Supporting Information

Palladium-catalyzed cross-coupling of 2-iodobiphenyls with ortho-chloroacetophenones through dual C–H arylation for the construction of tribenzo[a,c,f]cyclooctanones

Xiang Zuo; Cang Cheng; Yanghui Zhang*;

School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
Corresponding Author: Yanghui Zhang
E-mail: zhangyanghui@tongji.edu.cn

Table of Contents
1. General Information ... 2
2. General Procedures for the Synthesis of ortho-Chloroacetophenones .. 2
3. A Typical Procedure for the Intramolecular Dual C–H/C–H Cross-Coupling ... 4
4. Transformation of the Product .. 5
5. References .. 6
6. Kinetic Isotope Effect Studies ... 6
7. Characterization of the Substrates .. 6
8. Characterization of the Products .. 9
9. NMR Spectra ... 18
10. Crystal Structure of 3aa ... 55
1. General Information:

Pd(OAc)$_2$ was purchased from Strem Chemicals. All the solvents were purified by distillation prior to use. Substrates 1a-D5 and 1b-1h were synthesized according to reported procedures.$^{[1]}$ Unless otherwise noted, the other commercial chemicals were used without further purification.

1H NMR and 13C NMR spectra were recorded on Bruker ARX400. High resolution mass spectra were measured on Bruker MicroTOF II ESI-TOF mass spectrometer. NMR spectra were recorded in CDCl$_3$. 1H NMR spectra were referenced to residual CHCl$_3$ at 7.26 ppm, and 13C NMR spectra were referenced to the central peak of CDCl$_3$ at 77.0 ppm. Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in Hertz (Hz). Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

2. General Procedures for the Synthesis of ortho-Chloroacetophenones

2b, 2m, 2n and 2q were prepared by following method A. 2i-2l were prepared by following method B. 2h was prepared by following method C. 2c and 2o were prepared by following method D. 2p was prepared by following method E. All the other ortho-chloroacetophenones were purchased.

Method A:

\[
\begin{align*}
\text{Cl} & \quad \begin{array}{c}
\text{CHO} \\
\text{CH}_3\text{MgBr}
\end{array} \quad \begin{array}{c}
\text{THF} \quad -10 \degree \text{C}
\end{array} \quad \begin{array}{c}
\text{Cl} \\
\text{OH}
\end{array} \\
\text{PCC} \quad \text{silica gel} \quad \text{DCM} \quad \text{rt}
\end{align*}
\]

Step 1: In a 100 ml round bottom flask, ortho-chlorobenzaldehydes (5 mmol) was dissolved in 20 mL of THF. The mixture was cooled to -10 °C and methyl grignard reagent (5 mmol) was added dropwise. The reaction mixture was stirred at -10°C for 5 h. Then the reaction mixture was quenched with sat. aq. NH$_4$Cl and extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na$_2$SO$_4$, filtered, and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1) to afford corresponding secondary benzylic alcohols.

Step 2: In a 100 ml round bottom flask, secondary benzylic alcohols (4 mmol) was dissolved in 16 mL of DCM. Then PCC (12 mmol) and silica gel (the same mass as PCC) were added. The reaction mixture was stirred at rt for 5 hours, and then the resulting solution/suspension was filtered through a pad of silica gel, eluting with diethyl ether. The solvent was removed under reduced pressure, and the remaining crude residue was purified by flash column chromatography to afford ortho-chloroacetophenones.

Method B:

\[
\begin{align*}
\text{Cl} & \quad \begin{array}{c}
\text{O}
\end{array} \\
\text{Br}
\end{align*}
\]

\[
\text{Pd(OAc)$_2$} + \text{PPh$_3$} + \text{K$_2$CO$_3$}
\]

Step 1: A 50 mL Schlenk-type round bottom flask quipped with a magnetic stir bar was charged with Pd(OAc)$_2$ (0.125 mmol, 28 mg, 0.05 equiv), PPh$_3$ (0.625 mmol, 164 mg, 0.25 equiv), K$_2$CO$_3$
(2.5 mmol, 346 mg, 1.0 equiv), 1-(5-bromo-2-chlorophenyl)ethan-1-one (2.5 mmol, 584 mg, 1.0 equiv), furan-2-ylboronic acid (3.5 mmol, 392 mg, 1.4 equiv) and DMF (5 ml). The flask was evacuated and backfilled with nitrogen. The mixture was stirred at 90 °C (oil bath heating) for 8 hours. Then the reaction mixture was quenched with water and extracted with EtOAc for three times.

Then the reaction mixture was quenched with sat. aq. NH₄Cl and extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1) to afford the corresponding ortho-chloroacetophenones.

Method C

![Chemical structure](image)

Step 1: A 50 mL Schlenk-type round bottom flask equipped with a magnetic stir bar was charged with PdCl₂(PPh₃)₂ (35 mg, 0.05 mmol, 0.02 equiv), CuI (28 mg, 0.15 mmol, 0.06 equiv), 1-(5-bromo-2-chlorophenyl)ethan-1-one (2.5 mmol, 584 mg, 1.0 equiv) and Et₃N (7.5 mL). The mixture was stirred at rt for 20 min. Then ethynylbenzene (307 mg, 3 mmol, 1.2 equiv) was added. Then the flask was evacuated and backfilled with nitrogen and the mixture was stirred at 90 °C (oil bath heating) for 22 h. Then the reaction mixture was quenched with sat. aq. NH₄Cl and extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1) to afford the corresponding ortho-chloroacetophenones.

Method D

![Chemical structure](image)

Step 1: A 50 mL Schlenk-type round bottom flask equipped with a magnetic stir bar was charged with Pd(PPh₃)₄ (290 mg, 0.25 mmol, 0.1 equiv), Et₃N (1.04 ml, 7.5 mmol, 3 equiv), 1-(5-bromo-2-chlorophenyl)ethan-1-one (2.5 mmol, 584 mg, 1.0 equiv), phenylboronic acid (366 mg, 3.0 mmol, 1.2 equiv) and DMF (12.5 mL). Then the flask was evacuated and backfilled with nitrogen and the mixture was stirred at 90 °C (oil bath heating) for 12 h. Then the reaction mixture was quenched with water and extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1) to afford the corresponding ortho-chloroacetophenones.

