{H})^{+} 470.1421$, found 470.1439

(E)-3-(4-fluorophenyl)- N-(5-phenylpenta-2,4-diyn-1-yl)- N-tosylacrylamide
$3 i$ was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 92% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}$, 2H), 7.48-7.47 (m, 2H), 7.39-7.27 (m, 6H), 7.11-7.08 (m, 2H), 4.87 (s, 2H), 2.40 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.09,164.31(J=252.5 \mathrm{~Hz}), 145.43(J=20.6 \mathrm{~Hz}), 136.3,132.6$, $130.61(J=3.6 \mathrm{~Hz}), 130.39(J=8.7 \mathrm{~Hz}), 129.9,129.4,128.5,127.8,121.3,117.17(J=1.8 \mathrm{~Hz})$, 116.28, 116.13, 77.9, 77.0, 73.3, 69.1, 36.4, 21.7
${ }^{19}$ F NMR ($564 \mathrm{MHz} ; \mathrm{CDCl} 3$): $\delta-108.48$
HRMS m/z (ESI) calcd. for C27H21FNO3S $+(\mathrm{M}+\mathrm{H})^{+} 458.1221$, found 458.1221

3j
(E)-3-(5-bromo-2-fluorophenyl)- N -(5-phenylpenta-2,4-diyn-1-yl)- N -tosylacrylamide
$\mathbf{3 j}$ was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 78% yield as white solid.
${ }^{1}$ H NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.93-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=6.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{ddt}, J=8.4,6.6,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $7.32(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=10.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 164.7,160.42(\mathrm{~d}, J=255.2 \mathrm{~Hz}), 145.5,137.7,136.2,134.67(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}), 132.6,132.17(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 130.0,129.4,128.5,127.9,124.43(\mathrm{~d}, J=13.0 \mathrm{~Hz})$, $121.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 121.28,118.09(\mathrm{~d}, J=23.3 \mathrm{~Hz}), 117.10(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 77.9,73.2,69.2$, 36.4, 21.7
${ }^{19}$ F NMR (564 MHz ; CDCl3): $\delta-115.5$
HRMS m/z (ESI) calcd. for C27H20BrFNO3S $+(\mathrm{M}+\mathrm{H})^{+} 536.0326$, found 536.0309

(E)-3-(3,5-dimethoxyphenyl)- N-(5-phenylpenta-2,4-diyn-1-yl)- N-tosylacrylamide

3k was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 83% yield as white solid.
${ }^{1}$ H NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}$, $2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 6 \mathrm{H}), 6.67(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}$, 6 H), 2.43 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.1,161.0,146.8,145.3,136.35,136.21,132.6,129.9,129.4$, $128.4,127.9,121.3,118.0,106.43,106.37,102.9,77.9,73.3,69.1,55.51,55.46,36.4,21.7$
HRMS m/z (ESI) calcd. for C29H26NO5S $+(\mathrm{M}+\mathrm{H})^{+} 500.1527$, found 500.1520

31

(E)-3-(furan-2-yl)- N-(5-phenylpenta-2,4-diyn-1-yl)- N -tosylacrylamide

31 was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 82% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}$, $3 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=3.4,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.89$ (s, 2H), 2.41 (s, 3H).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.1,151.0,145.40,145.20,136.3,132.9,132.6,129.8,129.4$, $128.49,128.45,128.1,121.3,116.5,114.5,112.6,77.8,77.1,73.3,69.0,36.3,21.7$
HRMS m/z (ESI) calcd. for C25H20NO4S $+(\mathrm{M}+\mathrm{H})^{+} 430.1108$, found 430.1102

3 m
(E)-N-(5-phenylpenta-2,4-diyn-1-yl)-3-(thiophen-2-yl)-N-tosylacrylamide
$\mathbf{3 m}$ was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 85% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.94-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.42(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=$ $5.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 164.9,145.3,139.7,139.2,136.4,132.6,132.1,129.9,129.40$, $129.35,128.44,128.34,127.9,121.3,116.0,77.8,77.1,73.3,69.0,36.2,21.7$
HRMS $\mathrm{m} / \mathrm{z}(\mathrm{ESI})$ calcd. for $\mathrm{C} 25 \mathrm{H} 20 \mathrm{NO} 3 \mathrm{~S} 2+(\mathrm{M}+\mathrm{H})^{+} 446.0880$, found 446.0878

3n
(E)-N-(nona-2,4-diyn-1-yl)-3-(thiophen-2-yl)- N-tosylacrylamide

3n was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 85% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.93-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}), 2.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{td}, J=8.2,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3 H).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 164.8,145.1,139.7,139.0,136.4,132.0,129.8,129.3,128.3$, $128.0,116.0,81.0,70.1,69.5,64.5,36.1,30.1,21.9,21.7,18.9,13.5$
HRMS m/z (ESI) calcd. for C23H24NO3S2+ $(\mathrm{M}+\mathrm{H})^{+} 426.1193$, found 426.1199

30
(E)-3-(naphthalen-2-yl)- N -(5-phenylpenta-2,4-diyn-1-yl)- N -tosylacrylamide

30 was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate = 10:1) in 73\% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{q}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H})$, $7.66(\mathrm{dd}, J=8.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 5 \mathrm{H}), 4.91(\mathrm{~s}$, 2H), 2.38 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.3,147.0,145.3,136.4,134.5,133.2,132.6,131.8,130.8$, $129.9,129.4,128.85,128.72,128.4,127.91,127.81,127.6,126.9,123.5,121.3,117.5,77.9,77.1$, 73.3, 69.1, 36.4, 21.7.

