Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

## **Supporting Information**

# Ruthenium-catalyzed *meta*-selective difluoromethylation of arene phosphines enabled by 1,3-dione

Wen-Qian Xu, <sup>†a</sup> Jun-Yang Tao, <sup>†a</sup> Yue-Jin Liu, <sup>\*a</sup> and Ming-Hua Zeng<sup>\*a,b</sup>

<sup>a</sup> Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.

<sup>b</sup> Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

\*liuyuejin@hubu.edu.cn; \*zmh@mailbox.gxnu.edu.cn

## Contents

| 1. General Information              |     |
|-------------------------------------|-----|
| 2. Experimental Procedures          |     |
| 2.1 Optimzation of Conditions       |     |
| 2.2 General Procedures for Products |     |
| 2.3 Synthetic Applications          |     |
| 2.4 Mechanism studies               |     |
| 3. Characterization Data            | S12 |
| 4. References                       |     |
| 5. NMR Spectra                      |     |

#### **1. General Information**

Unless otherwise noted, materials were purchased from Bidepharm, Adamas, Aldrich Inc. and GENERAL-REAGENT and used as received. All reactions were carried out in a flame dried, sealed tube under an atmosphere of argon. Analytical thin layer chromatography (TLC) was performed on silica gel plates with F-254 indicator and compounds were visualized by irradiation with UV light. Prepared column chromatography was performed on silica gel 60N (spherical and neutral, 0.4-0.5 mm thickness). The <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P and <sup>19</sup>F NMR spectroscopic data were recorded on Bruker Mercury Plus 400 MHz NMR spectrometers. Chemical shifts (δ) for <sup>1</sup>H and <sup>13</sup>C are referenced to internal solvent resonances and reported relative to SiMe<sub>4</sub>. Chemical shifts for <sup>31</sup>P are reported relative to an external 85% H<sub>3</sub>PO<sub>4</sub> standard. <sup>1</sup>H NMR coupling constants were reported in Hz, and multiplicity was indicated as follows: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet); dd (doublet of doublets); td (triplet of doublets). High resolution mass spectra (HRMS) were recorded on the Thermo Scientific Exactive Plus equipped with ESI ionization source.

### 2. Experimental Procedures

#### 2.1 Optimization of Conditions

Table S1: Influence of the Ligand



Table S2: Influence of the Temperature



<sup>a</sup>Reaction conditions: **1a** (0.1 mmol), **2a** (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol %), L8 (30 mol%), PivONa (2.0 equiv) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at T °C under argon, 16 h.Yield was determined by <sup>1</sup>H NMR using CH<sub>2</sub>Br<sub>2</sub> as internal standard.

#### Table S3: Influence of the H<sub>2</sub>O



<sup>a</sup>Reaction conditions: **1** (0.1 mmol), **2a** (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol %), L8 (30 mol%) and PivONa (2.0 equiv) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h.Yield was determined by <sup>1</sup>H NMR using CH<sub>2</sub>Br<sub>2</sub> as internal standard.

#### **2.2 General Procedures for Products**

Scheme S1:



To a 25 mL Schlenk tube was added **1** (0.1 mmol, 1.0 equiv.), ethyl 2-bromo-2,2-difluoroacetate **2a** (0.5 mmol, 101 mg, 5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (3.1 mg, 5 mol%), **L8** (4.2 mg, 30 mol%), deionized water (3.6 mg, 2.0 equiv.) and PivONa (24.8 mg, 2.0 equiv.). The tube was purged with Ar three times, followed by the addition of *n*-hexane (1 mL). The mixture was stirred at 120 °C in the heating module for 16 h. The solution was then cooled to room temperature and the solvent was removed under vacuum directly. The crude product was purified by column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) affording the *meta*-selective difluoromethylation-substituted products **3**.

#### **2.3 Synthetic Applications**

#### a) post-synthetic modification

Scheme S2:



To a 50 mL Schlenk tube was added **3a** (230 mg, 0.5 mmol), K<sub>2</sub>CO<sub>3</sub> (3.0 mL, 1N). The tube was purged with Ar three times, followed by the addition of MeOH (3 mL). The mixture was stirred at 23 °C for 2 h and poured into 5% HCl (3.0 mL), and successively extracted with EtOAc (10 mL \* 3). The combined organic phase was washed with brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The crude product was purified by column chromatography on silica gel (DCM/MeOH: 4/1) affording the pure product **4** (white solid, 210 mg, 97%).

Scheme S3:



To a 50 mL Round-bottomed flask was added **3a** (92.2 mg, 0.2 mmol), AlLiH<sub>4</sub> and dry 1,4-dioxane (15 mL) at 0  $^{\circ}$ C. Then the mixture was stirred at room temperature for 1 h. Wash with water after reaction, extracted with EtOAc (10 mL \* 3). The combined organic phase was washed with brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The crude product was purified by column chromatography on silica gel (*n*-hexane/EtOAc: 3/1) affording the pure product **5** (colorless oil, 93%)

#### b) Sythesis of multifunctional biaryphosphine

Scheme S4:



To a 25 mL Schlenk tube was added **3a** (0.2 mmol, 1.0 equiv.), ethyl acrylate (60.0 mg, 3.0 equiv),  $[RuCl_2(p-cymene)]_2$  (6.2 mg, 5 mol%), *N*-Boc-*L*-Phe-OH (15.9 mg, 30 mol%), K<sub>2</sub>HPO<sub>4</sub> (69.6 mg, 2.0 equiv). The tube was purged with Ar three times, followed by the addition of *n*-hexane (2 mL). The mixture was stirred at 120 °C in the heating module for 12 h. The solution was then cooled to room temperature and the solvent was removed under vacuum directly. The crude product was purified by column chromatography on silica gel (*n*-hexane/EtOAc: 15/1) affording the pure product **6** (colorless oil, 86.3 mg, 77%).<sup>[1]</sup>

Scheme S5:



To a 25 mL Schlenk tube was added **3a** (0.2 mmol, 1.0 equiv.), 1-iodo-4-methoxybenzene (70.2 mg, 1.5 equiv),  $[RuCl_2(p-cymene)]_2$  (6.2 mg, 5 mol%), *N*-Ac-*L*-Ala-OH (7.9mg, 30 mol%), CsOAc (76.8mg, 0.4 mmol, 2.0 equiv). The tube was purged with Ar three times, followed by the addition of toluene (2 mL). The mixture was stirred at 120 °C in the heating module for 12 h. The solution was then cooled to room temperature and the solvent was removed under vacuum directly. The crude product was purified by column chromatography on silica gel (*n*-hexane/EtOAc: 15/1) affording the pure product **7** (colorless oil, 81.6 mg, 72%).<sup>[2]</sup>

#### 2.4 Mechanism studies

#### a) Radical trapping experiment

Scheme S6:



To a 25 mL Schlenk tube was added **1a** (0.1 mmol, 1.0 equiv.), ethyl 2-bromo-2,2-difluoroacetate **2a** (0.5 mmol, 101 mg, 5.0 equiv.),  $[RuCl_2(p\text{-cymene})]_2$  (3.1 mg, 5 mol%), L4 (4.2 mg, 30 mol%), deionized water (3.6 mg, 2.0 equiv.), radical scavenger (1.0 equiv.) and PivONa (24.8 mg, 2.0 equiv.). The tube was purged with Ar three times, followed by the addition of *n*-hexane (1 mL). The mixture was stirred at 120 °C in the heating module for 16 h. The solution was then cooled to room temperature and the solvent was removed under vacuum directly. Purified by column chromatography on silica gel (*n*-hexane/EtOAc: 50/1) affording the **1a** (31.4 mg, 93%) and mixture **10**(5.1 mg, 17%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38-

7.33 (m, 5H), 7.32-7.28 (m, 8H), 7.24-7.17 (m, 8H), 6.27 (t, J = 11.6 Hz, 1H), 4.27 (t, J = 7.2 Hz, 1H), 3.91 (q, J = 7.2 Hz, 2H), 3.83 (t, J = 7.2 Hz, 2H), 2.93 (dd, J = 15.6 Hz, 7.6 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H), 1.16 (t, J = 7.2 Hz, 3H). <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -91.0, -103.5. The analytical data are in accordance with those previously published in the literature.<sup>[4]</sup>

b) Synthesis of Int A

Scheme S7:



To a 50 mL Schlenk flask was added 2-diphenylphosphinobiphenyl **1a** (2 mmol, 676 mg, 1.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (1 mmol, 612 mg, 0.5 equiv.), KOAc (5 mmol, 490 mg, 2.5 equiv.). The tube was purged with Ar three times, followed by the addition of 30 mL DCM. The mixture was stirred at r.t. for 24 h. The solvent was then removed under vacuum directly. The crude product was purified by neutral alumina (Al<sub>2</sub>O<sub>3</sub>) column chromatography (R<sub>f</sub> = 0.5, EA/hexane = 1/2) affording the product **Int A** as red powder (1.07g, 88% yield).<sup>[1]</sup>

c) Int A as the catalyst

Scheme S8:



To a 25 mL Schlenk tubes were added 2-diphenylphosphinobiphenyl 1a (0.1 mmol, 33.8 mg, 1.0 equiv.),

ethyl 2-bromo-2,2-difluoroacetate **2a** (0.5 mmol, 101 mg, 5.0 equiv.), **Int A** (6.2 mg, 10 mol%), L4 (4.2 mg, 30 mol%), deionized water (3.6 mg, 2.0 equiv.) and PivONa (24.8 mg, 2.0 equiv.). The tube was purged with Ar three times, followed by the addition of *n*-hexane (1 mL). The mixture was stirred at 120 °C in the heating module for 16 h. The solution was then cooled to room temperature and the solvent was removed under vacuum directly. The yield of *meta*-selective difluoromethylation-substituted product **3a** was 54% by <sup>1</sup>H NMR yield analyzed with CH<sub>2</sub>Br<sub>2</sub> as an internal standard.

d) Int A as the substrate

Scheme S9:



To a 25 mL Schlenk tube was added **Int A** (0.05 mmol, 30.4 mg, 1.0 equiv.), ethyl 2-bromo-2,2difluoroacetate **2a** (0.5 mmol, 50.5 mg, 5.0 equiv.), 2-diphenyl- phosphinobiphenyl **1a** (0.025 mmol, 8.5 mg, 50 mol%), L4 (7.0 mg, 1.0 equiv.), deionized water (1.8 mg, 2.0 equiv.) and PivONa (24.8 mg, 4.0 equiv.). The tube was purged with Ar three times, followed by the addition of *n*-hexane (1 mL). The mixture was stirred at 120 °C in the heating module for 16 h. The solution was then cooled to room temperature and the solvent was removed under vacuum directly. The yield of *meta*-selective difluoromethylation-substituted product **3a** was 27% by <sup>1</sup>H NMR yield analyzed with CH<sub>2</sub>Br<sub>2</sub> as an internal standard.

e) H/D exchange

Scheme S10:



To a 25 mL Schlenk tube was added 1-phenylpropyne **1a** (0.3 mmol, 34.8 mg, 1.5 equiv.), ethyl 2-bromo-2,2-difluoroacetate **2a** (0.5 mmol, 101 mg, 5.0 equiv.), [RuCl2(p-cymene)]2 (3.1 mg, 5 mol%), L4 (4.2 mg, 30 mol%), deionized water (3.6 mg, 2.0 equiv.), CD<sub>3</sub>OD (14.4 mg, 10.0 equiv.) and PivONa (24.8 mg, 2.0 equiv.). The tube was purged with Ar three times, followed by the addition of *n*-hexane (1 mL). The mixture was stirred at 120 °C in the heating module for 12 h. The solvent was removed in vacuo and the residue was purified by prepared column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) to afford the mixture products **D-3a** in 78% yield, which was analyzed by <sup>1</sup>H NMR spectroscopy, the isolation of 23% and 16% deuterium at both *ortho*-positions and 9% of the H on the C3- of the biarylphosphine was lost.



f) Parrallel kinetic isotope effect

Scheme S11:



To a 25 mL Schlenk tube was added **1a** (0.1 mmol, 33.8 mg, 0.5 equiv.), **1a-ds** (0.1 mmol, 34.3 mg, 0.5 equiv.), **2a** (1 mmol, 5.0 equiv.), [RuCl<sub>2</sub>(*p*-cymene)]<sub>2</sub> (6.2 mg, 5 mol%), L4 (8.4 mg, 30 mol%), deionized water (7.2 mg, 2.0 equiv.) and PivONa (49.6 mg, 2.0 equiv.). The tube was purged with Ar three times, followed by the addition of *n*-hexane (2 mL).. The mixture was stirred at 120 °C in the heating module for 6 h. The solution was then cooled to room temperature and the solvent was removed under vacuum directly. The solvent was removed in vacuo and the residue was purified by prepared column chromatography on silica gel (*n*-hexane/EtOAc: 20/1) to afford the mixture products **3a:3a-d4**, which was analyzed by <sup>1</sup>H NMR spectroscopy, based on the integrations related to different hydrogen resonances, the kinetic isotope effect (KIE) was calculated to be  $k_H/k_D = 1.9$ .



#### 3. Characterization Data



ethyl 2-(2'-(diphenylphosphanyl)-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (**3**a): The general procedure was applied to 1a (0.1 mmol), 2a (5.0 equiv.), [RuCl<sub>2</sub>(p-cymene)]<sub>2</sub> (5 mol%), L8 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography ( $R_f = 0.5$ , PE/EtOAc = 15/1) to afford the title compound as colorless oil (35.8 mg, 78%% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.52-7.50 (m, 1H), 7.46 (s, 1H), 7.41-7.37 (m, 1H), 7.35-7.32 (m, 2H), 7.30-7.26 (m, 7H), 7.22-7.18 (m, 4H), 7.07 (dd, *J* = 3.6 Hz, 7.2 Hz, 1H), 4.26 (q, J = 7.2 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.2 (t, J = 35.4 Hz), 146.8 (d, J = 27.3 Hz), 142.2 (d, J = 6.1 Hz), 137.1 (d, J = 11.1 Hz), 136.3 (d, J = 16.2 Hz), 134.1, 134.1, 133.9, 132.4 (d, J = 4.0 Hz), 132.3 (t, J = 25.3 Hz), 130.2 (d, J = 5.1 Hz), 128.9, 128.8, 128.6, 128.5, 128.0 (d, J = 5.1 Hz), 126.9 (d, J = 4.0 Hz), 126.9 (d, J = 16.2 Hz), 124.3 (t, J = 6.1 Hz), 113.4 (t, J = 12.2 Hz), 124.3 (t, J = 12.2 Hz), 113.4 (t, J = 12.2 Hz), 124.3 (t, J = 12.2253.5 Hz), 63.2, 14.0. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ -13.0. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -103.5. HRMS (ESI) m/z:  $[M+H]^+$  calcd for C<sub>28</sub>H<sub>24</sub>F<sub>2</sub>O<sub>2</sub>P 461.1476; found 461.1472.



ethyl 2-(2'-(diphenylphosphanyl)-4'-methoxy-[1,1'-biphenyl]-3-yl)-2,2-difluor-oacetate (3b): The general procedure was applied to 1b (0.1 mmol), 2a (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound as colorless oil (35.3 mg, 72% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.47(d, *J* = 6.8 Hz, 1H), 7.43 (s, 1H), 7.31-7.28 (m, 8H), 7.24-7.23 (m, 2H), 7.22-7.19 (m, 3H), 6.92 (dd, *J* = 2.8 Hz, 8.4 Hz, 1H), 6.59 (t, *J* = 3.2 Hz, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 3.65 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.3 (t, *J* = 35.4 Hz), 159.0, 142.0 (d, *J* = 6.1 Hz), 139.3 (d, *J* = 26.3 Hz), 137.9 (d, *J* = 17.2 Hz), 136.9 (d, *J* = 11.1 Hz), 134.2, 134.0, 132.7 (d, *J* = 5.1 Hz), 132.2 (t, *J* = 25.3 Hz), 131.4 (d, *J* = 5.1 Hz), 128.9, 128.6, 128.5, 128.0, 127.1 (d, *J* = 4.0 Hz), 127.1 (d, *J* = 15.2 Hz), 124.0 (t, *J* = 6.1 Hz), 119.7, 114.0, 813

113.4 (t, J = 252.5 Hz), 63.2, 55.2, 14.1. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ -11.7. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -103.5. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>26</sub>F<sub>2</sub>O<sub>3</sub>P 491.1582; found 491.1578.



ethyl 2-(2'-(diphenylphosphanyl)-4'-methyl-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (3c): The general procedure was applied to 1c (0.1 mmol), 2a (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound as colorless oil (34.2 mg, 72% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.49-7.47 (m, 1H), 7.43 (s, 1H), 7.32-7.26 (m, 8H), 7.22-7.17 (m, 6H), 6.86 (d, *J* = 3.6 Hz, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 2.26 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 164.3 (t, *J* = 35.4 Hz), 144.1 (d, *J* = 28.3 Hz), 142.3 (d, *J* = 6.1 Hz), 137.6, 137.2 (d, *J* = 12.1 Hz), 135.9 (d, *J* = 15.2 Hz), 134.5, 134.2, 134.0, 132.6 (d, *J* = 4.0 Hz), 127.0 (d, *J* = 15.2 Hz), 124.2 (t, *J* = 6.1 Hz), 113.4 (t, *J* = 253.5 Hz), 63.2, 21.4, 14.1. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ -12.8. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -103.6. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>26</sub>F<sub>2</sub>O<sub>2</sub>P 475.1633; found 475.1630.



ethyl 2-(2'-(diphenylphosphanyl)-4'-fluoro-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (3d): The general procedure was applied to 1d (0.1 mmol), 2a (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound as colorless oil (25.8 mg, 54% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 (d, *J* = 7.2 Hz, 1H), 7.40 (s, 1H), 7.33-7.27 (m, 8H), 7.25-7.16 (m, 5H), 7.08 (td, *J* = 8.4 Hz, 2.8 Hz, 1H), 6.73 (dt, *J* = 9.2 Hz, 2.8 Hz, 1H), 4.28 (q, *J* = 7.2 Hz, 2H), 1.30 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.2 (t, *J* = 35.4 Hz), 162.4 (d, *J* = 250.5 Hz), 142.7 (dd, *J* = 3.0 Hz, 26.3 Hz), 141.3 (d, *J* = 5.1 Hz), 131.9 (d, *J* = 5.1 Hz, 8.1

Hz), 129.1, 128.8, 128.7, 128.1, 127.0 (d, J = 4.0 Hz), 124.5 (t, J = 6.1 Hz), 120.3 (d, J = 22.2 Hz), 115.9 (d, J = 21.2 Hz), 113.3 (t, J = 253.5 Hz), 63.2, 14.1. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  -12.0. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -103.6, -113.9. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>28</sub>H<sub>23</sub>F<sub>3</sub>O<sub>2</sub>P 479.1382; found 479.1379.



ethyl 2-(2'-(diphenylphosphanyl)-4'-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (3e): The general procedure was applied to 1e (0.1 mmol), 2a (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound as colorless oil (24.8 mg, 47% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.66-7.64 (m, 2H), 7.45-7.41 (m, 2H), 7.35-7.29 (m, 8H), 7.24-7.19 (m, 4H), 7.11 (dd, J = 4.0 Hz, 7.6 Hz, 7H), 4.30 (q, J = 8.0 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 163.2 (t, J = 34.3 Hz), 145.7 (d, J = 5.1 Hz), 145.1 (d, J = 27.3 Hz), 136.6 (d, J = 12.2 Hz), 136.5, 134.2, 134.2 (d, J = 20.2 Hz), 132.2 (d, J = 4.0 Hz), 130.1 (d, J = 4.0 Hz), 129.7 (d, J = 4.0 Hz), 129.6 (d, J = 4.0 Hz), 129.5 (d, J = 4.0 Hz), 129.1, 129.0, 128.7, 128.6, 128.6, 127.1 (q, J = 5.1 Hz), 126.4 (d, J = 33.3 Hz), 123.6 (q, J = 273.7 Hz), 112.8 (t, J = 243.4 Hz), 63.4, 13.9. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ -12.8. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -58.2, -98.7. HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>23</sub>F<sub>5</sub>O<sub>2</sub>P 529.1350; found 529.1348.