Method E
Step 1: In a 50 ml round bottom flask, Fe (9.55 mmol, 0.55 g, 3.82 equiv), NH₄Cl (1.3 mmol, 0.07 g, 0.52 equiv), H₂O (2.5 ml) was added. The mixture was stirred at 100 °C (oil bath heating) for 1 hour. Then 1-(2-chloro-4-nitrophenyl)ethan-1-one (2.5 mmol, 0.5 g, 1 equiv) was added to the mixture and stirred at 100 °C (oil bath heating) overnight. Then the mixture was diluted by DCM (25 ml), washed by H₂O, dried over Na₂SO₄, filtered, and concentrated in vacuo. The product was used for the next reaction without purification.

Step 2: In a 50 ml round bottom flask, 1-(4-amino-2-chlorophenyl)ethan-1-one (2 mmol, 0.34 g, 1 equiv) and Et₃N (2.4 mmol, 0.34 ml, 1.2 equiv) were dissolved in dry DCM (20 ml). The reaction mixture was stirred at 0 °C for 10 min. Then CH₃COCl (2.2 mmol, 0.16 ml, 1.1 equiv) was added dropwise and the mixture was stirred at rt for 4h. Then the mixture was diluted by DCM, washed by HCl (3 N), and extracted with DCM. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1) to afford corresponding ortho-chloroacetophenones.

3. A Typical Procedure for the Intermolecular Dual C─H/C─H Cross-Coupling

A 25 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a magnetic stir bar was charged with Pd(OAc)₂ (0.02 mmol, 4.4 mg, 0.1 equiv), P(o-tol)₃ (0.04 mmol, 12.2 mg, 0.2 equiv), Cs₂CO₃ (0.8 mmol, 260.4 mg, 4.0 equiv), 2-iodobiphenyl (0.24 mmol, 1.2 equiv), ortho-chloroacetophenones (0.2 mmol, 1.0 equiv) and DMF (3 mL). The reaction mixture was frozen with liquid nitrogen and then the tube was evacuated and backfilled with nitrogen (6 times). The mixture was stirred at 140 °C (oil bath heating) for 36 hours. After being cooled down to room temperature, the reaction mixture was diluted with EtOAc (15 mL), washed with brine (3 times), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by preparative silica gel TLC with petroleum ether/ethyl acetate (using the indicated mobile phase) to afford 3.

Procedure of the Large-Scale Reaction.

A 250 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a magnetic
stir bar was charged with Pd(OAc)$_2$ (0.5 mmol, 110 mg, 0.1 equiv), P(o-tol)$_3$ (1 mmol, 305 mg, 0.2 equiv), Cs$_2$CO$_3$ (17.5 mmol, 5.7 g, 3.5 equiv), 2-iodobiphenyl (7.5 mmol, 2.1g, 1.2 equiv), ortho-chloroacetophenone (5 mmol, 773 mg, 1.0 equiv) and DMF (75 mL). The reaction mixture was frozen with liquid nitrogen and then the tube was evacuated and backfilled with nitrogen (6 times). The mixture was stirred at 140 °C (oil bath heating) for 36 hours. After being cooled down to room temperature, the reaction mixture was quenched with water and extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (50:1) to afford 3aa (0.96 g, 70%).

4. Transformation of the Product

A 25 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a magnetic stir bar was charged with CuBr$_2$ (0.04 mmol, 8.9 mg, 0.2 equiv), H$_2$O (10 mmol, 180 mg, 50 equiv), 3aa (0.2 mmol, 54 mg, 1.0 equiv) and DMSO (0.5 mL). The reaction mixture was stirred at 110 °C (oil bath heating) for 48 hours. After being cooled down to room temperature, the reaction mixture was diluted with EtOAc (15 mL), washed with brine (3 times), dried over Na$_2$SO$_4$ and concentrated in vacuo. The residue was purified by preparative silica gel TLC with petroleum ether/ethyl acetate (10:1) to afford 5aa (48 mg, 85%).

An oven-dried 10 mL round bottom flask was charged with 60% dispersion of NaH in mineral oil (16 mg, 0.4 mmol, 2 equiv), anhydrous THF (0.4 mL), 3aa (54 mg, 0.2 mmol, 1.0 equiv), and methyl iodide (31 ul, 0.5 mmol). The reaction mixture was refluxed overnight. After 18 h the resulting mixture was quenched at 0 °C by adding 1 M HCl (0.5 mL) and saturated NaHCO$_3$ (0.5 mL) sequentially, then extracted with ethyl acetate. The combined organic layers were dried over Na$_2$SO$_4$, filtered, and concentrated. The residue was purified by preparative silica gel TLC with petroleum ether/ethyl acetate (20:1) to afford 6aa (44 mg, 73%).

With 6aa (0.2 mmol) and NaBH$_4$ (0.6 equiv) in CH$_3$OH (1 mL) at room temperature for 12 h, 7aa (0.044 g, 88%, dr = 53:47) was obtained.
A 10 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a magnetic stir bar was charged with 3aa (54 mg, 0.2 mmol, 1.0 equiv) and MeOH (1 ml). then cool down the reaction mixture to 0°C. NaBH₄ (4.5 mg, 0.12 mmol, 0.6 equiv) was added to the reaction mixture and then the reaction mixture was stirred at rt for 12 h. The reaction mixture was diluted with EtOAc (3 ml) and concentrated in vacuo directly. The residue was purified by preparative silica gel TLC with petroleum ether/ethyl acetate (5:1) to afford 7aa (48 mg, 88%).

5. Kinetic Isotope Effect Studies

The reaction of 2-iodobiphenyl 1a and its pentadeuterated derivative 1a-d5 with 2a was carried out by following the standard procedure. A mixture of three products (3aa, 3aa-d5 and 3aa-d5-iso) was obtained in an overall yield of 72%. The three products were formed by a mechanism as below. The palladacycle B-d5 gave 3aa-d5 and 3aa-d5-iso. ¹H NMR data analysis indicated that the ratio of 3aa to 3aa-d5 and 3aa-d5-iso was 3 to 1, so the KIE value is 3.0.

6. References

7. Characterization of the Substrates

[2b] 1-(2-chloro-5-methoxyphenyl)ethan-1-one (2b): yellowish oil, 0.73 g, 79% yield over two steps. ¹H NMR (600 MHz, CDCl₃) δ 7.28 (d, J = 8.8 Hz, 1H), 7.05 (d, J = 3.1 Hz, 1H), 6.92 (dd, J = 8.8, 3.1 Hz, 1H), 3.80 (s, 3H), 2.63 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 200.20, 158.25, 139.68, 131.43,
122.47, 118.12, 114.12, 55.62, 30.64. HRMS (ESI) m/z: [M + H]+ calcd for C₉H₁₀ClO₂ 185.0364; found 185.0363.

\[\text{2c} \]

1-(4-chloro-[1,1’-biphenyl]-3-yl)ethan-1-one (2c): yellowish oil, 0.40 g, 70% yield. \(^1\)H NMR (600 MHz, CDCl₃) δ 7.74 (d, J = 2.2 Hz, 1H), 7.54 (m, 3H), 7.45 – 7.39 (m, 3H), 7.35 (m, 1H), 2.66 (s, 3H). \(^{13}\)C NMR (151 MHz, CDCl₃) δ 200.43, 140.20, 139.40, 138.96, 131.07, 130.48, 130.32, 129.07, 128.14, 128.00, 127.00, 30.84. HRMS (ESI) m/z: [M + H]+ calcd for C₁₄H₁₂ClO₂ 231.0571; found 231.0570.

\[\text{2h} \]

1-(2-chloro-5-(phenylethynyl)phenyl)ethan-1-one (2h): yellowish oil, 0.41 g, 64% yield. \(^1\)H NMR (600 MHz, CDCl₃) δ 7.69 (d, J = 2.0 Hz, 1H), 7.53 – 7.50 (m, 2H), 7.49 (dd, J = 8.3, 2.0 Hz, 1H), 7.36 (d, J = 8.3 Hz, 1H), 7.35 – 7.31 (m, 1H), 2.63 (s, 3H). \(^{13}\)C NMR (151 MHz, CDCl₃) δ 199.48, 139.12, 134.54, 132.38, 131.69, 131.01, 130.85, 128.82, 128.49, 122.58, 122.55, 91.43, 87.35, 30.62. HRMS (ESI) m/z: [M + H]+ calcd for C₁₆H₁₂ClO₂ 255.0571; found 255.0561.

\[\text{2i} \]

1-(2-chloro-5-(furan-3-yl)phenyl)ethan-1-one (1d): brown oil, 0.42 g, 76% yield. \(^1\)H NMR (600 MHz, CDCl₃) δ 7.74 (m, 1H), 7.62 (d, J = 2.2 Hz, 1H), 7.49 – 7.45 (m, 2H), 7.38 (d, J = 8.3 Hz, 1H), 6.67 (dd, J = 1.7, 0.8 Hz, 1H), 2.67 (s, 3H). \(^{13}\)C NMR (151 MHz, CDCl₃) δ 200.46, 144.13, 139.52, 139.05, 131.65, 131.00, 129.49, 129.13, 126.56, 124.74, 108.56, 30.81. HRMS (ESI) m/z: [M + Na]+ calcd for C₁₂H₉ClNaO₂ 243.0183; found 243.0172.

\[\text{2j} \]

1-(2-chloro-5-(furan-2-yl)phenyl)ethan-1-one (2j): brown oil, 0.42 g, 77% yield. \(^1\)H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 1.6 Hz, 1H), 7.72 – 7.58 (m, 1H), 7.49 (s, 1H), 7.44 – 7.34 (m, 1H), 6.70 (dd, J = 2.5, 0.6 Hz, 1H), 6.54 – 6.27 (m, 1H), 2.68 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl₃) δ 200.21, 151.92, 142.81, 139.41, 130.98, 129.89, 129.66, 126.86, 124.48, 111.96, 106.40, 30.70. HRMS (ESI) m/z: [M + H]+ calcd for C₁₂H₁₀ClO₂ 221.0364; found 221.0345.
1-(2-chloro-5-(thiophen-3-yl)phenyl)ethan-1-one (2k): brown oil, 0.49 g, 82% yield. 1H NMR (600 MHz, CDCl$_3$) δ 7.73 (d, $J = 2.3$ Hz, 1H), 7.55 (dd, $J = 8.3$, 2.3 Hz, 1H), 7.44 (dd, $J = 2.9$, 1.3 Hz, 1H), 7.38 (d, $J = 8.6$ Hz, 1H), 7.37 – 7.36 (dd, $J = 5.7$, 2.9 Hz 1H), 7.32 (dd, $J = 5.0$, 1.3 Hz, 1H), 2.66 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 200.41, 140.07, 139.44, 134.84, 131.04, 129.76, 129.68, 127.17, 126.93, 125.96, 121.41, 30.83. HRMS (ESI) m/z: [M + Na]$^+$ calcd for C$_{12}$H$_9$ClNaOS 258.9955; found 258.9965.

1-(2-chloro-5-(thiophen-2-yl)phenyl)ethan-1-one (2l): brown oil, 0.43 g, 72% yield. 1H NMR (600 MHz, CDCl$_3$) δ 7.71 (d, $J = 2.3$ Hz, 1H), 7.51 (dd, $J = 8.3$, 2.4 Hz, 1H), 7.32 (d, $J = 8.4$ Hz, 1H), 7.29 – 7.22 (m, 2H), 7.03 (dd, $J = 5.0$, 3.8 Hz, 1H), 2.63 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 200.05, 141.86, 139.47, 133.49, 131.10, 129.90, 128.96, 126.45, 125.91, 124.18, 30.77. HRMS (ESI) m/z: [M + Na]$^+$ calcd for C$_{12}$H$_9$ClNaOS 258.9955; found 258.9955.

1-(2-chloro-4-methylphenyl)ethan-1-one (2m): yellowish oil, 0.67 g, 80% yield over two steps. 1H NMR (600 MHz, CDCl$_3$) δ 7.50 (d, $J = 7.9$ Hz, 1H), 7.21 (s, 1H), 7.10 (dd, $J = 7.9$, 0.7 Hz, 1H), 2.62 (s, 3H), 2.34 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 199.66, 143.13, 135.84, 131.51, 131.18, 129.82, 127.66, 30.61, 21.03. HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_9$H$_{10}$ClO 169.0415; found 169.0401.

1-(2-chloro-4-methoxyphenyl)ethan-1-one (2n): yellowish oil, 0.74 g, 86% yield over two steps. 1H NMR (600 MHz, CDCl$_3$) δ 7.49 (d, $J = 7.9$ Hz, 1H), 7.20 (d, $J = 0.5$ Hz, 1H), 7.09 (dd, $J = 7.9$, 0.8 Hz, 1H), 2.61 (s, 3H), 2.33 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 199.47, 143.09, 135.78, 131.45, 131.13, 129.80, 127.64, 30.54, 20.98. HRMS (ESI) m/z: [M + Na]$^+$ calcd for C$_9$H$_9$ClNaO$_2$ 207.0183; found 207.0199.
1-(3-chloro-[1,1'-biphenyl]-4-yl)ethan-1-one (2o): yellowish oil, 0.44 g, 77% yield. 1H NMR (600 MHz, CDCl$_3$) δ 7.67 (d, $J = 8.0$ Hz, 1H), 7.65 (d, $J = 1.7$ Hz, 1H), 7.60 – 7.56 (m, 2H), 7.54 (dd, $J = 8.0$, 1.7 Hz, 1H), 7.47 (m, 2H), 7.43 – 7.35 (m, 1H), 2.69 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 199.82, 145.34, 138.60, 137.18, 132.17, 130.31, 129.24, 129.08, 128.62, 127.18, 125.52, 30.79. HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_{14}$H$_{12}$ClO$_2$ 231.0571; found 231.0574.

N-(4-acetyl-3-chlorophenyl)acetamide (2p): yellow solid, 0.76 g, 72% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.97 (s, 1H), 7.74 (dd, $J = 8.7$, 2.5 Hz, 1H), 7.66 (d, $J = 2.5$ Hz, 1H), 7.36 (d, $J = 8.7$ Hz, 1H), 2.66 (s, 3H), 2.20 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 200.47, 168.78, 139.14, 137.14, 131.21, 125.99, 123.42, 120.83, 30.77, 24.47. HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_{10}$H$_{11}$ClNO$_2$ 212.0473; found 212.0458.

1-(2-chloro-6-methylphenyl)ethan-1-one (2q): yellowish oil, 0.73 g, 86% yield over two steps. 1H NMR (600 MHz, CDCl$_3$) δ 7.24 – 7.17 (m, 2H), 7.14 – 7.08 (m, 1H), 2.55 (s, 3H), 2.26 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 204.28, 141.02, 135.14, 129.65, 128.85, 128.80, 126.90, 31.69, 19.11. HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_{9}$H$_{10}$ClO 169.0415; found 169.0426.

8. Characterization of the Products

tribenzo[a,c,e][8]annulen-9(10H)-one (3aa): yellowish solid, actual mass 48.7 mg, 90% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl$_3$) δ 7.70 (dd, $J = 7.8$, 1.3 Hz, 1H), 7.53 – 7.43 (m, 2H), 7.39 (td, $J = 7.5$, 1.5 Hz, 1H), 7.36 – 7.27 (m, 4H), 7.23 (m, 3H), 7.06 (dd, $J = 7.6$, 1.0 Hz, 1H), 3.86 – 3.65 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 202.21, 141.47, 141.11, 140.16, 139.64, 136.81, 134.12, 131.99, 131.60, 130.97, 128.66, 128.61, 128.45, 128.23, 127.96, 127.83, 127.75, 127.46, 49.89. HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_{20}$H$_{15}$O$_2$ 271.1117; found 271.1099.

HPLC analysis:
7-methoxytribenzo[a,c,e][8]annulen-9(10H)-one (3ab): yellowish solid, actual mass 49.3 mg, 82% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl$_3$) δ 7.52 – 7.40 (m, 2H), 7.36 – 7.28 (m, 3H), 7.25 – 7.20 (m, 4H), 6.99 (d, $J = 8.5$ Hz, 1H), 6.94 (dd, $J = 8.5$, 2.7 Hz, 1H), 3.88 – 3.68 (m, 5H).

13C NMR (101 MHz, CDCl$_3$) δ 201.63, 158.89, 141.61, 140.96, 139.83, 137.52, 134.07, 133.65, 132.92, 131.15, 128.59, 128.42, 128.26, 127.92, 127.90, 127.77, 127.47, 118.72, 112.13, 55.36, 49.63.

HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_{21}$H$_{17}$O$_2$ 301.1223; found 301.1221.

7-phenyltribenzo[a,c,e][8]annulen-9(10H)-one (3ac): white solid, actual mass 54.0 mg, 78% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl$_3$) δ 8.00 (d, $J = 1.9$ Hz, 1H), 7.66 (dd, $J = 8.0$, 2.0 Hz, 1H), 7.61 (m, 2H), 7.58 – 7.48 (m, 2H), 7.48 – 7.31 (m, 7H), 7.31 – 7.24 (m, 2H), 7.17 (d, $J = 8.0$ Hz, 1H), 4.00 – 3.52 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 201.93, 141.48, 140.88, 140.46, 139.73, 139.53, 139.11, 137.00, 134.03, 132.78, 131.01, 130.02, 128.82, 128.72, 128.51, 128.37, 128.28, 128.02, 127.88, 127.74, 127.53, 127.19, 126.99, 49.86.

HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_{26}$H$_{19}$O 347.1430; found 347.1444.
7-(trifluoromethyl)tribenzo[a,c,e][8]annulen-9(10H)-one (3ad): white solid, actual mass 21.7 mg, 32% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl$_3$) δ 8.00 (d, $J = 0.7$ Hz, 1H), 7.62 (dd, $J = 8.1, 1.4$ Hz, 1H), 7.52 (m, 2H), 7.37 (dd, $J = 7.3, 1.3$ Hz, 1H), 7.34 – 7.29 (m, 2H), 7.27 (m, 2H), 7.21 (d, $J = 8.1$ Hz, 1H), 3.94 – 3.41 (m, 2H). 13C NMR (151 MHz, Chloroform-d) δ 200.549, 143.513 (d, $J_{C-F} = 1.0$ Hz), 141.004, 139.742, 137.181, 133.452, 132.751, 130.766, 130.184 (q, $J_{C-F} = 33.0$ Hz), 128.925, 128.856, 128.563, 128.540, 128.197 (q, $J_{C-F} = 23.4$ Hz), 127.916 (q, $J_{C-F} = 3.4$ Hz), 127.802, 125.917 (q, $J_{C-F} = 3.7$ Hz), 123.623 (q, $J_{C-F} = 270.8$ Hz), 49.625. HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_{21}$H$_{14}$F$_3$O 339.0991; found 339.1009.

7-fluorotribenzo[a,c,e][8]annulen-9(10H)-one (3ae): white solid, actual mass 25.4 mg, 44% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl$_3$) δ 7.48 (m, $J = 7.5, 2$H), 7.42 (dd, $J = 9.4, 2.5$ Hz, 1H), 7.34 (dd, $J = 7.2, 1.7$ Hz, 1H), 7.32 – 7.28 (m, 2H), 7.27 – 7.19 (m, 3H), 7.13 – 6.96 (m, 2H), 3.78 (s, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 200.578, 162.031 (d, $J_{C-F} = 246.9$ Hz), 141.319, 140.119, 139.733, 138.469 (d, $J_{C-F} = 6.3$ Hz), 136.226, 136.191, 134.087 (d, $J_{C-F} = 7.2$ Hz), 133.710, 131.017, 128.691, 128.479, 128.387 (d, $J_{C-F} = 3.1$), 128.110, 127.914, 127.649, 118.669 (d, $J_{C-F} = 21.1$ Hz), 115.151 (d, $J_{C-F} = 22.8$ Hz), 49.442. HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_{21}$H$_{14}$FO 289.1023; found 289.1012.

7-chlorotribenzo[a,c,e][8]annulen-9(10H)-one (2g): white solid, actual mass 29.9 mg, 49% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl$_3$) δ 7.69 (d, $J = 2.3$ Hz, 1H), 7.54-7.44 (m, 2H), 7.38-7.32 (m, 2H), 7.32 – 7.27 (m, 2H), 7.27-7.21 (m, 3H), 7.01 (d, $J = 8.3$ Hz, 1H), 4.01 – 3.34 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 200.62, 141.22, 139.95, 139.65, 138.52, 138.00, 134.06, 133.62, 133.55, 131.52, 130.83, 128.75, 128.57, 128.53, 128.51, 128.43, 128.18, 127.99, 127.71, 49.55. HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_{20}$H$_{14}$ClO 305.0728; found 305.0712.
7-(phenylethynyl)tribenzo[a,c,e][8]annulen-9(10H)-one (3ah): white solid, actual mass 47.4 mg, 64% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.88 (d, \(J = 1.7\) Hz, 1H), 7.56 \textendash 7.43 (m, 5H), 7.38 \textendash 7.27 (m, 6H), 7.27 \textendash 7.18 (m, 3H), 7.05 (d, \(J = 8.0\) Hz, 1H), 3.80 (s, 2H). 13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 201.37, 141.29, 140.56, 139.81, 139.66, 137.00, 134.08, 133.78, 132.22, 131.90, 131.66, 130.78, 128.72, 128.53, 128.51, 128.38, 128.35, 128.13, 127.95, 127.62, 123.09, 122.90, 90.77, 88.10, 49.74. HRMS (ESI) m/z: [M + H]+ calcd for C\textsubscript{28}H\textsubscript{19}O\textsubscript{3} 371.1430; found 371.1421.

3ai

(E)-2-Methyl-1,2,7,8-tetrahydronaphtho[2,1-b]furan-9(6H)-one O-methyl oxime (4a): yellow solid, actual mass 47.1 mg, 70% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.83 (d, \(J = 1.9\) Hz, 1H), 7.74 (s, 1H), 7.55 \textendash 7.40 (m, 4H), 7.39 \textendash 7.28 (m, 3H), 7.26 \textendash 7.22 (m, 3H), 7.07 (d, \(J = 8.0\) Hz, 1H), 6.74 \textendash 6.63 (m, 1H), 3.86 \textendash 3.77 (m, 2H). 13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 201.93, 143.86, 141.45, 140.87, 139.71, 138.98, 138.75, 137.75, 133.95, 132.72, 132.02, 130.92, 128.80, 128.68, 128.47, 128.33, 128.25, 128.01, 127.88, 127.53, 125.81, 125.25, 108.60, 49.82. HRMS (ESI) m/z: [M + Na]+ calcd for C\textsubscript{24}H\textsubscript{16}NaO\textsubscript{2} 359.1043; found 359.1032.

3aj

7-(furan-2-yl)tribenzo[a,c,e][8]annulen-9(10H)-one (4b): yellow solid, actual mass 27.6 mg, 41% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.99 (d, \(J = 1.9\) Hz, 1H), 7.68 (dd, \(J = 8.1, 2.0\) Hz, 1H), 7.53 \textendash 7.45 (m, 2H), 7.44 (d, \(J = 1.2\) Hz, 1H), 7.39 \textendash 7.27 (m, 3H), 7.25 \textendash 7.21 (m, 3H), 7.09 (d, \(J = 8.1\) Hz, 1H), 6.68 (d, \(J = 3.3\) Hz, 1H), 6.45 (dd, \(J = 3.4, 1.8\) Hz, 1H), 3.81 (s, 2H). 13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 201.87, 152.71, 142.52, 141.42, 140.84, 139.73, 138.84, 137.12, 133.91, 132.63, 130.88, 130.42, 128.69, 128.49, 128.31, 128.30, 128.04, 127.90, 127.55, 126.54, 123.89, 111.78, 106.03, 49.80. HRMS (ESI) m/z: [M + H]+ calcd for C\textsubscript{24}H\textsubscript{17}O\textsubscript{2} 337.1223; found 337.1206.
7-(thiophen-3-yl)tribenzo[a,c,e][8]annulen-9(10H)-one (4c): yellow solid, actual mass 51.5 mg, 73% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl$_3$) δ 7.95 (d, J = 1.9 Hz, 1H), 7.61 (dd, J = 8.0, 2.0 Hz, 1H), 7.54 – 7.44 (m, 3H), 7.41 – 7.29 (m, 5H), 7.27 – 7.19 (m, 3H), 7.10 (d, J = 8.0 Hz, 1H), 3.88 – 3.75 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 201.92, 141.45, 140.87, 140.77, 139.72, 138.85, 137.05, 135.22, 133.97, 132.75, 130.92, 129.30, 128.69, 128.48, 128.33, 128.26, 128.02, 127.88, 127.53, 126.25, 125.10, 121.00, 49.84. HRMS (ESI) m/z: [M + Na]$^+$ calcd for C$_{24}$H$_{16}$NaOS 375.0814; found 375.0798.

7-(thiophen-2-yl)tribenzo[a,c,e][8]annulen-9(10H)-one (4d): yellow solid, actual mass 24.7 mg, 35% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl$_3$) δ 7.95 (d, J = 2.0 Hz, 1H), 7.61 (dd, J = 8.0, 2.1 Hz, 1H), 7.54 – 7.44 (m, 2H), 7.38 – 7.29 (m, 4H), 7.27 (dd, J = 5.1, 1.0 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.11 – 7.02 (m, 2H), 3.87 – 3.77 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 201.71, 142.78, 141.41, 140.72, 139.71, 139.06, 137.15, 133.95, 133.88, 132.80, 130.87, 128.73, 128.68, 128.49, 128.36, 128.32, 128.10, 128.06, 127.91, 127.57, 125.77, 125.44, 123.79, 49.80. HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_{24}$H$_{16}$O 353.0995; found 353.1011.

6-methyltribenzo[a,c,e][8]annulen-9(10H)-one (3am): white solid, actual mass 45.5 mg, 80% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl$_3$) δ 7.65 (d, J = 8.0 Hz, 1H), 7.54 – 7.39 (m, 2H), 7.37 – 7.27 (m, 3H), 7.26 – 7.17 (m, 3H), 7.10 (d, J = 8.0 Hz, 1H), 6.86 (s, 1H), 3.89 – 3.65 (m, 2H), 2.29 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 201.57, 142.14, 141.45, 141.34, 140.32, 139.65, 134.36, 134.14, 132.85, 131.01, 128.92, 128.59, 128.42, 128.27, 128.10, 127.94, 127.75, 127.37, 49.82, 21.33. HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_{21}$H$_{17}$O 285.1274; found 285.1256.
6-methoxytribenzo[a,c,e][8]annulen-9(10H)-one (4e-2): white solid, actual mass 48.1 mg, 80% yield, (eluent: petroleum ether/ethyl acetate = 40:1). 1H NMR (400 MHz, CDCl$_3$) δ 7.76 (d, $J = 8.8$ Hz, 1H), 7.54 – 7.41 (m, 2H), 7.38 – 7.28 (m, 3H), 7.25 – 7.17 (m, 3H), 6.82 (dd, $J = 8.8$, 2.5 Hz, 1H), 6.53 (d, $J = 2.5$ Hz, 1H), 3.82 – 3.68 (m, 5H). 13C NMR (101 MHz, CDCl$_3$) δ 200.31, 161.84, 142.67, 141.22, 139.59, 134.58, 131.29, 130.94, 129.76, 128.47, 128.34, 128.22, 127.98, 127.76, 127.33, 117.32, 113.32, 55.35, 49.63. HRMS (ESI) m/z: [M + Na]$^+$ calcd for C$_{21}$H$_{16}$NaO$_2$ 323.1043; found 323.1048.

6-phenyltribenzo[a,c,e][8]annulen-9(10H)-one (3ao): white solid, actual mass 50.6 mg, 73% yield, (eluent: petroleum ether/ethyl acetate = 40:1). 1H NMR (600 MHz, CDCl$_3$) δ 7.82 (d, $J = 8.2$ Hz, 1H), 7.56 – 7.44 (m, 5H), 7.42 – 7.28 (m, 7H), 7.25 – 7.17 (m, 3H), 3.91 – 3.70 (m, 2H). 13C NMR (151 MHz, CDCl$_3$) δ 201.48, 144.23, 141.43, 141.22, 140.87, 139.73, 139.52, 135.39, 134.18, 131.14, 130.92, 129.56, 128.88, 128.71, 128.59, 128.43, 128.36, 128.17, 128.08, 127.94, 127.55, 127.24, 126.32, 49.88. HRMS (ESI) m/z: [M + Na]$^+$ calcd for C$_{26}$H$_{18}$NaO$_3$ 369.1250; found 369.1246.

8-methyltribenzo[a,c,e][8]annulen-9(10H)-one (4g): yellowish solid, actual mass 29.5 mg, 52% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl$_3$) δ 7.49 – 7.37 (m, 2H), 7.33 – 7.27 (m, 2H), 7.22 – 7.09 (m, 5H), 7.05 (d, $J = 7.3$ Hz, 1H), 6.83 (d, $J = 7.4$ Hz, 1H), 3.69 (s, 2H), 2.26 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 208.08, 142.15, 140.46, 139.63, 139.47, 138.18, 134.24, 133.70, 130.11, 129.87, 129.04, 129.01, 128.80, 128.28, 128.03, 127.99, 127.80, 127.39, 127.19, 50.95, 19.85. HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_{21}$H$_{16}$O 285.1274; found 285.1259. Melting point: 130 - 131 °C.
2,13-dimethyltribenzo[a,c,e][8]annulen-9(10H)-one (3ba): white solid, actual mass 43.0 mg, 72% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl$_3$) δ 7.71 (dd, $J = 7.8$, 1.3 Hz, 1H), 7.37 (td, $J = 7.5$, 1.5 Hz, 1H), 7.32 – 7.26 (m, 2H), 7.20 (d, $J = 7.8$ Hz, 1H), 7.15 – 7.06 (m, 3H), 7.04 (dd, $J = 7.6$, 1.0 Hz, 1H), 7.01 (dd, $J = 7.8$, 1.0 Hz, 1H), 3.80 – 3.64 (m, 2H), 2.46 (s, 3H), 2.28 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 202.46, 141.41, 140.39, 139.61, 138.27, 137.97, 137.01, 136.91, 132.17, 131.51, 131.08, 130.92, 129.10, 128.69, 128.62, 128.48, 128.45, 127.53, 49.45, 21.15, 21.10. HRMS (ESI) m/z: [M + Na]$^+$ calcd for C$_{22}$H$_{18}$NaO 321.1250; found 321.1232.

2,13-dimethoxytribenzo[a,c,e][8]annulen-9(10H)-one (4i): white solid, actual mass 48.9 mg, 74% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl$_3$) δ 7.71 (dd, $J = 7.7$, 1.1 Hz, 1H), 7.37 (td, $J = 7.5$, 1.4 Hz, 1H), 7.30 (dd, $J = 7.6$, 1.1 Hz, 1H), 7.24 (d, $J = 8.5$ Hz, 1H), 7.13 (d, $J = 8.4$ Hz, 1H), 7.08 – 6.96 (m, 2H), 6.91 – 6.81 (m, 2H), 6.76 (dd, $J = 8.4$, 2.7 Hz, 1H), 3.89 (s, 3H), 3.79 – 3.67 (m, 5H). 13C NMR (101 MHz, CDCl$_3$) δ 202.57, 159.33, 158.67, 142.53, 140.82, 139.96, 137.07, 133.51, 132.29, 132.26, 131.51, 129.72, 128.71, 127.50, 126.32, 113.88, 113.62, 113.45, 113.26, 55.47, 55.25, 48.89. HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_{22}$H$_{19}$O$_3$ 331.1329; found 331.1326.

2,13-difluorotribenzo[a,c,e][8]annulen-9(10H)-one (3da): white solid, actual mass 26.3 mg, 43% yield, (eluent: petroleum ether/ethyl acetate = 50:1). 1H NMR (400 MHz, CDCl$_3$) δ 7.69 (dd, $J = 7.7$, 1.3 Hz, 1H), 7.41 (td, $J = 7.5$, 1.5 Hz, 1H), 7.37 – 7.28 (m, 2H), 7.23 – 7.15 (m, 2H), 7.09 – 6.97 (m, 3H), 6.94 (td, $J = 8.4$, 2.7 Hz, 1H), 3.90 – 3.46 (m, 2H). 13C NMR (151 MHz, Chloroform-d) δ 201.611 (d, $J_{C-F} = 1.5$ Hz), 162.326 (d, $J_{C-F} = 247.8$ Hz), 161.753 (d, $J_{C-F} = 245.7$ Hz), 142.118 (dd, $J_{C-F} = 7.8$, 1.8 Hz), 140.521 (dd, $J_{C-F} = 8.2$, 1.7 Hz), 138.761, 136.996 (d, $J_{C-F} = 3.4$ Hz), 136.806, 132.932 (d, $J_{C-F} = 8.2$ Hz), 131.998, 131.784, 130.464 (d, $J_{C-F} = 8.4$ Hz), 129.860 (d, $J_{C-F} = 3.2$ Hz), 128.788, 128.132, 115.390 (d, $J_{C-F} = 1.7$ Hz), 115.364 (d, $J_{C-F} = 21.1$ Hz), 115.175 (d, $J_{C-F} = 2.8$ Hz), 114.946 (d, $J_{C-F} = 21.9$ Hz), 48.942. HRMS (ESI) m/z: [M + H]$^+$ calcd for C$_{20}$H$_{13}$F$_2$O 307.0929; found 307.0939.
2,13-dichlorotribenzo[a,c,e][8]annulen-9(10H)-one (4k-2): white solid, actual mass 20.4 mg, 30% yield, (eluent: petroleum ether/ethyl acetate = 50:1). \(^1H \text{NMR} \ (400 \text{ MHz, CDCl}_3) \delta 7.70 \ (d, J = 7.8 \ \text{Hz, 1H}), 7.47 \ (dd, J = 8.3, 2.2 \ \text{Hz, 1H}), 7.43 \ (td, J = 7.5, 1.2 \ \text{Hz, 1H}), 7.38 \text{ – } 7.31 \ (m, 2H), 7.30 \text{ – } 7.26 \ (m, 2H), 7.22 \ (dd, J = 8.2, 2.1 \ \text{Hz, 1H}), 7.16 \ (d, J = 8.2 \ \text{Hz, 1H}), 7.03 \ (d, J = 7.3 \ \text{Hz, 1H}), 3.80 \text{ – } 3.69 \ (m, 2H).

\(^{13} \text{C NMR} \ (101 \text{ MHz, CDCl}_3) \delta 201.01, 141.67, 139.87, 139.48, 138.56, 136.61, 134.31, 133.23, 132.54, 132.44, 131.92, 131.86, 130.16, 128.87, 128.57, 128.45, 128.32, 128.30, 128.03, 49.12. \)

HRMS (ESI) m/z: \([M + H]^+\) calcd for C_{20}H_{13}Cl_2O 339.0338; found 339.0321.

3,12-difluorotribenzo[a,c,e][8]annulen-9(10H)-one (3ga): white solid, actual mass 31.2 mg, 51% yield, (eluent: petroleum ether/ethyl acetate = 50:1). \(^1H \text{NMR} \ (400 \text{ MHz, CDCl}_3) \delta 7.71 \ (dd, J = 7.7, 1.3 \ \text{Hz, 1H}), 7.42 \ (td, J = 7.5, 1.4 \ \text{Hz, 1H}), 7.35 \ (td, J = 7.6, 1.1 \ \text{Hz, 1H}), 7.31 \text{ – } 7.16 \ (m, 3H), 7.10 \text{ – } 6.97 \ (m, 2H), 6.97 \text{ – } 6.87 \ (m, 2H), 3.76 \ (s, 2H).

\(^{13} \text{C NMR} \ (151 \text{ MHz, Chloroform-d}) \delta 201.03, 162.264 \ (d, J_{C-F} = 228.7 \ \text{Hz}), 162.260 \ (d, J_{C-F} = 264.0 \ \text{Hz}), 143.08 \ (d, J_{C-F} = 7.9 \ \text{Hz}), 138.81 \ (d, J_{C-F} = 1.6 \ \text{Hz}), 136.55, 136.35 \ (d, J_{C-F} = 19.0 \ \text{Hz}), 136.29 \ (d, J_{C-F} = 23.7 \ \text{Hz}), 134.86 \ (d, J_{C-F} = 3.3 \ \text{Hz}), 131.877, 131.605, 130.071 \ (d, J_{C-F} = 18.1 \ \text{Hz}), 130.070, 128.873, 128.330, 117.90 \ (d, J_{C-F} = 21.8 \ \text{Hz}), 115.56 \ (d, J_{C-F} = 21.6 \ \text{Hz}), 115.30 \ (d, J_{C-F} = 21.0 \ \text{Hz}), 114.55 \ (d, J_{C-F} = 21.2 \ \text{Hz}), 49.835. \)

HRMS (ESI) m/z: \([M + H]^+\) calcd for C_{20}H_{13}F_2O 307.0929; found 307.0934.

13-methyltribenzo[a,c,e][8]annulen-9(10H)-one (3ha) + 2-methyltribenzo[a,c,e][8]annulen-9(10H)-one (3ha-Iso): white solid, actual mass 29.6 mg, 52% yield, (eluent: petroleum ether/ethyl acetate = 50:1). \(^1H \text{NMR} \ (400 \text{ MHz, CDCl}_3) \delta 7.73 \text{ – } 7.68 \ (m, 1H), 7.50 \text{ – } 7.40 \ (m, 1H), 7.40 \text{ – } 7.20 \ (m, 6H), 7.16 \text{ – } 6.97 \ (m, 3H), 3.86 \text{ – } 3.71 \ (m, 1.11H), 3.74 \ (s, 0.89H), 2.45 \ (s, 1.67H), 2.27 \ (s, 1.33H). \)

\(^{13} \text{C NMR} \ (101 \text{ MHz, CDCl}_3) \delta 202.41, 202.22, 141.59, 141.31, 141.11, 140.31, 140.28, 139.80, 139.49, 138.32, 138.07, 137.10, 136.89, 136.87, 134.11, 132.14, 132.06, 131.61, 131.53, 131.12, 130.97, 130.95, 129.16, 128.94, 128.75, 128.68, 128.66, 128.62, 128.60, 128.54, 128.43, 128.26, 128.18, 127.89, 127.73, 127.58, 127.43, 49.94, 49.42, 21.17, 21.11. \)

HRMS (ESI) m/z: \([M + H]^+\) calcd for C_{22}H_{15}F_2O 339.0338; found 339.0321.
tribenzo[a,c,e][8]annulene-9,10-dione (5aa) : chartreuse solid, actual mass 48.3 mg, 85% yield, (eluent: petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.34 (m, 8H), 7.28 (dd, J = 6.4, 3.0 Hz, 2H), 7.22 (d, J = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 193.94, 138.88, 137.62, 136.29, 131.80, 130.61, 129.94, 129.03, 128.17, 126.93. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₇O₂ 285.1274; found 285.1259.

10,10-dimethyltribenzo[a,c,e][8]annulen-9(10H)-one (6aa) : white solid, actual mass 43.6 mg, 73% yield, (eluent: petroleum ether/ethyl acetate = 20:1). ¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.35 (m, 2H), 7.27 – 7.10 (m, 9H), 7.07 (d, J = 7.5 Hz, 1H), 3.12 (s, 3H), 1.95 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.61, 141.78, 140.90, 140.82, 140.64, 139.68, 134.09, 128.27, 128.04, 127.79, 127.51, 126.94, 126.71, 126.18, 126.08, 126.00, 125.27, 118.12, 55.79, 16.52. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₂H₁₈NaO₃ 321.1250; found 321.1267.

9,10-dihydrotribenzo[a,c,e][8]annulen-9-ol (7aa¹ + 7aa²) : white solid, actual mass 48.0 mg, 88% yield, (eluent: petroleum ether/ethyl acetate = 20:1). 7aa¹: ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.38 (m, 3H), 7.29 – 7.26 (m, 1H), 7.21 – 7.08 (m, 7H), 7.02 – 6.94 (m, 1H), 5.05 (t, J = 9.1 Hz, 1H), 3.28 (dd, J = 13.1, 8.6 Hz, 1H), 2.83 (dd, J = 13.1, 9.7 Hz, 1H), 1.70 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.11, 141.84, 140.66, 139.71, 139.60, 137.01, 132.86, 130.98, 129.81, 128.28, 128.07, 128.00, 127.79, 127.73, 127.72, 127.64, 127.47, 126.56, 77.90, 41.04. 7aa²: ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.8 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.36 – 7.26 (m, 3H), 7.15 (td, J = 7.5, 1.0 Hz, 1H), 7.11 – 7.00 (m, 4H), 6.99 – 6.92 (m, 1H), 5.10 (t, J = 8.1 Hz, 3H), 3.61 (dd, J = 15.2, 8.1 Hz, 1H), 2.88 (dd, J = 15.2, 8.1 Hz, 1H), 1.92 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.24, 142.35, 140.95, 140.70, 139.35, 137.09, 130.90, 130.21, 129.20, 128.43, 128.11, 127.97, 127.68, 127.52, 127.22, 126.77, 126.06, 126.00, 125.27, 118.12, 55.79, 16.52. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₈H₁₆NaO₉ 295.1093; found 295.1089.
9. NMR Spectra

1H NMR (600 MHz, CDCl₃)

- 7.29
- 7.05
- 6.92
- 6.91
- 6.50
- 4.00

13C NMR (151 MHz, CDCl₃)

- 243.8
- 131.43
- 122.47
- 118.12
- 114.12
- 25.62
- 30.84
^{1}H NMR (600 MHz, CDCl$_3$)

^{13}C NMR (151 MHz, CDCl$_3$)
1H NMR (600 MHz, CDCl$_3$)

13C NMR (151 MHz, CDCl$_3$)
1H NMR (600 MHz, CDCl$_3$)

13C NMR (151 MHz, CDCl$_3$)
13C NMR (151 MHz, CDCl$_3$)

1H NMR (600 MHz, CDCl$_3$)
^{1}H NMR (600 MHz, CDCl$_3$)

^{13}C NMR (151 MHz, CDCl$_3$)
1H NMR (600 MHz, CDCl$_3$)

13C NMR (151 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
\[\text{H NMR (600 MHz, CDCl}_3\text{)} \]

\[\text{13C NMR (151 MHz, CDCl}_3\text{)} \]
13C NMR (101 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
13C NMR (101 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
$\text{H NMR (400 MHz, CDCl}_3\text{)}$

$\text{13C NMR (101 MHz, CDCl}_3\text{)}$
13C NMR (101 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
$\text{H NMR (400 MHz, CDCl}_3$)

$\text{C NMR (101 MHz, CDCl}_3$)
^{1}H NMR (400 MHz, CDCl$_3$)

^{13}C NMR (101 MHz, CDCl$_3$)

3af
S36

$\text{H NMR (400 MHz, CDCl}_3$)

$\text{13C NMR (101 MHz, CDCl}_3$)
H NMR (400 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
$\text{H NMR (400 MHz, CDCl}_3\text{)}$

$\text{C NMR (101 MHz, CDCl}_3\text{)}$
1H NMR (400 MHz, CDCl$_3$)

1C NMR (101 MHz, CDCl$_3$)
^{1}H NMR (400 MHz, CDCl$_3$)

^{13}C NMR (101 MHz, CDCl$_3$)
3am

1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
$\text{H NMR (400 MHz, CDCl}_3\text{)}$

$\text{C NMR (101 MHz, CDCl}_3\text{)}$
H NMR (600 MHz, CDCl$_3$)

C NMR (151 MHz, CDCl$_3$)
\[\text{H NMR (400 MHz, CDCl}_3\text{)} \]

\[\text{C NMR (101 MHz, CDCl}_3\text{)} \]
^{1}H NMR (400 MHz, CDCl$_3$)

^{13}C NMR (101 MHz, CDCl$_3$)
^{1}H NMR (400 MHz, CDCl$_3$)

^{13}C NMR (101 MHz, CDCl$_3$)

$3ca$
^{1}H NMR (400 MHz, CDCl$_3$)

^{13}C NMR (101 MHz, CDCl$_3$)
H NMR (400 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)

$^1^3$C NMR (101 MHz, CDCl$_3$)
$\begin{align*}
\text{H NMR (400 MHz, CDCl}_3) \\
13C NMR (101 MHz, CDCl}_3)
\end{align*}$
$3\text{ha} + 3\text{ha-Iso}$

$^1\text{H NMR (400 MHz, CDCl}_3)$

$^{13}\text{C NMR (101 MHz, CDCl}_3)$
$\text{H NMR (600 MHz, CDCl}_3\)$

$\text{C NMR (151 MHz, CDCl}_3\)$

$\text{H NMR (600 MHz, CDCl}_3\)$

$\text{C NMR (151 MHz, CDCl}_3\)$
$\text{H NMR (400 MHz, CDCl}_3)$

$\text{13C NMR (101 MHz, CDCl}_3)$
7aa2

1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
10. Crystal Structure of 3aa

3aa was dissolved with CDCl$_3$ in the NMR tube. The solvent was slowly volatizing under open air to afford crystalline, which was suitable for single crystal X-ray analysis. The CCDC Deposition Number is 2132853.