HRMS m/z (ESI) calcd. for C31H24NO3S $+(\mathrm{M}+\mathrm{H})^{+} 490.1471$, found 490.1465

3p was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=10: 1$) in 83% yield as white solid.
${ }^{1} H$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{dt}, J=12.9,8.1 \mathrm{~Hz}$, $4 \mathrm{H}), 7.65(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 2 \mathrm{H})$, $0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.2,146.8,145.2,136.4,134.4,133.2,131.8,130.7,129.8$, $128.83,128.71,127.96,127.81,127.6,126.9,123.5,117.4,81.1,70.0,69.6,64.5,36.2,30.1,21.9$, 21.7, 18.9, 13.5

HRMS m/z (ESI) calcd. for C29H28NO3S $+(\mathrm{M}+\mathrm{H})^{+} 470.1785$, found 470.1807

$3 q$
N-cinnamyl-4-methyl- N-(5-phenylpenta-2,4-diyn-1-yl)benzenesulfonamide
$\mathbf{3 q}$ was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=10: 1$) in 86% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.79-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 9 \mathrm{H}), 7.27(\mathrm{t}$, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dt}, J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{dd}$, $J=6.8,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.9,136.1,135.6,135.2,132.5,129.7,129.4,128.64,128.49$, 128.1, 127.8, 126.6, 122.8, 121.3, 77.4, 75.6, 73.1, 70.4, 49.1, 36.9, 21.6.

HRMS m/z (ESI) calcd. for C27H24NO2S $+(\mathrm{M}+\mathrm{H})^{+} 426.1522$, found 426.1525

$3 r$

1-(5-(cinnamyloxy)penta-1,3-diyn-1-yl)-4-fluorobenzene

$3 \mathbf{r}$ was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 72% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dt}, J=15.9,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{dd}, J=6.2,1.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.06(\mathrm{~d}, J=251.6 \mathrm{~Hz}), 136.5,134.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 133.7$, $128.6,127.9,126.6,124.9,117.6,115.88(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 78.8,73.2,70.9,70.4,70.2,57.7$
${ }^{19}$ F NMR (564 MHz , Chloroform- d) $\delta-108.4$
HRMS m/z (ESI) calcd. for C20H16FO $+(\mathrm{M}+\mathrm{H})^{+}$291.1180, found 291.1188

5-phenylpenta-2,4-diyn-1-yl cinnamate
3s was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 90% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.76(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=6.7,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-$
$7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.96 (s, 2H).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 166.0,146.1,134.2,132.7,130.6,129.5,129.0,128.5,128.2$, 121.2, 116.9, 78.8, 76.3, 73.1, 71.3, 52.7

HRMS m/z (ESI) calcd. for C20H15O2+ $(\mathrm{M}+\mathrm{H})^{+} 287.1067$, found 287.1075

3t
6-phenylhexa-3,5-diyn-1-yl cinnamate
3t was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 76% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=8.2$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.47(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 145.5,134.3,132.6,130.4,129.06,128.91,128.4,128.2,121.7$, 117.6, 79.9, 75.5, 74.0, 66.6, 61.9, 20.3

HRMS m/z (ESI) calcd. for $\mathrm{C} 21 \mathrm{H} 17 \mathrm{O} 2+(\mathrm{M}+\mathrm{H})^{+} 301.1224$, found 301.1220

dimethyl 2-cinnamyl-2-(5-(4-fluorophenyl)penta-2,4-diyn-1-yl)malonate
3u was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate =5:1) in 78\% yield as colorless oil.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.47$ (ddd, $\left.J=9.5,5.1,2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.35-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28$ $(\mathrm{m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{ddt}, J=8.7,6.7,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.02$ (dt, $J=15.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.03(\mathrm{~s}, 2 \mathrm{H}), 2.99(\mathrm{dd}, J=7.7,1.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 169.9,162.82(J=251.0 \mathrm{~Hz}), 136.9,134.9,134.63,134.58,128.5$, $127.6,126.4,122.9,115.82(J=21.8 \mathrm{~Hz}), 78.5,74.6,73.8,68.0,57.4,53.0,36.3,24.2$
${ }^{19}$ F NMR (564 MHz ; CDCl3): $\delta-108.82$
HRMS m/z (ESI) calcd. for C25H22FO4+ $(\mathrm{M}+\mathrm{H})^{+} 405.1497$, found 405.1518

(E)- N, N^{\prime}-(5-(3-((4-methyl- N-(5-phenylpenta-2,4-diyn-1-yl)phenyl)sulfonamido)-3-oxoprop-1-en-1-yl)-1,3-phenylene)dibenzamide
3v was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 65% yield as white solid.
${ }^{1} H$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.18(\mathrm{~s}, 3 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.88-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.62(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 3 \mathrm{H})$, 4.87 (s, 2H), 2.39 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 166.09,166.07,164.9,145.8,145.4,139.2,136.1,135.7,134.4$, $132.6,132.1,130.1,129.4,128.8,128.4,128.0,127.18,127.14,121.3,118.5,116.02,115.99$, $114.4,77.9,77.1,73.3,69.1,36.3,31.6,21.7$
HRMS m/z (ESI) calcd. for C41H32N3O5S $+(\mathrm{M}+\mathrm{H})^{+} 678.2058$, found 678.2047

4-(phenylethynyl)-2-tosyl-2,3-dihydro- $\mathbf{1 H}$-benzo $[f]$ isoindol-1-one
4a was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 90% yield as white solid.
${ }^{1} H$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.99 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.72 (ddd, $J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.59(\mathrm{~m}$, $1 \mathrm{H}), 7.45(\mathrm{dd}, J=6.4,2.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.8,145.4,138.1,135.7,135.4,132.8,131.9,130.3,129.8$, 129.6, 129.3, 128.7, 128.2, 127.6, 127.4, 126.04, 126.03, 122.3, 116.5, 100.9, 82.6, 49.9, 21.7

HRMS m/z (ESI) calcd. for C27H20NO3S $+(\mathrm{M}+\mathrm{H})^{+} 438.1159$, found 438.1141

4-(p-tolylethynyl)-2-tosyl-2,3-dihydro-1H-benzo[f]isoindol-1-one
4b was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 92% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.98 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=17.8,7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25$ (d, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.15$ (s, 2H), 2.43 (d, $J=9.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.8,145.3,139.7,137.9,135.6,135.4,132.8,131.8,130.2$, $129.8,129.48,129.40,128.2,127.6,127.3,126.1,125.8,119.2,116.7,101.2,82.1,49.9,21.70$, 21.66

HRMS m/z (ESI) calcd. for C28H22NO3S $+(\mathrm{M}+\mathrm{H})^{+} 452.1315$, found 452.1301

4-((4-methoxyphenyl)ethynyl)-2-tosyl-2,3-dihydro-1H-benzo[f]isoindol-1-one
$4 \mathbf{c}$ was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 89% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.97 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{ddd}, J=8.3,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H})$, , 6.97-6.96 (m, 2H), 5.14 (s, 2H), 3.89 (s, 3H), 2.42 ($\mathrm{s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.9,160.4,145.3,137.7,135.59,135.41,133.4,132.8,130.2$, $129.8,129.4,128.2,127.5,127.3,126.1,125.6,116.9,114.3,101.2,81.5,55.4,50.0,21.7$
HRMS m/z (ESI) calcd. for C28H22NO4S $+(\mathrm{M}+\mathrm{H})^{+} 468.1265$, found 468.1255

4-((4-chlorophenyl)ethynyl)-2-tosyl-2,3-dihydro-1 \mathbf{H}-benzo $[f]$ isoindol-1-one
4d was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 83% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $8.00(\mathrm{dd}, J=8.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.43(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.7,145.4,138.2,135.61,135.47,135.33,133.1,132.8,130.4$, 129.83, 129.68, 129.0, 128.2, 127.61, 127.43, 126.3, 125.9, 120.7, 116.1, 99.6, 83.6, 49.9, 21.7

HRMS m/z (ESI) calcd. for C27H19CINO3S $+(\mathrm{M}+\mathrm{H})^{+} 472.0769$, found 472.0797

4-(hex-1-yn-1-yl)-2-tosyl-2,3-dihydro- $\mathbf{H} \boldsymbol{H}$-benzo $[f]$ isoindol-1-one
$\mathbf{4 e}$ was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 78% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.06(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.9,145.3,137.8,136.0,135.4,132.8,130.2,129.8,129.3$, 128.2, 127.4, 127.1, 126.1, 125.2, 117.4, 102.8, 74.2, 50.0, 30.9, 22.2, 21.7, 19.6, 13.7

HRMS m/z (ESI) calcd. for C25H24NO3S $+(\mathrm{M}+\mathrm{H})^{+} 418.1472$, found 418.1437

2-tosyl-4-((triisopropylsilyl)ethynyl)-2,3-dihydro-1H-benzo[f]isoindol-1-one

4f was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 76% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=8.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 21 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.7,145.3,138.8,135.9,135.4,132.8,130.3,129.79,129.67$, 128.3, 127.5, 127.3, 126.13, 126.00, 116.7, 103.9, 99.8, 50.0, 21.7, 18.8, 11.3

HRMS m/z (ESI) calcd. for $\mathrm{C} 30 \mathrm{H} 36 \mathrm{NO} 3 \mathrm{SSi}+(\mathrm{M}+\mathrm{H})^{+} 518.2180$, found 518.2173

6-methoxy-4-(phenylethynyl)-2-tosyl-2,3-dihydro-1H-benzo[f]isoindol-1-one
$4 \mathbf{g}$ was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 82% yield as white solid.
${ }^{1} H$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.71(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.24$ $(\mathrm{m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.9,160.8,145.2,139.1,137.8,135.5,131.85,131.78,129.8$, $129.2,128.7,128.33,128.20,125.8,125.4,122.4,120.4,114.6,104.2,100.6,82.8,55.5,49.9$, 21.7