ethyl 2-(2'-(diphenylphosphanyl)-5'-methoxy-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (3f): The general procedure was applied to 1f (0.1 mmol), 2a (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound as colorless oil (20.6 mg, 42% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.55-7.52 (m, 1H), 7.47 (s, 1H), 7.38-7.35 (m, 2H), 7.30-7.29 (m, 6H), 7.22-7.18 (m, 4H), 7.03 (dd, *J* = 2.0 Hz, 8.0 Hz, 1H), 6.87-6.84 (m,

2H), 4.26 (q, J = 7.2 Hz, 2H), 3.83 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.2 (t, J = 35.4 Hz), 160.3, 148.7 (d, J = 30.3 Hz), 142.3 (d, J = 6.1 Hz), 137.9 (d, J = 11.1 Hz), 136.1, 133.8 (d, J = 20.2 Hz), 132.4 (d, J = 5.1 Hz), 132.3 (t, J = 26.3 Hz), 128.6, 128.5, 128.0, 126.8 (d, J = 12.1 Hz), 124.5 (t, J = 6.1 Hz), 115.7 (d, J = 4.0 Hz), 113.9, 113.4 (t, J = 252.5 Hz), 63.2, 55.5, 14.1. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  -15.3. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -103.6. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>26</sub>F<sub>2</sub>O<sub>3</sub>P 491.1582; found 491.1579.



ethyl 2-(2'-(diphenylphosphanyl)-5'-methyl-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (3g): The general procedure was applied to 1g (0.1 mmol), 2a (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound as colorless oil (26.6 mg, 56% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.52-7.50 (m, 1H), 7.45 (s, 1H), 7.34-7.32 (m, 2H), 7.29-7.26 (m, 6H), 7.23-7.18 (m, 4H), 7.14-7.10 (m, 2H), 6.98 (dd, *J* = 3.6 Hz, 7.6 Hz, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 2.38 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 164.3 (t, *J* = 35.4 Hz), 147.0 (d, *J* = 28.3 Hz), 142.4 (d, *J* = 6.1 Hz), 139.1, 137.6, 137.5, 134.4, 134.0, 133.8, 132.6 (d, *J* = 13.1 Hz), 132.5 (d, *J* = 5.1 Hz), 132.3 (t, *J* = 25.3 Hz), 131.1 (d, *J* = 5.1 Hz), 128.9, 128.6, 128.5, 128.0, 126.9 (d, *J* = 4.0 Hz), 126.9 (d, *J* = 16.2 Hz), 124.3 (t, *J* = 6.1 Hz), 113.4 (t, *J* = 253.5 Hz), 63.2, 21.3, 14.1. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ -14.1. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -103.6. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>26</sub>F<sub>2</sub>O<sub>2</sub>P 475.1633; found 475.1630.



ethyl 2-(2'-(diphenylphosphanyl)-5'-fluoro-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (3h): The general procedure was applied to 1h (0.1 mmol), 2a (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound

as colorless oil (24.9 mg, 52% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (d, *J* = 7.6 Hz, 1H), 7.44 (s, 1H), 7.37-7.33 (m, 2H), 7.32-7.28 (m, 6H), 7.21-7.17 (m, 4H), 7.06-6.98 (m, 3H), 4.27 (q, *J* = 7.2 Hz, 2H), 1.29 (t, *J* = 6.8 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.2 (t, *J* = 35.4 Hz), 163.1 (d, *J* = 251.5 Hz), 149.2 (dd, *J* = 8.1 Hz, 30.3), 141.2 (d, *J* = 6.1 Hz), 137.1 (d, *J* = 11.1 Hz), 136.3 (d, *J* = 8.1 Hz), 134.0, 133.8, 132.5 (t, *J* = 26.3 Hz), 132.3, 132.0 (d, *J* = 3.0 Hz), 131.9 (d, *J* = 3.0 Hz), 128.9, 128.7, 128.6, 128.2, 126.8 (d, *J* = 4.0 Hz), 126.8 (d, *J* = 16.2 Hz), 124.9 (d, *J* = 6.1 Hz), 117.4 (dd, *J* = 5.1 Hz, 21.2 Hz), 115.1 (d, *J* = 20.2 Hz), 113.3 (t, *J* = 253.5 Hz), 63.2, 14.1. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  -14.6. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -103.7, -112.6. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>28</sub>H<sub>23</sub>F<sub>3</sub>O<sub>2</sub>P 479.1382; found 479.1380.



ethyl 2-(2'-(diphenylphosphanyl)-2-methoxy-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (3i): The general procedure was applied to 1i (0.1 mmol), 2a (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound as colorless oil (17.2 mg, 35% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.64 (dd, J = 2.8 Hz, 6.4 Hz, 1H), 7.41-7.38 (m, 1H), 7.34-7.32 (m, 1H), 7.32-7.28 (m, 7H), 7.23-7.17 (m, 5H), 7.04-7.01 (m, 2H), 4.35-4.21 (m, 2H), 3.26 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 164.0 (t, J = 34.3 Hz), 155.0 (t, J = 5.1 Hz), 143.6 (d, J = 33.3 Hz), 137.9 (d, J = 13.1 Hz), 137.6 (d, J = 12.1 Hz), 137.1 (d, J = 14.1 Hz), 135.4 (d, J = 4.0 Hz), 135.2 (d, J = 7.1 Hz), 134.9 (d, J = 2.0 Hz), 133.7 (t, J = 21.2 Hz), 130.7 (d, J = 6.1 Hz), 129.1, 128.6, 128.6, 128.5, 128.5 (d, J = 6.1 Hz), 128.2, 127.4 (t, J = 24.2 Hz), 125.8 (t, J = 7.1 Hz), 123.1, 112.5 (d, J = 248.5 Hz), 62.9, 60.8, 14.1. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ -13.9. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -101.1 (d, J = 1055.6 Hz), -101.1 (d, J = 527.8 Hz), . HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>26</sub>F<sub>2</sub>O<sub>3</sub>P 491.1582; found 491.1578.



ethyl 2-(2'-(diphenylphosphanyl)-4-methyl-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (3j): The general procedure was applied to 1j (0.1 mmol), 2a (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound as colorless oil (28.4 mg, 60% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.40-7.37 (m, 2H), 7.32-7.27 (m, 8H), 7.25-7.23 (m, 2H), 7.22-7.20 (m, 3H), 7.12 (d, *J* = 7.6 Hz, 1H), 7.09 (dd, *J* = 3.6 Hz, 7.2 Hz, 1H), 4.28 (q, *J* = 7.2 Hz, 2H), 2.40 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 164.2 (t, *J* = 35.4 Hz), 147.1 (d, *J* = 28.3 Hz), 139.6 (d, *J* = 6.1 Hz), 137.5 (d, *J* = 11.1 Hz), 136.2 (d, *J* = 15.2 Hz), 135.4 (t, *J* = 3.0 Hz), 134.3, 134.1, 133.9, 132.1 (d, *J* = 4.0 Hz), 131.3, 130.5 (t, *J* = 23.2 Hz), 130.3 (d, *J* = 5.1 Hz), 128.9, 128.7, 128.6, 128.5, 127.8, 127.7 (d, *J* = 4.0 Hz), 127.6 (d, *J* = 4.0 Hz), 114.2 (t, *J* = 253.5 Hz), 63.1, 19.6 (t, *J* = 2.0 Hz), 14.1. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ -13.4. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -101.3. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>26</sub>F<sub>2</sub>O<sub>2</sub>P 475.1633; found 475.1629.



ethyl 2-(2'-(diphenylphosphanyl)-4-(methylthio)-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (3k): The general procedure was applied to 1k (0.1 mmol), 2a (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound as colorless oil (38.0 mg, 75% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.44 (s, 1H), 7.42-7.32 (m, 4H), 7.30-7.29 (m, 7H), 7.25-7.21 (m, 4H), 7.09 (dd, *J* = 3.6 Hz, 7.6 Hz, 1H), 4.33 (q, *J* = 7.2 Hz, 2H), 2.41 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 163.9 (t, *J* = 34.3 Hz), 146.4 (d, *J* = 27.3 Hz), 130.9 (d, *J* = 6.1 Hz), 137.1 (d, *J* = 11.1 Hz), 136.4 (d, *J* = 15.2 Hz), 135.5 (t, *J* = 4.0 Hz), 134.2, 134.1, 134.0, 132.4 (t, *J* = 23.2 Hz), 130.2 (d, *J* = 4.0 Hz), 130.1, 128.9, 128.8, 128.6, 128.5, 127.9, 127.9 (d, *J* = 4.0 Hz), 127.8 (d, *J* = 4.0 Hz), 112.9 (t, *J* = 250.5 Hz), 63.1, 18.5, 14.0. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ -12.9. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -99.3. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>26</sub>F<sub>2</sub>O<sub>2</sub>PS 507.1354; found 507.1352.



ethyl 2-(2'-(diphenylphosphanyl)-4-fluoro-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (3l): The general procedure was applied to 1l (0.1 mmol), 2a (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound as colorless oil (34.4 mg, 72% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.41-7.37 (m, 2H), 7.34-7.27 (m, 9H), 7.24-7.19 (m, 4H), 7.07-6.98 (m, 2H), 4.34 (q, *J* = 7.2 Hz, 2H), 1.32 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 163.3 (t, *J* = 34.3 Hz), 159.1 (d, *J* = 253.5 Hz), 145.8 (d, *J* = 27.3 Hz), 138.1 (dd, *J* = 3.0 Hz, 5.1 Hz), 136.9 (dd, *J* = 5.1 Hz, 11.1 Hz), 134.3, 134.1, 133.9, 130.2 (d, *J* = 5.1 Hz), 128.9, 128.7, 128.6, 128.1, 120.3 (d, *J* = 12.1 Hz), 120.1 (d, *J* = 13.1 Hz), 119.8 (d, *J* = 13.1 Hz), 115.6 (d, *J* = 21.2 Hz), 115.6 (t, *J* = 251.5 Hz), 63.4, 14.0. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ -12.6. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -101.9, -116.9. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>28</sub>H<sub>23</sub>F<sub>3</sub>O<sub>2</sub>P 479.1382; found 479.1378.



ethyl 2-(4-chloro-2'-(diphenylphosphanyl)-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (3m): The general procedure was applied to 1m (0.1 mmol), 2a (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound as colorless oil (35.6 mg, 72% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.48 (s, 1H), 7.42-7.38 (m, 1H), 7.34-7.28 (m, 10H), 7.24-7.20 (m, 4H), 7.09-7.06 (m, 1H), 4.34 (q, *J* = 7.2 Hz, 2H), 1.32 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 163.2 (t, *J* = 34.3 Hz), 145.7 (d, *J* = 27.3 Hz), 140.7 (d, *J* = 6.1 Hz), 136.8 (d, *J* = 12.1 Hz), 136.6 (d, *J* = 15.2 Hz), 134.3, 134.1, 133.2 (d, *J* = 4.0 Hz), 130.9 (t, *J* = 4.0 Hz), 130.4 (t, *J* = 24.2 Hz), 130.1 (d, *J* = 4.0 Hz), 129.9, 129.0, 128.9, 128.7, 128.6, 128.2, 112.1 (t, *J* = 251.2 Hz), 63.4, 14.0. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ -13.0. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -102.3. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>28</sub>H<sub>23</sub>ClF<sub>2</sub>O<sub>2</sub>P 495.1087; found 495.1086.



ethyl 2-(2'-(diphenylphosphanyl)-4-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (3n): The general procedure was applied to 1n (0.1 mmol), 2a (5.0 equiv.), [RuCl<sub>2</sub>(*p*-cymene)]<sub>2</sub> (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography ( $R_f = 0.5$ , PE/EtOAc = 15/1) to afford the title compound as colorless oil (28.5 mg, 54% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.65-7.63 (m, 1H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.42 (s, 1H), 7.40 (dd, *J* = 4.0 Hz, 8.0 Hz, 2H), 7.36-7.29 (m, 9H), 7.18 (td, *J* = 7.6 Hz, 1.2 Hz, 4H), 4.28 (q, *J* = 7.2 Hz, 2H), 1.30 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 164.1 (t, *J* = 35.4 Hz), 149.9 (d, *J* = 26.3 Hz), 141.0 (d, *J* = 5.1 Hz), 138.7 (d, *J* = 19.2 Hz), 135.8 (d, *J* = 11.1 Hz), 134.2, 134.0, 132.6 (d, *J* = 25.3 Hz), 132.1 (d, *J* = 3.0 Hz), 130.6 (d, *J* = 4.0 Hz), 125.6 (q, *J* = 3.0 Hz), 125.0 (t, *J* = 6.1 Hz), 124.1 (q, *J* = 273.7 Hz), 113.2 (t, *J* = 253.5 Hz), 63.3, 14.1. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ -12.0. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -62.7, -103.6. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>23</sub>F<sub>5</sub>O<sub>2</sub>P 529.1350; found 529.1346.



**methyl2'-(diphenylphosphanyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-[1,1'-biphenyl]-4-carboxylate** (**3o**): The general procedure was applied to **1o** (0.1 mmol), **2a** (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound as colorless oil (24.3 mg, 47% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.92 (d, *J* = 8.0 Hz, 1H), 7.64 (s, 1H), 7.43-7.40 (m, 2H), 7.33-7.28 (m, 8H), 7.24-7.20 (m, 4H), 7.11-7.09 (m, 1H), 4.32 (q, *J* = 7.2 Hz, 2H), 3.86 (s, 3H), 1.31 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.5, 163.4 (t, *J* = 34.3 Hz), 146.2 (d, *J* = 2.0 Hz), 146.0 (d, *J* = 24.2 Hz), 136.8 (d, *J* = 11.1 Hz), 136.4 (d, *J* = 18.2 Hz), 134.2, 134.0, 133.0 (t, *J* = 24.2 Hz), 131.8 (d, *J* = 4.0 Hz), 130.6, 130.1 (d, *J* = 5.1 Hz), 129.0, 128.9, 128.7, 128.6, 128.4, 127.3 (t, *J* = 3.0 Hz), 113.0 (t, *J* = 251.5 Hz), 62.8, 52.5, 14.0. <sup>31</sup>P NMR (162 MHz,

CDCl<sub>3</sub>)  $\delta$  -13.0. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -99.0. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>30</sub>H<sub>26</sub>F<sub>2</sub>O<sub>4</sub>P 519.1531; found 519.1528.



ethyl 2-(3-(2-(diphenylphosphanyl)cyclopenta-2,4-dien-1-yl)phenyl)-2,2-difluoroacetate (3q): The general procedure was applied to 1r (0.1 mmol), 2a (5.0 equiv.), [RuCl<sub>2</sub>(*p*-cymene)]<sub>2</sub> (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound as colorless oil (27.8 mg, 62% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.38-7.30 (m, 7H), 7.29-7.27 (m, 4H), 7.24-7.23 (m, 2H), 7.09 (d, *J* = 7.6 Hz, 2H), 6.62 (d, *J* = 4.0 Hz, 1H), 5.98 (d, *J* = 7.6 Hz, 1H), 7.07 (dd, *J* = 3.6 Hz, 7.2 Hz, 1H), 4.11 (q, *J* = 7.2 Hz, 2H), 1.21 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 163.1 (t, *J* = 34.3 Hz), 137.4 (d, *J* = 3.0 Hz), 136.4, 136.2 (d, *J* = 7.1 Hz), 133.8, 133.6, 129.5 (d, *J* = 2.0 Hz), 129.2, 129.1 (t, *J* = 28.3 Hz), 129.0, 128.6, 128.5, 128.4, 117.3, 112.4 (t, *J* = 5.1 Hz), 110.5 (t, *J* = 247.5 Hz), 63.3, 27.0, 13.9. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ -30.0. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -93.8. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>26</sub>H<sub>23</sub>F<sub>2</sub>NO<sub>2</sub>P 450.1429; found 450.1427.



ethyl 2-(2'-(dicyclohexylphosphanyl)-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (3r): The general procedure was applied to 1q (0.1 mmol), 2a (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound as colorless oil (10.9 mg, 23% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.62-7.56 (m, 2H), 7.50 (s, 1H), 7.47-7.42 (m, 2H), 7.40-7.36 (m, 2H), 7.27-7.24 (m, 1H), 4.29 (q, *J* = 7.2 Hz, 2H), 1.85-1.79 (m, 2H), 1.72-1.54 (m, 11H), 1.30 (t, *J* = 7.2 Hz, 3H), 1.25-1.20 (m, 2H), 1.16-1.12 (m, 3H), 1.09-1.04 (m, 2H), 1.03-0.98 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.4 (t, *J* = 35.4 Hz), 149.5 (d, *J* = 28.3 Hz), 143.5, 133.6

(d, J = 4.0 Hz), 133.2, 132.1 (t, J = 25.3 Hz), 130.3 (d, J = 5.1 Hz), 128.6, 127.7, 127.2, 123.9, 113.6 (t, J = 252.5 Hz), 63.2, 34.7 (d, J = 14.1 Hz), 30.5 (d, J = 16.2 Hz), 29.4 (d, J = 9.1 Hz), 27.3 (d, J = 6.1 Hz), 27.2 (d, J = 2.0 Hz), 26.5, 14.1. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  -13.4. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -103.8. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>28</sub>H<sub>36</sub>F<sub>2</sub>O<sub>2</sub>P 473.2415; found 473.2412.



ethyl 2-(2'-(diisopropylphosphanyl)-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (3s): The general procedure was applied to 1p (0.1 mmol), 2a (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), L4 (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.5, PE/EtOAc = 15/1) to afford the title compound as colorless oil (18.4 mg, 47% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.61-7.56 (m, 2H), 7.52 (s, 1H), 7.47-7.45 (m, 2H), 7.40-7.38 (m, 2H), 7.30-7.27 (m, 1H), 4.29 (q, *J* = 7.2 Hz, 2H), 2.06-2.00 (m, 2H), 1.30 (t, *J* = 7.2 Hz, 3H), 0.99 (d, *J* = 7.2 Hz, 3H), 0.95 (d, *J* = 7.2 Hz, 3H), 0.92 (d, *J* = 7.2 Hz, 3H), 0.89 (d, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 164.4 (t, *J* = 35.4 Hz), 149.3 (d, *J* = 28.3 Hz), 143.4 (d, *J* = 6.1 Hz), 133.7 (d, *J* = 5.1 Hz), 132.9 (d, *J* = 3.0 Hz), 132.1 (t, *J* = 26.3 Hz), 130.3 (d, *J* = 5.1 Hz), 128.7, 127.8 (d, *J* = 4.1 Hz), 127.7, 127.2, 123.9 (t, *J* = 6.1 Hz), 113.6 (d, *J* = 252.5 Hz), 63.2, 24.8, 24.6, 20.3, 20.1, 19.6, 19.5, 14.1. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ -5.0. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -103.9. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>22</sub>H<sub>28</sub>F<sub>2</sub>O<sub>2</sub>P 393.1789; found 393.1783.



ethyl 2-(2'-(diphenylphosphanyl)-[1,1'-biphenyl]-3-yl)-2,2-difluoro-1-morpholinoethan-1-one (3u): The general procedure was applied to 1a (0.1 mmol), 2u (5.0 equiv.),  $[RuCl_2(p-cymene)]_2$  (5 mol%), Ligand (30 mol%) and H<sub>2</sub>O (2.0 equiv.) in 1.0 mL of *n*-hexane at 120 °C under argon, 16 h. The crude product was purified by prepared column chromatography (Rf = 0.5, PE/EtOAc = 8/1) to afford the title compound as colorless oil (22.4 mg, 45% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.45–7.37 (m, 5H), 7.30– 7.28 (m, 8H), 7.18–7.14 (td, *J* = 7.2, 1.6 Hz, 4H), 7.05-7.03 (dd, *J* = 7.6, 4.0 Hz, 4H), 3.65 (s, 4H), 3.41(t, 4.4 Hz, 2H) 3.31 (t, *J* = 4.4 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.1 (t, *J* = 30.2 Hz), 146.8 (d, *J* = 28.2 Hz), 142.5 (d, J = 6.0 Hz), 137.0 (d, J = 11.6 Hz), 135.7 (d, J = 14.7 Hz), 134.2, 133.9, 133.7, 132.7 (t, J = 27.1 Hz),132.4 (d, J = 4.5 Hz), 130.1 (d, J = 4.7 Hz), 129.0, 128.7, 128.5, 128.5, 128.3, 128.1, 126.4 (d, J = 4.2 Hz), 123.9 (t, J = 5.5 Hz), 115.1, 66.7 (d, J = 28.0 Hz), 46.6, 43.4. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  -13.6. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -94.7. **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>30</sub>H<sub>27</sub>F<sub>2</sub>NO<sub>2</sub>P 502.1742; found 502.1739.



**2-(2'-(diphenylphosphanyl)-[1,1'-biphenyl]-3-yl)-2,2-difluoroacetic acid (4)**: The general procedure was applied to **3a** (0.5 mmol), K<sub>2</sub>CO<sub>3</sub> (1M, 2 mL). The tube was purged with Ar three times, followed by the addition of MeOH (2 mL) at 23 °C under argon, 2 h. The crude product was purified by prepared column chromatography ( $R_f$  = 0.6, DCM/MeOH = 4/1) to afford the title compound as white powder (216 mg, 99% yield). <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$  7.56-7.53 (m, 2H), 7.42-7.38 (m, 1H), 7.32-7.21 (m, 9H), 7.19-7.11 (m, 5H), 7.03 (dd, *J* = 3.6 Hz, 7.6 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CD<sub>3</sub>OD)  $\delta$  169.5 (t, *J* = 29.3 Hz), 147.4 (d, *J* = 28.3 Hz), 141.7 (d, *J* = 6.1 Hz), 137.3 (d, *J* = 12.1 Hz), 135.9 (d, *J* = 15.2 Hz), 135.6 (d, *J* = 26.3 Hz), 133.7, 133.5, 131.2 (d, *J* = 10.1 Hz), 131.1 (d, *J* = 5.1 Hz), 129.9 (d, *J* = 5.1 Hz), 128.6, 128.4, 128.2, 128.1, 127.3, 126.9, 126.4 (d, *J* = 3.0 Hz), 124.0 (t, *J* = 6.1 Hz), 115.1 (t, *J* = 251.5 Hz). <sup>31</sup>P NMR (162 MHz, CD<sub>3</sub>OD)  $\delta$  -13.6. <sup>19</sup>F NMR (377 MHz, CD<sub>3</sub>OD)  $\delta$  -102.1. **HRMS** (ESI) m/z: [M-H]<sup>-</sup> calcd for C<sub>26</sub>H<sub>18</sub>F<sub>2</sub>O<sub>2</sub>P 431.1018; found 431.1015.



**3-(2'-(diphenylphosphanyl)-[1,1'-biphenyl]-3-yl)-2,2-difluoroethan-1-ol (5)**: To a 50 mL Round bottomed flask was added **3a** (0.2 mmol), AlLiH<sub>4</sub> (5.0 equiv.) followed by the addition of dry 1,4-dioxane (2 mL) at 0 °C, 2 h. Then the mixture was stirred at room temperature for 1 h. The crude product was

purified by prepared column chromatography ( $R_f = 0.6$ , *n*-hexane/EtOAc = 3/1) to afford the title compound as colorless oil (79.4 mg, 95% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.43-7.36 (m, 4H), 7.33-7.28 (m, 9H), 7.21-7.17 (m, 4H), 7.04 (dd, J = 3.6 Hz, 7.6 Hz, 1H), 3.77-3.70 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  147.0 (d, J = 27.3 Hz), 142.1 (d, J = 5.1 Hz), 137.0 (d, J = 11.1 Hz), 136.0 (d, J = 14.1 Hz), 134.2, 134.1, 134.0, 133.7 (t, J = 25.3 Hz), 131.6 (d, J = 4.0 Hz), 130.1 (d, J = 5.1 Hz), 129.0, 128.9, 128.6 (d, J = 7.1 Hz), 128.2, 128.0, 127.3 (dd, J = 6.1 Hz, 11.1 Hz), 124.4 (t, J = 6.1 Hz), 120.6 (t, J = 245.4 Hz), 66.0 (t, J = 32.3 Hz). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  -12.7. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -107.4. **HRMS** (ESI) m/z: [M-H]<sup>-</sup> calcd for C<sub>26</sub>H<sub>22</sub>F<sub>2</sub>OP 419.1371; found 419.1367.



#### methyl3-(2'-(diphenylphosphanyl)-5-(2-ethoxy-1,1-difluoro-2-oxoethyl)-[1,1'-biphenyl]-2-

yl)propanoate (6): The general procedure was applied to **3a** (0.2 mmol), ethyl acrylate (60.0 mg, 3.0 equiv),  $[RuCl_2(p-cymene)]_2$  (6.2 mg, 5 mol%), *N*-Boc-*L*-Phe-OH (15.9 mg, 30 mol%), K<sub>2</sub>HPO<sub>4</sub> (69.6 mg, 2.0 equiv). The tube was purged with Ar three times, followed by the addition of *n*-hexane (2 mL) at 120 °C under argon, 12 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.6, PE/EtOAc = 15/1) to afford the title compound as colorless oil (84.0 mg, 77% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 (dd, *J* = 1.2 Hz, 8.0 Hz, 1H), 7.49 (dd, *J* = 1.6 Hz, 8.0 Hz, 1H), 7.41-7.37 (m, 1H), 7.32-7.25 (m, 8H), 7.20-7.15 (m, 3H), 7.15-7.09 (m, 3H), 7.02-7.01 (m, 1H), 4.19 (q, *J* = 3.2 Hz, 2H), 4.07 (q, *J* = 7.2 Hz, 2H), 2.77 (t, *J* = 8.0 Hz, 2H), 2.53-2.39 (m, 2H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.20 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.8, 164.2 (t, *J* = 35.4 Hz), 145.6 (d, *J* = 30.3 Hz), 141.6, 141.4 (d, *J* = 6.1 Hz), 137.2 (d, *J* = 13.1 Hz), 137.0 (d, *J* = 12.1 Hz), 136.2 (d, *J* = 10.1 Hz), 134.0 (d, *J* = 2.0 Hz), 133.8 (d, *J* = 2.0 Hz), 128.5 (d, *J* = 2.0 Hz), 128.2, 128.0 (d, *J* = 3.0 Hz), 125.0 (t, *J* = 6.1 Hz), 113.2 (d, *J* = 2.0 Hz), 128.5 (d, *J* = 4.0 Hz), 124.3, 14.0. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  -13.5. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -103.4 (d, *J* = 682.4 Hz), -103.4 (d, *J* = 173.4 Hz). **HRMS** (ESI)

m/z:  $[M+H]^+$  calcd for C<sub>33</sub>H<sub>32</sub>F<sub>2</sub>O<sub>4</sub>P 561.2001; found 561.1998.



ethyl 2-(2''-(diphenylphosphanyl)-4-methoxy-[1,1':2',1''-terphenyl]-4'-yl)-2,2-difluoroacetate (7): The general procedure was applied to **3a** (0.2 mmol), 1-iodo-4-methoxybenzene (70.2 mg, 1.5 equiv), [RuCl<sub>2</sub>(*p*-cymene)]<sub>2</sub> (6.2 mg, 5 mol%), *N*-Ac-*L*-Ala-OH (7.9mg, 30 mol%), CsOAc (76.8mg, 0.4 mmol, 2.0 equiv). The tube was purged with Ar three times, followed by the addition of tolune (2 mL) at 120 °C under argon, 12 h. The crude product was purified by prepared column chromatography (R<sub>f</sub> = 0.6, PE/EtOAc = 15/1) to afford the title compound as colorless oil (81.6 mg, 72% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.63 (dd, *J* = 1.2 Hz, 8.0 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.32-7.27 (m, 4H), 7.24-7.16 (m, 6H), 7.13-7.07 (m, 4H), 7.03 (dd, *J* = 4.0 Hz, 7.6 Hz, 1H), 6.81-6.76 (m, 2H), 6.67 (d, *J* = 8.4 Hz, 2H), 4.24-4.16 (m, 2H), 3.75 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 164.2 (t, *J* = 30.3 Hz), 158.7, 147.2 (d, *J* = 32.3 Hz), 143.6, 140.7 (d, *J* = 6.1 Hz), 137.8 (d, *J* = 13.1 Hz), 137.1 (d, *J* = 13.1 Hz), 136.5 (d, *J* = 13.1 Hz), 134.7 (d, *J* = 20.0 Hz), 133.7 (d, *J* = 20.2 Hz), 133.1 (d, *J* = 18.2 Hz), 132.9, 131.3, 131.1 (d, *J* = 6.1 Hz), 130.6 (t, *J* = 27.3 Hz), 130.2, 128.8 (d, *J* = 22.2 Hz), 128.5 (d, *J* = 7.1 Hz), 128.2 (d, *J* = 6.1 Hz), 127.9 (d, *J* = 16.2 Hz), 125.0 (t, *J* = 6.1 Hz), 113.4 (t, *J* = 252.5 Hz), 113.3, 63.2, 55.3, 14.0. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ -14.2. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -103.4 (d, *J* = 667.3 Hz), -103.4 (d, *J* = 162.1 Hz). **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>35</sub>H<sub>30</sub>F<sub>2</sub>O<sub>3</sub>P 567.1895; found 567.1891.

### 4. References

(1) Li J. W., Wang L. N., Li M.; Tang P. T.; Zhang N. J.; Li T.; Liu Y. J. and Zeng M. H. Organic Letters, **2020**, 22(4), 1331-1335.

(2) Li J. W.; Wang L. N.; Li M.; Tang P. T.; Luo X. P.; Kurmoo M.; Liu Y. J. and Zeng M. H. Organic letters, 2019, 21(8), 2885-2889.

(3) M. C. Belhomme, T. Poisson, and X. Pannecoucke. *The Journal of Organic Chemistry*. **2014**, *79*, 7205-7211.

(4) S. Murakami, H. Ishii, T. Fuchigami. Journal of Fluorine Chemistry. 2004, 125, 609-614.

### 5. NMR Spectra

4.29 4.25 CO<sub>2</sub>Et ₽Ph<sub>2</sub> 3a <sup>1</sup>H NMR, CDCI<sub>3</sub>, 400 MHz 2.00-1 3.00-5.5 5.0 fl (ppm) 10.5 10.0 9.5 9. 0 8.5 7.5 7.0 6.5 6. 0 4.5 4.0 3. 5 3.0 2.5 2.0 1.5 1. 0 0.5 0. 0 -0.5 8.0 134.14 134.09 133.94 133.94 128.55 128.55 128.55 128.55 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 128.56 12 164.55 164.20 163.85 -63.17 CO<sub>2</sub>Et ₽Ph<sub>2</sub> 3a <sup>13</sup>C NMR, CDCI<sub>3</sub>, 101 MHz

100 fl (ppm) ò -10 210 200 180 170 160 150 140 130 120 110 80 70 60 50 40 30 20 10 190 90







€1.30 1.28 1.27

















<sup>1.31</sup>
<sup>1.31</sup>
<sup>1.28</sup>
<sup>1.28</sup>



<sup>31</sup>P NMR, CDCI<sub>3</sub>, 162 MHz



**S33** 













20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)





S39



3h <sup>1</sup>H NMR, CDCI<sub>3</sub>, 400 MHz



<sup>1.31</sup>
<sup>1.29</sup>
<sup>1.29</sup>



#### 7.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05



 $\underbrace{ \bigwedge_{1.28}^{1.30} }_{1.27}$ 







---13.38



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)



110 100 fl (ppm) 



----12.88







<sup>1</sup>H NMR, CDCI<sub>3</sub>, 400 MHz





---12.64

<sup>31</sup>P NMR, CDCI<sub>3</sub>, 162 MHz











3m <sup>1</sup>H NMR, CDCI<sub>3</sub>, 400 MHz















#### 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,252 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,557 7,5577 7,557 7,557 7,557 7,557 7,5577 7,5577 7,5577 7,5577 7,5577



 $\xleftarrow{1.33}{1.31}_{1.29}$ 



---13.00





Ph<sub>2</sub>P N F 3q CO<sub>2</sub>Et <sup>1</sup>H NMR, CDCI<sub>3</sub>, 400 MHz











20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)





---5.01

3s <sup>31</sup>P NMR, CDCI<sub>3</sub>, 162 MHz





S62











20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)





S69



