Supporting Information

$\mathbf{R h}$ (III)-catalyzed $\mathbf{C}-\mathbf{C}$ coupling of unactivated $\mathbf{C}\left(\mathbf{s p}^{3}\right)-\mathbf{H}$ bonds with iodonium ylides for access to all-carbon quaternary carbon centers

Pengfei Xie, Huixing Gao, Xingwei Li, Yuqin Jiang,* and Bingxian Liu*
NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan453007, China.

Table of Contents

1. General Information 3
2. Experimental Section 3
3. References 6
4. Characterization Data 7
5. NMR Spectrum and HRMS Data 17

1. General Information

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. All the reactions were carried out under Ar atmosphere. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 400 MHz or 600 MHz NMR spectrometer. The ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz or 150 MHz . The ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at 376 MHz . Chemical shifts were expressed in parts per million (δ) downfield from the internal standard tetramethylsilane (TMS), and were reported as s (singlet), d (doublet), t (triplet), dd (doublets of doublet), dt (doublets of triplet), and m (multiplet). The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale (CDCl_{3} : $\left.\delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=77.16 \mathrm{ppm}, \mathrm{DMSO}-d_{6}: \delta \mathrm{H}=2.50 \mathrm{ppm}, \delta \mathrm{C}=39.52 \mathrm{ppm}\right)$. The coupling constants J were given in Hz. High resolution mass spectra (HRMS) were obtained via ESI mode by using a MicroTOF mass spectrometer. The conversion of starting materials was monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F 2540.25 mm), and components were visualized by observation under UV light (254 and 365 nm). Column chromatography was performed on silica gel 200-300 mesh.

Pyridine derivatives ${ }^{1}$ and iodonium ylides ${ }^{2}$ were prepared according to the published procedures.

2. Experimental Section

(1) General procedures for pyridine-assisted fuctionalization of unactivated $\mathbf{C}\left(\mathbf{s p}^{\mathbf{3}}\right)-\mathbf{H}$ bonds

A Schlenk tube with a magnetic stir bar was charged with pyridine derivatives (0.10 mmol), iodonium ylides $(0.15 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.004 \mathrm{mmol}, 4.0 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(16 \mathrm{~mol} \%), 2,2$-Dimethylbutyric acid $(0.10 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.10 \mathrm{mmol}), \mathrm{NaOAc}(0.10 \mathrm{mmol})$ and $\mathrm{HFIP}(0.5 \mathrm{~mL})$ under an N_{2} atmosphere. The resulting mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel to provide the desired product.

(2) Scale-up Synthesis of 3

A Schlenk tube with a magnetic stir bar was charged with pyridine derivatives (3.00 mmol), iodonium ylides $(4.50 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.120 \mathrm{mmol}, 4.0 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(16 \mathrm{~mol} \%), 2,2$-Dimethylbutyric acid (3.0 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(3.0 \mathrm{mmol}), \mathrm{NaOAc}(3.0 \mathrm{mmol})$ and HFIP $(15 \mathrm{~mL})$ under an N_{2} atmosphere. The resulting mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . Afterwards, it was evaporated under reduced pressure, and the residue was purified by silica gel chromatography (petroleum ether:Acetone $=5: 1$) to afford 3a(724.6 mg, 75\%).

(3) Diversification of the Products

Compound $\mathbf{3}(0.1 \mathrm{mmol})$ was dissolved in oxalyl chloride $(0.1 \mathrm{~mL})$ and the reaction mixture was stirred at room temperature for 3 h . Then the reaction mixture was diluted with diethyl ether (3.0 mL) and washed with water $(3.0 \mathrm{~mL})$ and brine $(3.0 \mathrm{~mL})$. The filtrate was concentrated in vacuo, and the crude product was purified by silica gel chromatography (petroleum ether: ethyl acetate $=10: 1$).

To a solution of the $\mathbf{3}(0.1 \mathrm{mmol})$ in benzene (2 mL) was dropwise added trimethylsilyldiazomethane (TMSCHN $2,0.15 \mathrm{~mL}, 0.3 \mathrm{mmol}, 2.0 \mathrm{M}$ solution in hexane) at r.t.. The resulting mixture was stirred at room temperature for 12 h . The reaction was quenched by the addition of $\mathrm{AcOH}(10 \mu \mathrm{~L})$, and the solvent was removed by vaporation, and the crude product was purified by silica gel chromatography (petroleum ether:ethyl acetate $=1: 1)$ to afford $5(27.4 \mathrm{mg}, 82 \%)$.

A Schlenk tube with a magnetic stir bar was charged with $3(0.1 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}(0.15 \mathrm{mmol})$ and $\mathrm{MeCN}(0.5 \mathrm{~mL})$ under an O_{2} atmosphere. The resulting mixture was stirred at room temperature for 12 h. Afterwards, it was evaporated under reduced pressure, and the residue was purified by silica gel chromatography ($\mathrm{MeOH}: \mathrm{DCM}=1: 20)$ to afford $6(22.9 \mathrm{mg}, 90 \%)$.

(4) Mechanistic Studies

Synthesis of rhodacycle [Rh-Py] complex

A Schlenk tube with a magnetic stir bar was charged with $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(31.3 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{AgSbF}_{6}$ ($70.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 4$ equiv), 2-(tert-butyl)pyridine ($67.6 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 10$ equiv), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.75 mL) under an N_{2} atmosphere. The resulting mixture was stirred at room temperature for 24 h and then diluted with 3 mL of dichloromethane. The solution was filtered through a celite pad and washed with
$10-20 \mathrm{~mL}$ of dichloromethane. The filtrate was concentrated and the residue was purified by column chromatography on alumina to provide the complex as a orange solid.
[Rh-Py] complex catalyzed alkylation of 2-(tert-butyl)pyridine

A Schlenk tube with a magnetic stir bar was charged with 2-(tert-butyl)pyridine (0.10 mmol), iodonium ylides (0.15 mmol), $[\mathrm{Rh}-\mathrm{Py}]$ complex ($0.013 \mathrm{mmol}, 13.0 \mathrm{~mol} \%$), $\mathrm{AgSbF}_{6}(13 \mathrm{~mol} \%), 2,2-$ Dimethylbutyric acid (0.10 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.10 \mathrm{mmol}), \mathrm{NaOAc}(0.10 \mathrm{mmol})$ and HFIP $(0.5 \mathrm{~mL})$ under an N_{2} atmosphere. The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel to provide the desired product.

The reaction of stoichiometric amounts of [Rh-Py] complex with iodonium ylides

A Schlenk tube with a magnetic stir bar was charged with [Rh-Py] complex (0.05 mmol), iodonium ylides (0.075 mmol), $\mathrm{AgSbF}_{6}(16 \mathrm{~mol} \%), 2,2$-Dimethylbutyric acid (0.05 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.05 \mathrm{mmol})$, $\mathrm{NaOAc}(0.05 \mathrm{mmol})$ and HFIP $(0.25 \mathrm{~mL})$ under an N_{2} atmosphere. The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel to provide the desired product.

H/D Exchange experiment

A Schlenk tube with a magnetic stir bar was charged with $\mathbf{1 a}(0.10 \mathrm{mmol}), \mathbf{2 a}(0.15 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ ($0.004 \mathrm{mmol}, 4.0 \mathrm{~mol} \%$), $\mathrm{AgSbF}_{6}\left(16 \mathrm{~mol} \%\right.$), $\mathrm{AdCOOD}(0.10 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.10 \mathrm{mmol}), \mathrm{NaOAc}$ $(0.10 \mathrm{mmol})$ and HFIP- $d_{2}(0.5 \mathrm{~mL})$ under an N_{2} atmosphere. The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for 8 h . After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel to provide the desired product, giving the product in 80% yield.

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{3 a -} \boldsymbol{d}_{\boldsymbol{n}}$ in the H / D Exchange experiment

3. References

[1] a) X. Huang, Y. Wang, J. Lan and J. You, Angew. Chem., Int. Ed., 2015, 54, 9404-9408; b) J. Dong, Z. Wang, X. Wang, H. Song, Y. Liu and Q. Wang, J. Org. Chem. 2019, 84. 7532-7540.
[2] R. M. Moriarty, S. Tyagi, D. Inanov and M. Constantinescu, J. Am. Chem. Soc., 2008, 130. $7564-$ 7565.

4. Characterization Data

3-hydroxy-2-(2-methyl-3-phenyl-2-(pyridin-2-yl)propyl)cyclohex-2-en-1-one (3a).
Yellow solid ($28.2 \mathrm{mg}, 88 \%$, m.p. $78-79{ }^{\circ} \mathrm{C}$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, Chloroform- d) $\delta 14.26(\mathrm{~s}, 1 \mathrm{H}), 8.76-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (ddd, $J=7.4$, $5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=8.2,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.99-$ $2.77(\mathrm{~m}, 4 \mathrm{H}), 2.55-2.29(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroformd) $\delta 199.5,176.0,166.7,145.9,137.9,137.6,130.3,127.6,126.2,123.4,121.9,112.8,50.4,46.7,37.2$, 32.0, 30.4, 26.4, 21.1. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{2}{ }^{+} 322.1802$, Found: 322.1804 .

3-hydroxy-2-(2-methyl-2-(pyridin-2-yl)-3-(p-tolyl)propyl)cyclohex-2-en-1-one (3b).
Red oil ($24.1 \mathrm{mg}, 72 \%$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform $-d$) $\delta 8.43$ (dd, $J=$ $5.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{ddd}, J=7.5,5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.97-2.78(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{~m}, 4 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$, $1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 199.5,176.0,166.9,145.9,137.5$, 135.6, 134.7, 130.2, 128.3, 123.5, 121.9, 112.9, 50.1, 46.7, 37.2, 31.8, 30.4, 26.4, 21.1. HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}$336.1958, Found: 336.1961.

2-(3-(4-(tert-butyl)phenyl)-2-methyl-2-(pyridin-2-yl)propyl)-3-hydroxycyclohex-2-en-1-one (3c).
Colorless oil (26.4 mg, 70\%), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 14.27(\mathrm{~s}$, 1 H), 8.43 (ddd, $J=5.1,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.50-6.42(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.81(\mathrm{~m}, 4 \mathrm{H}), 2.46-2.33(\mathrm{~m}, 4 \mathrm{H}), 1.93-1.87(\mathrm{~m}$, 2H), 1.44 (s, 3H), 1.23 (s, 9H). ${ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) $\delta 199.5,175.9,166.9,149.0,145.8$, 137.6, 134.7, 129.9, 124.5, 123.5, 121.9, 112.9, 50.1, 46.8, 37.2, 34.4, 31.7, 31.4, 30.4, 26.6, 21.1. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{2}{ }^{+}$378.2428, Found: 378.2425.

2-(3-(4-fluorophenyl)-2-methyl-2-(pyridin-2-yl)propyl)-3-hydroxycyclohex-2-en-1-one (3d).
Yellow oil ($27.1 \mathrm{mg}, 80 \%$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.44(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{td}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{ddd}, J=7.5,5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.72(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{dd}, J=8.5,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.95-2.80(\mathrm{~m}, 4 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 4 \mathrm{H}), 1.95-$ $1.86(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 199.4,176.0,166.5,161.5$ ($\mathrm{d}, J=244.3$ $\mathrm{Hz}), 146.0,137.6,133.5(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 131.5(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 123.3,122.0,114.4(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 112.6$, 49.4, 46.6, 37.2, 31.9, 30.3, 26.2, 21.0. ${ }^{19} \mathrm{~F}$ NMR (377 MHz , Chloroform- d) $\delta-117.09$. HRMS (ESITOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{FNO}_{2}{ }^{+}$340.1707, Found: 340.1702.

2-(3-(4-chlorophenyl)-2-methyl-2-(pyridin-2-yl)propyl)-3-hydroxycyclohex-2-en-1-one (3e).
Red oil ($23.8 \mathrm{mg}, 71 \%$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 14.02(\mathrm{~s}, 1 \mathrm{H})$, 8.45 (dd, $J=5.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-2.82(\mathrm{~m}, 4 \mathrm{H}), 2.47-2.34(\mathrm{~m}, 4 \mathrm{H}), 1.94-$ $1.88(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) $\delta 199.3$, 175.9, 166.3, 146.0, 137.5, 136.2, 132.0, 131.4, 127.6, 123.1, 121.9, 112.5, 49.5, 46.4, 37.1, 31.9, 30.2, 26.1, 20.9. HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClNO}_{2}{ }^{+}$356.1412, Found: 356.1400.

2-(3-(4-bromophenyl)-2-methyl-2-(pyridin-2-yl)propyl)-3-hydroxycyclohex-2-en-1-one (3f).
Colorless oil ($30.7 \mathrm{mg}, 77 \%$), eluent: $\mathrm{PE} /$ Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 14.07$ (s , $1 \mathrm{H}), 8.45(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{td}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.16-$ $7.13(\mathrm{~m}, 2 \mathrm{H}) 6.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.94-2.82(\mathrm{~m}, 4 \mathrm{H}), 2.47-2.34(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 2 \mathrm{H})$, $1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) $\delta 199.4,176.0,166.3,146.1,137.7,136.8,131.9,130.7$, $123.2,122.0,120.2,112.5,49.6,46.4,37.1,31.9,30.3,26.2,21.0$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrNO}_{2}{ }^{+} 400.0907$, Found: 400.0895 .

3-hydroxy-2-(2-methyl-2-(pyridin-2-yl)-3-(o-tolyl)propyl)cyclohex-2-en-1-one (3g).
Brown oil ($29.2 \mathrm{mg}, 87 \%$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.48(\mathrm{~d}, J=$ $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{td}, J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{ddd}, J=7.4,5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.96$ (dd, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=7.7,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.12-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.84(\mathrm{~m}, 3 \mathrm{H}), 2.49-2.33(\mathrm{~m}, 4 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}$, 3H), 1.46 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) δ 199.3, 175.9, 166.4, 145.9, 137.6, 137.3, 136.1, 131.0, 130.0, 126.2, 124.9, 123.5, 121.9, 112.8, 47.0, 45.1, 37.1, 32.7, 30.2, 26.4, 20.9, 19.4. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}$336.1958, Found: 336.1961.

2-(3-(2-fluorophenyl)-2-methyl-2-(pyridin-2-yl)propyl)-3-hydroxycyclohex-2-en-1-one (3h).
Dark red oil ($24.8 \mathrm{mg}, 73 \%$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 14.24(\mathrm{~s}$, $1 \mathrm{H}), 8.45(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H})$, $6.86(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=9.6,8.1,1 \mathrm{H}), 6.62(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.86(\mathrm{~m}$, 4H), $2.46-2.33(\mathrm{~m}, 4 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$. NMR (150 MHz , Chloroform-d) δ 199.2, $175.9,166.2,162.5(\mathrm{~d}, J=242.4 \mathrm{~Hz}), 145.9,140.2(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 137.4,128.8(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 125.8$, $123.0,121.9,116.7(\mathrm{~d}, J=20.8 \mathrm{~Hz}), 112.9(\mathrm{~d}, J=20.8 \mathrm{~Hz}), 112.4,49.9,46.4,37.0,31.7,30.1,26.2$, 20.8. ${ }^{19}$ F NMR (565 MHz , Chloroform- d) $\delta-115.88$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{FNO}_{2}{ }^{+}$340.1707, Found: 340.1703.

2-(3-(2-bromophenyl)-2-methyl-2-(pyridin-2-yl)propyl)-3-hydroxycyclohex-2-en-1-one (3i).
Yellow solid ($23.5 \mathrm{mg}, 59 \%$, m.p. $75-76{ }^{\circ} \mathrm{C}$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, Chloroform-d) $\delta 14.45(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-2.95(\mathrm{~m}, 4 \mathrm{H}), 2.50-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.34(\mathrm{~m}$, 2H), $1.94-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) $\delta 199.4,176.3,165.8,146.0$, 137.7, 137.6, 132.8, 132.3, 127.9, 126.9, 126.6, 123.5, 122.2, 112.6, 47.6, 47.1, 37.2, 32.5, 30.4, 26.5, 21.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BrNO}_{2}{ }^{+}$400.0907, Found: 400.0897.

3-hydroxy-2-(2-methyl-2-(pyridin-2-yl)-3-(2-(trifluoromethyl)phenyl)propyl)cyclohex-2-en-1-one (3j). Yellow solid ($21.8 \mathrm{mg}, 56 \%$, m.p. $109-110{ }^{\circ} \mathrm{C}$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 14.38(\mathrm{~s}, 1 \mathrm{H}), 8.54-8.43(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~m}, 2 \mathrm{H}), 3.02-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.90(\mathrm{~m}$, $2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform-d) $\delta 199.3,176.1,166.4,146.0,137.7,137.1,132.0$, $130.8,129.8(\mathrm{q}, J=28.9 \mathrm{~Hz}), 126.4,126.3(\mathrm{q}, J=5.9 \mathrm{~Hz}), 124.3(\mathrm{q}, J=274.2 \mathrm{~Hz}), 123.1,121.5,112.7$, $46.8,44.2,37.2,32.5,30.4,27.8,21.0 .{ }^{19}$ F NMR (565 MHz , Chloroform- d) $\delta-58.44$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+}$390.1675, Found: 390.1674.

3-hydroxy-2-(2-methyl-2-(pyridin-2-yl)-3-(m-tolyl)propyl)cyclohex-2-en-1-one (3k).
Colorless oil ($29.2 \mathrm{mg}, 87 \%$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 14.19(\mathrm{~s}$, $1 \mathrm{H}), 8.44(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{td}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{ddd}, J=7.4,5.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{dt}, J=6.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.81(\mathrm{~m}, 4 \mathrm{H})$, $2.43-2.35(\mathrm{~m}, 4 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroformd) $\delta 199.5,176.0,166.9,145.8,137.7,137.4,137.0,131.2,127.4,127.2,126.9,123.5,121.8,112.8,50.4$, 46.7, 37.2, 31.9, 30.4, 26.4, 21.3, 21.1. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+} 336.1958$, Found: 336.1955.

2-(3-(3-fluorophenyl)-2-methyl-2-(pyridin-2-yl)propyl)-3-hydroxycyclohex-2-en-1-one (31).
Brown solid ($28.2 \mathrm{mg}, 83 \%$, m.p. $111-112{ }^{\circ} \mathrm{C}$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, Chloroform- d) $\delta 14.11(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{dd}, J=5.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25$ $(\mathrm{m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{td}, J=8.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{td}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dt}, J=10.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.83(\mathrm{~m}, 4 \mathrm{H}), 2.49-2.33(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.89(\mathrm{~m}$, $2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform-d) $\delta 199.4,176.0,166.3,162.2(\mathrm{~d}, J=245.3 \mathrm{~Hz}$), $146.1,140.4(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 137.7,128.9(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 126.0(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 123.2,122.1,116.8(\mathrm{~d}$, $J=20.9 \mathrm{~Hz}), 113.1(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 112.6,50.0,46.6,37.1,31.9,30.3,26.3,21.0 .{ }^{19}$ F NMR (376 MHz , Chloroform- d) $\delta-114.36$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{FNO}_{2}{ }^{+} 340.1707$, Found: 340.1707.

3-hydroxy-2-(2-methyl-2-(pyridin-2-yl)-3-(3-(trifluoromethyl)phenyl)propyl)cyclohex-2-en-1-one (3m).
Dark red oil ($26.5 \mathrm{mg}, 68 \%$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.46$ (dd, $J=5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 2.96-2.84(\mathrm{~m}, 4 \mathrm{H}), 2.44-$ $2.34(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform-d) δ 199.5, 176.1, $166.1,146.2,138.8,137.7,133.7,129.8(\mathrm{q}, J=31.8 \mathrm{~Hz}), 128.0,126.6(\mathrm{q}, J=3.4 \mathrm{~Hz}), 124.1(\mathrm{~d}, J=271.7$ Hz), $123.0(\mathrm{q}, J=3.8 \mathrm{~Hz}), 122.2,112.5,106.1,50.0,46.5,37.1,32.0,30.3,26.1,21.0 .{ }^{19} \mathrm{~F}$ NMR (377 MHz , Chloroform- d) $\delta-62.80$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+} 390.1675$, Found: 390.1678.

2-(3-(2-bromo-5-methoxyphenyl)-2-methyl-2-(pyridin-2-yl)propyl)-3-hydroxycyclohex-2-en-1-one (3n).
Yellow oil ($29.1 \mathrm{mg}, 68 \%$), eluent: $\mathrm{PE} /$ Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 14.31(\mathrm{~s}$, $1 \mathrm{H}), 8.49$ (ddd, $J=5.1,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.57$ (dd, $J=8.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.14-2.89(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{~m}$, 4H), $1.94-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 199.4,176.3,166.0,158.1$, $146.1,138.6,137.8,133.2,123.6,122.2,117.4,117.2,114.4,112.7,55.3,47.9,47.2,37.2,32.6,30.5$, 26.6, 21.1. HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BrNO}_{3}{ }^{+}$430.1012, Found: 430.1007.

3-hydroxy-2-(2-methyl-3-(naphthalen-1-yl)-2-(pyridin-2-yl)propyl)cyclohex-2-en-1-one (30).
White solid ($25.2 \mathrm{mg}, 68 \%$, m.p. $49-50^{\circ} \mathrm{C}$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 14.51(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{dd}, J=5.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, J=8.1,6.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{ddd}, J=7.5,5.1$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.18(\mathrm{~m}, 1 \mathrm{H})$, $3.00-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.34(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) $\delta 199.4,176.1,166.3,145.9,137.1,134.2,133.4,133.2,128.6,128.3,126.9,125.3,124.9$, 124.6, 124.0, 123.5, 121.8, 112.8, 46.9, 44.1, 37.1, 33.4, 30.3, 26.7, 21.0. HRMS (ESI-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}$372.1958, Found: 372.1958.

3-hydroxy-2-(2-methyl-2-(pyridin-2-yl)propyl)cyclohex-2-en-1-one (3p).
Yellow oil ($17.7 \mathrm{mg}, 72 \%$), eluent: PE/Acetone $=4: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 14.19(\mathrm{~s}$, $1 \mathrm{H}), 8.40(\mathrm{dd}, J=5.1,1.9,1 \mathrm{H}), 7.74(\mathrm{ddd}, J=8.1,7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dt}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (dd, $J=7.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~m}, 4 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) $\delta 199.5,175.9,169.4,145.6,138.4,122.0,121.7,113.4,42.8,37.2,32.3$, 30.4 , 21.1 .HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}{ }^{+}$246.1489, Found: 246.1491 .

3-hydroxy-2-(2-methyl-2-(pyridin-2-yl)butyl)cyclohex-2-en-1-one (3q).
Yellow solid ($21.5 \mathrm{mg}, 83 \%$, m.p. $57-58{ }^{\circ} \mathrm{C}$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.43(\mathrm{dd}, J=5.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{ddd}, J=8.2,7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dt}, J=8.2,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.34(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.87(\mathrm{~m}, 2 \mathrm{H})$, $1.84-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 0.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) $\delta 199.4$, $175.8,167.9,145.6,138.1,122.5,121.6,113.1,46.0,37.8,37.2,30.5,29.9,27.3,21.1,8.9$. HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+}$260.1645, Found: 260.1640 .

3-hydroxy-2-(2-(pyridin-2-yl)propyl)cyclohex-2-en-1-one (3r).
Yellow oil ($6.9 \mathrm{mg}, 30 \%$), eluent: PE/Acetone $=3: 1 .{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 8.42(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.26(\mathrm{~m}$, $1 \mathrm{H}), 2.84-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 4 \mathrm{H}), 1.91-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) δ 207.1, 177.2, 165.6, 146.4, 138.1, 124.2, 121.8, 114.4, 40.4, 26.7, 23.3, 20.8. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}$232.1332, Found: 232.1333.

3-hydroxy-2-(2-methyl-3-phenyl-2-(quinolin-2-yl)propyl)cyclohex-2-en-1-one (3s).
Yellow solid ($19.3 \mathrm{mg}, 52 \%$, m.p. $139-140{ }^{\circ} \mathrm{C}$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, Chloroform- d) $\delta 14.37(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (ddd, $J=$ $8.4,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{ddd}, J=8.0,6.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 1 \mathrm{H})$, $6.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.15-3.04(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.39-$ $2.38(\mathrm{~m}, 4 \mathrm{H}), 1.91-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform-d) δ 199.3, 175.8, $167.6,144.8,137.6,137.2,130.4,130.1,127.6,127.5,126.8,126.7,126.7,126.1,120.9,112.7,50.9$, 47.6, 37.1, 30.8, 30.2, 26.2, 21.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}$372.1958, Found: 372.1961.

3-hydroxy-2-(2-methyl-2-(4-methylquinolin-2-yl)-3-phenylpropyl)cyclohex-2-en-1-one (3t).
White solid ($20.0 \mathrm{mg}, 57 \%$, m.p. $159-160{ }^{\circ} \mathrm{C}$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 14.82(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74$ (ddd, $J=$ $8.3,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{ddd}, J=8.2,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.64-6.55(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.35(\mathrm{~m}$, $4 \mathrm{H}), 1.91-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) δ 199.4, 176.1, 167.0, 145.7, 144.6, 137.8, 130.2, 130.1, 127.6, 127.2, 127.8, 126.6, 126.2, 123.8, 121.6, 112.7, 50.9, 47.5, 37.2, 30.7, 30.4, 26.3, 21.1, 19.1. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{2}{ }^{+} 386.2115$, Found: 386.2116.

3-hydroxy-5-methyl-2-(2-methyl-3-phenyl-2-(pyridin-2-yl)propyl)cyclohex-2-en-1-one (3u).
Yellow oil ($25.1 \mathrm{mg}, 75 \%$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 14.18(\mathrm{~s}$, $1 \mathrm{H}), 8.42(\mathrm{dd}, J=36.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dt}, J=31.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.01(\mathrm{~m}$, $3 \mathrm{H}), 6.52(\mathrm{dd}, J=31.7,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.99-2.80(\mathrm{~m}, 4 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.45$ $-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.04-1.00(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform-d) $\delta 199.4,175.5,166.8,145.9$, $137.8,137.5,130.2,127.6,126.2,123.5,121.9,112.3,51.2,47.0,45.2,38.6,31.3,28.7,26.4,21.0$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+} 336.1958$, Found: 336.1959.

3-hydroxy-5,5-dimethyl-2-(2-methyl-3-phenyl-2-(pyridin-2-yl)propyl)cyclohex-2-en-1-one (3v).
Yellow oil ($28.9 \mathrm{mg}, 83 \%$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, Chloroform- d) $\delta 14.13(\mathrm{~s}$, $1 \mathrm{H}), 8.44(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{ddd}, J=7.5,5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=8.2,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.56-6.49(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.86(\mathrm{~m}$, $4 \mathrm{H}), 2.29-2.26(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) δ 198.9, 174.0, $166.6,145.8,137.7,137.4,130.1,127.5,126.1,123.3,121.8,111.4,51.0,50.4,46.7,44.0,31.6,28.8$, 28.0, 26.4. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{2}{ }^{+} 350.2115$, Found: 350.2116.

5-hydroxy-4-(2-methyl-3-phenyl-2-(pyridin-2-yl)propyl)-1,6-dihydro-[1, 1'-biphenyl]-3(2H)-one (3w).

Yellow oil ($21.4 \mathrm{mg}, 54 \%$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 14.32(\mathrm{~s}$, $1 \mathrm{H}), 8.43(\mathrm{~d}, J=28.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{dq}, J=14.4,7.5,6.7$ $\mathrm{Hz}, 5 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.57-6.57(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.89(\mathrm{~m}, 4 \mathrm{H}), 2.69-2.64(\mathrm{~m}$, 4H), $1.50-1.47$ (m, 3H). ${ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) $\delta 198.1,175.0,166.4,145.8,143.5,137.7$, $137.6,130.2,128.6,127.5,126.7,126.7,126.2,123.4,121.9,112.4,51.2,47.1,44.4,39.2,37.8,31.3$, 26.50. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{2}{ }^{+}$398.2115, Found: 398.2117.

4-hydroxy-3-(2-methyl-3-phenyl-2-(pyridin-2-yl)propyl)-2H-chromen-2-one (3x).
Yellow solid ($13.0 \mathrm{mg}, 35 \%$, m.p. $125-126{ }^{\circ} \mathrm{C}$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 15.50(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{td}, J=7.7$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (ddd, $J=8.7,7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21$ $(\mathrm{m}, 1 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.1,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.60-6.56(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.24(\mathrm{~m}, 1 \mathrm{H})$, $3.12-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.96(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) $\delta 165.8$, $165.6,164.5,153.0,145.6,138.1,137.3,131.3,130.2,127.8,126.5,123.8,123.4,122.3,117.6,116.2$, 102.0, 50.9, 47.8, 34.1, 26.7. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+} 372.1594$, Found: 372.1593.

4-hydroxy-6-methyl-3-(2-methyl-3-phenyl-2-(pyridin-2-yl)propyl)-2H-chromen-2-one (3y).
Yellow solid ($25.8 \mathrm{mg}, 67 \%$, m.p. $105-106{ }^{\circ} \mathrm{C}$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 15.41(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{dd}, J=7.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H})$, 7.07 (dd, $J=8.1,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.60-6.55(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.97$ $(\mathrm{m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) $\delta 165.7,165.7,164.3,151.0$, $145.5,138.0,137.2,132.9,132.2,130.1,127.6,126.3,123.7,123.4,122.2,117.1,115.9,101.8,50.7$, 47.6, 34.0, 26.5, 20.9. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+} 386.1751$, Found: 386.1749.

6-chloro-4-hydroxy-3-(2-methyl-3-phenyl-2-(pyridin-2-yl)propyl)-2H-chromen-2-one ($\mathbf{3 z}$).
Yellow solid ($16.6 \mathrm{mg}, 41 \%$, m.p. $94-95{ }^{\circ} \mathrm{C}$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, Chloroform- d) $\delta 15.67(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{td}, J=7.8,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{ddd}, J=7.5,5.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.08(\mathrm{~m}$,

2H), $2.97-2.95(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) $\delta 165.6,165.2,163.7,151.4$, $145.4,138.4,137.1,131.3,130.2,128.9,127.8,126.6,124.0,123.5,122.5,119.0,117.7,102.6,50.8$, 47.9, 34.1, 26.8. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClNO}_{3}{ }^{+}$406.1204, Found: 406.1204.

6-bromo-4-hydroxy-3-(2-methyl-3-phenyl-2-(pyridin-2-yl)propyl)-2H-chromen-2-one (3aa).
Yellow solid ($17.5 \mathrm{mg}, 39 \%$, m.p. $131-132{ }^{\circ} \mathrm{C}$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 15.59(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=15.2,7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.24-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.95$ $(\mathrm{m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) $\delta 165.4,165.0,163.5,151.8,145.3,138.3$, 137.0, 133.9, 130.1, 127.7, 126.4, 123.8, 122.4, 119.3, 117.9, 116.1, 102.5, 50.7, 47.7, 34.0, 26.7. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{BrNO}_{3}{ }^{+} 450.0699$, Found: 450.0700 .

4-hydroxy-7-methoxy-3-(2-methyl-3-phenyl-2-(pyridin-2-yl)propyl)-2H-chromen-2-one (3ab).
Yellow solid ($16.4 \mathrm{mg}, 41 \%$, m.p. $102-103{ }^{\circ} \mathrm{C}$), eluent: PE/Acetone $=5: 1 .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, Chloroform- d) $\delta 15.28(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{td}, J=7.8,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30$ (ddd, $J=7.4,5.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.09$ (m, 1H), 7.06 (dd, J $=8.2,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.56(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 3.23-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.95(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform- d) $\delta 166.0,165.9,164.9,162.5,154.7,145.6,138.0,137.4,130.2,127.7,126.4,124.9,123.8$, 122.3, 111.7, 111.0, 100.0, 99.4, 55.7, 50.9, 47.7, 34.0, 26.6. HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+} 402.1700$, Found: 402.1702.

3-chloro-2-(2-methyl-3-phenyl-2-(pyridin-2-yl)propyl)cyclohex-2-en-1-one (4).
Dark red oil ($34.0 \mathrm{mg}, 99 \%$), eluent: PE/EA $=10: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.65$ (ddd, J $=4.8,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{td}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{ddd}, J=7.6,4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.00$ $(\mathrm{m}, 4 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.69$ (m, 2H), $2.43-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) δ 196.2, 165.1, 154.8, 148.4, 139.1, 135.9, 135.7, 130.5, 127.5, 125.8, 121.4, 121.2, 47.5, 46.6, 39.1, 37.3, 35.7, 22.4, 21.9. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClNO}^{+} 340.1463$, Found: 340.1460.

3-methoxy-2-(2-methyl-3-phenyl-2-(pyridin-2-yl)propyl)cyclohex-2-en-1-one (5).
Yellow oil ($27.4 \mathrm{mg}, 82 \%$), eluent: PE/EA $=1: 1 .{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 8.67$ (ddd, $J=$ $4.8,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-6.98(\mathrm{~m}, 5 \mathrm{H}), 6.82-6.71(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.68$ $(\mathrm{m}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.93-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.43(\mathrm{~m}$, 2H), 2.35-2.25(m, 2H), $1.97-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , Chloroform-d) δ 198.2, $173.1,166.5,148.0,140.0,135.3,130.4,127.4,125.5,121.6,120.6,116.5,54.8,47.5,46.5,36.5,34.8$, 25.0, 21.7, 20.7. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}$336.1958, Found: 336.1960.

3-methyl-4-phenyl-3-(pyridin-2-yl)butanoic acid (6).
Yellow oil ($22.9 \mathrm{mg}, 90 \%$), eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 11.88(\mathrm{~s}$, $1 \mathrm{H}), 8.60-8.31(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.69$ $-6.60(\mathrm{~m}, 2 \mathrm{H}), 3.03-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 173.3,165.0,146.3,138.3,136.4,130.3,127.9,126.7,122.7,122.6,53.4$, 48.2, 47.2, 43.5, 26.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}$256.1332, Found: 256.1328 .

5. NMR Spectrum and NRMS Data

3c

F	8	$\stackrel{\odot}{0}$	\pm	
$\stackrel{\text { ® }}{\circ}$	$\stackrel{\circ}{-}$	$\stackrel{8}{8}$	$\stackrel{+}{+}$	
\|	\|	I		
< ${ }^{\text {l/ }}$				

$3 g$

¢	\%	\%	¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ N
$\stackrel{\otimes}{\circ}$	$\stackrel{\stackrel{N}{\circ}}{\sim}$	$\stackrel{\text { ® }}{+}$	
\|	\|	\|	1 \|

$3 g$

3h

\qquad

3k

3

\%	8	¢0\%		
$\stackrel{\text { ® }}{ }$	$\stackrel{\circ}{-}$	¢¢¢ ¢ ¢		
I	\|	\1/	\| V	

$\bar{\square}$	
i¢	
	1)1

$\underbrace{\text { O. }}$


```
\
```


$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

$\stackrel{セ}{\stackrel{\circ}{0}}$

©
O～

30

기 $\quad \underset{1}{\text { o }}$

210	200	190	180	170	160	150	140	130	120		$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10
$\begin{gathered} \stackrel{\rightharpoonup}{广} \\ \stackrel{6}{1} \\ \stackrel{1}{\mid} \end{gathered}$						 														\|		

3ab

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

$$
\begin{aligned}
& \stackrel{\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{*}}}{\stackrel{1}{1}}
\end{aligned}
$$

$\underbrace{\infty}$

Mass Spectrum SmartFormula Report

Analysis Info
Acquisition D 2022-04-01 10:11:35
Analysis Name F:\gaofenbian(xiepengfei)\0331_RE5_01_12399.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name $03 \overline{3} 1$ Instrumen compact

```
                                    8255754.2017
```

Comment

Mass Spectrum SmartFormula Report

Analysis Info		Acquisition D 2022-01-17 23:50:54	
Analysis Name F: \gaofenbian(xiepengfei) \GHX MS \0114_BD5_01_11138.d			
Method	LC_NO UV_P50-1500_6MIN.m	Operator Demo Use	
Sample Name	0114	Instrumen compact	8255754.2017
Comment			

Mass Spectrum SmartFormula Report

Analysis Info
Acquisition D 2022-01-18 0:20:34
Analysis Name F: \gaofenbian(xiepengfei) \GHX MS $\backslash 0114 _$BE1_01_11142.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name 0114 Instrumen compact
8255754.2017

6
Comment

Mass Spectrum SmartFormula Report

Analysis Info		Acquisition D 2022-01-17 23:43:33	
Analysis Name F: \gaofenbian(xiepengfei) \GHX MS , 0114_BD4_01_11137.d $^{\text {d }}$			
Method	LC_NO UV_P50-1500_6MIN.m	Operator Demo User	
Sample Name	0114	Instrumen compact	8255754.2017
			6
Comment			

Acquisition Paramet					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	$200{ }^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate	-500 V	Set Dry Gas	$8.0 \mathrm{l} / \mathrm{min}$
Scan End	$1500 \mathrm{~m} / \mathrm{z}$	Qefseharging	2000 V	Set Divert Valve	Waste
		Settageona	0 nA	Set APCI Heater	$0{ }^{\circ} \mathrm{C}$

Mass Spectrum SmartFormula Report

Analysis Info
Acquisition D 2022-01-17 22:42:55
Analysis Name F: \gaofenbian(xiepengfei) \GHX MS $\backslash 0114$ _BC4_01_11129.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name 0114 Instrumen compact 8255754.2017
Comment

Mass Spectrum SmartFormula Report

Analysis Info

Acquisition D 2022-01-17 22:51:02
Analysis Name F: \gaofenbian(xiepengfei) \GHX MS $\backslash 0114$ _BC5_01_11130.d

Method	LC_NO UV_P50-1500_6MIN.m	Operator Demo User	
Sample Name	0114	Instrumen compact	8255754.2017

Comment

Mass Spectrum SmartFormula Report

Analysis Info
Acquisition D 2022-01-17 23:06:32
Analysis Name F: \gaofenbian(xiepengfei) \GHX MS \0114_BC7_01_11132.d

Method	LC_NO UV_P50-1500_6MIN.m	Operator Demo User	
Sample Name	0114	Instrumen compact	8255754.2017

Comment

Mass Spectrum SmartFormula Report

Analysis Info
Acquisition D 2022-01-17 23:14:08
Analysis Name F:\gaofenbian(xiepengfei) \GHX MS $\backslash 0114$ BC8_01_11133.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name 0114 Instrumen compact 8255754.2017

Comment

Mass Spectrum SmartFormula Report

Analysis Info
Acquisition D 2022-01-17 23:58:16
Analysis Name F:\gaofenbian(xiepengfei)\GHX MS \0114_BD6_01_11139.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name 0114 Instrumen compact 8255754.2017
Comment

Mass Spectrum SmartFormula Report

Mass Spectrum SmartFormula Report

Analysis Info	Acquisition D 2022-01-17 $22: 13: 30$	
Analysis Name F:\gaofenbian(xiepengfei) \GHX MS $\backslash 0114 _$BB8_01_11125.d		
Method	LC_NO UV_P50-150__6MIN.m	Operator Demo User
Sample Name 0114	Instrumen compact	8255754.2017
Comment		6

Comment

Acquisition Paramet					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	$200{ }^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate	-500 V	Set Dry Gas	$8.0 \mathrm{l} / \mathrm{min}$
Scan End	$1500 \mathrm{~m} / \mathrm{z}$	Qefseharging	2000 V	Set Divert Valve	Waste
		乡ettageona	0 nA	Set APCI Heater	$0{ }^{\circ} \mathrm{C}$

Mass Spectrum SmartFormula Report

Mass Spectrum SmartFormula Report

Analysis Info
Acquisition D 2022-01-17 22:28:11
Analysis Name F: \gaofenbian(xiepengfei) \GHX MS \0114_BC2_01_11127.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name 0114 Instrumen compact 8255754.2017

Comment

Acquisition Paramet					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	$200{ }^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate	-500 V	Set Dry Gas	$8.0 \mathrm{l} / \mathrm{min}$
Scan End	$1500 \mathrm{~m} / \mathrm{z}$	Qefseharging	2000 V	Set Divert Valve	Waste
		Hettageona	0 nA	Set APCI Heater	$0{ }^{\circ} \mathrm{C}$

Mass Spectrum SmartFormula Report

Analysis Info
Acquisition D 2022-01-17 23:28:52
Analysis Name F: \gaofenbian(xiepengfei) \GHX MS \0114_BD2_01_11135.d

Method	LC_NO UV_P50-1500_6MIN.m	Operator Demo User
Sample Name 0114	Instrumen compact 8255754.2017	

Comment

Mass Spectrum SmartFormula Report

Mass Spectrum SmartFormula Report

Analysis Info		Acquisition D 2022-04-01 9:39:34	
Analysis Name F:\gaofenbian(xiepengfei) \0331_RE1_01_12395.d			
Method	LC_NO UV_P50-1500_6MIN.m	Operator Demo User	
Sample Name	0331	Instrumen compact	$\begin{aligned} & 8255754.2017 \\ & 6 \end{aligned}$
Comment			

Acquisition Paramet					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	$200{ }^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate	-500 V	Set Dry Gas	$8.0 \mathrm{l} / \mathrm{min}$
Scan End	$1500 \mathrm{~m} / \mathrm{z}$	Qefseharging	2000 V	Set Divert Valve	Waste
		gettageona	0 nA	Set APCI Heater	$0{ }^{\circ} \mathrm{C}$

Mass Spectrum		SmartFormula Report	
Analysis Info		Acquisition D 2022-04-01 10:27:04	
Analysis Name F:\gaofenbian(xiepengfei)\0331_RE7_01_12401.d			
Method	LC_NO UV_P50-1500_6MIN.m	Operator Demo User	
Sample Name	0331 -	Instrumen compact	$\begin{aligned} & 8255754.2017 \\ & 6 \end{aligned}$
Comment			

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name F:\gaofenbian(xiepengfei)\0331_RD6_01_12392.d

Method	LC_NO UV_P50-1500_6MIN.m	Operator Demo User	
Sample Name	0331	Instrumen compact	8255754.2017

Comment

Mass Spectrum SmartFormula Report

Analysis Info	Acquisition D 2022-04-01 $9: 08: 33$
Analysis Name F:\gaofenbian(xiepengfei) \0331_RD5_01_12391.d	
Method	LC_NO UV_P50-150__6MIN.m
Sample Name 0331	Operator Demo User
Comment	Instrumen compact

Comment