HRMS m/z (ESI) calcd. for C28H22NO4S $+(\mathrm{M}+\mathrm{H})^{+} 468.1264$, found 468.1264

4h
8-methoxy-4-(phenylethynyl)-2-tosyl-2,3-dihydro-1 \mathbf{H}-benzo[f]isoindol-1-one
4h was prepared following the General Procedure 2.7 and purified by column chromatography
(Hexane: Ethyl acetate $=5: 1$) in 75% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.66(\mathrm{dd}, J=6.5,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.9,157.2,145.3,138.7,136.7,135.5,131.8,130.1,129.8$, $129.2,128.6,128.2,126.4,125.4,122.4,121.0,117.8,115.6,105.0,100.5,82.9,55.8,49.9,21.7$ HRMS m/z (ESI) calcd. for C28H22NO4S $+(\mathrm{M}+\mathrm{H})^{+} 468.1264$, found 468.1260

6-fluoro-4-(phenylethynyl)-2-tosyl-2,3-dihydro- $\mathbf{H} \boldsymbol{H}$-benzo $[f]$ isoindol-1-one
$4 \mathbf{i}$ was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 69% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $8.32(\mathrm{~s}, 1 \mathrm{H}), 8.09-8.06(\mathrm{~m}, 3 \mathrm{H}), 8.02(\mathrm{dd}, J=9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (dt, $J=3.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.40(\mathrm{td}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.5,163.00(J=252.8 \mathrm{~Hz}), 145.4,139.1,137.20(J=9.8 \mathrm{~Hz})$, $135.3,132.94(J=9.5 \mathrm{~Hz}), 131.9,129.90,129.84,129.5,128.7,128.2,127.29(J=2.9 \mathrm{~Hz}), 125.9$, $122.0,118.10(J=26.0 \mathrm{~Hz}), 116.06,116.02,110.01(J=22.8 \mathrm{~Hz}), 101.3,82.0,60.4,49.9,21.7$
${ }^{19}$ F NMR ($564 \mathrm{MHz} ; \mathrm{CDCl} 3$): δ - 107.19
HRMS m/z (ESI) calcd. for C27H19FNO3S $+(\mathrm{M}+\mathrm{H})^{+} 456.1065$, found 456.1058

4j
5-bromo-8-fluoro-4-(phenylethynyl)-2-tosyl-2,3-dihydro-1H-benzo[f]isoindol-1-one
$\mathbf{4 j}$ was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 86% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65(\mathrm{~s}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 3 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}$, 3H).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 164.9,145.6,143.0,135.88,135.82,135.1,131.2,129.9,129.5$, 128.7, 128.35, 128.30, 122.6, 119.33, 119.28, 115.02, 114.99, 111.50, 111.36, 106.6, 84.1, 50.7, 21.7
${ }^{19}$ F NMR ($\left.564 \mathrm{MHz} ; \mathrm{CDCl} 3\right): \delta-117.2$
HRMS m/z (ESI) calcd. for C27H18BrFNO3S $+(\mathrm{M}+\mathrm{H})^{+} 534.0169$, found 534.0169

5,7-dimethoxy-4-(phenylethynyl)-2-tosyl-2,3-dihydro-1H-benzo[f]isoindol-1-one
4k was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 74% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.08(\mathrm{t}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.63(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.42$ $(\mathrm{m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H})$, 4.02 (s, 3H), 3.92 (s, 3H), 2.42 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 166.0,158.7,157.5,145.3,137.8,136.1,135.4,131.7,129.84$, $129.80,128.83,128.64,128.59,128.24,128.18,124.1,123.5,123.3,114.0,101.7,100.1,99.6$, 86.2, 55.9, 55.5, 50.3, 29.7, 21.7

HRMS m/z (ESI) calcd. for C29H24NO5S $+(\mathrm{M}+\mathrm{H})^{+} 498.1370$, found 498.1370

41
4-(phenylethynyl)-6-tosyl-5,6-dihydro-7H-furo[2,3-f]isoindol-7-one
41 was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 55% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=20.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 166.0,154.5,149.4,145.3,137.4,135.4,134.9,131.9,129.8$, 129.4, 128.6, 128.2, 127.0, 122.0, 111.4, 108.1, 106.6, 98.6, 82.1, 49.4, 21.7

HRMS m/z (ESI) calcd. for C25H18NO4S $+(\mathrm{M}+\mathrm{H})^{+} 428.0952$, found 428.0934

8-(phenylethynyl)-6-tosyl-6,7-dihydro-5H-thieno[2,3-f]isoindol-5-one
4 m was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 72% yield as white solid.
${ }^{1}$ H NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~s}$, 2H), 2.42 (s, 3H).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.7,145.3,144.5,140.2,138.4,135.4,132.4,131.9,129.8$, 129.4, 128.6, 128.2, 126.7, 123.2, 122.1, 119.5, 113.7, 99.1, 82.7, 49.5, 21.7

HRMS m/z (ESI) calcd. for C25H18NO3S2+ $(\mathrm{M}+\mathrm{H})^{+} 444.0723$, found 444.0708

4-(hex-1-yn-1-yl)-6-tosyl-5,6-dihydro-7H-thieno[2,3-f]isoindol-7-one
4n was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 81% yield as white solid.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}$, 3 H), 1.70 (quintet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{dt}, J=14.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.8,145.2,144.8,140.0,138.3,135.5,131.8,129.8,128.2$, $126.5,123.2,118.7,114.6,101.0,74.4,49.6,30.8,22.1,21.7,19.5,13.6$
HRMS m/z (ESI) calcd. for C23H22NO3S2+ $(\mathrm{M}+\mathrm{H})^{+} 424.1036$, found 424.1036

11-(phenylethynyl)-9-tosyl-9,10-dihydro-8H-naphtho[1,2-f] isoindol-8-one

40 was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 75% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 10.36(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.93-7.93 (m, 1H), 7.80-7.71 (m, 5H), 7.50 (s, 3H), $7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}$, 3H).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.8,145.3,142.5,135.5,133.9,133.3,133.1,131.6,130.2$, $129.8,129.5,128.93,128.82,128.73,128.5,128.2,127.8,127.4,126.62,126.56,125.7,122.5$, 115.0, 102.3, 86.6, 50.7, 21.7

HRMS m/z (ESI) calcd. for C31H22NO3S $+(\mathrm{M}+\mathrm{H})^{+} 488.1315$, found 488.1313

11-(hex-1-yn-1-yl)-9-tosyl-9,10-dihydro-8H-naphtho [1,2-f]isoindol-8-one
$4 \mathbf{p}$ was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 77% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 10.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.41(\mathrm{~s}, 3 \mathrm{H}), 1.81$ (quintet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.9,145.3,142.5,135.5,133.6,133.22,133.06,130.3,129.8$, $128.65,128.57,128.28,128.20,127.8,127.2,126.5,126.2,124.9,115.8,104.7,78.2,50.8,30.6$, 22.3, 21.7, 20.0, 13.7

HRMS m/z (ESI) calcd. for C29H26NO3S $+(\mathrm{M}+\mathrm{H})^{+} 468.1628$, found 468.1629

$4 q$

4qa

4q: 9-(phenylethynyl)-2-tosyl-2,3,3a,4-tetrahydro-1H-benzo[f]isoindole 4qa: 4-(phenylethynyl)-2-tosyl-2,3-dihydro-1H-benzo[f]isoindole $\mathbf{4 q : 4 q a = 1 : 1 . 2}$ was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=10: 1$) in 40% yield as white solid.
${ }^{1}$ H NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.82(\mathrm{~m}, 2 \mathrm{H})$, 7.79-7.77 ($\mathrm{m}, 2 \mathrm{H}$), 7.65-7.63 (m, 2H), 7.60-7.48 (m, 5H), 7.45-7.41 (m, 3H), 7.39-7.32 (m, 5H), 7.25 (t, J=5.5 Hz, $1 \mathrm{H}), 7.17(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 0.7 \mathrm{H}), 7.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=0.7 \mathrm{~Hz}$,
$2 \mathrm{H}), 4.47$ (dd, $J=16.9,2.4 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.12(\mathrm{dd}, J=16.9,3.3 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.03(\mathrm{dd}, J=9.2,8.0 \mathrm{~Hz}$, $0.7 \mathrm{H}), 3.12-3.08(\mathrm{~m}, 0.7 \mathrm{H}), 2.87(\mathrm{ddd}, J=10.9,9.0,8.2 \mathrm{~Hz}, 1.4 \mathrm{H}), 2.54(\mathrm{t}, J=15.2 \mathrm{~Hz}, 0.7 \mathrm{H})$, 2.43 (s, 2H), 2.39 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 146.5,143.8,138.4,134.2,133.5,133.00,132.92,132.89,132.73$, 132.65, 131.76, 131.64, 129.91, 129.89, 128.9, 128.67, 128.54, 128.46, 128.2, 127.79, 127.76, $127.74,127.67,127.2,126.9,126.6,125.8,125.0,122.80,122.75,121.6,115.2,114.2,99.2,96.3$, 84.2, 83.7, 54.8, 53.76, 53.74, 51.6, 39.1, 31.7, 21.58, 21.52

HRMS $\mathrm{m} / \mathrm{z}(\mathrm{ESI})$ calcd. for $\mathbf{4 q}$: $\mathrm{C} 27 \mathrm{H} 24 \mathrm{NO} 2 \mathrm{~S}+(\mathrm{M}+\mathrm{H})^{+}$426.1523, found 426.1512; 4qa: $\mathrm{C} 27 \mathrm{H} 22 \mathrm{NO} 2 \mathrm{~S}+(\mathrm{M}+\mathrm{H})^{+} 424.1366$, found 424.1371

4r: 4-((4-fluorophenyl)ethynyl)-1,3-dihydronaphtho[2,3-c]furan
4ra: 9-((4-fluorophenyl)ethynyl)-1,3,3a,4-tetrahydronaphtho[2,3-c]furan
4r:4ra=7:1 was prepared following the General Procedure 2.7 and purified by column
chromatography (Hexane: Ethyl acetate $=10: 1$) in 32% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H})$, $7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.57$ (ddd, $J=8.2,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.09$ (m, 2H), $5.37(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{dd}, J=16.1,2.1 \mathrm{~Hz}$,), $4.72(\mathrm{~d}, J=3.2 \mathrm{~Hz}$,). ${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 162.82(J=250.6 \mathrm{~Hz}), 141.9,137.6,133.62,133.56,133.2,132.8$, $128.4,126.6,126.3,125.7,119.9,119.16(J=3.3 \mathrm{~Hz}), 115.90,115.76,113.1,97.2,84.4,73.53$, 73.47
${ }^{19}$ F NMR (564 MHz ; CDCl3): $\delta-110.2,-110.7$
HRMS m/z (ESI) calcd. for 4r: C20H14FO+ (M+H) 289.1024, found 289.1017; 4ra: C20H16FO $+(\mathrm{M}+\mathrm{H})^{+}$291.1180, found 291.1183

4-(phenylethynyl)naphtho[2,3-c]furan-1(3H)-one
4s was prepared following the General Procedure 2.7 and purified by column chromatography (Hexane: Ethyl acetate $=5: 1$) in 75% yield as white solid.
${ }^{1} H$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.78 (ddd, $J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{dt}, J=4.5,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 170.7,143.2,135.8,133.2,131.8,130.5,129.8,129.3,128.6$, $127.4,127.1,126.1,123.3,122.3,115.3,100.6,82.6,69.8$
HRMS m/z (ESI) calcd. for $\mathrm{C} 20 \mathrm{H} 13 \mathrm{O} 2+(\mathrm{M}+\mathrm{H})^{+} 285.0911$, found 285.0903

5 aa
11-(5-phenyl-2H-1,2,3-triazol-4-yl)-9-tosyl-9,10-dihydro-8H-naphtho[1,2-f]isoindol-8-one
5aa was prepared following the General Procedure 2.8 and purified by column chromatography (DCM : $\mathrm{MeOH}=20: 1$) in 92% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}(10: 1)$): $\delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.73(\mathrm{~m}, 6 \mathrm{H}), 7.53(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34-7.11(\mathrm{~m}, 8 \mathrm{H}), 4.68(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\delta\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}(10: 1)\right): \delta 165.9,145.4,139.2,134.9,134.3,133.95,133.88$, $129.7,129.05,128.93,128.87,128.80,128.78,128.69,128.62,128.0,127.64,127.50,127.1$, 126.70, 126.65, 126.3, 40.4, 21.6

HRMS m/z (ESI) calcd. for C31H23N4O3S $+(\mathrm{M}+\mathrm{H})^{+} 531.1486$, found 531.1508

5ab

4-(5-phenyl-2H-1,2,3-triazol-4-yl)-2-tosyl-2,3-dihydro-1H-benzo[f]isoindol-1-one

5ab was prepared following the General Procedure 2.8 and purified by column chromatography ($\mathrm{DCM}: \mathrm{MeOH}=20: 1$) in 90% yield as white solid. 5 ab have poor solubility in CDCl_{3} and $d 6$ DMSO.
${ }^{1} H$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}(10: 1)$): $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=19.6,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 7 \mathrm{H}), 4.69$ ($\mathrm{s}, 2 \mathrm{H}$), 2.41 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}$): $\delta 166.0,145.3,135.5,135.02,134.92,133.3,130.2,129.7$, $129.5,128.91,128.72,128.69,128.0,127.48,127.30,127.12,126.5,125.5,21.6$ HRMS m/z (ESI) calcd. for C27H21N4O3S $+(\mathrm{M}+\mathrm{H})^{+} 481.1329$, found 481.1331

4-(2,5-diphenyl-2H-1,2,3-triazol-4-yl)-2-tosyl-2,3-dihydro-1H-benzo[f]isoindol-1-one
5a was prepared following the General Procedure 2.9 and purified by column chromatography (Hexane: Ethyl acetate $=3: 1$) in 92% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.24-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{dd}, J=16.0,8.6 \mathrm{~Hz}, 3 \mathrm{H})$, 7.89-7.82 (m, 3H), 7.58-7.51 (m, 3H), 7.46-7.42 (m, 3H), 7.29-7.25 (m, 3H), 7.21 (t, J=7.4 Hz, $1 \mathrm{H}), 7.13(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.6,146.0,145.3,143.7,139.6,139.3,135.2,134.3,134.1$, $133.8,129.81,129.75,129.5,129.27,129.19,129.04,128.89,128.18,128.10,128.08,127.82$, 127.76, 127.3, 126.8, 126.6, 126.3, 124.2, 119.0, 49.9, 21.7

HRMS m/z (ESI) calcd. for C37H27N4O3S $+(\mathrm{M}+\mathrm{H})^{+} 607.1799$, found 607.1817

11-(2-(4-methoxyphenyl)-5-phenyl-2H-1,2,3-triazol-4-yl)-9-tosyl-9,10-dihydro-8Hnaphtho $[1,2-f]$ isoindol-8-one
$\mathbf{5 b}$ was prepared following the General Procedure 2.9 and purified by column chromatography (Hexane: Ethyl acetate $=3: 1$) in 83% yield as white solid.
${ }^{1}$ H NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.48$ (s, 1H), $8.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-$ $7.24(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J$ $=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 165.7,159.5,145.5,145.3,143.1,139.3,135.2,134.4,134.1$, $133.9,133.4,129.85,129.74,129.4,129.16,129.02,128.88,128.17,128.07,127.79,127.77,127.2$, 126.80, 126.63, 126.3, 124.4, 120.4, 114.5, 55.7, 50.0, 21.7

HRMS m/z (ESI) calcd. for C38H29N4O4S $+(\mathrm{M}+\mathrm{H})^{+} 637.1905$, found 637.1917

4-(4-(8-oxo-9-tosyl-9,10-dihydro-8H-naphtho[1,2-f]isoindol-11-yl)-5-phenyl-2H-1,2,3-triazol-2-yl)benzonitrile

5c was prepared following the General Procedure 2.9 and purified by column chromatography (Hexane: Ethyl acetate $=3: 1$) in 77% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.90-7.84(\mathrm{~m}, 6 \mathrm{H}), 7.53(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23$ $(\mathrm{m}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (151 MHz; CDC13): $\delta 165.4,147.4,145.42,145.30,142.1,139.1,135.1,134.4,134.1$, $133.71,133.66,129.77,129.59,129.56,129.29,129.18,128.99,128.6,128.2,127.91,127.76$, $127.58,126.8,126.44,126.36,123.5,119.2,118.2,111.4,49.8,21.7$
${ }^{19}$ F NMR (564 MHz; CDCl3): $\delta-117.2$
HRMS m/z (ESI) calcd. for C38H26N5O3S $+(\mathrm{M}+\mathrm{H})^{+} 632.1751$, found 632.1752

5d
11-(2-(2-bromophenyl)-5-phenyl-2H-1,2,3-triazol-4-yl)-9-tosyl-9,10-dihydro-8H-naphtho[1,2-f]isoindol-8-one
5d was prepared following the General Procedure 2.9 and purified by column chromatography (Hexane: Ethyl acetate $=3: 1$) in 45% yield as white solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.87-7.80(\mathrm{~m}, 5 \mathrm{H}), 7.55(\mathrm{dt}, J=17.2,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{t}, J=10.3 \mathrm{~Hz}, 3 \mathrm{H})$, $7.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=16.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz; CDCl3): $\delta 165.6,146.2,145.3,143.8,139.5,139.3,135.2,134.36,134.27$, $134.03,133.93,131.1,129.78,129.73,129.17,129.08,129.01,128.90,128.37,128.20,128.15$, $128.12,127.78,127.71,127.3,126.90,126.76,126.4,123.9,119.0,50.1,21.7$
HRMS m/z (ESI) calcd. for C37H26BrN4O3S $+(\mathrm{M}+\mathrm{H})^{+} 685.0904$, found 685.0899

6a
N-(3-benzoyl-8-oxo-2-phenyl-9-tosyl-3,8,9,10-tetrahydroisoindolo[4,5,6-de]quinolin-5yl)benzamide
6a was prepared following the General Procedure 2.1 and purified by column chromatography (Hexane: Ethyl acetate $=3: 1$) in 83% yield as red solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.30(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-$
$7.14(\mathrm{~m}, 7 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 172.4,166.04,165.89,145.3,144.4,138.7,138.0,137.4,136.3$, 135.37, 135.29, 134.6, 132.4, 132.1, 129.80, 129.77, 128.92, 128.86, 128.81, 128.75, 128.34, $128.23,127.10,126.98,126.1,125.6,124.2,121.0,112.3,107.3,105.6,48.5,21.7$
HRMS m/z (ESI) calcd. for C41H32N3O5S $+(\mathrm{M}+\mathrm{H})^{+} 678.2058$, found 678.2083

N-((1-(hex-1-yn-1-yl)-3-(hydroxymethyl)naphthalen-2-yl)methyl)-4methylbenzenesulfonamide
7a was prepared following the General Procedure 2.10 and purified by column chromatography (Hexane: Ethyl acetate $=3: 1$) in 82% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dt}, J=17.3,8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.54-$ 7.47 (m, 2H), 7.19 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 143.3,136.7,136.3,134.6,133.2,132.5,129.7,129.4,128.3$, $128.0,127.13,127.01,126.84,126.45,126.42,122.9,101.3,76.2,63.9,43.5,30.8,22.2,21.4$, 19.5, 13.6

HRMS m/z (ESI) calcd. for C25H26NO2S $+(\mathrm{M}-\mathrm{OH})^{+} 404.1679$, found 404.1675

N-((3-(hydroxymethyl)-1-(phenylethynyl)naphthalen-2-yl)methyl)-4methylbenzenesulfonamide
7b was prepared following the General Procedure 2.10 and purified by column chromatography (Hexane: Ethyl acetate $=3: 1$) in 92% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57(\mathrm{dt}, J=31.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{ddd}, J=26.8,14.0,6.3 \mathrm{~Hz}, 5 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 170.6,143.4,136.5,134.9,133.1,132.5,132.3,131.7,130.5$, $129.6,129.0,128.5,128.3,127.7,127.27,127.11,126.3,122.5,122.2,99.7,84.7,64.4,43.5,21.5$, 21.1

HRMS m/z (ESI) calcd. for C27H22NO2S $+(\mathrm{M}-\mathrm{OH})^{+} 424.1366$, found 424.1371

N-((4-(hex-1-yn-1-yl)-2-(hydroxymethyl)phenanthren-3-yl)methyl)-4methylbenzenesulfonamide
7c was prepared following the General Procedure 2.10 and purified by column chromatography (Hexane: Ethyl acetate $=3: 1$) in 83% yield as white solid.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta 10.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}$, $1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.87(\mathrm{~s}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}$, $3 \mathrm{H}), 1.66-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 143.3,137.04,137.00,136.83,133.2,132.6,130.3,129.8,129.4$, $129.2,128.4,126.95,126.90,126.2,125.6,120.8,102.6,80.7,63.5,53.4,43.4,30.3,22.3,21.3$, 19.8, 13.7

HRMS m/z (ESI) calcd. for C29H28NO2S $+(\mathrm{M}-\mathrm{OH})^{+} 454.1836$, found 454.1830

N-((4-(hex-1-yn-1-yl)-6-(hydroxymethyl)benzo[b]thiophen-5-yl)methyl)-4methylbenzenesulfonamide
7d was prepared following the General Procedure 2.10 and purified by column chromatography (Hexane: Ethyl acetate $=3: 1$) in 85% yield as white solid.
${ }^{1} H$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.42-7.41 (m, 1H), $7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 143.2,141.0,139.1,136.7,135.4,132.5,129.7,129.4,127.6$, 127.1, 126.4, 123.8, 122.6, 119.9, 99.4, 76.6, 63.8, 43.0, 30.8, 22.2, 21.4, 19.4, 13.6

HRMS m/z (ESI) calcd. for C23H24NO2S2+ $(\mathrm{M}-\mathrm{OH})^{+} 410.1243$, found 410.1245

(2-butylbenzo[f]isoquinolin-5-yl)methanol
8a was prepared following the General Procedure 2.11 and purified by column chromatography (Hexane: Ethyl acetate $=2: 1$) in 63% yield as white solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 9.46(\mathrm{~s}, 1 \mathrm{H}), 8.66-8.64(\mathrm{~m}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.89(\mathrm{~m}, 1 \mathrm{H})$, $7.80(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H})$, $1.87-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{dt}, J=14.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz ; CDCl3): $\delta 158.1,147.6,136.1,134.0,133.2,128.80,128.76,128.5,127.0$, $125.9,123.17,123.05,114.6,63.0,41.0,38.3,32.4,22.6,14.0$
HRMS m/z (ESI) calcd. for $\mathrm{C} 18 \mathrm{H} 20 \mathrm{NO}+(\mathrm{M}+\mathrm{H})^{+} 266.1540$, found 266.1545

(2-phenylbenzo[f]isoquinolin-5-yl)methanol
8b was prepared following the General Procedure 2.11 and purified by column chromatography (Hexane: Ethyl acetate $=2: 1$) in 72% yield as white solid.
${ }^{1} H$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{dd}, J=5.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{dd}, J=5.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{dq}, J=6.1,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.55$ (t, J=7.5 Hz, 2H), 7.48-7.45 (m, 1H), $5.27(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 153.2,148.1,139.7,136.2,133.9,133.3,128.93,128.91,128.88$, 128.81, 128.75, 127.24, 127.17, 126.6, 124.0, 123.0, 112.7, 63.0

HRMS m/z (ESI) calcd. for C20H16NO+ (M+H)+ 286.1227, found 286.1286

(2-butylnaphtho[1,2-f]isoquinolin-5-yl)methanol
8c was prepared following the General Procedure 2.11 and purified by column chromatography (Hexane: Ethyl acetate $=2: 1$) in 25% yield as white solid.
${ }^{1}$ H NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.67(\mathrm{~m}, 1 \mathrm{H})$, $7.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{dt}, J=15.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.44$ (dt, $J=14.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 156.9,147.9,135.33,135.25,133.4,132.9,130.1,129.6,128.9$, $127.0,126.82,126.67,126.23,126.18,125.2,124.1,119.0,62.3,38.1,32.3,22.5,14.0$
HRMS m/z (ESI) calcd. for C22H22NO $+(\mathrm{M}+\mathrm{H})^{+} 316.1696$, found 316.1749

(8-butylthieno[3,2-f]isoquinolin-5-yl)methanol
8d was prepared following the General Procedure 2.11 and purified by column chromatography (Hexane: Ethyl acetate $=2: 1$) in 55% yield as white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 9.49(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H})$, $7.61(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{q}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz; CDCl3): $\delta 157.1,148.3,140.7,134.0,133.60,133.54,126.6,122.2,121.9$, 120.0, 115.2, 62.7, 38.0, 32.3, 22.6, 14.0

HRMS m/z (ESI) calcd. for C16H18NOS $+(\mathrm{M}+\mathrm{H})^{+}$272.1104, found 272.1186

VII. NMR Spectra Data

= Ph

ppm	200	180	160	140	120		80		4020		

3j

3t

[^0]

$\begin{array}{ll}11 \\ 1 & 11 \\ 10\end{array}$

d

ppm			
	10	9	4.975

$\overline{\text { ppm }} \quad 200 \quad 180$

160

	$\stackrel{\otimes}{\otimes}$	~\%

$\overline{\text { ppm }}$

6a

[^0]:

