Supporting Information

Electrochemistry-controlled dearomative 2,3-difunctionalization of indoles to

synthesize oxoindoline derivatives.

Xichao Peng,[#] Linzi Wen,[#] Zuozhou Ning, Zhicheng Zhang, Chengbo Sun, Yu Tang and Pengju Feng*

Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.

*Correspondence to: E-mail: pfeng@jnu.edu.cn (P. Feng)

Table of Contents

1. Materials and Methods	S3
2. Information for reaction	S4
2.1. Small scale reaction devices	S4
2.1.1. Procedure for the synthesis of 3a (small scale).	S4
2.1.2. Procedure for the synthesis of 4a (small scale)	S5
2.2. Large scale reaction devices	S5
2.2.1. Procedure for Gram Scale Synthesis of 3b (Gram scale)	S6
2.2.2. Procedure for Gram Scale Synthesis of 4b (Gram scale)	S6
3. Discussion of electrode selectivity results.	S6
4. Product Transformation	S7
5. Mechanistic studies	S12
5.1. Trapping of the radical intermediate	S12
5.2. Cyclic voltametry studies	S12
6. Referrences	S16
7. Characterization of Products	S17
8. NMR Spectrum	S40

1. Materials and Methods

All air- and moisture-insensitive reactions were carried out under an ambient atmosphere, magnetically stirred, monitored by thin layer chromatography (TLC), visualized by fluorescence quenching under UV light. Flash chromatography was performed on silica gel (200-300 mesh). The electrochemistry reactions were carried out under N₂ conditions and at a constant pressure of 2.0V (otherwise noted). Cyclic voltammograms were recorded on a CHI 660E potential station. All air- and moisture-sensitive manipulations were performed using oven-dried glassware. Methylene chloride was dried and distilled by CaH₂ and 1,1,1,3,3,3-hexafluoropropan-2-ol was purchased from BeiJing OuHe Technology Co., LTD. Tetrabutylammonium acetate was purchased from Bidepharm. NMR spectra were recorded on a Bruker Ascend 300 spectrometer operating at 300 MHz for ¹H acquisitions, 75 MHz for ¹³C acquisitions and 282 MHz for ¹⁹F acquisitions. Signals are listed in ppm, and multiplicity identified as s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet; coupling constants in Hz; integration. Chemical shifts were referenced to the residual proton solvent peaks (¹H: CDCl₃, δ 7.26; (CD₃)₂SO, δ 2.50), solvent ¹³C signals (CDCl₃, δ 77.16; (CD₃)₂SO, δ 39.52)¹. High-resolution mass spectra were obtained using Agilent LC-UV-TOF mass spectrometer. Concentration under reduced pressure was performed by rotary evaporation at 30-40 °C at appropriate pressure. Purified compounds were further dried under high vacuum (0.01–0.05 Torr). Yields refer to purified and spectroscopically pure compounds.

2. Information for reaction

2.1. Small scale reaction devices

2.1.1. Procedure for the synthesis of 3a (small scale).

A solution of **1a** (0.25 mmol, 78 mg, 1.0 eq.), **2a** (0.3 mmol, 58 mg, 1.2 eq.) and ^{*n*}Bu₄NOAc (1.0 mmol, 0.3 g, 4.0 eq.) in DCM/HFIP (2/1 v/v, 10.0 mL) was stirred at rt under N₂ atmosphere in an oven-dried undivided test tube which was equipped with platinum plate electrodes ($1.5 \text{ cm} \times 1.5 \text{ cm} \times 0.1 \text{ mm}$) as both the anode and cathode. The reaction mixture was stirred and electrolyzed at a controlled cell potential of 2.0 V under room temperature and stopped until complete consumption of **1a** (monitored by TLC). The pure product was obtained by flash column chromatography on silica gel (petroleum: ethyl acetate).

2.1.2. Procedure for the synthesis of 4a (small scale)

A solution of **1a** (0.25 mmol, 78 mg, 1.0 eq.), ^{*n*}Bu₄NOAc (1.0 mmol, 4.0 eq., 0.3 g) in DCM/HFIP (2: 1; 10.0 mL) was stirred at rt under air in an oven-dried undivided test tube which was equipped with carbon plate ($2.0 \text{ cm} \times 1.0 \text{ cm} \times 2.0 \text{ mm}$) as the anode and platinum plate electrodes ($1.5 \text{ cm} \times 1.5 \text{ cm} \times 0.1 \text{ mm}$) as the cathode. The reaction mixture was stirred and electrolyzed at a controlled cell potential of 2.0 V under room temperature and stopped until complete consumption of **1a** (monitored by TLC). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate).

2.2. Large scale reaction devices

2.2.1. Procedure for Gram Scale Synthesis of 3b (Gram scale)

A solution of **1b** (1.18 g, 5.0 mmol), **2a** (1.16 g, 6.0 mmol) and nBu₄NOAc (6.03 g, 4.0 eq) in HFIP/DCM = 1/2 (30.0 mL) was stirred at rt under air atmosphere in a sealed electrolytic cell which was equipped with platinum electrodes (3.0 cm \times 3.0 mm \times 0.1 mm) as both the anode and cathode. The reaction mixture was stirred and electrolyzed at a constant potential of 2.0 V until the disappearance of **1b** (detected by TLC plate). To the reaction mixture was added water and the reaction mixture was extracted with EtOAc (15.0 mL \times 3) and then concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with Petroleum ether: EtOAc, to afford the pure product **3b** as white solid (1.57 g, 71%).

2.2.2. Procedure for Gram Scale Synthesis of 4b (Gram scale)

A solution of 1-(3-phenyl-1H-indol-1-yl) ethan-1-one (1.18 g, 5.0 mmol) (**1b**) and nBu₄NOAc (6.03 g, 4.0 eq) in HFIP/DCM = 1/2 (30.0 mL) was stirred at rt under air atmosphere in a sealed electrolytic cell which was equipped with carbon plate (3.0 cm \times 1.0 cm \times 2 mm) as the anode and platinum plate electrodes (2.0 cm \times 2.0 cm \times 0.1 mm) as the cathode. The reaction mixture was stirred and electrolyzed at a constant potential of 2.0 V until the disappearance of **1b** (detected by TLC plate). To the reaction mixture was added water and the reaction mixture was extracted with EtOAc (15.0 mL \times 3) and then concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with Petroleum ether: EtOAc, to afford the pure product **4b** as white solid (1.21 g, 78%).

3. Discussion of electrode selectivity results.

The reactions were run in air. In an oven-dried undivided test tube (25.0 mL) equipped with a stir bar, 1a (0.25 mmol, 78 mg), 2a (0.3 mmol, 58 mg), ⁿBu₄NOAc (4.0 eq., 0.3 g) and DCM/HFIP (2: 1; 10.0 mL) were combined and added. The test tube was equipped with platinum plate electrodes (1.5 cm \times 1.5 cm \times 0.1 mm) or carbon plate (2.0 cm \times 1.0 cm \times 2 mm) as the anode and platinum plate electrodes (1.5 $cm \times 1.5 cm \times 0.1 mm$) as the cathode. The reaction mixture was electrolyzed at a constant potential of 2.0 V under air and stopped until complete consumption of 1a (monitored by TLC). The pure product was obtained by flash column chromatography on silica gel (petroleum: ethyl acetate). After the electrolysis, the reaction solution turned to light yellow when Pt-Pt as the electrode, while the reaction solution turned to dark brown when replacing Pt anode with C. A TLC plate was shown in the flowing picture, using S1 for 1a, R1 for the reaction with Pt-Pt as the electrode, X1 for the mixture of S1, S2 and R1; S2 for 2a, R2 for the reaction with C-Pt as the electrode, X2 for the mixture of S2, S1 and R2. We can see that the main product was **3a** and a little amount of **4a** was formed for the reaction R1 (**4a** will not form when the reaction was run under N₂ atmosphere). The main product was 4a and only trace amount of **3a** was formed, in the meantime **2a** was over oxidized and formed a high byproduct with high polarity for reaction R2.

4. Product Transformation

Synthesis of 3-phenyl-3-(2-phenylbenzofuran-3-yl)indolin-2-one (5)²

A solution of **3b** (0.1 mmol, 44.3 mg); K_2CO_3 (0.12 mmol, 17 mg) in 5.0 mL dry MeOH was stirred for 3h at rt. The reaction was quenched by saturated saline water (15.0 mL) and extracted with DCM (3 × 10.0 mL). The combined organic layer was

dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica (petroleum ether/EtOAc) to afford the product **5** (38 mg, 95%) as a white solid. NMR Spectroscopy: ¹H NMR (300 MHz, DMSO, 25 °C, δ): 10.89 (s, 1H), 7.58 (d, *J* = 8.19 Hz, 1H), 7.27 (t, *J* = 1.59 Hz, 5H), 7.22 (d, *J* = 3.57 Hz, 2H), 7.20 (s, 1H), 7.18 (d, *J* = 0.90 Hz, 1H), 7.15 (d, *J* = 3.18 Hz, 3H), 7.13 (s, 1H), 7.03-6.97 (q, *J* = 7.35 Hz, 2H), 6.88-6.83 (s, 1H), 6.49 (d, *J* = 7.71 Hz, 1H) . ¹³C NMR (75 MHz, DMSO, 25 °C, δ): 177.20, 153.79, 153.52, 141.17, 139.73, 132.38, 130.54, 128.87, 128.68, 128.42, 128.15, 127.45, 127.23, 125.58, 124.36, 122.45, 122.07, 121.48, 115.36, 111.14, 110.06, 56.61. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₂₈H₁₉NNaO₂⁺ ([M +Na]⁺), 424.1308, found, 424.1316.

¹H NMR (DMSO, 25 °C) of **5**

Synthesis of 3-hydroxy-3-phenylindolin-2-one (6)³

A solution of **4b** (0.1 mmol, 31mg) and K₂CO₃ (0.25 mmol, 35 mg) in 5.0 mL of a 1:1 DCM/MeOH was stirred for 5h at 50°C. Then evaporated to remove the MeOH and extracted with EtOAc (3 × 10.0 mL). The combined organic layer was dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica (petroleum ether/EtOAc) to afford the product **6** (18.5 mg, 82%) as a white solid. NMR Spectroscopy: ¹H NMR (300 MHz, DMSO, 25 °C, δ): 10.40 (s, 1H), 7.31-7.24 (m, 6H), 7.10 (d, *J* = 6.81 Hz, 1H), 6.99-6.94 (m, 1H), 6.90 (d, *J* = 7.71 Hz, 1H), 6.62 (s, 1H). ¹³C NMR (75 MHz, DMSO, 25 °C, δ): 178.33, 141.80, 141.39, 133.60, 129.09, 127.93, 127.26, 125.27, 124.63, 121.90, 109.70, 77.16. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₄H₁₁NNaO₂⁺ ([M +Na]⁺), 248.0682, found, 248.0690.

¹H NMR (DMSO, 25 °C) of **6**

Synthesis of 3-(2-hydroxy-5-methylphenyl)-3-phenylindolin-2-one (7)⁴

A solution of **6** (0.2 mmol, 45 mg); P-cresol (0.3 mmol, 33 mg) and Bi(OTf)₃ (10mol%) in 8.0 mL dry DCM was stirred for 10h at 45°C. The reaction was quenched by saturated saline water (15.0 mL) and extracted with DCM (3×10.0 mL). The combined organic layer was dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica (petroleum ether/EtOAc) to afford the product **7** (43 mg, 68%) as a white solid. NMR Spectroscopy: ¹H NMR (300 MHz, DMSO, 25 °C, δ): 10.40 (s, 1H), 9.25 (s, 1H), 7.29 (s, 5H), 7.21-7.16 (m, 1H), 7.08 (d, *J* = 7.14 Hz, 1H), 6.96-6.86 (m, 3H), 6.60 (d, *J* = 8.07 Hz, 1H), 6.54 (d, *J* = 1.41 Hz, 1H), 2.07 (s, 3H). ¹³C NMR (75 MHz, DMSO, 25 °C, δ): 179.45, 153.01, 142.41, 139.62, 132.88, 130.12, 128.84, 128.61, 128.35, 128.01, 127.78, 127.14, 126.77, 125.63, 121.15, 115.67, 109.33, 59.92, 20.41.

S11

5. Mechanistic studies

5.1. Trapping of the radical intermediate

A solution of **1b** (59 mg, 0.25 mmol), **2a** (58 mg, 0.3 mmol), triethyl phosphite (410 mg, 2.5 mmol) and nBu₄NOAc (0.3 g, 4.0 eq.) in HFIP/DCM = 1/2 (10.0 mL) was stirred at rt under air atmosphere in a sealed electrolytic cell which was equipped with platinum electrodes (1.5 cm×1.5 cm×0.1 mm) as both the anode and cathode. The reaction mixture was stirred and electrolyzed at a constant potential of 2.0 V until the disappearance of 1-(3-phenyl-1H-indol-1-yl)ethan-1-one (detected by TLC plate). The reaction mixture was directly detected by HR-MS, HRMS (ESI-TOF) (m/z): calcd for C₁₈H₂₁NO₃P⁺ ([M +H]⁺), 330.1254, found, 330.1256; HRMS (ESI-TOF) (m/z): calcd for C₁₈H₂₀O₄P⁺ ([M +H]⁺), 331.1094, found, 331.1092.

5.2. Cyclic voltametry studies

Cyclic voltametry studies: Cyclic voltammograms were recorded on a CHI 660E potentiostat. The cyclic voltammograms of compounds 1-(5-bromo-3-phenyl-1H-indol-1-yl)ethan-1-one (1a), 1-(3-phenyl-1H-indol-1-yl)ethan-1-one (1b), 2-phenylbenzofuran (2a), 1-acetyl-3-phenyl-3-(2-phenylbenzofuran-3-yl)indolin-2-one (**3b**). 1-acetyl-2-oxo-3-phenylindolin-3-yl acetate (4b) were recorded in an electrolyte of nBu₄NOAc (4.0 eq., 0.3 g) in HFIP/DCM (1:2) using a Pt or C working electrode (diameter, 2 mm), a Pt wire auxiliary electrode and a SCE reference electrode (Figure S). The scan rate is 100 mV/s. (T = 20 °C, c = 0.001M).

Figure S1 CV of compounds 1a, 2a under Pt-Pt as electrode

Figure S2 CV of compounds 1a, 2a under Pt-C as electrode

Figure S3 CV of compounds 1a under Pt-Pt or Pt-C as electrode

Figure S4 CV of compounds 2a under Pt-Pt or Pt-C as electrode

Figure S5 CV of compounds 1b under Pt-Pt as electrode with different solvent

Figure S6 CV of compounds **2a** under Pt-Pt as electrode with different solvent

Figure S7 CV of compounds 1b under Pt-Pt as electrode with different electrolyte

6. Referrences

1) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. *Organometallics*. **2010**, *29*, 2176–2179.

 2) Pitambar Patel and Gongutri Borah. Synthesis of oxindole from acetanilide via Ir (III)-catalyzed C–H carbenoid functionalization. *Chem. Commun.*. 2017, *53*, 443-446
3) Daisuke Sano, Kazuhiro Nagata, and Takashi Itoh. Catalytic asymmetric hydroxylation of oxindoles by molecular oxygen using a phase-transfer catalyst. *Org. Lett.* 2008, *10(8)*, 1593–1595.

4) Santanu Ghosh, Lakshmana K. Kinthada , Subhajit Bhunia and Alakesh Bisai. Lewis acid-catalyzed Friedel–Crafts alkylations of 3-hydroxy-2-oxindole: an efficient approach to the core structure of azonazine. *Chem. Commun.* **2012**, *48*, 10132-10134.

7. Characterization of Products

1-Acetyl-5-bromo-3-phenyl-3-(2-phenylbenzofuran-3-yl)indolin-2-one

White solid (104 mg, 80 % yield); $R_f = 0.44$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 194-196 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.34 (d, J = 8.73 Hz, 1H), 7.62-7.59 (dd, J = 1.98 Hz,1H), 7.53 (t, J = 8.64 Hz, 2H), 7.42 (d, J = 7.29 Hz, 1H), 7.37-7.28 (q, J = 7.68 Hz, 8H), 7.16 (d, J = 7.02 Hz, 2H), 7.07 (t, J = 7.50 Hz, 1H), 6.58 (t, J = 7.92 Hz, 1H), 2.18 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 175.55, 170.97, 154.32, 153.77, 138.16, 138.10, 133.64, 132.17, 130.96, 129.61, 129.18, 128.65, 128.48, 128.42, 128.02, 127.90, 124.51, 122.79, 121.64, 118.66, 118.64, 116.20, 111.44, 56.41, 26.29. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₀H₂₀BrNNaO₃⁺ ([M + Na]⁺), 544.0519, found, 544.0513; 546.0498, found, 546.0495.

1-Acetyl-3-phenyl-3-(2-phenylbenzofuran-3-yl)indolin-2-one (3b)

White solid (104 mg, 94 % yield); $R_f = 0.41$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)). M.P. 201-205 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.45 (d, J = 8.25 Hz, 1H), 7.56-7.48 (q, J = 8.16 Hz, 3H), 7.43-7.26 (m, 10H) , 7.19 (d, J = 6.99 Hz, 2H), 7.06 (t, J = 7.83 Hz, 1H), 6.61 (d, J = 7.92 Hz, 1H), 2.18 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.37, 171.30, 154.46, 153.63, 139.23, 138.95, 131.77, 131.28, 129.59, 129.37, 129.25, 128.60, 128.38, 128.10, 125.82, 125.60, 124.46, 122.71, 121.84, 117.18, 117.11, 111.50, 56.60, 26.49. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₀H₂₁NNaO₃⁺ ([M + Na]⁺), 466.1414, found, 466.1423. A crystal structure of **3b** was obtained. The CCDC number is 2132435.

3-Phenyl-3-(2-phenylbenzofuran-3-yl)-1-tosylindolin-2-one (3c)

White solid (126 mg, 91 % yield); $R_f = 0.40$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)). M.P. 193-195 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.07 (d, J = 8.19 Hz, 1H), 7.92 (m, 2H), 7.47 (d, J = 8.22 Hz, 1H), 7.40-7.34 (m, 1H),

7.24 (d, J = 8.43 Hz, 3H), 7.19-7.13 (m, 3H), 7.10-7.00 (m, 9H), 6.88-6.83 (m, 1H), 6.30 (d, J = 7.86 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 174.79, 154.83, 154.20, 145.66, 138.56, 138.18, 134.85, 131.29, 130.71, 129.81, 129.26, 128.85, 128.81, 128.48, 127.90, 127.89, 127.74, 126.25, 125.28, 124.36, 122.46, 121.60, 114.45, 114.11, 111.21, 57.39, 21.77. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₅H₂₆NO₄S⁺ ([M + H]⁺), 556.1577, found, 556.1579.

1-Acetyl-5-methyl-3-phenyl-3-(2-phenylbenzofuran-3-yl)indolin-2-one (3f)

White solid (103 mg, 90 % yield); $R_f = 0.39$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 176-179 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.32 (d, J = 8.34 Hz, 1H), 7.54 (d, J = 8.22 Hz, 1H), 7.42 (d, J = 7.26 Hz, 1H), 7.39-7.27 (m, 9H), 7.23 (s, 1H), 7.17 (d, J = 6.96 Hz, 2H), 7.06 (t, J = 7.56 Hz, 1H), 6.60 (d, J = 7.89 Hz, 1H), 2.35 (s, 3H), 2.17 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.57, 171.22, 154.44, 153.68, 139.09, 136.90, 135.60, 131.66, 131.32, 129.80, 129.53, 129.32, 128.57, 128.47, 128.31, 128.07, 126.02, 124.40, 122.68, 122.00, 117.09, 116.96, 111.45, 56.69, 26.44, 21.35. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₄NO₃⁺ ([M + H]⁺), 458.1751, found, 458.1757.

1-Acetyl-5-methoxy-3-phenyl-3-(2-phenylbenzofuran-3-yl)indolin-2-one (3g)

White solid (108 mg, 91 % yield); $R_f = 0.62$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 168-171 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.39 (d, J = 9.78 Hz, 1H), 7.53 (d, J = 8.25 Hz, 1H), 7.40 (d, J = 7.14 Hz, 1H), 7.36-7.26 (m, 8H), 7.19 (d, J = 6.99 Hz, 2H), 7.07-6.98 (m, 3H), 6.59 (d, J = 7.86 Hz, 1H), 3.78 (m, 3H), 2.16 (m, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.47, 171.13, 157.69, 154.58, 153.82, 139.02, 133.27, 132.84, 131.41, 129.66, 129.48, 128.72, 128.47, 128.45, 128.20, 124.58, 122.87, 121.95, 118.30, 117.04, 113.55, 112.10, 111.60, 56.99, 55.75, 26.47. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₄NO₄⁺ ([M + H]⁺), 474.1700, found, 474.1705.

1-Acetyl-3-phenyl-3-(2-phenylbenzofuran-3-yl)-5-(trifluoromethoxy)indolin-2-on e (3h)

White solid (86 mg, 65 % yield); $R_f = 0.58$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 165-166 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.47 (d, J = 8.94 Hz, 1H), 7.54 (d, J = 8.25 Hz, 1H), 7.41 (d, J = 7.26 Hz, 1H), 7.36-7.28 (q, J = 7.08 Hz, 10H), 7.14 (t, J = 6.99 Hz, 2H), 7.06 (t, J = 7.41 Hz, 1H), 6.55 (d, J = 7.95 Hz, 1H), 2.19 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 175.81, 171.06, 154.40, 153.87, 146.64, 138.19, 137.53, 133.48, 130.97, 129.70, 129.26, 128.78, 128.59, 128.10, 127.91, 124.63, 122.89, 121.55, 120.39 (q, J = 256.41 Hz), 118.59, 118.28, 116.19, 111.54, 56.61, 26.32. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C, δ): -57.97 (s). Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₀F₃NNaO₄⁺ ([M + Na]⁺), 520.1237, found, 520.1233.

1-Acetyl-5-fluoro-3-phenyl-3-(2-phenylbenzofuran-3-yl)indolin-2-one (3i)

White solid (84 mg, 73 % yield); $R_f = 0.27$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 173-176 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.46-8.41 (q, J = 4.50 Hz,1H), 7.54 (d, J = 8.28 Hz, 1H), 7.42-7.40 (d, J = 7.32 Hz, 1H), 7.37-7.28 (m, 8H), 7.16 (d, J = 8.04 Hz, 4H), 7.06 (t, J = 7.86 Hz, 1H), 6.57 (d, J = 7.92 Hz, 1H), 2.16 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 175.92, 171.03, 160.37 (d, J = 244.37 Hz), 154.39, 153.78, 138.32, 135.17 (d, J = 2.48 Hz), 133.53 (d, J = 7.94 Hz), 131.04, 129.65, 129.28, 128.68, 128.52, 128.07, 127.98, 124.57, 122.82, 121.61, 118.61 (d, J = 7.82 Hz), 116.39, 115.99, 115.69, 112.89 (d, J = 24.39 Hz), 111.52, 56.67, 26.30. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C, δ): -115.16 (s). Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₀H₂₀FNNaO₃ ([M + Na]⁺), 484.1319, found, 484.1320.

1-Acetyl-5-chloro-3-phenyl-3-(2-phenylbenzofuran-3-yl)indolin-2-one (3j)

White solid (84 mg, 70 % yield); $R_f = 0.52$ (petroleum ether/ethyl acetate = 10 : 1 (v/v)); M.P. 171-173 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.37 (d, J = 8.73 Hz, 1H), 7.52 (d, J = 8.25 Hz, 1H), 7.44 (d, J = 2.28 Hz, 1H), 7.42-7.40 (q, J = 2.25 Hz, 1H), 7.37 (t, J = 1.47 Hz, 2H), 7.34 (s, 1H), 7.32-7.29 (m,

6H), 7.15 (d, J = 1.05, 1H), 7.12 (d, J = 1.53, 1H), 7.07-7.02 (m, 1H), 6.55 (d, J = 7.77, 1H), 2.15 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 175.79, 171.10, 154.48, 153.91, 138.32, 137.76, 133.50, 131.20, 131.12, 129.75, 129.38, 129.35, 128.79, 128.63, 128.16, 128.06, 125.74, 124.66, 122.94, 121.77, 118.44, 116.39, 111.60, 56.62, 26.41. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₀H₂₀ClNNaO₃⁺ ([M + Na]⁺), 500.1024, found, 500.1028; 501.1057, found, 501.1053.

1-Acetyl-5-iodo-3-phenyl-3-(2-phenylbenzofuran-3-yl)indolin-2-one (3k)

White solid (101 mg, 71 % yield); $R_f = 0.60$ (petroleum ether/ethyl acetate = 10 : 1 (v/v)); M.P. 165-168 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.20 (d, J = 8.64 Hz, 1H), 7.80-7.77 (dd, J = 1.86 Hz, 1H), 7.67 (d, J = 1.80 Hz, 1H), 7.54 (d, J = 8.25 Hz, 1H), 7.40 (t, J = 6.09 Hz, 1H), 7.36-7.28 (m, 8H), 7.14 (t, J = 6.96 Hz, 2H), 7.09-7.04 (q, J = 7.26 Hz, 1H), 6.56 (d, J = 7.92 Hz, 1H), 2.18(s, 3H),. ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 175.62, 171.16, 154.47, 153.95, 138.95, 138.38, 138.32, 134.30, 133.94, 131.12, 129.76, 129.32, 128.81, 128.62, 128.19, 128.08, 124.66, 122.94, 121.85, 119.08, 116.33, 111.59, 89.52, 56.44, 26.49. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₀H₂₀INNaO₃⁺ ([M + Na]⁺), 592.0380, found, 592.0378.

1-Acetyl-3-(2-phenylbenzofuran-3-yl)-3-(p-tolyl)indolin-2-one (31)

White solid (78 mg, 68 % yield); $R_f = 0.57$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 177-179 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.01 (d, J = 8.01 Hz, 1H), 7.51 (t, J = 8.37 Hz, 1H), 7.47 (d, J = 7.38 Hz, 2H), 7.41-7.38 (m, 1H), 7.36-7.24 (m, 5H), 7.17-7.14 (dd, J = 1.02 Hz, 3H), 7.11-7.07 (m, 3H), 6.65 (d, J = 7.80 Hz, 1H), 2.35 (s, 3H) , 2.15 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.54, 171.39, 154.48, 153.55, 139.22, 138.27, 135.96, 132.01, 131.34, 129.56, 129.38, 129.17, 128.48, 128.11, 125.80, 125.57, 124.42, 122.68, 122.00, 117.21, 117.16, 111.47, 56.30, 26.50, 21.20. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for $C_{31}H_{23}NNaO_3^+$ ([M + Na]⁺), 480.1570, found, 480.1581.

1-Acetyl-3-(4-methoxyphenyl)-3-(2-phenylbenzofuran-3-yl)indolin-2-one

White solid (65 mg, 55 % yield); $R_f = 0.66$ (petroleum ether/ethyl acetate = 10 : 1 (v/v)); M.P. 166-167 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.42 (d, J = 7.98 Hz, 1H), 7.53-7.45 (q, J = 8.16 Hz, 3H), 7.41-7.38 (m, 1H), 7.35-7.24 (m, 5H), 7.15-7.12 (q, J = 1.02 Hz, 3H), 7.09-7.04 (m, 1H), , 6.81 (d, J = 9.12 Hz, 2H), 6.65 (d, J = 7.71 Hz, 1H), 3.80 (s, 3H) , 2.14 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.60, 171.38, 159.65, 154.46, 153.46, 139.18, 132.07, 131.31, 130.84, 129.56, 129.34, 129.18, 128.46, 128.10, 125.79, 125.52, 124.41, 122.72, 121.93, 117.24, 117.17, 113.96, 111.46, 55.87, 55.35, 26.46. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₄NO₄⁺ ([M + H]⁺), 474.1700, found, 474.1704.

3-([1,1'-Biphenyl]-4-yl)-1-acetyl-3-(2-phenylbenzofuran-3-yl)indolin-2-one

White solid (104 mg, 80 % yield); $R_f = 0.51$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 190-192 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.47 (t, J = 7.98 Hz, 1H), 7.62-7.59 (t, J = 1.38 Hz, 2H), 7.57-7.51 (m, 5H), 7.49-7.42 (m, 3H), 7.40-7.28 (m, 7H), 7.19 (t, J = 6.84 Hz, 2H), 7.08 (t, J = 7.89 Hz, 1H), 6.72 (d, J = 7.86 Hz, 1H), 2.20 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.39, 171.3, 154.47, 153.71, 141.11, 140.30, 139.26, 137.86, 131.77, 131.27, 129.59, 129.39, 129.31, 128.91, 128.35, 128.11, 127.66, 127.21, 127.13, 125.88, 125.60, 124.51, 122.79, 121.86, 117.24, 116.98, 111.53, 56.44, 26.52. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₆H₂₆NO₃⁺ ([M + H]⁺), 520.1907, found, 520.1908.

1-Acetyl-3-(4-fluorophenyl)-3-(2-phenylbenzofuran-3-yl)indolin-2-one

White solid (77 mg, 67 % yield); $R_f = 0.71$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 171-173 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.45 (d, J = 8.16 Hz, 1H), 7.55-7.52 (q, J = 5.76 Hz, 1H), 7.50-7.44 (m, 2H), 7.43-7.40 (m, 1H), 7.37-7.26 (m, 6H), 7.17-7.14 (dd, J = 1.08 Hz, 2H), 7.11-7.06 (m, 1H), 7.01-6.95 (m, 2H), 6.61 (d, J = 7.74 Hz, 1H), 2.15 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.13, 171.07, 162.61 (d, J = 246.86 Hz), 154.29, 153.46, 139.02, 134.51 (d, J = 3.20 Hz), 131.44, 130.98, 129.51, 129.26, 129.19, 127.97, 125.78, 125.31, 124.40, 122.66, 121.44, 117.12, 116.74, 115.38 (d, J = 21.83 Hz), 111.43, 55.85, 26.28. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C, δ): -113.57 (s). Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₀H₂₀FNNaO₃⁺ ([M + Na]⁺), 484.1319, found, 484.1324.

1-Acetyl-3-(4-chlorophenyl)-3-(2-phenylbenzofuran-3-yl)indolin-2-one

White solid (81 mg, 68 % yield); $R_f = 0.54$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 168-170 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.44 (d, J = 8.19 Hz, 1H), 7.54-7.33 (m, 8H), 7.28-7.25 (t, J = 0.99 Hz, 4H), 7.15-7.07 (m, 3H), 6.64 (d, J = 7.89 Hz, 1H), 2.14 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.10, 171.23, 154.49, 153.76, 139.23, 137.51, 134.65, 131.36, 131.15, 129.73, 129.53, 129.39, 128.83, 128.18, 128.09, 126.02, 125.49, 124.64, 122.92, 121.65, 117.34, 116.67, 111.66, 56.22, 26.48. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for $C_{30}H_{20}CINNaO_3^+$ ([M + Na]⁺), 500.1024, found, 500.1028 ; 501.1057, found, 501.1061.

1-Acetyl-3-(2-phenylbenzofuran-3-yl)-3-(4-(trifluoromethoxy)phenyl)indolin-2one (3q)

White solid (115 mg, 87 % yield); $R_f = 0.45$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 167-168 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.45 (d, J = 8.19 Hz, 1H), 7.55-7.46 (m, 3H), 7.42-7.39 (q, J = 2.43 Hz, 1H), 7.36-7.27 (m, 6H), 7.17-7.06 (m, 5H), 6.58 (d, J = 7.89 Hz, 1H), 2.18 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.12, 171.17, 154.43, 153.83, 149.27, 149.25, 139.22, 137.41, 131.28, 131.05, 129.69, 129.55, 129.35, 128.12, 128.02, 125.99, 125.49, 124.63, 122.88, 121.37, 120.80, 120.44 (q, J = 256.17 Hz), 117.34, 116.57, 111.64, 56.19, 26.46. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C, δ): -57.78 (s). Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₀F₃NNaO₄⁺ ([M + Na]⁺), 550.1237, found, 550.1239.

1-Acetyl-3-(4-phenoxyphenyl)-3-(2-phenylbenzofuran-3-yl)indolin-2-one (3r)

White solid (82 mg, 61% yield); $R_f = 0.52$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 192-194 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.45 (t, J = 7.74 Hz, 1H), 7.56-7.52 (q, J = 8.22 Hz, 1H), 7.51-7.46 (m, 2H), 7.43-7.41 (m, 1H), 7.39-7.26 (m, 8H), 7.20-7.10 (m, 4H), 7.05-7.02 (dd, J = 1.11 Hz, 2H), 6.93 (d, J = 9.06 Hz, 2H), 6.70 (d, J = 7.68 Hz, 1H), 2.20 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.47, 171.28, 157.51, 156.66, 154.45, 153.63, 139.19, 133.35, 131.80, 131.25, 129.85, 129.57, 129.37, 129.29, 128.36, 128.09, 125.83, 125.53,

124.50, 123.71, 122.75, 121.72, 119.24, 118.50, 117.21, 117.03, 111.54, 56.04, 26.49. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for $C_{36}H_{25}NNaO_4^+$ ([M + Na]⁺), 558.1676, found, 558.1682.

1-Acetyl-3-(2-phenylbenzofuran-3-yl)-3-(4-(trifluoromethyl)phenyl)indolin-2-one (3s)

White solid (81 mg, 63 % yield); $R_f = 0.52$ (petroleum ether/ethyl acetate = 10 : 1 (v/v)); M.P. 168-171 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.46 (d, J = 8.10 Hz, 1H), 7.56-7.52 (m, 4H), 7.49 (d, J = 1.35 Hz, 1H), 7.46 (d, J = 4.02 Hz, 1H), 7.43-7.39 (m, 2H), 7.34 (t, J = 6.24 Hz, 2H), 7.32 (d, J = 1.62 Hz, 1H), 7.30-7.27 (m, 1H), 7.16 (t, J = 6.90 Hz, 2H), 7.11-7.06 (m, 1H), 6.57 (t, J = 7.74 Hz, 1H), 2.18 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 175.96, 171.25, 154.59, 154.11, 142.98, 139.38, 131.13 (d, J = 3.09 Hz), 130.72 (q, J = 32.52 Hz), 129.88, 129.79, 129.50, 128.29, 128.01, 127.12 (q, J = 275.75 Hz), 126.21, 125.68, 125.62, 124.84, 123.10, 121.50, 117.51, 116.47, 111.84, 56.83, 26.59. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C, δ): -62.60 (s). Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₀F₃NNaO₃⁺ ([M + Na]⁺), 534.1287, found, 534.1292.

1-Acetyl-3-(3,4-dimethoxyphenyl)-3-(2-phenylbenzofuran-3-yl)indolin-2-one

White solid (77 mg, 61 % yield); $R_f = 0.42$ (petroleum ether/ethyl acetate = 5 : 1 (v/v)); M.P. 165-167 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.42 (d, J = 8.13 Hz, 1H), 7.53-7.48 (m, 2H), 7.46-7.25 (m, 8H), 7.13 (t, J = 6.87 Hz, 2H), 7.08-7.03 (m, 1H), 6.75 (d, J = 8.28 Hz, 1H), 6.63 (d, J = 7.89 Hz, 1H), 3.87 (s, 3H), 3.64 (s, 3H), 2.16 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.57, 171.36, 154.38, 153.54, 149.31, 139.25, 132.11, 131.28, 131.03, 129.60, 129.31, 129.28, 128.49, 128.11, 125.76, 125.58, 124.47, 122.82, 121.82, 117.20, 117.08, 111.43, 56.10, 56.05, 55.95, 26.48. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for $C_{32}H_{26}CINO_5^+$ ([M + H]⁺), 504.1805, found, 504.1809.

1-Acetyl-3-(naphthalen-2-yl)-3-(2-phenylbenzofuran-3-yl)indolin-2-one

(**3**u)

White solid (102 mg, 83 % yield); $R_f = 0.50$ (petroleum ether/ethyl acetate = 20 : 1

(v/v)); M.P. 163-165 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.53 (d, J = 8.07 Hz, 1H), 7.86-7.72 (m, 3H), 7.59-7.49 (m, 7H), 7.43-7.28 (m, 5H), 7.26-7.22 (m, 2H), 7.00-6.95 (m, 1H), 6.63 (d, J = 7.86 Hz, 1H), 2.17 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.17, 171.32, 154.50, 153.73, 139.31, 136.56, 133.04, 132.83, 131.80, 131.29, 129.64, 129.39, 128.64, 128.41, 128.37, 128.13, 127.71, 126.74, 126.42, 125.97, 125.67, 124.50, 122.81, 121.85, 117.27, 116.84, 111.50, 56.74, 26.48. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₄H₂₄NO₃⁺ ([M + H]⁺), 494.1751, found, 494.1755. A crystal structure of **3u** was obtained. The CCDC number is 2141348.

1-Acetyl-3-(2-phenylbenzofuran-3-yl)-3-(thiophen-2-yl)indolin-2-one (3v)

White solid (73 mg, 65 % yield); $R_f = 0.59$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 171-173 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.44 (d, J = 8.10 Hz, 1H), 7.56-7.48 (m, 3H), 7.42 (d, J = 7.20 Hz, 1H), 7.37-7.31 (m, 4H), 7.28 (t, J = 2.97 Hz, 1H), 7.18-7.10 (m, 4H), 6.97-6.95 (q, J = 1.23 Hz, 1H), 6.66 (d, J = 7.83 Hz, 1H), 2.21 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 175.71, 171.29, 154.36, 153.23, 139.62, 139.03, 132.35, 131.15, 129.58, 129.32, 129.24, 128.67, 128.54, 128.13, 126.64, 125.83, 125.05, 124.52, 124.13, 122.93, 121.10, 117.24, 116.22, 111.49, 54.06, 26.49. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₂₈H₁₉NO₃NaS⁺ ([M + Na]⁺), 472.0978, found, 472.0986.

1-Acetyl-3-(2-(4-fluorophenyl)benzofuran-3-yl)-3-phenylindolin-2-one (3w)

White solid (100 mg, 87 % yield); $R_f = 0.64$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)). M.P. 165-168 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.44 (d, J = 8.04 Hz, 1H), 7.53-7.48 (q, J = 8.40 Hz, 2H), 7.46-7.42 (m, 1H), 7.34-7.23 (m, 7H), 7.19-7.14 (m, 2H), 7.08-6.99 (m, 3H), 6.58 (d, J = 7.65 Hz, 1H), 2.29 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.68, 171.27, 163.47 (d, J = 249.08 Hz), 154.51, 152.78, 139.24, 138.89, 131.76, 131.55, 131.44, 129.43, 128.77, 128.54, 128.38, 127.50 (d, J = 3.30 Hz), 125.99, 125.75, 124.75, 122.93, 121.97, 117.31, 117.25, 115.30 (d, J = 21.68 Hz), 111.59, 56.84, 26.60. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C, δ): -110.54 (s). Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₀H₂₁FNO₃⁺ ([M + H]⁺), 462.1500, found, 462.1501.

1-Acetyl-3-(2-(4-chlorophenyl)benzofuran-3-yl)-3-phenylindolin-2-one (3x)

White solid (106 mg, 89 % yield); $R_f = 0.73$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 172-175 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.43 (d, J = 8.07 Hz, 1H), 7.53-7.48 (m, 2H), 7.45-7.40 (m, 2H), 7.32-7.25 (m, 8H), 7.12-7.01 (m, 3H), 6.56 (d, J = 7.65 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.54, 171.21, 154.46, 152.44, 139.12, 138.78, 135.72, 131.56, 130.62, 129.73, 129.37, 128.67, 128.45, 128.29, 128.27, 125.92, 125.65, 124.75, 122.87, 121.90, 117.38, 117.23, 111.51, 56.75, 26.44. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₀H₂₀ClNNaO₃⁺ ([M + Na]⁺), 500.1024, found, 500.1028; 501.1057, found, 501.1060.

1-Acetyl-3-(2-(4-bromophenyl)benzofuran-3-yl)-3-phenylindolin-2-one

White solid (112 mg, 86 % yield); $R_f = 0.59$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 171-173 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.44 (d, J = 8.13 Hz, 1H), 7.53-7.45 (m, 3H), 7.45-7.41 (m, 2H), 7.32-7.23 (m, 7H), 7.07-7.02 (m, 3H), 6.60 (d, J = 7.86 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.49, 171.19, 154.46, 152.43, 139.10, 138.76, 131.52, 131.24, 130.82 130.16, 129.36, 128.66, 128.44, 128.25, 125.91, 125.63, 124.75, 123.97, 122.87, 121.89, 117.40, 117.22, 111.51, 56.72, 26.42. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₀H₂₁BrNO₃⁺ ([M + H]⁺), 522.0699, found, 522.0691; 524.0679, found, 524.0681.

3-(2-([1,1'-Biphenyl]-4-yl)benzofuran-3-yl)-1-acetyl-3-phenylindolin-2-one (3z)

White solid (110 mg, 85 % yield); $R_f = 0.70$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 185-188 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.48 (d, J = 8.10 Hz, 1H), 7.64-7.60 (m, 2H), 7.58-7.54 (m, 4H), 7.50 (d, J = 7.65 Hz, 3H), 7.45-7.42 (m, 1H), 7.33-7.25 (m, 8H), 7.26-7.23 (m, 1H), 7.23 (d, J = 1.71 Hz, 1H), 7.09-7.04 (m, 1H), 6.61 (d, J = 7.86 Hz, 1H), 2.17 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.46, 171.33, 154.49, 153.38, 142.43, 140.27, 139.23, 138.91, 131.78, 130.06, 129.78, 129.24, 129.03, 128.59, 128.36, 127.91, 127.18, 126.71,

125.83, 125.63, 124.48, 122.71, 121.81, 117.33, 117.21, 111.49, 56.64, 26.39. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for $C_{36}H_{26}NO_3^+$ ([M + H]⁺), 520.1907, found, 520.1907.

1-Acetyl-3-(2-(3-methoxyphenyl)benzofuran-3-yl)-3-phenylindolin-2-one (3aa)

White solid (80 mg, 68 % yield); $R_f = 0.67$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 163-165 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.46 (d, J = 7.86 Hz, 1H), 7.55-7.46 (m, 3H), 7.32-7.22 (m, 8H), 7.07-7.02 (m, 1H), 6.98-6.94 (m, 1H), 6.76-6.73 (q, J = 0.96 Hz, 2H), 7.65 (d, J = 7.65 Hz, 1H), 3.76 (s, 3H), 2.22 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.31, 171.27, 159.38, 154.41, 153.47, 139.27, 139.10, 132.46, 131.71, 129.24, 128.63, 128.41, 125.84, 125.61, 124.50, 122.74, 121.89, 121.68, 117.19, 115.98, 114.05, 111.51, 56.64, 55.29, 26.50. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₄NO₄⁺ ([M + H]⁺), 474.1700, found, 474.1705.

White solid (112 mg, 91 % yield); $R_f = 0.63$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 184-187 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.54 (d, J = 7.95 Hz, 1H), 7.91-7.87 (dd, J = 5.49 Hz, 2H), 7.59-7.53 (m, 7H), 7.34-7.28 (m, 8H), 7.09-7.04 (m, 1H), 6.59 (d, J = 7.62 Hz, 1H), 1.70 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.36, 171.19, 154.68, 153.57, 139.39, 139.03, 133.40, 132.37, 131.88, 129.39, 128.88, 128.64, 128.55, 128.42, 128.17, 127.79, 127.35, 126.90, 126.04, 125.94, 125.72, 124.53, 122.75, 121.88, 117.74, 117.14, 111.55, 56.72, 25.86. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₄H₂₄NO₃⁺ ([M + H]⁺), 494.1751, found, 494.1751.

1-Acetyl-3-(2-(dibenzo[b,d]thiophen-2-yl)benzofuran-3-yl)-3-phenylindolin-2-one (3ac)

White solid (73 mg, 53 % yield); $R_f = 0.50$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 201-203 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.43 (d, J = 8.07 Hz, 1H), 7.87-7.83 (m, 2H), 7.76 (d, J = 1.23 Hz, 1H), 7.55-7.49 (m, 3H), 7.48-7.46 (m, 2H), 7.38-7.35 (dd, J = 1.65 Hz, 1H), 7.31-7.25 (m, 8H), 7.06-7.01 (m, 1H), 6.57 (d, J = 7.71 Hz, 1H), 1.85 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.30, 170.82, 154.43, 153.43, 140.56, 139.60, 139.09, 138.88, 135.12, 134.62, 131.81, 129.17, 128.49, 128.41, 128.25, 127.33, 127.28, 127.17, 125.82, 125.59, 124.55, 124.41, 122.75, 122.64, 122.46, 122.22, 121.98, 121.75, 117.06, 111.38, 56.69, 25.80. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₆H₂₃NNaO₃S⁺ ([M + Na]⁺), 572.1291 found, 572.1296.

1-Acetyl-3-(5-fluoro-2-phenylbenzofuran-3-yl)-3-phenylindolin-2-one

(3ad)

White solid (85 mg, 74 % yield); $R_f = 0.61$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 166-168 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.43 (d, J = 8.19 Hz, 1H), 7.52-7.42 (m, 4H), 7.49-7.26 (m, 8H), 7.12 (d, J = 6.96 Hz, 2H), 7.04-6.97 (m, 1H), 6.19-6.15 (dd, J = 2.58 Hz, 1H), 2.15 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.25, 171.26, 158.82 (d, J = 236.77 Hz), 155.47, 150.69, 139.23, 138.43, 131.55, 130.97, 129.83, 129.39 (d, J = 3.17 Hz,), 129.25 (d, J = 4.07 Hz), 128.79, 128.67, 128.19, 125.89, 125.55, 117.43 (d, J = 4.06 Hz), 117.28, 112.52, 112.21, 112.19 (d, J = 3.02 Hz), 107.44 (d, J = 26.10 Hz), 56.45, 26.50. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C, δ): -119.94 (s). Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₀H₂₀FNNaO₃⁺ ([M + Na]⁺), 484.1319, found, 484.1328.

1-Acetyl-3-(5-chloro-2-phenylbenzofuran-3-yl)-3-phenylindolin-2-one

(3ae)

White solid (103 mg, 86 % yield); $R_f = 0.68$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 162-165 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.43 (d, J = 8.19 Hz, 1H), 7.52-7.47 (m, 1H), 7.45-7.41 (m, 3H), 7.36-7.22 (m, 9H), 7.14-7.12 (t, J = 6.96 Hz, 2H), 6.46 (d, J = 2.01 Hz, 1H), 2.16 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.18, 171.21, 155.12, 152.82, 139.22, 138.41, 131.46, 130.78, 129.88, 129.84, 129.42, 129.28, 128.78, 128.68, 128.29, 128.18, 125.88,

125.57, 124.77, 121.35, 117.26, 116.93, 112.48, 56.39, 26.47. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for $C_{30}H_{20}CINNaO_3^+$ ([M + Na]⁺), 500.1024, found, 500.1020; 501.1057, found, 501.1054.

1-Acetyl-3-(2,5-diphenylbenzofuran-3-yl)-3-phenylindolin-2-one (3af)

White solid (109 mg, 84 % yield); $R_f = 0.59$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 171-174 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.47 (d, J = 7.80 Hz, 1H), 7.61-7.54 (q, J = 8.55 Hz, 2H), 7.50 (d, J = 7.53 Hz, 2H), 7.44-7.34 (m, 10H), 7.32-7.25 (m, 4H), 7.22-7.18 (dd, J = 1.11 Hz, 2H), 6.73 (d, J = 1.26 Hz, 1H), 2.19 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.34, 171.30, 154.23, 154.12, 141.45, 139.24, 138.98, 136.09, 131.73, 131.21, 129.70, 129.31, 129.00, 128.79, 128.70, 128.43, 128.18, 127.35, 126.95, 125.85, 125.76, 124.08, 120.45, 117.22, 111.58, 56.55, 26.51. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₆H₂₅NNaO₃⁺ ([M + Na]⁺), 542.1727, found, 542.1729.

1-Acetyl-3-(5-methyl-2-phenylbenzofuran-3-yl)-3-phenylindolin-2-one (3ag)

White solid (75 mg, 66 % yield); $R_f = 0.56$ (petroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 168-169 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.43 (d, J = 8.13 Hz, 1H), 7.51-7.46 (q, J = 7.62 Hz, 2H), 7.40-7.25 (m, 10H), 7.13 (t, J = 6.96 Hz, 2H), 7.11-7.08 (dd, J = 1.44 Hz, 1H), 6.30 (s, 1H), 2.25 (s, 3H), 2.15 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.33, 171.19, 153.55, 152.74, 139.09, 138.79, 131.84, 131.73, 131.27, 129.33, 129.13, 129.03, 128.38, 128.29, 128.14, 127.91, 125.63, 125.55, 125.49, 121.47, 116.98, 116.65, 110.77, 56.45, 26.33, 21.43. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₄NO₃⁺ ([M + H]⁺), 458.1751, found, 458.1749.

1-Acetyl-3-(5-methoxy-2-phenylbenzofuran-3-yl)-3-phenylindolin-2-one (3ah)

White solid (49 mg, 41 % yield); $R_f = 0.6$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 161-162 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.43 (d, J = 8.04 Hz, 1H), 7.51-7.46 (q, J = 7.35 Hz, 2H), 7.41-7.26 (m, 10H), 7.14-7.11 (dd, J = 1.02 Hz, 2H), 6.89-6.85 (dd, J = 2.58 Hz, 1H), 5.93-5.92 (d, J =

2.55 Hz, 1H), 3.52 (s, 3H), 2.15 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.36, 171.26, 155.44, 154.30, 149.42, 139.16, 138.79, 131.79, 131.30, 129.50, 129.21, 129.19, 128.89, 128.58, 128.31, 128.05, 125.76, 125.58, 117.14, 113.23, 111.80, 104.11, 56.46, 55.55, 26.44. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₁H₂₄NO₄⁺ ([M + H]⁺), 474.1700, found, 474.1703.

1-Acetyl-3-phenyl-3-(2-phenylbenzo[b]thiophen-3-yl)indolin-2-one (3ai)

White solid (84 mg, 73 % yield); $R_f = 0.69$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 198-200 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.41 (d, J = 8.13 Hz, 1H), 7.83 (d, J = 7.89 Hz, 1H), 7.54-7.28 (m, 13H), 7.11 (t, J = 7.74 Hz, 1H), 6.94-6.87 (dd, J = 8.31 Hz, 2H), 2.02 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 176.24, 171.31, 142.44, 140.36, 139.92, 139.35, 139.26, 134.69, 131.97, 130.85, 130.58, 130.16, 129.20, 128.91, 128.29, 128.16, 127.93, 126.19, 125.75, 125.28, 124.01, 123.89, 122.20, 117.18, 59.87, 26.32. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₀H₂₂NO₂S⁺ ([M + H]⁺), 460.1366, found, 460.1368.

1-Acetyl-5-bromo-3-phenyl-3-(2-phenylbenzo[b]thiophen-3-yl)indolin-2-one (3aj)

White solid (105 mg, 78 % yield); $R_f = 0.58$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 171-173 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.31 (d, J = 9.33 Hz, 1H), 7.85 (d, J = 7.86 Hz, 1H), 7.63-7.59 (m, 2H), 7.53-7.49 (m, 1H), 7.37-7.27 (m, 8H), 7.16-7.10 (m, 1H), 6.89 (d, J = 8.04 Hz, 2H), 2.03 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 175.52, 171.09, 142.98, 139.88, 139.71, 138.97, 138.37, 134.50, 134.02, 132.29, 130.63, 129.68, 129.31, 129.04, 128.52, 128.36, 128.23, 127.99, 126.04, 125.10, 124.21, 124.17, 122.30, 118.79, 118.71, 59.76, 26.26. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₃₀H₂₀BrNNaO₂S⁺ ([M + Na]⁺), 560.0290, found, 560.0287; 562.0270, found, 562.0272.

1-Acetyl-5-bromo-2-oxo-3-phenylindolin-3-yl acetate (4a)

White solid (64 mg, 66 % yield); R_f = (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 121-125 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.27 (d, J = 8.76 Hz, 1H), 7.60-7.56 (dd, J = 2.16 Hz, 1H), 7.41-7.36 (m, 4H), 7.31-7.27 (m, 2H), 2.60 (s, 3H), 2.22 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 173.38, 170.70, 169.61, 139.97, 135.25, 133.63, 129.75, 129.56, 129.03, 126.93, 126.39, 118.82, 118.64, 80.55, 26.47, 20.69. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₈H₁₄BrNNaO₄⁺ ([M + Na]⁺), 409.9998, found, 410.0003; 411.9978, found, 411.9981.

1-Acetyl-2-oxo-3-phenylindolin-3-yl acetate (4b)

White solid (66 mg, 85 % yield); $R_f = 0.32$ (etroleum ether/ethyl acetate = 10 : 1 (v/v)); M.P. 131-135 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.37 (d, J = 8.22 Hz, 1H), 7.50-7.44 (m, 1H), 7.38-7.35 (m, 3H), 7.34-7.31 (q, J = 1.83 Hz, 2H), 7.29-7.27 (q, J = 3.36 Hz, 2H), 2.61 (s, 3H), 2.19 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 173.95, 170.73, 169.43, 140.90, 135.78, 130.56, 129.36, 128.71, 127.21, 126.44, 125.71, 123.77, 116.80, 80.92, 26.37, 20.57. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₈H₁₅NNaO₄⁺ ([M + Na]⁺), 332.0893, found, 332.0902.

1-Acetyl-5-fluoro-2-oxo-3-phenylindolin-3-yl acetate (4c)

White solid (50 mg, 61 % yield); $R_f = 0.44$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 119-123°C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.38-8.34 (dd, J = 4.59 Hz, 1H), 7.39-7.36 (m, 3H), 7.31-7.27 (m, 2H), 7.19-7.12 (m, 1H), 7.00-6.93 (dd, J = 2.76 Hz, 1H), 2.60 (s, 3H), 2.21 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 173.76, 170.69, 169.60, 160.55 (d, J = 244.51 Hz), 137.02 (d, J = 2.63 Hz), 135.33, 129.74, 129.23 (d, J = 7.97 Hz), 129.01, 126.41, 118.63 (d, J = 7.69 Hz), 117.26 (d, J = 22.43 Hz), 111.37 (d, J = 24.56 Hz), 80.80, 26.41, 20.67. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C, δ): -115.14 (s). Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₈H₁₄FNNaO₄⁺ ([M + Na]⁺), 350.0799, found, 350.0800.

1-Acetyl-5-chloro-2-oxo-3-phenylindolin-3-yl acetate (4d)

White solid (58 mg, 68 % yield); $R_f = 0.50$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 121-125 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.32 (d, J = 8.79 Hz, 1H), 7.45-7.37 (m, 4H), 7.32-7.27 (m, 2H), 7.24 (d, J = 2.25 Hz, 1H), 2.60 (s, 3H), 2.21 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 173.49, 170.70,

169.62, 139.46, 125.24, 131.30, 130.70, 129.74, 129.33, 129.02, 126.39, 124.08, 118.29, 80.63, 26.44, 20.67. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for $C_{18}H_{14}CINNaO_{4^+}$ ([M + Na]⁺), 366.0504, found, 366.0505; 368.0474, found, 368.0477.

1-Acetyl-5-iodo-2-oxo-3-phenylindolin-3-yl acetate (4e)

White solid (70 mg, 64 % yield); $R_f = 0.58$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 118-123 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.16 (d, J = 8.64 Hz, 1H), 7.82-7.78 (dd, J = 1.89 Hz, 1H), 7.58 (d, J = 1.80 Hz, 1H), 7.42-7.38 (m, 3H), 7.32-7.28 (q, J = 2.07 Hz, 2H), 2.62 (s, 3H), 2.24 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 173.20, 170.70, 169.58, 140.64, 139.56, 135.25, 132.55, 129.69, 128.99, 126.35, 118.89, 89.29, 80.36, 26.47, 20.69. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₈H₁₄INNaO₄⁺ ([M + Na]⁺), 457.9860, found, 457.9867.

1-Acetyl-5-methoxy-2-oxo-3-phenylindolin-3-yl acetate (4f)

White solid (56 mg, 66 % yield); $R_f = 0.27$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 114-118 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.29 (d, J = 8.97 Hz, 1H), 7.38-7.35 (m, 3H), 7.34-7.29 (m, 2H), 6.99-6.95 (dd, J = 2.79 Hz, 1H), 6.80 (d, J = 2.73 Hz, 1H), 3.79 (s, 3H), 2.59 (s, 3H), 2.20 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 173.92, 170.43, 169.38, 157.57, 135.70, 134.25, 129.35, 128.71, 128.49, 126.38, 117.91, 114.99, 109.74, 81.06, 55.54, 26.20, 20.57. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₉H₁₇NNaO₅⁺ ([M + Na]⁺), 362.0999, found, 362.1008.

1-Acetyl-2-oxo-3-phenyl-5-(trifluoromethoxy)indolin-3-yl acetate (4g)

White solid (57 mg, 58 % yield); $R_f = 0.50$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 121-122 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.44 (d, J = 8.97 Hz, 1H), 7.42-7.39 (m, 3H), 7.33-7.28 (m, 3H), 7.17 (d, J = 1.83 Hz, 1H), 2.63 (s, 3H), 2.24 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 173.56, 170.71, 169.66, 146.79 (d, J = 1.93 Hz), 139.39, 135.12, 129.83, 129.15, 129.07, 126.41, 123.63 (q, J = 256.09 Hz), 123.26, 118.33, 117.00, 80.62, 26.40, 20.62. ¹⁹F NMR (282

MHz, CDCl₃, 25 °C, δ): -58.15 (s). Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₉H₁₄F₃NNaO₅⁺ ([M + Na]⁺), 416.0716, found, 416.0717.

1-Acetyl-4,6-dimethyl-2-oxo-3-phenylindolin-3-yl acetate (4h)

White solid (53 mg, 63 % yield); $R_f = 0.40$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 116-120 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.06 (s, 1H), 7.37-7.34 (m, 3H), 7.32-7.27 (m, 2H), 6.88 (s, 1H), 2.58 (s, 3H), 2.41 (s, 3H), 2.21 (s, 3H), 2.03 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 174.24, 171.01, 169.49, 141.29, 140.91, 135.05, 134.62, 129.32, 128.93, 128.49, 126.08, 121.88, 115.01, 81.67, 26.66, 22.14, 20.44, 17.82. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₂₀H₁₉NNaO₄⁺ ([M + Na]⁺), 360.1206, found, 360.1211.

1-Acetyl-2-oxo-3-phenyl-2,3-dihydro-1H-benzo[f]indol-3-yl acetate (4i)

White solid (63 mg, 70 % yield); $R_f = 0.51$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 132-135 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.61 (d, J = 9.06 Hz, 1H), 8.01 (d, J = 9.06 Hz, 1H), 7.91 (d, J = 7.68 Hz, 1H), 7.62 (d, J = 8.04 Hz, 1H), 7.42-7.31 (m, 7H), 2.65 (s, 3H), 2.17 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 174.52, 171.05, 169.54, 139.92, 135.23, 131.80, 131.44, 129.47, 129.17, 128.95, 128.23, 127.63, 126.38, 125.36, 123.47, 119.37, 116.14, 82.02, 26.59, 20.47. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₂₂H₁₇NNaO₄⁺ ([M + Na]⁺), 382.1050, found, 382.1053. A crystal structure of 4i was obtained. The CCDC number is 2132602. The checkcif reported an Alert level A (0.892 why?). The reason is that we only can get 89.2% integrity of single crystal data collection. The data is fully support the proposed structure of **4i**.

1-Acetyl-3-(4-chlorophenyl)-2-oxoindolin-3-yl acetate (4j)

White solid (67 mg, 78 % yield); $R_f = 0.52$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 119-122 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.38 (d, J = 8.25 Hz, 1H), 7.53-7.47 (m, 1H), 7.40-7.36 (m, 1H), 7.34 (d, J = 2.07 Hz, 2H), 7.28-7.24 (m, 3H), 2.63 (s, 3H), 2.21 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 173.75, 170.76, 169.40, 141.01, 135.72, 134.42, 130.93, 129.03, 128.08, 126.80, 125.95, 123.83, 117.05, 80.57, 26.48, 20.65. Mass Spectrometry: HRMS (ESI-TOF)

(m/z): calcd for $C_{18}H_{14}ClNNaO_4^+$ ($[M + Na]^+$), 366.0504, found, 366.0513; 368.0474, found, 368.0478.

3-([1,1'-Biphenyl]-4-yl)-1-acetyl-2-oxoindolin-3-yl acetate (4k)

White solid (72 mg, 75 % yield); $R_f = 0.42$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 125-128 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.41 (d, J = 8.22 Hz, 1H), 7.61-7.56 (m, 4H), 7.53-7.37 (m, 6H), 7.34-7.31 (m, 2H), 2.65 (s, 3H), 2.22 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 174.08, 170.89, 169.58, 142.48, 141.04, 140.23, 134.75, 130.76, 128.96, 127.85, 127.57, 127.26, 127.23, 127.08, 125.88, 123.93, 117.00, 80.98, 26.53, 20.72. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₂₄H₁₉NNaO₄⁺ ([M + Na]⁺), 408.1206, found, 408.1204.

1-Acetyl-2-oxo-3-(4-phenoxyphenyl)indolin-3-yl acetate (41)

White solid (70 mg, 70 % yield); $R_f = 0.42$ (etroleum ether/ethyl acetate = 10 : 1 (v/v)); M.P. 123-126 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.38 (d, J = 8.19 Hz, 1H), 7.51-7.46 (m, 1H), 7.39-7.34 (m, 2H), 7.34-7.30 (m, 3H), 7.28 (d, J = 2.49 Hz, 1H), 7.18-7.13 (m, 1H), 7.06-7.02 (m, 2H), 7.00-6.95 (m, 2H), 2.65 (s, 3H), 2.20(s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 174.13, 170.87, 169.59, 158.76, 156.29, 140.98, 130.74, 129.98, 128.43, 127.14, 125.82, 124.10, 123.91, 119.67, 118.37, 116.99, 80.74, 26.54, 20.72. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₂₄H₁₉NNaO₅⁺ ([M + Na]⁺), 424.1155, found, 424.1160.

1-Acetyl-3-(4-fluorophenyl)-2-oxoindolin-3-yl acetate (4m)

White solid (61 mg, 75 % yield); $R_f = 0.30$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 131-133 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.38 (d, J = 8.25 Hz, 1H), 7.52-7.47 (m, 1H), 7.34-7.31 (m, 2H), 7.29 (t, J = 1.86 Hz, 2H), 7.09-7.03 (q, J = 8.52 Hz, 2H), 2.63 (s, 3H), 2.20 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 173.93, 170.78, 169.45, 163.40 (d, J = 248.07 Hz), 140.99, 131.68 (d, J = 3.10 Hz), 130.87, 128.76 (d, J = 8.39 Hz),, 126.95, 125.90, 123.86, 117.02, 115.82 (d, J = 21.62 Hz), 80.54, 26.47, 20.64. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C, δ): -111.77 (s). Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₈H₁₄FNNaO₄⁺

 $([M + Na]^+)$, 350.0799, found, 350.0804.

1-Acetyl-2-oxo-3-(p-tolyl)indolin-3-yl acetate (4n)

White solid (72 mg, 89 % yield); $R_f = 0.38$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 116-120 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.39 (d, J = 8.22 Hz, 1H), 7.51-7.46 (m, 1H), 7.31-7.28 (m, 2H), 7.24-7.17 (m, 4H), 2.64 (s, 3H), 2.37 (s, 3H), 2.21 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): . Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₉H₁₇NNaO₄⁺ ([M + Na]⁺), 346.1050, found, 346.1055.

1-Acetyl-2-oxo-3-(4-(trifluoromethyl)phenyl)indolin-3-yl acetate (40)

White solid (56 mg, 59 % yield); $R_f = 0.33$ (etroleum ether/ethyl acetate = 10 : 1 (v/v)); M.P. 122-124 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.40 (d, J = 8.22 Hz, 1H), 7.65 (d, J = 8.37 Hz, 2H), 7.54-7.44 (m, 3H), 7.35-7.28 (m, 2H), 2.63 (s, 3H), 2.23 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 173.53, 170.70, 169.31, 141.12, 131.60 (q, J = 32.60 Hz), 131.12, 129.10, 127.60 (q, J = 257.38 Hz), 127.08, 126.74, 126.09, 125.73 (q, J = 3.54 Hz), 123.86, 117.15, 80.72, 26.48, 20.62. ¹⁹F NMR (282 MHz, CDCl₃, 25 °C, δ): -62.86 (s). Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₉H₁₄F₃NNaO₄⁺ ([M + Na]⁺), 400.0767, found, 400.0766.

1-Acetyl-3-(4-methoxyphenyl)-2-oxoindolin-3-yl acetate (4p)

White solid (58 mg, 68 % yield); $R_f = 0.28$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 117-121 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.37 (d, J = 8.22 Hz, 1H), 7.51-7.45 (m, 1H), 7.31 (d, J = 4.35 Hz, 2H), 7.27 (t, J = 3.12 Hz, 1H), 7.25 (d, J = 2.16 Hz, 1H), 6.91-6.88 (dd, J = 2.16 Hz, 2H), 3.81 (s, 3H), 2.63 (s, 3H), 2.19 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 174.27, 170.92, 169.69, 160.58, 140.94, 130.63, 128.23, 127.60, 127.29, 125.76, 123.92, 116.93, 114.21, 80.77, 55.42, 26.50, 20.72. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₉H₁₇NNaO₅⁺ ([M + Na]⁺), 362.0999, found, 362.1002.

1-Acetyl-3-(3,4-dimethoxyphenyl)-2-oxoindolin-3-yl acetate (4q)

White solid (59 mg, 64 % yield); $R_f = 0.23$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 113-117 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.34 (d, J = 8.19 Hz, 1H), 7.49-7.43 (m, 1H), 7.29 (d, J = 4.26 Hz, 2H), 7.05 (d, J = 2.16 Hz, 1H), 6.77 (d, J = 8.52 Hz, 1H), 6.63-6.59 (dd, J = 2.19 Hz, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 2.61 (s, 3H), 2.18 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 174.16, 170.95, 169.68, 150.26, 149.34, 140.99, 130.72, 127.86, 127.10, 125.72, 123.96, 119.80, 116.97, 110.78, 110.06, 80.83, 56.11, 56.03, 26.54, 20.80. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₂₀H₁₉NNaO₆⁺ ([M + Na]⁺), 392.1105, found, 392.1112.

1-Acetyl-3-(naphthalen-2-yl)-2-oxoindolin-3-yl acetate (4r)

White solid (58 mg, 65 % yield); $R_f = 0.37$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 131-135 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.44 (d, J = 8.22 Hz, 1H), 7.90-7.83 (m, 2H), 7.77 (t, J = 2.22 Hz, 1H), 7.64 (s, 1H), 7.60-7.57 (q, J = 1.89 Hz, 1H), 7.56-7.49 (m, 3H), 7.34-7.33 (t, J = 0.72 Hz, 2H), 3.16 (s, 3H), 3.12 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 174.05, 170.90, 169.60, 141.12, 133.57, 133.18, 132.82, 130.81, 128.93, 128.52, 127.71, 127.34, 127.17, 126.70, 126.33, 125.93, 124.01, 123.63, 117.02, 81.23, 26.51, 20.76. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₂₂H₁₈NO₄⁺ ([M + H]⁺), 360.1230, found, 360.1236.

1-Acetyl-3-(dibenzo[b,d]furan-3-yl)-2-oxoindolin-3-yl acetate (4s)

White solid (57 mg, 57 % yield); $R_f = 0.35$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 131-133 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.45 (d, J = 8.22 Hz, 1H), 7.98-7.96 (dd, J = 1.11 Hz, 1H), 7.91 (d, J = 7.59 Hz, 1H), 7.86-7.83 (dd, J = 1.11 Hz, 1H), 7.48-7.40 (m, 4H), 7.35-7.26 (m, 2H), 7.19-7.14 (m, 1H), 2.81 (s, 3H), 2.30 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 174.02, 170.76, 168.86, 155.73, 151.76, 141.23, 130.51, 127.51, 126.93, 125.41, 125.28, 123.92, 123.34, 123.29, 123.06, 122.98, 121.47, 121.27, 120.59, 116.80, 111.57, 79.64, 26.42, 20.69. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₂₄H₁₇NNaO₅⁺ ([M +

Na]⁺), 422.0999, found, 422.1000.

