Supporting Information

Stereoselective Synthesis of Functionalized Azepines *via* Gold and Palladium Relay Catalysis

Wu-Lin Yang,*¹ Jia-Huan Shen,¹ Zeng-Hui Zhao,¹ Zhongao Wang,¹ and Wei-Ping Deng*^{,2,1}

¹Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
²Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China

E-mail: yangwl@ecust.edu.cn, weiping_deng@ecust.edu.cn

Contents

1. General information	P2
2. References	P2
3. Optimization studies	Р3
4. Preparation and characterization data of cyano-substituted furo[2,3-b]azepines 3	P5
5. Preparation and characterization data of benzoyl-substituted furo[2,3-b]azepines 5	P19
6. Preparation and characterization data of amino-substituted furo[2,3-b]azepines 7	P23
7. The attempt of other substituted TMM donors	P29
8. Gram-scale experiment	P30
9. Cleavage of the furan moiety to synthesize polysubstituted azepines 8	P31
10. The attempt of other transformations of products	P35
11. HPLC chromatograms	P36
12. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra	P74

1. General information

¹H NMR spectra were recorded on a Bruker DPX 400 MHz spectrometer in CDCl₃ or (CD₃)₂SO. Chemical shifts were reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The spectra are interpreted as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, ddd = doublet of doublets, coupling constant (s) J are reported in Hz and relative integrations are reported. ¹³C NMR (100 MHz) spectra were recorded on a Bruker DPX 400 MHz spectrometer in CDCl₃ or (CD₃)₂SO. ¹³C NMR (150 MHz) spectrum were recorded on Bruker Ascend 600 MHz spectrometer in CDCl₃ or $(CD_3)_2SO$. Chemical shifts were reported in ppm with the internal signal at 77.16 ppm (CDCl₃) or 39.70 ppm ((CD₃)₂SO) as a standard. ¹⁹F NMR (376 MHz) spectra were recorded on a Bruker DPX 400 MHz spectrometer in CDCl₃ and referenced relative to CFCl₃. Optical rotations were measured on an AUTOPOL V. Enantiomeric excesses were determined by analysis of HPLC traces, obtained by using Chiralpak AD-H, AS-H, IF, IA, IB, and Chiralcel OD-H columns with *n*-hexane and ethanol or *i*-propanol as solvents. (Chiralpak AD-H, AS-H, IF, IA, IB, and chiralcel OD-H columns were purchased from Daicel Chiral Technologies (China) Co., LTD.) Melting points were obtained in open capillary tubes using MPA 100 automatic melting point apparatus which were made in Stanford Research System. Highresolution mass spectra (HRMS) were recorded on a Waters GCT Premier mass spectrometer using EI-TOF (electron ionization-time of flight). Commercially available materials purchased from Adamas-beta and Bidepharm, which were used as received. Anhydrous CH₂Cl₂ was distilled from calcium hydride, anhydrous THF was distilled from sodium/benzophenone. Ph_3PAuCl , $AgPF_6$ and $Pd_2(dba)_3$ purchased from Bidepharm. Envnamides 1 were prepared according to the literature procedures.^[1] Cyano-TMM donor 2,^[2] benzoyl-TMM donor 4,^[3] and amino-TMM donor $6^{[4]}$ were prepared according to the literature procedures.

2. References

- [1] L. Zhou, X. Wu, X. Yang, C. Mou, R. Song, S. Yu, H. Chai, L. Pan, Z. Jin and Y. R. Chi, Gold and Carbene Relay Catalytic Enantioselective Cycloisomerization/Cyclization Reactions of Ynamides and Enals, *Angew. Chem. Int. Ed.*, 2020, **59**, 1557-1561
- [2] B. M. Trost and G. Mata, Enantioselective Palladium-Catalyzed [3+2] Cycloaddition of Trimethylenemethane and Fluorinated Ketones, *Angew. Chem. Int. Ed.*, 2018, 57, 12333-12337.
- [3] B. M. Trost, Z. Zuo and Y. Wang, Pd(0)-Catalyzed Diastereo- and Enantioselective Intermolecular Cycloaddition for Rapid Assembly of 2-Acyl-methylenecyclopentanes, *Org.*

Lett., 2021, 23, 979-983.

[4] B. M. Trost and Y. Wang, A Deprotonation Approach to the Unprecedented Amino-Trimethylenemethane Chemistry: Regio-, Diastereo-, and Enantioselective Synthesis of Complex Amino Cycles, *Angew. Chem. Int. Ed.*, 2018, 57, 11025-11029.

3. Optimization studies

Table S1 Optimization for the asymmetric cascade reaction of benzoyl-TMM donor 4 with ynamide 1b^a

$\begin{array}{c} \text{MeO} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $						
$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$						
entry	ligand	solvent	temp. (°C)	yield $(\%)^b$	dr ^c	ee (%) ^d
1	L2	toluene	rt	81	8:1	75/51
2	L2	PhCF ₃	rt	79	7:1	84/63
3	L2	CH_2Cl_2	rt	72	4:1	50/37
4	L2	THF	rt	67	10:1	68/50
5	L1	PhCF ₃	rt	79	1.5:1	55/54
6	L5	PhCF ₃	rt	86	1:1.5	38/17
7	L6	PhCF ₃	rt	89	12:1	92/67
8	L6	PhCF ₃	0	93	12:1	94/77
9	L6	PhCF ₃	-10	92	12:1	94/74

^{*a*}The reactions were performed with **1b** (0.10 mmol), **4** (0.12 mmol), $Pd_2(dba)_3$ (2.5 mol%), ligand (10 mol%), Ph₃PAuCl (10 mol%) and AgPF₆ (10 mol%) in solvent (0.05 M) at the indicated temperature. ^{*b*}Isolated yield of product **5a**. ^{*c*}dr was determined by ¹H NMR spectroscopic analysis. ^{*d*}ee value was determined by chiral HPLC analysis.

	Ph Ph O NH Ts 1a O Ph O Ph	+ Ph Ph Ph Ph Ph Ph Ph Ph	DBoc Pd2(dba)3 (ligand (20) PPh3AuCl (AgPF6 (10) solvent, -Ph (S)-L4 C)-P-N	5 mol%) mol%) 10 mol%) p mol%) temp. Ph Ph Ph Ph Ph Ph	$Ph \qquad N \qquad Ph \\ Ph \qquad Ph \\ Ts \\ 7a \\ (S)-L5 \\ (S)$	
(S)-1 () () (S) (S)	_6 MeO	(S)-L10	-7 CI'		(S)-L12	ÇP−N
entry	ligand	solvent	temp. (°C)	yield $(\%)^b$	dr^c	ee (%) ^d
1^e	L2	toluene	rt	trace	-	-
2	L1	toluene	rt	58	3:1	81/61
3	L2	toluene	rt	74	4:1	95/81
4	L4	toluene	rt	33	3:1	61/60
5	L5	toluene	rt	85	4:1	60/50
6	L6	toluene	rt	65	3:1	60/66
7	L7	toluene	rt	72	3:1	90/86
8	L8	toluene	rt	67	2:1	55/40
9	L9	toluene	rt	65	1:2	90/80
10	L10	toluene	rt	65	1:1	75/50
11	L11	toluene	rt	64	3:1	60/50
12	L12	toluene	rt	72	1:1	80/84
13	L2	PhCF ₃	rt	58	4:1	90/70
14	L2	THF	rt	-	-	-
15	L2	CH_2Cl_2	rt	80	3.5:1	90/68
16	L2	CH ₃ CN	rt	-	-	-
17	L2	toluene	0	70	4:1	93/80

Table S2 Optimization for the asymmetric cascade reaction of amino-TMM donor 6 with ynamide 1a^{*a*}

^{*a*}The reactions were performed with **1a** (0.10 mmol), **6** (0.12 mmol), $Pd_2(dba)_3$ (5 mol%), ligand (20 mol%), Ph_3PAuCl (10 mol%) and $AgPF_6$ (10 mol%) in solvent (0.05 M) at the indicated temperature. ^{*b*}Isolated yield of product **7a**. ^{*c*}dr was determined by ¹H NMR spectroscopic analysis. ^{*d*}ee value was determined by chiral HPLC analysis. ^{*e*}Pd₂(dba)₃ (2.5 mol%) and (*S*)-**L2** (10 mol%) were used.

4. Preparation and characterization data of cyano-substituted furo[2,3-b]azepines 3

General procedure A: Under a nitrogen atmosphere, two flame dried 10 mL Schlenk tube A and B, the tube A was charged with Ph₃PAuCl (4.9 mg, 0.01 mmol, 10 mol%) and AgPF₆ (2.5 mg, 0.01 mmol, 10 mol%), the tube B was charged with ligand (*S*)-L2 (5.1 mg, 0.01 mmol, 10 mol%), and Pd₂(dba)₃ (2.3 mg, 0.0025 mmol, 2.5 mol%). After the tube A and B were evacuated and backfilled with nitrogen, freshly distilled PhCF₃ (1.0 mL) was added respectively, then stirred at room temperature for 15-20 minutes while the solution of tube A turned white turbid and the solution of tube B turned light green. Then, enynamides **1** (0.1 mmol, 1.0 equiv) were added to tube A, and the reaction mixture immediately turned golden yellow. After 5 minutes, cyano-TMM donor **2** (24 mg, 0.12 mmol, 1.2 equiv) was added to tube A sequentially. The solution of tube B was then transferred to tube A at 0 °C. The reaction mixture was stirred at 0 °C for the indicated time, which was evaporated under reduced pressure at 30 °C. The crude residue was purified by flash chromatography (petroleum ether/EtOAc = 10/1) to give the desired products **3**.

(4*R*,5*R*)-6-Methylene-2,4-diphenyl-8-tosyl-5,6,7,8-tetrahydro-4*H*-furo[2,3-*b*]azepine-5carbonitrile (3a): Following the general procedure **A**, compound 3a was obtained as a white solid in 98% yield (47.1 mg), 13:1 dr and 97% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1) ; $R_f = 0.5$ (petroleum ether/EtOAc = 4/1); mp = 150-152 °C; $[\alpha]_D^{25} =$ +114.1 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.46 (d, *J* = 7.4 Hz, 2H), 7.40 – 7.29 (m, 7H), 7.30 – 7.20 (m, 3H), 6.16 (s, 1H), 5.39 (brs, 1H), 5.12 (brs, 1H), 4.78 (d, *J* = 15.8 Hz, 1H), 4.22 (d, *J* = 15.8 Hz, 1H), 3.83 (d, *J* = 3.0 Hz, 1H), 3.74 (d, *J* = 2.7 Hz, 1H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 144.7, 142.6, 138.0, 137.3, 136.5, 129.8(4) (2C), 129.8(1), 128.9 (2C), 128.8 (2C), 128.7(6) (2C), 128.4, 128.2 (2C), 128.1, 123.8 (2C), 120.8, 119.2, 118.3, 107.4, 53.3, 44.4, 41.6, 21.8; HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₂₉H₂₄N₂O₃S]⁺: 480.1502; found: 480.1510. HPLC (Chiralpak AS-H, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 220$ nm) t_R= 12.83 min (*trans*-major), 19.10 (*trans*-minor),

The preparation and X-ray analysis of the single crystal 3a

Compound **3a** (10.0 mg) was charged in a screw-top vial. Drops of isopropyl ether were added with shaking until all the compound has dissolved. The lid was then loosely screwed on the vial, and a single crystal was obtained by natural volatilization at room temperature. The data set was collected by a Bruker APEX-II CCD at 293(2) K equipped with Mo radiation source (K α = 0.71073 Å). Applied with multi-scan absorption correction, the structure solution was solved and refinement was processed by SHELXTL and OLEX2 program package. CCDC 2124706 contains the supplementary crystallographic data, and can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html.

Fig S1. The thermal ellipsoid plot for X-ray structure of (4R,5R)-3a with the ellipsoid contour at 30% probability level

Identification code	mo_d8v20438_0m	
Empirical formula	C29 H24 N2 O3 S	
Formula weight	480.56	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 9.3577(3) Å	$\alpha = 90$ °.
	b = 11.4290(3) Å	β= 108.2730(10) °.

	c = 12.3964(3) Å	$\gamma = 90$ °.
Volume	1258.93(6) Å ³	
Z	2	
Density (calculated)	1.268 Mg/m ³	
Absorption coefficient	0.162 mm ⁻¹	
F(000)	504	
Crystal size	0.190 x 0.150 x 0.110 mm ³	
Theta range for data collection	2.292 to 26.000 °.	
Index ranges	-10<=h<=11, -14<=k<=14, -154	<=l<=15
Reflections collected	18025	
Independent reflections	4916 [R(int) = 0.0552]	
Completeness to theta = 25.242°	99.5 %	
Absorption correction	Semi-empirical from equivalent	S
Max. and min. transmission	0.7456 and 0.5267	
Refinement method	Full-matrix least-squares on ${\rm F}^2$	
Data / restraints / parameters	4916 / 1 / 326	
Goodness-of-fit on F ²	1.025	
Final R indices [I>2sigma(I)]	R1 = 0.0417, wR2 = 0.1048	
R indices (all data)	R1 = 0.0504, wR2 = 0.1137	
Absolute structure parameter	0.00(5)	
Extinction coefficient	0.065(12)	
Largest diff. peak and hole	0.264 and -0.243 e.Å ⁻³	

(4R,5R)-2-(4-Methoxyphenyl)-6-methylene-4-phenyl-8-tosyl-5,6,7,8-tetrahydro-4H-

furo[2,3-*b*]azepine-5-carbonitrile (3b): Following the general procedure A, compound 3b was obtained as a white solid in 94% yield (48.3 mg), 8:1 dr and 97% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); R_f = 0.45 (petroleum ether/EtOAc = 4/1); mp = 192-194 °C; $[\alpha]_D^{25}$ = +118.5 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.43 – 7.32 (m, 7H), 7.29 – 7.22 (m, 2H), 6.90 – 6.81 (m, 2H), 6.02 (s, 1H), 5.38 (brs, 1H), 5.10 (brs, 1H), 4.78 (d, *J* = 15.8 Hz, 1H), 4.21 (d, *J* = 15.7 Hz, 1H), 3.81 (s, 3H), 3.80 (d, *J* = 3.2 Hz, 1H), 3.69 (d, *J* = 3.2 Hz, 1H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 150.8, 144.7, 141.8, 138.1, 137.4, 136.5, 129.8 (2C), 128.8(2) (2C), 128.7(9) (2C), 128.3, 128.2 (2C), 125.4 (2C), 122.9, 120.8, 119.2, 118.3, 114.2 (2C), 105.8, 55.5, 53.3, 44.4, 41.7, 21.8; HRMS (EI-TOF) m/z: [M]+ calcd for [C₃₀H₂₆N₂O₄S]⁺: 510.1608; found: 510.1615. HPLC (Chiralpak AS-H, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R= 11.92 min (*trans*-major), 15.86 min (*trans*-minor), 19.97 min (*cis*-minor), 23.95 min (*cis*-major).

(4R,5R)-6-Methylene-4-phenyl-2-(p-tolyl)-8-tosyl-5,6,7,8-tetrahydro-4H-furo[2,3-

b]azepine-5-carbonitrile (3c): Following the general procedure **A**, compound 3c was obtained as a white solid in 97% yield (48.2 mg), 11:1 dr and 96% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); R_f = 0.4 (petroleum ether/EtOAc = 10/1); mp = 153-155 °C; $[\alpha]_D^{25} = +101.0 \ (c = 0.20, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.2 Hz, 2H), 7.36 (m, 7H), 7.30 – 7.22 (m, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 6.10 (s, 1H), 5.38 (brs, 1H), 5.11 (brs, 1H), 4.78 (d, *J* = 15.8 Hz, 1H), 4.21 (d, *J* = 15.8 Hz, 1H), 3.82 (d, *J* = 3.3 Hz, 1H), 3.72 (d, *J* = 3.3 Hz, 1H), 2.49 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 144.7, 142.1, 138.0, 137.9 (8), 137.4, 136.5, 129.8 (2C), 129.4 (2C), 128.8 (1) (2C), 128.7 (9) (2C), 128.3, 128.2 (2C), 127.1, 123.8 (2C), 120.7, 119.1, 118.3, 106.6, 53.3, 44.4, 41.6, 21.8, 21.4; HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₃₀H₂₆N₂O₃S]⁺: 494.1659; found: 494.1667. HPLC (Chiralpak AS-H, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R= 11.86 min (*trans*-major), 15.22 min (*trans*-minor), 20.02 min (*cis*-minor), 27.27 min (*cis*-major).

furo[2,3-*b*]azepine-5-carbonitrile (3d): Following the general procedure **A**, compound 3d was obtained as a white solid in 96% yield (49.2 mg), 8:1 dr and 96% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.4$ (petroleum ether/EtOAc = 4/1); mp = 177–179 °C; [α]_D²⁵ = +122.3 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz,CDCl₃) δ 7.76 (d, *J* = 8.1 Hz, 2H), 7.41 – 7.33 (m, 7H), 7.32 – 7.22 (m, 4H), 6.15 (s, 1H), 5.40 (brs, 1H), 5.13 (brs, 1H), 4.78 (d, *J* = 15.8 Hz, 1H), 4.21 (d, *J* = 15.8 Hz, 1H), 3.80 (d, *J* = 3.2 Hz, 1H), 3.70 (d, *J* = 3.2 Hz, 1H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 144.8, 142.8, 137.9, 137.3, 136.5, 133.7, 129.9 (2C), 129.1 (2C), 128.9 (2C), 128.7 (2C), 128.5, 128.3, 128.2 (2C), 125.1 (2C), 121.1, 119.5, 118.2, 107.8, 53.2, 44.4, 41.7, 21.8; HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₂₉H₂₃ClN₂O₃S]⁺ : 514.1112; found: 514.1116. HPLC (Chiralpak AS-H, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R= 15.44 min (*trans*-major), 19.01 min (*trans*-minor), 25.02 min (*cis*-minor), 35.22 min (*cis*-major).

(4R,5R)-2-(4-Fluorophenyl)-6-methylene-4-phenyl-8-tosyl-5,6,7,8-tetrahydro-4H-

furo[2,3-*b*]azepine-5-carbonitrile (3e): Following the general procedure **A**, compound 3e was obtained as a white solid in 94% yield (47.2 mg), 6:1 dr and 96% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.4$ (petroleum ether/EtOAc = 4/1); mp = 91-93 °C; $[\alpha]_D^{25} = +122.5$ (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.3 Hz, 2H), 7.46 – 7.41 (m, 2H), 7.41 – 7.33 (m, 5H), 7.29 – 7.23 (m, 2H), 7.05 – 6.98 (m, 2H), 6.09 (s, 1H), 5.40 (brs, 1H), 5.12 (brs, 1H), 4.78 (d, *J* = 15.8 Hz, 1H), 4.21 (d, *J* = 15.8 Hz, 1H), 3.79 (d, *J* = 3.2 Hz, 1H), 3.68 (d, *J* = 3.2 Hz, 1H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, C-F, ¹*J _{C-F}* = 248.2 Hz), 149.9, 144.8, 142.5, 137.9, 137.3, 136.5, 129.8 (2C), 128.9 (2C), 128.7 (2C), 128.4, 128.2 (2C), 126.2 (d, C-F, ⁴*J _{C-F}* = 3.3 Hz), 125.7 (d, C-F, ³*J _{C-F}* = 8.1 Hz, 2C), 121.0, 119.4, 118.2, 115.84 (d, C-F, ²*J _{C-F}* = 22.0 Hz, 2C), 107.0, 53.2, 44.3, 41.7, 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.05 – -113.12 (m). HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₂₉H₂₃FN₂O₃S]⁺: 498.1408; found: 498.1415. HPLC (Chiralpak AS-H, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R= 14.24 min (*trans*-major), 20.22 min (*trans*-minor), 23.93 min (*cis*-minor), 33.06 min (*cis*-major).

(4R,5R)-6-Methylene-4-phenyl-2-(m-tolyl)-8-tosyl-5,6,7,8-tetrahydro-4H-furo[2,3-

b]azepine-5-carbonitrile (3f): Following the general procedure **A**, compound 3f was obtained as a white solid in 97% yield (48.2 mg), 12:1 dr and 96% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.5$ (petroleum ether/EtOAc = 4/1); mp = 133-135 °C; $[\alpha]_D^{25} = +69.6$ (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.40 – 7.33 (m, 5H), 7.30 – 7.24 (m, 4H), 7.23 – 7.18 (m, 1H), 7.06 (d, *J* = 7.4 Hz, 1H), 6.14 (s, 1H), 5.39 (brs, 1H), 5.11 (brs, 1H), 4.79 (d, *J* = 15.8 Hz, 1H), 4.22 (d, *J* = 15.8 Hz, 1H), 3.83 (d, *J* = 3.3 Hz, 1H), 3.73 (d, *J* = 3.3 Hz, 1H), 2.49 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 144.7, 142.4, 138.4, 138.0, 137.3, 136.6, 129.8 (2C), 129.7, 128.8, 128.8 (2C), 128.7 (8) (2C), 128.7, 128.4, 128.2 (2C), 124.4, 121.0, 120.8, 119.1, 118.2, 107.2, 53.3, 44.4, 41.6, 21.8, 21.5. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₃₀H₂₆N₂O₃S]⁺: 494.1659; found: 494.1662. HPLC (Chiralpak IA, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R = 11.76 min (*trans*-minor), 12.91 min (*cis*-major), 18.83 min (*cis*-major), 22.33 min (*trans*-minor).

(4R,5R)-2-(2-Methoxyphenyl)-6-methylene-4-phenyl-8-tosyl-5,6,7,8-tetrahydro-4H-

furo[2,3-*b*]**azepine-5-carbonitrile** (**3g**): Following the general procedure **A**, compound **3g** was obtained as a white solid in 97% yield (49.3 mg), 10:1 dr and 96% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.5$ (petroleum ether/EtOAc = 4/1); mp = 188-190 °C; $[\alpha]_D^{25} = +86.5$ (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.0 Hz, 2H), 7.62 – 7.53 (m, 1H), 7.41 – 7.30 (m, 5H), 7.30 – 7.16 (m, 3H), 7.02 – 6.93 (m, 1H), 6.88 (d, *J* = 8.3 Hz, 1H), 6.48 (s, 1H), 5.34 (brs, 1H), 5.08 (brs, 1H), 4.76 (d, *J* = 16.0 Hz, 1H), 4.27 (d, *J* = 15.9 Hz, 1H), 3.89 (d, *J* = 3.3 Hz, 1H), 3.85 (d, *J* = 3.3 Hz, 1H), 3.79 (s, 3H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 147.2, 144.7, 141.9, 137.9, 137.1, 136.7, 129.8 (2C), 129.0 (2C), 128.7, 128.6 (2C), 128.2, 128.1 (2C), 125.9, 120.8, 120.2, 118.7, 118.4, 118.1, 112.3, 111.0, 55.4, 53.8, 44.4, 41.4, 21.8; HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₃₀H₂₆ClN₂O₄S]⁺: 510.1608; found: 510.1619. HPLC (Chiralpak AS-H, *n*-hexane/ethanol =

90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R= 14.21 min (*trans*-major), 20.82 min (*trans*-minor), 25.75 min (*cis*-minor), 31.11 min (*cis*-major).

(4R,5R)-6-Methylene-4-phenyl-2-propyl-8-tosyl-5,6,7,8-tetrahydro-4H-furo[2,3-

b]azepine-5-carbonitrile (*cis*-3h) (major): Following the general procedure A, compound 3h was obtained as a white solid in 53% yield (24.2 mg), 93% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.45$ (petroleum ether/EtOAc = 4/1); mp = 110-112 °C; $[\alpha]_D^{25} = +106.3$ (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.1 Hz, 2H), 7.40 – 7.28 (m, 5H), 7.22 – 7.13 (m, 2H), 5.53 (s, 1H), 5.35 (s, 1H), 5.07 (s, 1H), 4.72 (d, *J* = 15.8 Hz, 1H), 4.13 (d, *J* = 15.8 Hz, 1H), 3.71 (d, *J* = 3.1 Hz, 1H), 3.52 (d, *J* = 3.2 Hz, 1H), 2.51 – 2.45 (m, 5H), 1.57 (q, *J* = 7.4 Hz, 2H), 0.91 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.8, 144.5, 141.1, 138.3, 137.6, 136.3, 129.7 (2C), 128.7 (2C), 128.7 (2C), 128.1 (9), 128.1 (5) (2C), 120.7, 118.3 118.0, 107.9, 53.1, 44.3, 41.8, 30.2, 21.8, 21.1, 13.7. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₂₆H₂₆N₂O₃S]⁺: 446.1659; found: 446.1663. HPLC (Chiralpak AS-H, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R=12.65 min (major), 13.67 min (minor).

(4S,5R)-6-Methylene-4-phenyl-2-propyl-8-tosyl-5,6,7,8-tetrahydro-4H-furo[2,3-

b]azepine-5-carbonitrile (*trans*-3h) (minor): Following the general procedure A, compound 3h was obtained as a white solid in 42% yield (19.1 mg), 95% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); R_f = 0.4 (petroleum ether/EtOAc = 4/1); mp = 154-156 °C; $[\alpha]_D^{25}$ = +60.2 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.1 Hz, 2H), 7.41 – 7.28 (m, 7H), 5.58 (d, *J* = 2.0 Hz, 1H), 5.56 (s, 1H), 5.24 (d, *J* = 1.9 Hz, 1H), 4.66 (d, *J* = 15.3 Hz, 1H), 4.14 (d, *J* = 15.3 Hz, 1H), 3.95 (d, *J* = 11.0 Hz, 1H), 3.76 (d, *J* = 11.0 Hz, 1H), 2.48 (s, 3H), 2.44 (t, *J* = 7.6 Hz, 2H), 1.64 – 1.45 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 144.5, 139.9, 139.4, 138.5, 136.8, 130.0 (2C), 129.0 (2C), 128.6 (2C), 128.2, 127.9 (2C), 119.5, 117.5, 117.3, 107.6, 55.5, 49.5, 40.3, 30.2, 21.8, 20.9, 13.8. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₂₆H₂₆N₂O₃S]⁺: 446.1659; found: 446.1666. HPLC (Chiralpak AS-H, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm)

(4R,5R)-2-Cyclopropyl-6-methylene-4-phenyl-8-tosyl-5,6,7,8-tetrahydro-4H-furo[2,3-

b]azepine-5-carbonitrile (*cis*-3i) (major): Following the general procedure **A**, compound 3i was obtained as a white solid in 60% yield (27.4 mg), 93% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.45$ (petroleum ether/EtOAc = 4/1); mp = 66-68 °C; $[\alpha]_D^{25} = +121.2$ (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.38 – 7.28 (m, 5H), 7.19 (m, 2H), 5.49 (s, 1H), 5.34 (s, 1H), 5.06 (s, 1H), 4.71 (d, *J* = 15.8 Hz, 1H), 4.12 (d, *J* = 15.8 Hz, 1H), 3.72 (d, *J* = 3.2 Hz, 1H), 3.54 (d, *J* = 3.2 Hz, 1H), 2.48 (s, 3H), 1.75 (tt, *J* = 8.4, 5.1 Hz, 1H), 0.87 – 0.77 (m, 2H), 0.73 – 0.62 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 144.6, 140.5, 138.2, 137.6, 136.4, 129.7 (2C), 128.7 (2C), 128.7 (2C), 128.2, 128.1 (2C), 120.7, 118.3, 118.1, 106.3, 53.1, 44.3, 41.7, 21.8, 9.1, 7.1, 7.0. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₂₆H₂₄N₂O₃S]⁺: 444.1502; found: 444.1510. HPLC (Chiralpak AS-H, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R= 16.09 min (major), 18.61 min (minor).

(4*S*,5*R*)-2-Cyclopropyl-6-methylene-4-phenyl-8-tosyl-5,6,7,8-tetrahydro-4*H*-furo[2,3*b*]azepine-5-carbonitrile (*trans*-3i) (minor): Following the general procedure A, compound 3i was obtained as a white solid in 39% yield (17.1 mg), 96% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.4$ (petroleum ether/EtOAc = 4/1); mp = 136-138 °C; $[\alpha]_D^{25} = +76.5$ (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.1 Hz, 2H), 7.42 – 7.28 (m, 7H), 5.57 (d, *J* = 2.0 Hz, 1H), 5.53 (s, 1H), 5.24 (d, *J* = 1.9 Hz, 1H), 4.67 (d, *J* = 15.3, 1H), 4.13 (d, *J* = 15.3 Hz, 1H), 3.95 (d, *J* = 11.0 Hz, 1H), 3.74 (d, *J* = 11.0 Hz, 1H), 2.48 (s, 3H), 1.71 (tt, *J* = 8.4, 5.1 Hz, 1H), 0.85 – 0.75 (m, 2H), 0.69 – 0.59 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 144.6, 139.8, 138.8, 138.5, 136.8, 130.0 (2C), 129.1 (2C), 128.6 (2C), 128.2, 127.9 (2C), 119.5, 117.7, 117.3, 106.1, 55.5, 49.6, 40.2, 21.8, 9.0, 7.1, 6.8. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₂₆H₂₄N₂O₃S]⁺: 444.1502; found: 444.1503. HPLC (Chiralpak AS-H, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R=10.90 min (major), 14.84 min (minor).

(4R,5R)-4-(4-Fluorophenyl)-6-methylene-2-phenyl-8-tosyl-5,6,7,8-tetrahydro-4H-

furo[2,3-*b*]**azepine-5-carbonitrile (3j**): Following the general procedure **A**, compound **3j** was obtained as a white solid in 92% yield (46.3 mg), 12:1 dr and 98% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.4$ (petroleum ether/EtOAc = 4/1); mp = 77-79 °C; $[a]_D^{25} = +59.5$ (*c* = 0.20, CH₂Cl₂); ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.3 Hz, 2H), 7.49 – 7.42 (m, 2H), 7.41 – 7.30 (m, 4H), 7.29 – 7.22 (m, 3H), 7.10 – 7.02 (m, 2H), 6.15 (s, 1H), 5.38 (brs, 1H), 5.10 (brs, 1H), 4.75 (d, *J* = 15.9 Hz, 1H), 4.24 (d, *J* = 15.9 Hz, 1H), 3.92 – 3.87 (m, 2H), 2.50 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.6 (d, C-F, ¹*J _{C-F}* = 247.4 Hz), 150.8, 144.8, 142.5, 136.83, 136.6, 133.6 (d, C-F, ⁴*J _{C-F}* = 3.3 Hz), 130.7 (d, C-F, ³*J _{C-F}* = 8.1 Hz, 2C), 129.9 (2C), 129.7, 128.8 (2C), 128.1 (4), 128.1(0) (2C), 123.8 (2C), 120.7, 118.6, 118.2, 115.71 (d, C-F, ²*J*_{C-F} = 21.5 Hz, 2C), 107.1, 53.6, 43.8, 41.2, 21.8. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.55 – -113.62 (m). **HRMS** (EI-TOF) m/z: [M]⁺ calcd for [C₂₉H₂₃FN₂O₃S]⁺: 498.1408; found: 498.1415. **HPLC** (Chiralpak AS-H, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R= 12.41 min (*trans*-major), 14.11 min (*trans*- minor), 20.59 min (*cis*-minor), 23.21 min (*cis*-major).

(4R,5R)-4-(4-Chlorophenyl)-6-methylene-2-phenyl-8-tosyl-5,6,7,8-tetrahydro-4H-

furo[2,3-*b*]azepine-5-carbonitrile (3k): Following the general procedure A, compound 3k was obtained as a white solid in 98% yield (49.8 mg), 11:1 dr and 97% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.5$ (petroleum ether/EtOAc = 4/1); mp =94-96 °C; $[\alpha]_D^{25} = +66.7$ (c = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.3 Hz, 2H), 7.47 – 7.42 (m, 2H), 7.35 (m, 6H), 7.29 – 7.16 (m, 3H), 6.14 (s, 1H), 5.38 (brs, 1H), 5.10 (brs, 1H), 4.74 (d, J = 15.9 Hz, 1H), 4.24 (d, J = 15.9 Hz, 1H), 4.02-3.78 (m, 2H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 144.8, 142.6, 136.7, 136.6, 136.3, 134.3, 130.3 (2C), 129.9 (2C), 129.6, 128.9 (2C), 128.8 (2C), 128.2, 128.1 (2C), 123.8 (2C), 120.7, 118.3, 118.1,

107.1, 53.6, 43.9, 41.0, 21.8. **HRMS** (EI-TOF) m/z: $[M]^+$ calcd for $[C_{29}H_{23}CIN_2O_3S]^+$: 514.1112; found: 514.1121. **HPLC** (Chiralpak AS-H, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 220$ nm) t_R= 11.98 min (*trans*-major), 13.37 min (*trans*-minor), 19.78 min (*cis*-minor), 22.45 min (*cis*-major).

(4R,5R)-6-Methylene-2-phenyl-4-(p-tolyl)-8-tosyl-5,6,7,8-tetrahydro-4H-furo[2,3-

b]azepine-5-carbonitrile (3I): Following the general procedure **A**, compound 3I was obtained as a white solid in 94% yield (45.8 mg), 14:1 dr and 96% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.4$ (petroleum ether/EtOAc = 4/1); mp = 90-92 °C; $[\alpha]_D^{25}$ = +107.5 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.1 Hz, 2H), 7.51 – 7.44 (m, 2H), 7.40 – 7.29 (m, 4H), 7.28 – 7.21 (m, 1H), 7.20 – 7.11 (m, 4H), 6.17 (s, 1H), 5.38 (brs, 1H), 5.11 (brs, 1H), 4.78 (d, *J* = 15.8 Hz, 1H), 4.21 (d, *J* = 15.7 Hz, 1H), 3.79 (d, *J* = 3.3 Hz, 1H), 3.69 (d, *J* = 3.3 Hz, 1H), 2.49 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 144.7, 142.5, 138.1, 137.3, 136.5, 135.0, 129.8 (2), 129.8 (2C), 129.5 (2C), 128.7 (2C), 128.7 (2C), 128.2 (2C), 128.0, 123.8 (2C), 120.7, 119.4, 118.3, 107.4, 53.3, 44.0, 41.7, 21.8, 21.2. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₃₀H₂₆N₂O₃S]⁺: 494.1659; found: 494.1666. HPLC (Chiralpak IA, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R=13.47 min (*trans*-major), 15.74 min (*cis*-minor), 20.06 min (*cis*-major), 22.45 min (*trans*-minor).

(4*R*,5*R*)-4-(4-(*tert*-Butyl)phenyl)-6-methylene-2-phenyl-8-tosyl-5,6,7,8-tetrahydro-4*H*furo[2,3-*b*]azepine-5-carbonitrile (3m): Following the general procedure A, compound 3m was obtained as a white solid in 95% yield (51.1 mg), 14:1 dr and 99% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.5$ (petroleum ether/EtOAc = 4/1); m.p = 98-100 °C; $[\alpha]_D^{25} = +122.6$ (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.1 Hz, 2H), 7.51 – 7.46 (m, 2H), 7.41 – 7.29 (m, 6H), 7.28 – 7.21 (m, 1H), 7.18 (d, *J* = 8.1 Hz, 2H), 6.20 (s, 1H), 5.41 (brs, 1H), 5.12 (brs, 1H), 4.78 (d, *J* = 15.7 Hz, 1H), 4.20 (d, *J* = 15.6 Hz, 1H), 3.74 (d, J = 3.0 Hz, 1H), 3.58 (d, J = 3.1 Hz, 1H), 2.50 (s, 3H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 150.6, 144.7, 142.5, 137.6, 136.5, 135.0, 129.9, 129.8 (2C), 128.7 (2C), 128.3 (2C), 128.2 (2C), 128.0, 125.8 (2C), 123.9 (2C), 121.1, 119.7, 118.3, 107.5, 53.0, 43.9, 42.2, 34.7, 31.4 (3C), 21.8. **HRMS** (EI-TOF) m/z: [M]⁺ calcd for [C₃₃H₃₂N₂O₃S]⁺: 536.2128; found: 536.2131. **HPLC** (Chiralpak IB, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 220$ nm) t_R= 9.96 min (*trans*-minor), 10.87 min (*trans*-major), 11.61 min (*cis*-major), 12.28 min (*cis*-minor).

(4*R*,5*R*)-4-(4-Methoxyphenyl)-6-methylene-2-phenyl-8-tosyl-5,6,7,8-tetrahydro-4*H*furo[2,3-*b*]azepine-5-carbonitrile (3n): Following the general procedure **A**, compound 3n was obtained as a white solid in 98% yield (49.7 mg), 16:1 dr and 96% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.4$ (petroleum ether/EtOAc = 4/1); mp = 100-102 °C; $[\alpha]_D^{25} = +107.3$ (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.50 – 7.43 (m, 2H), 7.40 – 7.29 (m, 4H), 7.28 – 7.21 (m, 1H), 7.21 – 7.15 (m, 2H), 6.92 – 6.86 (m, 2H), 6.18 (s, 1H), 5.37 (brs, 1H), 5.10 (brs, 1H), 4.76 (d, *J* = 15.9 Hz, 1H), 4.22 (d, *J* = 15.8 Hz, 1H), 3.81 (m, 4H), 3.74 (d, *J* = 3.3 Hz, 1H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 150.6, 144.7, 142.4, 137.2, 136.5, 129.9 (2C), 129.8(1) (2C), 129.8(0), 128.7 (2C), 128.1 (2C), 128.0, 123.8 (2C), 120.7, 119.4, 118.4, 114.1 (2C), 107.4, 55.4, 53.4, 43.7, 41.7, 21.8. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₃₀H₂₆N₂O₄S]⁺: 510.1608; found: 510.1611. HPLC (Chiralpak IF, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R=30.80 min (minor), 36.59 min (major).

(4R,5R)-4-(3-Chlorophenyl)-6-methylene-2-phenyl-8-tosyl-5,6,7,8-tetrahydro-4H-

furo[2,3-*b*]**azepine-5-carbonitrile** (30): Following the general procedure **A**, compound **30** was obtained as a white solid in 94% yield (49.3 mg), 12:1 dr and 95% ee; purified by flash chromatography (petroleum ether/EtOAc = 10/1), $R_f = 0.4$ (petroleum ether/EtOAc = 4/1); m.p

= 87-89 °C; [α]_D²⁵ = +123.3 (*c* = 0.20, CH₂Cl₂); ¹**H** NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.50 – 7.44 (m, 2H), 7.40 – 7.30 (m, 6H), 7.30 – 7.22 (m, 2H), 7.12 (d, *J* = 2.1 Hz, 1H), 6.14 (s, 1H), 5.42 (brs, 1H), 5.13 (brs, 1H), 4.78 (d, *J* = 15.8 Hz, 1H), 4.22 (d, *J* = 15.8 Hz, 1H), 3.86 (d, *J* = 3.3 Hz, 1H), 3.69 (d, *J* = 3.4 Hz, 1H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 144.9, 142.6, 139.8, 136.9, 136.4, 134.6, 130.2, 129.9 (2C), 129.6, 129.1, 128.8 (2C), 128.6, 128.1 (9), 128.1 (7) (2C), 126.9, 123.9 (2C), 121.0, 118.5, 117.9, 107.0, 53.4, 44.0, 41.1, 21.8. **HRMS** (EI-TOF) m/z: [M]⁺ calcd for [C₂₉H₂₃ClN₂O₃S]⁺: 514.1112; found: 514.1115. **HPLC** (Chiralpak AS-H, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R= 12.58 min (*trans*-major), 16.52 min (*trans*-minor), 19.34 min (*cis*-minor), 29.48 min (*cis*-major).

(4R,5R)-4-(3-methoxyphenyl)-6-methylene-2-phenyl-8-tosyl-5,6,7,8-tetrahydro-4H-

furo[2,3-*b*]**azepine-5-carbonitrile (3p):** Following the general procedure **A**, compound **3p** was obtained as a white solid in 98% yield (50.2 mg), 17:1 dr and 97% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.5$ (petroleum ether/EtOAc = 4/1); mp = 88-90 °C; [α]_D²⁵ = +109.4 (*c* = 0.20, CH₂Cl₂); ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.51 – 7.44 (m, 2H), 7.42 – 7.19 (m, 6H), 6.93 – 6.83 (m, 2H), 6.83 – 6.76 (m, 1H), 6.20 (s, 1H), 5.41 (brs, 1H), 5.16 (brs, 1H), 4.76 (d, *J* = 15.8 Hz, 1H), 4.22 (d, *J* = 15.3 Hz, 1H), 3.83 – 3.77 (m, 4H), 3.65 (d, *J* = 3.1 Hz, 1H), 2.49 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 159.8, 150.7, 144.7, 142.5, 139.5, 137.4, 136.5, 129.9, 129.8, 129.8 (2C), 128.74 (2C), 128.2 (2C), 128.0, 123.8 (2C), 121.0, 120.9, 119.2, 118.3, 114.6, 113.7, 107.4, 55.4, 53.2, 44.4, 41.8, 21.8; **HRMS** (EI-TOF) m/z: [M]⁺ calcd for [C₃₀H₂₆N₂O₄S]⁺: 510.1608; found: 510.1612. **HPLC** (Chiralpak AS-H, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R= 13.80 min (*trans*-major), 15.85 min (*trans*-minor), 27.91 min (*cis*-minor), 33.18 min (*cis*-major).

(4R,5R)-6-Methylene-2-phenyl-4-(o-tolyl)-8-tosyl-5,6,7,8-tetrahydro-4H-furo[2,3-

b]azepine-5-carbonitrile (3q): Following the general procedure **A**, compound 3q was obtained as a white solid in 97% yield (48.1 mg), >20:1 dr and 96% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.4$ (petroleum ether/EtOAc = 4/1); mp = 194-196 °C; $[\alpha]_D^{25} = +150.8$ (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.60 – 7.51 (m, 1H), 7.47 – 7.38 (m, 2H), 7.36 – 7.16 (m, 8H), 6.05 (s, 1H), 5.49 (brs, 1H), 5.23 (brs, 1H), 4.84 (d, *J* = 15.4 Hz, 1H), 4.19 (d, *J* = 15.4 Hz, 1H), 4.12 (d, *J* = 3.0 Hz, 1H), 3.79 (d, *J* = 3.0 Hz, 1H), 2.45 (s, 3H), 2.15 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 144.6, 142.6, 138.6, 136.9, 136.7, 136.1, 131.1, 129.9, 129.8 (2C), 128.7 (2C), 128.1 (2) (2C), 128.0 (7), 128.0, 127.5, 126.6, 123.8 (2C), 121.5, 120.2, 118.2, 107.3, 52.2, 41.9, 39.9, 21.7, 19.9; HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₃₀H₂₆N₂O₃S]⁺: 494.1659; found: 494.1667. HPLC (Chiralpak AS-H, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, 220 nm) t_R= 11.20 min (*trans*-major), 15.34 min (*trans*-minor), 18.43 min (*cis*-minor), 22.58 min (*cis*-major).

(4R,5R)-6-Methylene-4-(naphthalen-1-yl)-2-phenyl-8-tosyl-5,6,7,8-tetrahydro-4H-

furo[2,3-*b*]azepine-5-carbonitrile (3r): Following the general procedure **A**, compound 3r was obtained as a white solid in 98% yield (51.9 mg),13:1 dr and 97% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.5$ (petroleum ether/EtOAc = 4/1); mp = 111-113 °C; $[\alpha]_D^{25} = +151.5$ (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.77 (m, 5H), 7.59 – 7.49 (m, 3H), 7.49 – 7.42 (m, 1H), 7.40-7.34 (m, 4H), 7.31 – 7.23 (m, 2H), 7.22 – 7.17 (m, 1H), 5.93 (brs, 1H), 5.55 (brs, 1H), 5.28 (s, 1H), 4.90 (d, *J* = 15.3 Hz, 1H), 4.63 (d, *J* = 2.7 Hz, 1H), 4.25 (d, *J* = 15.2 Hz, 1H), 3.93 (d, *J* = 2.7 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 144.7, 142.5, 139.0, 137.0, 134.2, 134.1, 131.1, 129.9 (2C), 129.8, 129.3, 128.9, 128.7 (2C), 128.3 (2C), 128.0, 126.8, 126.2, 125.5, 125.1, 123.8 (2C), 122.8, 122.0, 120.9, 118.2, 107.5, 52.0, 42.4, 39.4, 21.9; HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₃₃H₂₆N₂O₃S]⁺: 530.1659; found: 530.1660. HPLC (Chiralpak AS-H, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R= 14.56 min (*trans*-major), 19.72 min (*trans*-minor), 30.50 min (*cis*-minor), 37.00 min (*cis*-major).

(4*S*,5*R*)-6-Methylene-2-phenyl-4-(thiophen-2-yl)-8-tosyl-5,6,7,8-tetrahydro-4*H*-furo[2,3*b*]azepine-5-carbonitrile (3s): Following the general procedure **A**, compound 3s was obtained as a white solid in 98% yield (48.2 mg), 13:1 dr and 97% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.5$ (petroleum ether/EtOAc = 4/1); mp = 115-117 °C; [α]_D²⁵ = +96.5 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.53 - 7.47 (m, 2H), 7.37 - 7.30 (m, 4H), 7.29 - 7.22 (m, 2H), 7.12 (d, *J* = 3.5 Hz, 1H), 7.07 - 6.99 (m, 1H), 6.30 (s, 1H), 5.43 (brs, 1H), 5.26 (brs, 1H), 4.77 (d, *J* = 15.9 Hz, 1H), 4.19 (d, *J* = 15.8 Hz, 1H), 3.90 (d, *J* = 2.9 Hz, 1H), 3.81 (d, *J* = 2.8 Hz, 1H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 144.9, 142.3, 140.3, 137.0, 136.1, 129.9 (2C), 129.7, 128.8 (2C), 128.2 (2C), 128.1, 127.4, 126.6, 125.1, 123.9 (2C), 121.4, 119.3, 118.0, 107.2, 53.4, 42.5, 39.6, 21.8. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₂₇H₂₂N₂O₃S₂]⁺: 486.1066; found: 486.1069. HPLC (Chiralpak IC, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) t_R=22.93 min (*trans*-minor), 25.42 min (*cis*-major), 28.75 min (*trans*-major), 33.11 min (*cis*-minor).

5. Preparation and characterization data of benzoyl-substituted furo[2,3-b]azepines 5

General procedure B: Under a nitrogen atmosphere, two flame dried 10 mL Schlenk tube A and B, the tube A was charged with Ph₃PAuCl (4.9 mg, 0.01 mmol, 10 mol%) and AgPF₆ (2.5 mg, 0.01 mmol, 10 mol%), the tube B was charged with ligand (*S*)-L6 (5.7 mg, 0.01 mmol, 10 mol%), and Pd₂(dba)₃ (2.3 mg, 0.0025 mmol, 2.5 mol%). After the tube A and B were evacuated and backfilled with nitrogen, freshly distilled PhCF₃ (1.0 mL) was added respectively, then stirred at room temperature for 15-20 minutes while the solution of A tube turned white turbid and the solution of B tube turned light green. Then, enynamides 1 (0.1 mmol, 1.0 equiv) were added to tube A, and the reaction mixture immediately turned golden yellow. After 5 minutes, TMM donor 4 (33.2 mg, 0.12 mmol, 1.2 equiv) was added to tube A sequentially. The solution of tube B was then transferred to tube A at 0 °C. The reaction mixture was stirred at 0 °C for the indicated time, which was evaporated under reduced pressure at 30 °C. The crude residue was purified by flash chromatography (petroleum ether/EtOAc = 10/1) to give the desired products **5**.

(4*R*,5*R*)-2-(4-Methoxyphenyl)-6-methylene-4-phenyl-8-tosyl-5,6,7,8-tetrahydro-4*H*furo[2,3-*b*]azepin-5-yl)(phenyl)methanone (5a): Following the general procedure **B**, compound 5a was obtained as a white solid in 93% yield (55.1 mg), 12:1 dr and 94% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.6$ (petroleum ether/EtOAc = 4/1); m.p = 109-111 °C; $[\alpha]_D^{25} = +45.2$ (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.79 – 7.72 (m, 2H), 7.51 – 7.45 (m, 1H), 7.42 (d, *J* = 8.8 Hz, 2H), 7.38 – 7.32 (m, 4H), 7.23 – 7.18 (m, 3H), 7.07 – 7.01 (m, 2H), 6.84 (d, *J* = 8.8 Hz, 2H), 6.03 (s, 1H), 5.36 (brs, 1H), 5.03 (brs, 1H), 4.85 – 4.77 (m, 2H), 4.15 (d, *J* = 15.4 Hz, 1H), 3.81 (s, 3H), 3.79 – 3.76 (m, 1H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 159.2, 150.1, 144.2, 140.8, 140.3, 140.2, 137.3, 137.1, 133.1, 129.6 (2C), 129.6 (2C), 128.6 (2C), 128.6 (2C), 128.4 (2C), 128.2 (2C), 127.3, 125.2 (2C), 123.5, 121.5, 121.3, 114.1 (2C), 106.4, 55.4, 53.9, 53.7, 44.8, 21.8. **HRMS** (EI-TOF) m/z: $[M]^+$ calcd for $[C_{36}H_{31}NO_5S]^+$: 589.1917; found: 589.1914. **HPLC** (Chiralpak IF, *n*-hexane/ethanol = 95/5, flow rate = 1.0 mL/min, λ = 220 nm) t_R= 20.90 min (*trans*-major), 27.87 min (*trans*-minor), 48.91 min (*cis*-major), 58.63 min (*cis*-minor).

(4R,5R)-2-(4-Chlorophenyl)-6-methylene-4-phenyl-8-tosyl-5,6,7,8-tetrahydro-4H-

furo[2,3-*b*]azepin-5-yl)(phenyl)methanone (5b): Following the general procedure **B**, compound **5b** was obtained as white solid in 80% yield (44.2 mg), 13:1 dr and 94% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.5$ (petroleum ether/EtOAc = 4/1); m.p = 181-183 °C; [α]_D²⁵ = +35.4 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.3 Hz, 2H), 7.76 – 7.70 (m, 2H), 7.52 – 7.45 (m, 1H), 7.43 – 7.31 (m, 6H), 7.30 – 7.24 (m, 2H), 7.24 – 7.19 (m, 3H), 7.08 – 7.01 (m, 2H), 6.16 (s, 1H), 5.39 (brs, 1H), 5.08 (brs, 1H), 4.88 – 4.73 (m, 2H), 4.13 (d, *J* = 15.3 Hz, 1H), 3.75 (d, *J* = 3.3 Hz, 1H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 148.9, 144.3, 141.8, 140.4, 140.1, 137.2, 137.0, 133.2 (2C), 129.6 (2C), 129.5 (2C), 128.9, 128.8 (5) (2C), 128.7 (2C), 128.6 (2C), 128.4 (2C), 128.4 (2C), 127.5, 125.0 (2C), 121.9, 121.8, 108.4, 54.2, 53.3, 44.8, 21.8. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₃₅H₂₈CINO₄S]⁺: 593.1422; found: 593.1426. HPLC (Chiralpak IC, *n*-hexane/ethanol = 95/5, flow rate = 1.0 mL/min, λ = 254 nm) t_R=7.44 min (*trans*-minor), 8.52 min (*trans*-major), 20.07 min (*cis*-major), 52.55 min (*cis*-minor).

(4R,5R)-4-(4-Methoxyphenyl)-6-methylene-2-phenyl-8-tosyl-5,6,7,8-tetrahydro-4H-

furo[2,3-*b*]azepin-5-yl)(phenyl)methanone (5c): Following the general procedure **B**, compound 5c was obtained as a white solid in 96% yield (57.5 mg), 10:1 dr and 91% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.6$ (petroleum ether/EtOAc = 4/1); m.p = 104-106 °C; $[\alpha]_D^{25} = -13.5$ (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.85 - 7.80 (m, 2H), 7.80 - 7.74 (m, 2H), 7.53 - 7.44 (m, 3H), 7.40 - 7.33 (m, 4H), 7.33 - 7.27 (m, 2H), 7.24 - 7.18 (m, 1H), 6.97 (d, *J* = 8.7 Hz, 2H), 6.74 (d, *J* = 8.7 Hz, 2H), 6.17 (s, 1H), 5.35

(brs, 1H), 5.01 (brs, 1H), 4.87 – 4.75 (m, 2H), 4.15 (d, J = 15.4 Hz, 1H), 3.84 (d, J = 3.3 Hz, 1H), 3.75 (s, 3H), 2.50 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 198.6, 158.7, 149.9, 144.2, 141.4, 140.1, 137.30 137.1, 133.1, 132.2, 130.7 (2C), 130.4, 129.6 (2C), 128.7 (2C), 128.6 (2C), 128.6 (2C), 128.3 (2C), 127.5, 123.7 (2C), 121.8, 121.2, 113.5 (2C), 108.0, 55.3, 54.0, 53.9, 43.9, 21.8. **HRMS** (EI-TOF) m/z: [M]⁺ calcd for [C₃₆H₃₁NO₅S]⁺: 589.1917; found: 589.1921. **HPLC** (Chiralpak IC, *n*-hexane/ethanol = 95/5, flow rate = 1.0 mL/min, λ = 220 nm) t_R=9.54 min (*trans*-minor), 10.30 min (*trans*-major), 35.63 min (*cis*-major), 64.88 min (*cis*-minor).

(4R,5R)-6-Methylene-2-phenyl-4-(o-tolyl)-8-tosyl-5,6,7,8-tetrahydro-4H-furo[2,3-

b]azepin-5-yl)(phenyl)methanone (5d): Following the general procedure **B**, compound 5d was obtained as white solid in 93% yield (53.1 mg), 8:1 dr and 84% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.5$ (petroleum ether/EtOAc = 4/1); m.p = 134-136 °C; [α]_D²⁵ = +35.5 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.3 Hz, 2H), 7.73 – 7.66 (m, 2H), 7.52 – 7.44 (m, 3H), 7.36 – 7.26 (m, 6H), 7.24 – 7.15 (m, 2H), 7.14 – 7.03 (m, 2H), 6.99 – 6.93 (m, 1H), 6.13 (s, 1H), 5.47 (brs, 1H), 5.24 (brs, 1H), 4.77 (d, *J* = 15.1 Hz, 1H), 4.72 (d, *J* = 3.4 Hz, 1H), 4.19 – 3.99 (m, 2H), 2.44 (s, 3H), 2.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.4, 149.8, 144.2, 141.6, 141.5, 138.6, 137.4, 137.3 (7), 136.1, 133.1, 130.8, 130.5, 129.6 (2C), 128.8, 128.6 (2C), 128.6 (2C), 128.4 (2C), 128.3 (2C), 127.4, 127.1, 126.1, 123.7 (2C), 122.0, 121.7, 108.0, 54.1, 52.1, 40.2, 21.7, 20.1. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₃₆H₃₁NO₄S]⁺: 573.1974; found: 573.1978. HPLC (Chiralpak IC, *n*-hexane/ethanol = 95/5, flow rate = 1.0 mL/min, λ = 254 nm) t_R= 7.07 min (*trans*-minor), 7.67 min (*trans*-major), 24.46 min (*cis*-major), 34.59 min (*cis*-minor).

(4R,5R)-6-Methylene-4-(naphthalen-1-yl)-2-phenyl-8-tosyl-5,6,7,8-tetrahydro-4H-

furo[2,3-*b***]azepin-5-yl)(phenyl)methanone (5e)**: Following the general procedure **B**, compound **5e** was obtained as white solid in 97% yield (60.9 mg), 9:1 dr and 89% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.5$ (petroleum ether/EtOAc =

4/1); m.p = 144-146 °C; $[\alpha]_D^{25}$ = +87.5 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform*d*) δ 7.89 – 7.82 (m, 3H), 7.75 – 7.69 (m, 1H), 7.67 – 7.62 (m, 2H), 7.53 – 7.41 (m, 6H), 7.38 – 7.21 (m, 8H), 7.20 – 7.14 (m, 1H), 6.07 (s, 1H), 5.56 (brs, 1H), 5.34 (brs, 1H), 4.85 (d, *J* = 3.2 Hz, 1H), 4.81 (d, *J* = 15.0 Hz, 1H), 4.68 (d, *J* = 3.2 Hz, 1H), 4.11 (d, *J* = 14.9 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.3, 149.8, 144.3, 141.8, 141.4, 137.4, 137.2, 136.0, 134.1, 133.2, 131.5, 130.5, 129.7 (2C), 129.2, 128.7 (2C), 128.5 (2C), 128.5 (2C), 128.4 (2C), 128.0, 127.4, 126.6, 126.5, 125.8, 125.2, 123.8 (2C), 123.1, 122.6, 122.3, 108.4, 54.6, 52.0, 39.5, 21.9. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₃₉H₃₁NO₄S]⁺: 609.1968; found: 609.1976. HPLC (Chiralpak IC, *n*-hexane/ethanol = 95/5, flow rate = 1.0 mL/min, λ = 254 nm) t_R= 9.02 min (*trans*-minor), 9.66 min (*trans*-major), 30.31 min (*cis*-major), 46.24 min (*cis*-minor).

6. Preparation and characterization data of amino-substituted furo[2,3-b]azepines 7

General procedure C: Under a nitrogen atmosphere, two flame dried 10 mL Schlenk tube A and B, the tube A was charged with Ph₃PAuCl (4.9 mg, 0.01 mmol, 10 mol%) and AgPF₆ (2.5 mg, 0.01 mmol, 10 mol%), the tube B was charged with ligand (*S*)-L2 (10.2 mg, 0.02 mmol, 20 mol%), and Pd₂(dba)₃ (4.6 mg, 0.005 mmol, 5 mol%). After the tube A and B were evacuated and backfilled with nitrogen, freshly distilled toluene (1.0 mL) was added respectively, then stirred at room temperature for 15-20 minutes while the solution of tube A turned turbid and the solution of tube B turned light green. Then, enynamides 1 (0.1 mmol, 1.0 equiv) were added to tube A, and the reaction mixture immediately turned golden yellow. After 5 minutes, TMM donor **6** (42.2 mg, 0.12 mmol, 1.2 equiv) was added to tube A sequentially. The solution of tube B was then transferred to tube A at room temperature. The reaction mixture was stirred at room temperature for the indicated time, which was evaporated under reduced pressure at 30 °C. The crude residue was purified by flash chromatography (petroleum ether/EtOAc = 10/1) to give the desired products **7**.

(4*R*,5*R*)-5-((Diphenyl-azaneylidene)methyl)-6-methylene-2,4-diphenyl-8-tosyl-5,6,7,8tetrahydro-4*H*-furo[2,3-*b*]azepine (*cis*-7a) (major): Following the general procedure C, compound *cis*-7a was obtained as white solid in 60% yield (38.2 mg), and 95% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); R_f = 0.4 (petroleum ether/EtOAc = 4/1); m.p = 104-106 °C; [α]_D²⁵ = +131.2 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.1 Hz, 2H), 7.60 – 7.55 (m, 2H), 7.49 – 7.43 (m, 2H), 7.38 – 7.30 (m, 4H), 7.28 – 7.20 (m, 9H), 7.19 – 7.12 (m, 2H), 7.04 – 6.87 (m, 2H), 6.43 – 6.30 (m, 2H), 6.24 (s, 1H), 5.15 (brs, 1H), 4.63 (brs, 1H), 4.60 (d, *J* = 14.5 Hz, 1H), 4.42 (d, *J* = 14.4 Hz, 1H), 3.92 (d, *J* = 2.3 Hz, 1H), 3.03 (d, *J* = 2.3 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 149.3, 145.4, 143.9, 142.4, 140.8, 139.3, 136.8, 136.1, 130.6, 130.3, 129.9 (2C), 129.3 (2C), 128.7 (2C), 128.6 (7) (2C), 128.5 (2C), 128.3 (2C), 128.2 (2C), 128.0 (4), 128.0 (2C), 127.4, 127.3 (2C), 127.1, 123.7 (2C), 120.9, 117.8, 108.9, 70.4, 51.0, 48.4, 21.7. **HRMS** (EI-TOF) m/z: [M]⁺ calcd for $[C_{41}H_{34}N_2O_3S]^+$: 634.2285; found: 634.2291. **HPLC** (Chiralpak IA, *n*-hexane/ethanol = 95/5, flow rate = 1.0 mL/min, λ = 220 nm) t_R=8.19 min (minor), 9.88 min (major).

(4*S*,5*R*)-5-((Diphenyl-azaneylidene)methyl)-6-methylene-2,4-diphenyl-8-tosyl-5,6,7,8tetrahydro-4*H*-furo[2,3-*b*]azepine (*trans*-7a) (minor): Following the general procedure **C**, compound 7a was obtained as white solid in 15% yield (10.1 mg), and 91% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.5$ (petroleum ether/EtOAc = 4/1); m.p = 202-204 °C; [α]_D²⁵ = +40.3 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.1 Hz, 2H), 7.51 – 7.46 (m, 2H), 7.44 – 7.38 (m, 3H), 7.38 – 7.32 (m, 3H), 7.32 – 7.27 (m, 5H), 7.27 – 7.26 (m, 1H), 7.22 – 7.16 (m, 1H), 7.15 – 7.11 (m, 3H), 6.97 – 6.78 (m, 2H), 6.53 (d, *J* = 7.3 Hz, 2H), 6.17 (s, 1H), 5.50 (brs, 1H), 5.12 (brs, 1H), 4.61 (d, *J* = 13.8 Hz, 1H), 4.34 (d, *J* = 9.2 Hz, 1H), 4.28 (d, *J* = 13.9 Hz, 1H), 3.97 (d, *J* = 9.2 Hz, 1H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 150.1, 145.5, 143.9, 141.7, 141.2, 139.9, 137.3, 136.6, 130.3, 130.0, 129.7 (2C), 129.3 (2C), 128.7 (2C), 128.7 (2C), 128.5, 128.4 (2C), 128.2 (2C), 128.0 (2C), 128.0 (2C), 127.5, 127.4 (7) (2C), 126.7, 123.5 (2C), 119.8, 115.8, 107.9, 67.1, 56.0, 51.9, 21.8. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C4₁H₃₄N₂O₃S]⁺: 634.2285; found: 634.2291. HPLC (Chiralpak IA, *n*-hexane/ethanol = 95/5, flow rate = 1.0 mL/min, λ = 220 nm) t_R=9.13 min (major), 16.52 min (minor).

(4*R*,5*R*)-5-((Diphenyl-azaneylidene)methyl)-2-(4-methoxyphenyl)-6-methylene-4-phenyl-8-tosyl-5,6,7,8-tetrahydro-4*H*-furo[2,3-*b*]azepine (7b): Following the general procedure C, compound 7b was obtained as white solid in 82% yield (44.3 mg), 4:1 dr and 95%/90% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.5$ (petroleum ether/EtOAc = 4/1); m.p = 106-108 °C; $[\alpha]_D^{25}$ = +157.3 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.0 Hz, 2H), 7.52 (d, *J* = 8.8 Hz, 2H), 7.50 – 7.42 (m, 2H), 7.35 – 7.29 (m, 1H), 7.27 – 7.20 (m, 8H), 7.20 – 7.11 (m, 2H), 7.04 – 6.94 (m, 2H), 6.88 (d, *J* = 8.8 Hz, 2H), 6.46 – 6.28 (m, 2H), 6.10 (s, 1H), 5.14 (brs, 1H), 4.65 – 4.54 (m, 2H), 4.41 (d, *J* = 14.4 Hz, 1H), 3.91 (d, J = 2.2 Hz, 1H), 3.83 (s, 3H), 2.99 (d, J = 2.2 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.4, 159.2, 149.4, 145.4, 143.8, 141.7, 140.9, 139.4, 136.7, 136.1, 130.2, 129.9 (2C), 129.2 (2C), 128.7 (2C), 128.6 (2C), 128.2 (2C), 128.1 (2C), 128.0, 127.9 (2C), 127.3 (2C), 127.0, 125.2 (2C), 123.7, 120.8, 117.7, 114.2 (2C), 107.4, 70.4, 55.5, 51.1, 48.4, 21.7. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₄₂H₃₆N₂O₄S]⁺: 664.2390; found: 664.2380. HPLC (Chiralpak IA, *n*-hexane/ethanol = 95/5, flow rate = 1.0 mL/min, λ = 220 nm) t_R= 12.25 min (*cis*-minor), 13.25 (*trans*-major), 15.40 min (*cis*-major), 29.58 (*trans*-minor).

(4*R*,5*R*)-2-(4-Chlorophenyl)-5-((diphenyl-azaneylidene)methyl)-6-methylene-4-phenyl-8tosyl-5,6,7,8-tetrahydro-4*H*-furo[2,3-*b*]azepine (7c): Following the general procedure C, compound 7c was obtained as white solid in 81% yield (40.8 mg), 3:1 dr and 91%/86% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.5$ (petroleum ether/EtOAc = 4/1); m.p = 111-113 °C; $[\alpha]_D^{25}$ = +156.2 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.0 Hz, 2H), 7.54 – 7.43 (m, 4H), 7.35 – 7.27 (m, 3H), 7.28 – 7.21 (m, 8H), 7.19 – 7.12 (m, 2H), 7.01 – 6.92 (m, 2H), 6.36 (s, 2H), 6.23 (s, 1H), 5.15 (brs, 1H), 4.62 (brs, 1H), 4.59 (d, *J* = 14.6 Hz, 1H), 4.42 (d, *J* = 14.4 Hz, 1H), 3.91 (d, *J* = 2.3 Hz, 1H), 3.02 (d, *J* = 2.3 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 148.3, 145.3, 144.0, 142.7, 140.7, 139.3, 136.8, 136.0, 133.1, 130.3, 129.8 (2C), 129.3 (2C), 129.1, 128.9 (2C), 128.7 (2C), 128.5 (2C), 128.3 (2C), 128.2 (2C), 128.1, 128.0 (2C), 127.3 (2C), 127.1, 125.0 (2C), 121.0, 117.9, 109.4, 70.3, 51.0, 48.4, 21.8. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₄₁H₃₃ClN₂O₃S]⁺: 668.1895; found: 668.1895. HPLC (Chiralpak IC, *n*-hexane/ethanol = 95/5, flow rate = 1.0 mL/min, λ = 220 nm) t_R= 7.80 min (*trans*-major), 8.613 min (*trans*-minor), 15.62 min (*cis*-major), 17.77 min (*cis*-minor).

(4*R*,5*R*)-4-(4-Chlorophenyl)-5-((diphenyl-azaneylidene)methyl)-6-methylene-2-phenyl-8tosyl-5,6,7,8-tetrahydro-4*H*-furo[2,3-*b*]azepine (7d): Following the general procedure C, compound 7d was obtained as white solid in 79% yield (45.1 mg), 5:1 dr and 93%/93% ee,

purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.5$ (petroleum ether/EtOAc = 4/1); m.p = 81-83°C; $[\alpha]_D^{25} = +107.2$ (c = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.3 Hz, 2H), 7.57 – 7.51 (m, 2H), 7.51 – 7.43 (m, 2H), 7.39 – 7.31 (m, 3H), 7.30 – 7.17 (m, 10H), 6.96 (d, J = 8.4 Hz, 2H), 6.48 (d, J = 7.0 Hz, 2H), 6.17 (s, 1H), 5.17 (d, J = 1.3 Hz, 1H), 4.66 (d, J = 1.4 Hz, 1H), 4.55 (d, J = 14.4 Hz, 1H), 4.40 (d, J = 14.1 Hz, 1H), 3.99 (d, J = 2.5 Hz, 1H), 3.17 (d, J = 2.5 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 149.5, 145.2, 143.9, 142.5, 139.3, 139.2, 137.0, 135.9, 132.9, 131.2 (2C), 130.4, 130.3 (9), 129.3 (2C), 128.7 (4) (2C), 128.7 (2C), 128.5 (2C), 128.3 (1) (2C), 128.3, 128.2 (2C), 128.1 (2C), 127.6, 127.3 (2C), 123.7 (2C), 120.1, 117.9, 108.6, 69.9, 51.2, 47.9, 21.7. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C4₁H₃₃CIN₂O₃S]⁺: 668.1895; found: 668.1898. HPLC (Chiralpak IA, *n*-hexane/ethanol = 95/5, flow rate = 1.0 mL/min, $\lambda = 220$ nm) t_R= 7.98 min (*cis*-minor), 9.30 min (*trans*-major), 10.54 min (*cis*-major), 12.95 min (*trans*-minor).

(4R,5R)-5-((Diphenyl-azaneylidene)methyl)-4-(4-methoxyphenyl)-6-methylene-2-phenyl-8-tosyl-5,6,7,8-tetrahydro-4H-furo[2,3-b]azepine (7e): Following the general procedure D, compound 7k was obtained as white solid in 82% yield (47.1 mg), 6:1 dr and 97%/82% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); R_f = 0.5 (petroleum ether/EtOAc = 4/1); m.p = 109-111 °C; $[\alpha]_D^{25} = +145.6 (c = 0.20, CH_2Cl_2); {}^{1}H NMR (400 MHz,$ CDCl₃) δ 7.64 (d, J = 8.3 Hz, 2H), 7.60 – 7.53 (m, 2H), 7.51 – 7.42 (m, 2H), 7.39 – 7.29 (m, 3H), 7.28 – 7.11 (m, 8H), 6.90 (d, J = 8.7 Hz, 2H), 6.78 (d, J = 8.7 Hz, 2H), 6.46 (s, 2H), 6.22 (s, 1H), 5.14 (d, J = 1.4 Hz, 1H), 4.61 (d, J = 1.5 Hz, 1H), 4.57 (d, J = 14.4 Hz, 1H), 4.40 (d, J = 14.3 Hz, 1H), 3.94 (d, J = 2.4 Hz, 1H), 3.80 (s, 3H), 3.03 (d, J = 2.3 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 158.6, 149.3, 145.4, 143.8, 142.2, 139.4, 136.8, 136.1, 133.0, 130.8 (2C), 130.6, 130.3, 129.3 (2C), 128.7 (2C), 128.6 (6) (2C), 128.5 (2C), 128.2 (2C), 128.1, 128.0 (2C), 127.4, 127.3 (6) (2C), 123.7 (2C), 121.3, 117.7, 113.6 (2C), 109.0, 70.5, 55.5, 51.1, 47.5, 21.7. **HRMS** (EI-TOF) m/z: [M]⁺ calcd for [C₄₂H₃₆N₂O₄S]⁺: 664.2390; found: 664.2393. HPLC (Chiralpak IA, *n*-hexane/ethanol = 95/5, flow rate = 1.0 mL/min, λ = 220 nm) t_R = 9.69 min (*cis*-minor), 11.21 min (*trans*-major), 13.21 min (*cis*-major) 25.98 min (*trans*minor).

(4R,5R)-4-(4-(tert-Butyl)phenyl)-5-((diphenyl-azaneylidene)methyl)-6-methylene-2-

phenyl-8-tosyl-5,6,7,8-tetrahydro-4*H*-furo[2,3-*b*]azepine (7f): Following the general procedure **C**, compound 7f was obtained as white solid in 71% yield (37.1 mg), 3:1 dr and 89%/87% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); $R_f = 0.5$ (petroleum ether/EtOAc = 4/1); m.p = 136-138 °C; $[\alpha]_D^{25} = +164.3$ (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.54 (m, 4H), 7.49 – 7.41 (m, 2H), 7.40 – 7.29 (m, 3H), 7.29 – 7.18 (m, 8H), 7.17 – 7.05 (m, 2H), 6.86 (d, *J* = 8.1 Hz, 2H), 6.46 – 6.16 (m, 3H), 5.16 (brs, 1H), 4.83 – 4.54 (m, 2H), 4.43 (d, *J* = 14.3 Hz, 1H), 3.80 (d, *J* = 2.2 Hz, 1H), 2.88 (d, *J* = 2.2 Hz, 1H), 2.45 (s, 3H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 150.1, 149.3, 145.6, 143.9, 142.3, 139.4, 137.7, 136.6, 136.1, 130.6, 130.2, 129.5 (2C), 129.2 (2C), 128.7 (1) (2C), 128.7 (2C), 128.6 (2C), 128.2 (2C), 128.0, 127.8 (2C), 127.4, 127.3 (2C), 125.1 (2C), 123.8 (2C), 121.1, 117.8, 109.1, 70.9, 50.9, 47.8, 34.6, 31.6 (3C), 21.7. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C4₅H₄₂N₂O₃S]⁺: 690.2911; found: 690.2908. HPLC (Chiralpak IC, *n*-hexane/ethanol = 95/5, flow rate = 1.0 mL/min, λ = 220 nm) t_R= 6.70 min (*trans*-major), 7.50 min (*trans*-minor), 13.52 min (*cis*-major), 15.01 min (*cis*-minor).

(4R,5R)-5-((Diphenyl-azaneylidene)methyl)-6-methylene-2-phenyl-4-(o-tolyl)-8-tosyl-

5,6,7,8-tetrahydro-4*H***-furo[2,3-***b***]azepine (7g): Following the general procedure C, compound 7g was obtained as white solid in 86% yield (55.8 mg), 95%/86% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); R_f = 0.5 (petroleum ether/EtOAc = 4/1); m.p = 105-107 °C; [\alpha]_D^{25} = +172.6 (c = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) \delta 7.66 – 7.56 (m, 4H), 7.48 – 7.43 (m, 2H), 7.41 – 7.28 (m, 3H), 7.27 – 7.17 (m, 7H), 7.17 – 7.01 (m, 5H), 6.32 – 6.19 (m, 3H), 5.16 (brs, 1H), 4.69 – 4.60 (m, 2H), 4.51 (d, J = 14.3 Hz, 1H), 3.84 (d, J = 2.5 Hz, 1H), 3.52 (d, J = 2.5 Hz, 1H), 2.38 (s, 3H), 1.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) \delta 168.6, 149.1, 145.6, 143.8, 142.7, 139.2, 138.6, 137.1, 136.1, 136.0, 130.8, 130.6, 130.4, 130.2, 129.3 (2C), 128.7 (2C), 128.6 (7) (2C), 128.4 (2C), 128.1 (2C), 128.0, 127.8 (2C), 127.4, 127.2 (2C), 126.7, 125.3, 123.7 (2C), 120.4, 117.2, 109.2, 68.9, 50.7, 42.9, 21.6, 19.5.**

HRMS (EI-TOF) m/z: $[M]^+$ calcd for $[C_{42}H_{36}N_2O_3S]^+$: 648.2441; found: 648.2442. **HPLC** (Chiralpak IF, *n*-hexane/ethanol = 95/5, flow rate = 1.0 mL/min, λ = 220 nm) t_R=11.25 min (*trans*-major), 12.62 min (*trans*-minor), 13.75 min (*cis*-minor), 16.82 min (*cis*-major).

(4R,5R)-5-((Diphenyl-azaneylidene)methyl)-6-methylene-4-(naphthalen-1-yl)-2-phenyl-8-tosyl-5,6,7,8-tetrahydro-4H-furo[2,3-b]azepine (7h): Following the general procedure C, compound 7h was obtained as white solid in 83% yield (46.3 mg), 4:1 dr and 90%/84% ee, purified by flash chromatography (petroleum ether/EtOAc = 10/1); R_f = 0.5 (petroleum ether/EtOAc = 4/1); m.p = 118-120 °C; $[\alpha]_D^{25}$ = +183.2 (c = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 8.2 Hz, 1H), 7.70 (d, *J* = 7.9 Hz, 2H), 7.59 (d, *J* = 7.7 Hz, 2H), 7.46 (d, J = 7.8 Hz, 4H), 7.41 – 7.20 (m, 11H), 7.11 – 7.01 (m, 1H), 6.95 – 6.80 (m, 2H), 6.30 (s, 1H), 6.22 - 5.88 (m, 2H), 5.21 (brs, 1H), 4.73 - 4.65 (m, 2H), 4.59 (d, J =14.3 Hz, 1H), 4.16 (d, J = 2.4 Hz, 1H), 4.01 (d, J = 2.4 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 168.7, 149.2, 145.4, 143.9, 142.8, 139.1, 137.2, 136.2, 135.7, 134.0, 131.6, 130.4, 130.1, 129.3 (2C), 128.9, 128.6 (2) (2C), 128.6, 128.6 (1) (2C), 128.6, 128.4 (2C), 128.0 (4), 128.0 (2C), 127.7, 127.5 (2C), 127.4, 127.3, 126.9 (2C), 126.0, 125.3, 124.9, 123.6 (2C), 120.5, 117.3, 109.1, 68.9, 50.8, 21.7. HRMS (EI-TOF) m/z: $[M]^+$ calcd for $[C_{45}H_{36}N_2O_3S]^+$: 684.2441; found: 684.2449. HPLC (Chiralpak IC, *n*-hexane/ethanol = 95/5, flow rate = 1.0 mL/min, $\lambda = 220$ nm) t_R=8.60 min (*trans*-major), 9.60 min (*trans*-minor), 17.09 min (*cis*-major), 18.59 min (cis-minor).

7. The attempt of other substituted TMM donors

8. Gram-scale experiment

Under a nitrogen atmosphere, two flame dried 10 mL Schlenk flask A and B, The A flask was charged with Ph₃PAuCl (123 mg, 0.25 mmol, 10 mol%) and AgPF₆ (62.5 mg, 0.25 mmol, 10 mol%), the B flask charged with ligand (*S*)-L2 (128 mg, 0.25 mmol, 10 mol%), and Pd₂(dba)₃ (58 mg, 0.06 mmol, 2.5 mol%). After the A and B flask was evacuated and backfilled with nitrogen, freshly distilled PhCF₃ (25 mL) was added respectively, then stirred at room temperature for 30 minutes while the solution of A flask turned white turbid and the solution of B flask turned green. Then, ynamide **1n** (1.08 g, 2.5 mmol) was added to A flask, and the reaction mixture immediately turned golden yellow. After 5 minutes, TMM donor **2** (600 mg, 3.0 mmol, 1.2 equiv) was added to A flask sequentially. The flask A and B were placed at 0 °C for 10 minutes, then added the solution of flask B to flask A at 0 °C. The reaction mixture was stirred at 0 °C until ynamide **1n** was consumed (monitored by TLC), which was evaporated under reduced pressure at 30 °C. The crude residue was purified by flash chromatography (petroleum ether/EtOAc = 10/1) to give the desired product **3n** in 96% yield (1.23 g, 15:1 dr, 96% ee).

9. Cleavage of the furan moiety to synthesize polysubstituted azepines 8

General procedure D: To a solution of cycloadducts **3** (0.1 mmol) in acetic acid (1.0 mL) was added KNO₃ (10.1 mg, 0.1 mmol, 1.0 equiv) or Fe(NO₃)₃·9H₂O (40.4 mg, 0.1 mmol, 1.0 equiv). The resulting mixture was stirred at room temperature until **3** were consumed (monitored by TLC). The crude residue was purified by flash chromatography (CH₂Cl₂/MeOH = 50:1) to give the desired products **8**.

(4*R*,5*R*,*Z*)-3-Methylene-7-oxo-6-(2-oxo-2-phenylethylidene)-5-phenyl-1-tosylazepane-4carbonitrile (8a): Following the general procedure **D**, compound 8a was obtained as a white solid in 91% yield (45.1 mg), 14:1 dr and 97% ee, $R_f = 0.6$ (CH₂Cl₂/MeOH = 50/1); mp = 105-107 °C; [α]_D²⁵ = +11.3 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.4 Hz, 2H), 7.68 – 7.64 (m, 2H), 7.54 – 7.49 (m, 1H), 7.42 – 7.33 (m, 7H), 7.29 (dd, *J* = 6.7, 3.0 Hz, 2H), 6.67 (d, *J* = 1.8 Hz, 1H), 5.68 (s, 1H), 5.55 (d, *J* = 1.4 Hz, 1H), 5.06 (d, *J* = 16.8 Hz, 1H), 4.58 (d, *J* = 17.7 Hz, 1H), 4.16 (d, *J* = 3.2 Hz, 1H), 4.04 (d, *J* = 4.9 Hz, 1H), 2.47 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 189.0, 168.7, 150.7, 145.4, 136.1, 135.6, 135.5, 135.4, 134.0, 129.7(2C), 129.3(2C), 129.0, 128.8(1)(2C), 128.8(0)(2C), 128.7(2C), 128.6(2C), 127.6, 121.2, 116.7, 48.9, 48.4, 41.4, 21.9. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₂₉H₂₄N₂O₅S]⁺: 496.1451; found: 496.1460. HPLC (Chiralpak IF, *n*-hexane/ethanol = 80/20, flow rate = 1.0 mL/min, λ = 220 nm) t_R = 20.85 min (*trans*-major), 26.35 (*trans*-minor), 27.63 min (*cis*-minor), 34.58 min (*cis*-major).

(4R,5R,Z)-6-(2-(4-Methoxyphenyl)-2-oxoethylidene)-3-methylene-7-oxo-5-phenyl-1-

tosylazepane-4-carbonitrile (8b): Following the general procedure **D**, compound 8b was obtained as a white solid in 91% yield (47.8 mg), 8:1 dr and 97% ee, $R_f = 0.4$ (CH₂Cl₂/MeOH = 50/1); mp = 101-103 °C; [α]_D²⁵ = +35.2 (c = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.9 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 7.42 – 7.26 (m, 7H), 6.83 (d, J = 8.4 Hz, 2H), 6.65 (s, 1H), 5.66 (s, 1H), 5.54 (s, 1H), 5.04 (d, J = 16.8 Hz, 1H), 4.59 (d, J = 17.0 Hz, 1H), 4.13 (d, J = 4.9 Hz, 1H), 4.01 (d, J = 5.0 Hz, 1H), 3.82 (s, 3H), 2.46 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 187.1, 168.7, 164.2, 149.7, 145.1, 135.6, 135.6, 135.5, 131.1(2C), 129.5(2C), 129.2, 129.1(6)(2C), 128.9, 128.8, 128.5(2C), 128.4(9)(2C), 120.9, 116.7, 113.9(2C), 55.5, 48.8, 48.3, 41.3, 21.7. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₃₀H₂₆N₂O₅S]⁺: 526.1557; found: 526.1560. HPLC (Chiralpak IA, *n*-hexane/ethanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 220$ nm) t_R = 40.32 min (minor), 48.58 min (major).

(4*R*,5*R*,*Z*)-3-Methylene-7-oxo-6-(2-oxo-2-(p-tolyl)ethylidene)-5-phenyl-1-tosylazepane-4carbonitrile (8c): Following the general procedure **D**, compound 8c was obtained as a white solid in 85% yield (43.4 mg), 12:1 dr and 97% ee, $R_f = 0.5$ (CH₂Cl₂/MeOH = 50/1); mp = 95-97 °C; [α]_D²⁵ = +27.7 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.3 Hz, 2H), 7.40 – 7.33 (m, 5H), 7.29 – 7.27 (m, 2H), 7.16 (d, *J* = 7.9 Hz, 2H), 6.66 (s, 1H), 5.67 (s, 1H), 5.55 (d, *J* = 1.5 Hz, 1H), 5.05 (d, *J* = 16.9 Hz, 1H), 4.58 (d, *J* = 16.9 Hz, 1H), 4.15 (dd, *J* = 5.0, 1.8 Hz, 1H), 4.02 (d, *J* = 4.9 Hz, 1H), 2.47 (s, 3H), 2.36 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 188.5, 168.8, 150.3, 145.3, 145.1, 135.6, 135.6, 135.4, 133.7, 129.7(2C), 129.5(2C), 129.3(2C), 129.0(2C), 128.9, 128.7(2C), 128.6(2C), 127.6, 121.1, 116.8, 48.9, 48.4, 41.4, 21.9(1), 21.8(9). HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₃₀H₂₆N₂O₄S]⁺: 510.1608; found: 510.1615. HPLC (Chiralpak IF, *n*-hexane/ethanol = 80/20, flow rate = 1.0 mL/min, λ = 220 nm) t_R = 24.12 min (*trans*-major), 31.26 (*trans*-minor), 34.98 min (*cis*-minor), 39.78 min (*cis*-major).

tosylazepane-4-carbonitrile (8d): Following the general procedure **D**, compound 8d was obtained as a white solid in 90% yield (47.7 mg), 13:1 dr and 98% ee, $R_f = 0.6$ (CH₂Cl₂/MeOH = 50/1); mp = 137-139 °C; [α]_D²⁵ = +30.5 (c = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 77.95 (d, J = 8.1 Hz, 2H), 7.59 (d, J = 8.3 Hz, 2H), 7.40 – 7.36 (m, 4H), 7.35 (d, J = 2.3 Hz, 2H), 7.33 (s, 1H), 7.30–7.28 (m, 2H), 6.61 (s, 1H), 5.68 (s, 1H), 5.55 (s, 1H), 5.05 (d, J = 16.8 Hz, 1H), 4.55 (d, J = 16.9 Hz, 1H), 4.15 (d, J = 4.9 Hz, 1H), 4.04 (d, J = 4.9 Hz, 1H), 2.47 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 187.9, 168.6, 151.3, 145.4, 140.6, 135.5, 135.5, 135.3, 134.5, 130.2(2C), 129.7(2C), 129.4(2C), 129.2(2C), 129.0, 128.7(2C), 128.5(4)(2C), 128.48, 121.4, 116.7, 48.8, 48.4, 41.5, 21.9. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₂₉H₂₃CIN₂O₄S]⁺: 530.1062; found: 530.1063. HPLC (Chiralpak IF, *n*-hexane/ethanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 220$ nm) t_R = 21.19 min (*trans*-major), 26.60 (*trans*-minor), 32.28 min (*cis*-minor), 36.68 min (*cis*-major).

(4*R*,5*R*,*Z*)-3-Methylene-7-oxo-6-(2-oxo-2-(*m*-tolyl)ethylidene)-5-phenyl-1-tosylazepane-4carbonitrile (8e): Following the general procedure **D**, compound 8e was obtained as a white solid in 87% yield (44.9 mg), 16:1 dr and 98% ee, $R_f = 0.5$ (CH₂Cl₂/MeOH = 50/1); mp = 104-106 °C; [α]_D²⁵ = +58.2 (*c* = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.4 Hz, 2H), 7.49 (s, 1H), 7.43 (d, *J* = 7.8 Hz, 1H), 7.40 – 7.34 (m, 5H), 7.34 – 7.27 (m, 3H), 7.23 (d, *J* = 7.6 Hz, 1H), 6.67 (s, 1H), 5.67 (s, 1H), 5.55 (d, *J* = 1.5 Hz, 1H), 5.04 (d, *J* = 16.9 Hz, 1H), 4.59 (d, *J* = 16.9 Hz, 1H), 4.16 (dd, *J* = 5.0, 1.8 Hz, 1H), 4.03 (d, *J* = 5.0 Hz, 1H), 2.47 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.1, 168.6, 150.3, 145.2, 138.6, 136.1, 135.5, 135.4, 135.3, 134.7, 129.6(2C), 129.2, 129.1(9)(2C), 129.1(4), 128.8, 128.5(4)(2C), 128.5(2) (2C), 125.9, 121.0, 116.6, 48.8, 48.3, 41.4, 41.4, 21.8, 21.3. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₃₀H₂₆N₂O₄S]⁺: 510.1608; found: 510.1609. HPLC (Chiralpak IF, *n*-hexane/ethanol = 80/20, flow rate = 1.0 mL/min, λ = 220 nm) t_R = 20.85 min (*trans*-minor), 25.58 (*trans*-major), 27.40 min (*cis*-minor), 35.35 min (*cis*-major).

(4R,5R,Z)-5-(4-Methoxyphenyl)-3-methylene-7-oxo-6-(2-oxo-2-phenylethylidene)-1-

tosylazepane-4-carbonitrile (8f): Following the general procedure **D**, compound 8f was obtained as a white solid in 83% yield (43.6 mg), >20:1 dr and 96% ee, $R_f = 0.6$ (CH₂Cl₂/MeOH = 50:1); mp = 93-95 °C; [α]_D²⁵ = +24.7 (c = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.0 Hz, 2H), 7.71 – 7.62 (m, 2H), 7.56 – 7.48 (m, 1H), 7.38 (t, J = 7.8 Hz, 4H), 7.19 (d, J = 8.3 Hz, 2H), 6.89 (d, J = 8.5 Hz, 2H), 6.68 (s, 1H), 5.66 (s, 1H), 5.54 (s, 1H), 5.05 (d, J = 17.1 Hz, 1H), 4.58 (d, J = 16.9 Hz, 1H), 4.12 (d, J = 5.1 Hz, 1H), 3.98 (d, J = 5.1 Hz, 1H), 3.82 (s, 3H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.9, 168.6, 159.7, 151.1, 145.3, 136.0, 135.4, 135.2, 133.9, 129.7(2C), 129.6(2C), 128.7(2)(2C), 128.7(0)(2C), 128.6(2C), 128.4, 127.1, 120.7, 116.7, 114.5(2C), 55.3, 48.9, 47.7, 41.4, 21.8. HRMS (EI-TOF) m/z: [M]⁺ calcd for [C₃₀H₂₆N₂O₅S]⁺: 526.1557; found: 526.1559. HPLC (Chiralpak IF, *n*-hexane/ethanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 220$ nm) t_R=36.64 (minor), 45.97 (major).

10. The attempt of other transformations of products

The deprotection of Ts group

The reduction of CN group

11. HPLC chromatograms

HPLC chromatogram of compound **3a** (13:1 dr and 97% ee)

HPLC chromatogram of compound **3e** (6:1 dr and 96% ee)

HPLC chromatogram of compound **3g** (10:1 dr and 96% ee)

HPLC chromatogram of compound 3i (1.5:1 dr and 93%/96%ee)

HPLC chromatogram of compound **3j** (12:1 dr and 98% ee)

HPLC chromatogram of compound **3k** (11:1 dr and 97% ee)

HPLC chromatogram of compound **31** (14:1 dr and 96% ee)

HPLC chromatogram of compound **3m** (14:1 dr and 99% ee)

MeQ CN Ph Ťs 600 m/ 550 -500 -450 400-350 300 250 200 -150 -100 -50-0-15.0 17.5 2.5 5.0 7.5 10.0 12.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 0.0 # Ret Time (min) Height (mV) Area (%) Area (mV.sec) 30.823 311568 16387816 50.159 1 2 37.024 247746 16283898 49.841 Total 100.000 559314 32671713 1200 1

HPLC chromatogram of compound **3n** (96% ee)

HPLC chromatogram of compound **30** (12:1 dr and 95% ee)

HPLC chromatogram of compound **3p** (17:1 dr and 97% ee)

HPLC chromatogram of compound **3q** (>20:1 dr and 96% ee)

CN P 1100 mV 1000 -900 -800 -700 -600 -500 -400 -300 -957 4.394 200 -376 100 -0 35.0 5.0 10.0 15.0 20.0 25.0 30.0 40.0 Area (%) # Ret Time (min) Height (mV) Area (mV.sec) 14.394 1 177612 8382237 13.484 2 19.376 7401773 11.907 111570 3 29.957 36.722 191068 22828278 4 36.419 37.888 112329 23553524 100.000 Total 592580 62165812 1100 m 1000 -900 -800 -700 -600 -500 -400 -.001 300-200 -14.560 100 -9.724 0.501 0 20.0 15.0 5.0 10.0 25.0 35.0 40.0 30.0 min Ret Time (min) Height (mV) Area (mV.sec) Area (%) # 1 14.560 95028 4479482 6.472 2 19.724 0.606 5888 419334 3 30.501 846875 1.224 7318

min

HPLC chromatogram of compound **3r** (13:1 dr and 97% ee)

63468201

69213893

91.699

100.000

4

Total

37.001

277299

385533

HPLC chromatogram of compound **3s** (13:1 dr and 97% ee)

HPLC chromatogram of compound **5a** (12:1 dr and 94% ee)

HPLC chromatogram of compound **5c** (10:1 dr and 91% ee)

HPLC chromatogram of compound **5d** (8:1 dr and 84% ee)

HPLC chromatogram of compound **5e** (9:1 dr and 89% ee)

HPLC chromatogram of compound 7a (4:1 dr and 95%/91% ee)

HPLC chromatogram of compound 7b (4:1 dr and 95%/90% ee)

HPLC chromatogram of compound 7c (3:1 dr and 91%/86% ee)

HPLC chromatogram of compound 7d (5:1 dr and 93%/93% ee)

HPLC chromatogram of compound 7e (6:1 dr and 97%/82% ee)

	HPLC	chromatogram	of compound	l 7f (3:1	dr and 89%	6/87% ee)
--	------	--------------	-------------	------------------	------------	-----------

HPLC chromatogram of compound 7g (5:1 dr and 95%/86% ee)

HPLC chromatogram of compound 7h (4:1 dr and 90%/84% ee)

HPLC chromatogram of compound 8b (97% ee)

HPLC chromatogram of compound 8c (12:1 dr and 97% ee)

HPLC chromatogram of compound 8e (16:1 dr and 98% ee)

12. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra

¹H NMR (400 MHz) of **3c** in CDCl₃

¹H NMR (400 MHz) of **3e** in CDCl₃

¹³C NMR (100 MHz) of **3e** in CDCl₃

¹⁹F NMR (376 MHz) of **3e** in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm) ¹H NMR (400 MHz) of **3f** in CDCl₃

79 33 33 33 33 33 33 33 33 33 33 33 33 33	39 77 73 83 73 73 73	49 33	61	00
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>n</u> n 4 4 4 4 6 6 6 6	N N	<del>.</del>	Ö
		1 /	1	1



¹H NMR (400 MHz) of **3g** in CDCl₃





¹³C NMR (100 MHz) of **3g** in CDCl₃







¹H NMR (400 MHz) of trans-3h in CDCl₃

7.286 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.83 7.88 7.88 7.83 7.88 7.88 7.85 7.85 7.85 7.33 7.85 7.33 7.33 7.86 7.33 7.33 7.86 7.33 7.33 7.85 7.33 7.33 7.85 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.333 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.33





¹H NMR (400 MHz) of trans-3i in CDCl₃

 $\begin{array}{c} 7.87\\ 7.85\\ 7.85\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\$ 



¹H NMR (400 MHz) of **3j** in CDCl₃



# $^{19}\text{F}$ NMR (376 MHz) of 3j in CDCl₃



-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm) ¹H NMR (400 MHz) of **3k** in CDCl₃



¹H NMR (400 MHz) of **3l** in CDCl₃





¹H NMR (400 MHz) of **3n** in CDCl₃

Ph

Ó

Τs





190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)



¹H NMR (400 MHz) of **3p** in CDCl₃







¹H NMR (400 MHz) of **3r** in CDCl₃



¹H NMR (400 MHz) of **3s** in CDCl₃

 7.7.3

 7.7.3

 7.7.3

 7.7.3

 7.7.49

 7.7.3

 7.7.49

 7.7.3

 7.7.3

 7.7.3

 7.7.3

 7.7.3

 7.7.3

 7.7.49

 7.7.3

 7.7.3

 7.7.3

 7.7.3

 7.7.3

 7.7.3

 7.7.3

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2

 7.7.2





¹H NMR (400 MHz) of **5b** in CDCl₃



¹H NMR (400 MHz) of 5c in CDCl₃



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) ¹H NMR (400 MHz) of **5d** in CDCl₃



¹H NMR (400 MHz) of **5e** in CDCl₃

 $\begin{array}{c} 7.87\\ 7.87\\ 7.85\\ 7.85\\ 7.85\\ 7.85\\ 7.85\\ 7.85\\ 7.75\\ 7.85\\ 7.75\\ 7.85\\ 7.75\\ 7.85\\ 7.75\\ 7.85\\ 7.75\\ 7.45\\ 7.75\\ 7.45\\ 7.75\\ 7.45\\ 7.75\\ 7.45\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\$ 



#### ¹H NMR (400 MHz) of *cis*-7a in CDCl₃

 $\begin{array}{c} 7.56\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.57\\ 7.53\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.75\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.73\\ 7.75\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\$ 



 $\begin{array}{c} 7.72\\ 7.72\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\$ 



¹H NMR (400 MHz) of **7b** in CDCl₃

 $\begin{array}{c} 7,63\\ 7,61\\ 7,53\\ 7,53\\ 7,53\\ 7,45\\ 7,45\\ 7,45\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,15\\ 7,25\\ 7,15\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\ 7,25\\$ 





623 $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$ $612$	.60
NNNNNNNNNNNNNNNNの666664446888888	<del>.</del>
	1



¹H NMR (400 MHz) of 7d in CDCl₃



#### ¹H NMR (400 MHz) of 7e in CDCl₃




¹H NMR (400 MHz) of 7g in CDCl₃

 $\begin{array}{c} 7.63\\ 7.56\\ 7.45\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\$ 



¹H NMR (400 MHz) of **7h** in CDCl₃

7, 88 7, 77 7, 77 7, 77 7, 77 7, 77 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75 7, 75



¹H NMR (400 MHz) of 8a in CDCl₃





## 112 / 116





110 100 f1 (ppm) 





0.0

110 100 90 f1 (ppm) 

¹H NMR (400 MHz) of 8e in CDCl₃



110 100 f1 (ppm) 

¹H NMR (400 MHz) of **8f** in CDCl₃

 $\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\$ 



- 2.47

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)