1-Acetyl-3-(dibenzo[b,d]thiophen-3-yl)-2-oxoindolin-3-yl acetate (4t)

White solid (89 mg, 86 % yield); $R_f = 0.35$ (etroleum ether/ethyl acetate = 5 : 1 (v/v)); M.P. 133-135 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.43 (d, J = 8.22 Hz, 1H), 8.10-8.06 (m, 2H), 7.86-7.83 (dd, J = 1.74 Hz, 2H), 7.57-7.50 (m, 1H), 7.48-7.44 (m, 2H), 7.41-7.38 (dd, J = 1.89 Hz, 1H), 7.35 (d, J = 4.29 Hz, 2H), 2.63 (s, 3H), 2.26 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 174.16, 170.95, 169.65, 141.18, 140.86, 139.94, 135.89, 135.08, 132.31, 130.95, 127.32, 125.99, 124.99, 124.66, 124.04, 123.27, 122.99, 121.92, 119.90, 117.12, 81.23, 26.55, 20.85. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₂₄H₁₇NNaO₄S⁺ ([M + Na]⁺), 438.0770, found, 438.0778.

1-Acetyl-2-oxo-3-(pyridin-4-yl)indolin-3-yl acetate (4u)

White solid (22 mg, 28 % yield); $R_f = 0.51$ (etroleum ether/ethyl acetate = 3 : 1 (v/v)); M.P. 135-137 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.60 (d, J = 5.97 Hz, 2H), 8.36 (d, J = 8.25 Hz, 1H), 7.52-7.46 (m, 1H), 7.31-7.28 (dd, J =0.87 Hz, 1H), 7.22-7.19 (m, 3H), 2.61 (s, 3H), 2.21 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 173.03, 170.64, 169.16, 150.24, 145.03, 141.10, 131.28, 126.21, 126.16, 123.77, 121.05, 117.20, 80.23, 26.51, 20.59. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₇H₁₅N₂O₄⁺ ([M + H]⁺), 311.1026, found, 311.1033.

1-Acetyl-2-oxo-3-(thiophen-2-yl)indolin-3-yl acetate (4v)

Colorless solid (38 mg, 50 % yield); $R_f = 0.58$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 115-118 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.36 (d, J = 8.22 Hz, 1H), 7.50-7.45 (m, 1H), 7.40-7.37 (m, 2H), 7.33-7.27 (m, 1H), 7.24-7.22 (dd, J = 1.29 Hz, 1H), 7.09-7.07 (dd, J = 1.29 Hz, 1H), 2.65 (s, 3H), 2.17 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 173.45, 170.88, 169.54, 140.59, 136.43, 130.76, 127.26, 127.22, 126.20, 125.72, 125.49, 123.57, 117.04, 79.05, 26.58, 20.68. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₆H₁₃NNaO₄S⁺ ([M + Na]⁺), 338.0457, found, 338.0464.
Tert-butyl 3-acetoxy-2-oxo-3-phenylindoline-1-carboxylate (4w)

White solid (44 mg, 48 % yield); $R_f = 0.42$ (etroleum ether/ethyl acetate = 10 : 1 (v/v)); M.P. 121-123 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 7.76 (d, J = 8.16 Hz, 1H), 7.47-7.43 (m, 1H), 7.37 (t, J = 1.95 Hz, 5H), 7.28-7.23 (m, 2H), 2.21 (s, 3H), 1.37 (s, 9H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 181.38, 172.66, 169.17, 141.86, 136.12, 130.32, 129.24, 128.72, 128.15, 126.30, 125.01, 123.93, 115.21, 81.14, 43.31, 26.67, 20.69. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₆H₁₃NNaO₃⁺ ([M + Na - Boc]⁺), 290.0788, found, 290.0791.

2-Oxo-3-phenyl-1-tosylindolin-3-yl acetate (4x)

White solid (67 mg, 64 % yield); $R_f = 0.27$ (etroleum ether/ethyl acetate = 10 : 1 (v/v)); M.P. 126-128 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.02-7.97 (q, J = 7.14 Hz, 3H), 7.50-7.44 (m, 1H), 7.36-7.33 (q, J = 1.29 Hz, 3H), 7.32-7.26 (m, 4H), 7.24-7.20 (m, 2H), 2.43 (s, 3H), 2.05 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 171.65, 169.00, 145.64, 140.05, 135.08, 134.04, 130.73, 129.64, 129.44, 128.79, 128.16, 127.55, 126.48, 125.45, 124.31, 113.78, 80.62, 21.82, 20.50. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₂₃H₁₉NNaO₅S⁺ ([M + Na]⁺), 444.0876, found, 444.0886.

1-Acetyl-3-oxo-2-phenylindolin-2-yl acetate (4y)

White solid (56 mg, 72 % yield); $R_f = 0.55$ (etroleum ether/ethyl acetate = 5 : 1 (v/v)); M.P. 125-127 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.37 (d, J = 8.22 Hz, 1H), 7.50-7.44 (m, 1H), 7.38-7.34 (m, 3H), 7.32 (t, J = 1.83 Hz, 2H), 7.29-7.27 (m, 2H), 2.61 (s, 3H), 2.19 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 174.06, 170.84, 169.53, 141.02, 135.89, 130.67, 129.47, 128.82, 127.32, 126.55, 125.82, 123.88, 116.92, 81.03, 26.48, 20.68. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₈H₁₅NNaO₄⁺ ([M + Na]⁺), 332.0893, found, 332.0901.

2-Oxo-3-phenyl-2,3-dihydrobenzo[b]thiophen-3-yl acetate (4z)

White solid (51 mg, 71 % yield); $R_f = 0.57$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); M.P. 121-125 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 7.46-7.41 (m, 2H), 7.37-7.31 (m, 5H), 7.30-7.26 (m, 1H), 7.20 (d, J = 7.17 Hz, 1H), 2.21 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 200.34, 169.11, 136.29, 135.98, 135.35, 130.21, 129.44, 128.84, 127.21, 126.39, 124.93, 123.63, 88.44, 20.71. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₆H₁₂NaO₃S⁺ ([M + Na]⁺), 307.0399, found, 307.0405.

2,2'-diphenyl-3,3'-bibenzofuran (10)

White solid (trace); $R_f = 0.88$ (etroleum ether/ethyl acetate = 20 : 1 (v/v)); NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 7.82-7.79 (m, 4H), 7.68-7.65 (d, J = 8.25 Hz, 2H), 7.40-7.7.34 (m, 2H), 7.28-7.26 (q, J = 2.13 Hz, 6H), 7.20-7.12 (m, 4H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 154.50, 152.11, 130.58, 129.61, 128.71, 128.65, 126.36, 125.06, 123.14, 120.84, 111.36, 107.81. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₂₈H₁₉O₂⁺ ([M + H]⁺), 387.1380, found, 387.1371.

3-(4-Cyanophenyl)indoline-2,2,3-triyl triacetate (11)

White solid (30 mg, 30 % yield); $R_f = 0.25$ (etroleum ether/ethyl acetate = 1 : 1 (v/v)); Disassociated at 110 °C. NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.90 (s, 1H), 8.36 (d, J = 8.25 Hz, 1H), 7.86 (d, J = 8.58 Hz, 2H), 7.52-7.46 (m, 1H), 7.43 (d, J = 8.58 Hz, 2H), 7.32-7.27 (m, 1H), 7.24-7.21 (dd, J = 1.29 Hz, 1H), 2.60 (s, 3H), 2.59 (s, 3H), 2.21 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 173.58, 173.46, 170.77, 169.34, 165.05, 141.20, 141.11, 133.63, 131.19, 128.25, 127.23, 126.73, 126.15, 123.86, 117.19, 80.83, 26.54, 25.74, 20.71. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₂₁H₁₈N₂NaO₆⁺ ([M + Na]⁺), 417.1057, found, 417.1067.

3-Methylindoline-2,3-diyl diacetate (12)

White solid (11 mg, 17 % yield); $R_f = 0.17$ (etroleum ether/ethyl acetate = 5 : 1 (v/v)); M.P. 111-114 °C; NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.04 (d, J = 7.26 Hz, 1H), 7.38-7.31 (m, 2H), 7.18-7.13 (m, 1H), 6.57 (s, 1H), 3.89 (s,

1H), 2.07 (s, 3H), 1.94 (s, 3H), 1.56 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 170.09, 169.88, 141.77, 134.36, 130.36, 125.05, 123.00, 117.81, 91.31, 78.27, 22.95, 20.90, 19.34. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₃H₁₅NNaO₄⁺ ([M + Na]⁺), 272.0893, found, 272.0898.

3-Methylindoline-2,2,3-triyl triacetate (13)

White solid (16 mg, 21 % yield); $R_f = 0.33$ (etroleum ether/ethyl acetate = 5 : 1 (v/v)); Disassociated at 105 °C. NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 8.14 (s, 1H), 7.56 (d, J = 7.53 Hz, 1H), 7.39-7.33 (m, 1H), 7.15-7.10 (m, 1H), 6.91 (s, 1H), 2.27 (s, 3H), 2.12 (s, 3H), 1.94 (s, 3H), 1.81 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, 25 °C, δ): 169.63, 168.86, 143.02, 130.80, 126.12, 124.14, 117.28, 88.70, 23.29, 21.97, 20.78, 17.13. Mass Spectrometry: HRMS (ESI-TOF) (m/z): calcd for C₁₁H₁₁NNaO₃⁺ ([M – 2-OAc + Na]⁺), 228.0631, found, 228.0630.

8. NMR Spectrum

¹H NMR (CDCl₃, 25 C) of **3a**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹H NMR (CDCl₃, 25 ºC) of **3i**

8.8.8.43 7.7.7.55 7.7.7.

¹H NMR (CDCl₃, 25 ^oC) of **3p**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹H NMR (CDCl₃, 25 ^oC) of **3t**

¹³C NMR (CDCl₃, 25 ºC) of **3u**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹H NMR (CDCl₃, 25 °C) of **3af**

S77

¹H NMR (CDCl₃, 25 C) of **4b**

S82

¹H NMR (CDCl₃, 25 ºC) of **4h**

S88

¹H NMR (CDCl₃, 25 ºC) of **4m**

¹H NMR (CDCl₃, 25 C) of **4p**

¹H NMR (CDCl₃, 25 ⁰C) of **4r**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm