ELECTRONIC SUPPORTING INFORMATION

Bis-borylated Arylisoquinoline-Derived Dyes with a Central Aromatic Core: Towards Efficient Fluorescent Singlet-Oxygen Photosensitizers

René Campos-González,^{‡a,b} Pablo Vázquez-Domínguez,^{‡c,d} Patricia Remón,^a Francisco Nájera,^{e,f} Daniel Collado,^{e,f} Ezequiel Pérez-Inestrosa,^{e,f} Francisco Boscá,^g Abel Ros^{*c} and Uwe Pischel^{*a}

- ^a CIQSO Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, 21071 Huelva, Spain. E-mail: uwe.pischel@diq.uhu.es
- ^b Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Cto. Exterior s/n, Coyoacán, 04510 Ciudad de México, México.
- ^c Institute for Chemical Research, CSIC-US, C/Américo Vespucio 49, 41092 Seville, Spain. E-mail: abel.ros@iiq.csic.es
- ^d Department of Organic Chemistry, Innovation Centre in Advanced Chemistry, ORFEO-CINQA, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
- ^e Department of Organic Chemistry, IBIMA, University of Málaga, Campus Teatinos s/n, 29071 Málaga, Spain.
- ^f Andalusian Centre for Nanomedicine and Biotechnology, BIONAND, Parque Tecnológico de Andalucía, 29590 Málaga, Spain.
- ^g Instituto de Tecnología Química, Universitat Politècnica de València Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain.

Table of Contents

1. Materials and methods	S3
2. Synthesis	S7
3. NMR spectra	S17
4. Calculation of intersystem crossing quantum yields	S41
5. Atomic coordinates for the optimized geometries of dyes 1–3	S42
6. Additional theoretical calculation data	S69
7. UV/vis absorption and fluorescence spectra of 1-3 in THF	S73
8. Photoreactivity of the dyes 1-3 in air-equilibrated toluene	S74
9. References	S76

1. Materials and methods

General information and materials

¹H and ¹³C NMR spectra were recorded in CDCl₃ at 400 MHz or 100 MHz, respectively, using the residual solvent signal as reference. ¹¹B NMR spectra were recorded with complete proton decoupling at 160 MHz, using BF₃×Et₂O (0.00 ppm for ¹¹B NMR) as standard. For the variable temperature NMR spectroscopy a Young's tap NMR tube was used. All chemical reactions were carried out in oven-dried Schlenk tubes under argon atmosphere, employing standard techniques. Anhydrous 1,4-dioxane was obtained by distillation, using an Na/benzophenone drying system. Other solvents such as toluene, methanol, isopropanol, and cyclohexane were used as received. Bis(pinacolate)diboron (B₂pin₂), pinacolborane (HBpin), and (Mes)₂BF were purchased from Frontier Scientific, Aldrich, and TCI, respectively, and used without further purification. [Ir(μ -OMe)(cod)]₂, [Pd(PPh₃)₄], and CuBr₂ were purchased from Aldrich. The starting diboronic esters **1A–3A** were synthesized according to procedures described in the literature.^{1, 2}

Photophysical measurements

All measurements were done at room temperature (25 °C) with dye solutions in spectroscopic-grade organic solvents (tetrahydrofuran, toluene). Quartz cuvettes with 1 cm optical pathlength were used. For the photochemical stability experiments a 150 W xenon lamp (Oriel GmbH & Co. KG) with a 395-nm optical long-pass filter was used. UV/vis absorption measurements were done with a CARY 5000 UV/Vis spectrophotometer (Agilent). The fluorescence spectra were recorded with a Varian Eclipse fluorimeter and corrected for the response of the

photomultiplier. The fluorescence quantum yields were determined with 4-amino-*N*-propyl-1,8-naphthalimide ($\Phi_{\rm f} = 0.48$ in acetonitrile) as reference.³ This reference was calibrated against quinine sulfate in 0.05 M sulfuric acid ($\Phi_{\rm f} = 0.55$).^{4, 5} Where indicated, the solutions were de-aerated by careful bubbling with inert gas during 10 minutes.

Time-correlated single-photon-counting (TCSPC) measurements were performed with an Edinburgh Instruments FLS 920 fluorimeter. As excitation light source a picosecond pulsed diode laser EPL-445 (output 442.2 nm, pulse width at FWHM: 78 ps) was employed. Fluorescence lifetimes were obtained by deconvolution analysis of the decay curves, taking into account the instrument response function.

The two-photon absorption (2PA) cross sections were determined by observation of the two-photon-excited (2PE) fluorescence on femtosecond pulsed excitation (MaiTai Ti:Sapphire HP laser; Spectra-Physics, Inc.) and with the aid of an inverted Leica SP5 AOBS MP confocal microscope. Dye solutions in toluene (15–17 μ M), contained in Suprasil quartz cells (2 mm optical pathlength), were excited at wavelengths between 730 nm and 1040 nm (10 nm steps) and the 2PE fluorescence was detected. Rhodamine 6G (in methanol) was used as reference.⁶ The 2PA cross sections were measured for laser excitation powers where two-photon absorption applied.

Nanosecond laser-flash photolysis experiments were done with a pulsed Nd:YAG laser (output at 355 nm, 10 ns pulse duration, 1–10 mJ/pulse). Beside the pulsed laser, the system included a pulsed xenon lamp as detecting light source, a monochromator, and a photomultiplier. The output signal from the oscilloscope was transferred to a personal computer. The measurements were done with toluene or acetonitrile solutions, contained in $10 \times 10 \text{ mm}^2$ quartz cells. When indicated, the

solutions were de-aerated by bubbling with nitrogen gas during 10 minutes. The experiments were carried out at room temperature (25 °C) and each measurement was done using freshly prepared solutions of the dyes. The bimolecular rate constant for the quenching of excited triplet state by oxygen was estimated with the Stern-Volmer equation ($\tau_0/\tau = 1 + k_q \tau_0[O_2]$) by comparing the lifetimes in the presence of oxygen in air-equilibrated solution ($[O_2] = 2 \times 10^{-3}$ M)⁷ and in the absence of oxygen.

The ${}^{1}O_{2}$ phosphorescence decay traces were registered at 1276 nm, employing a Peltier-cooled (-62.8 °C) Hamamatsu NIR detector. A pulsed Nd:YAG laser was used (output at 355 nm, 10 ns pulse duration, 5 mJ/pulse). All measurements were made with air-equilibrated toluene solutions of the dyes (OD_{355 nm} = 0.3) at room temperature (25 °C). The quantum yield for ${}^{1}O_{2}$ formation (Φ_{Δ}) was calculated using perinaphthenone as reference ($\Phi_{\Delta} = 0.97$ in toluene).⁸

Quantum-mechanical calculations

All calculations were done with the Gaussian 16 package.⁹ The geometrical parameters for the ground (S_0) and the excited (S_1) states have been determined with the density functional level of theory (DFT), employing the PBE0 functional^{10, 11} and the 6-31G(d,p) basis set. The absolute nature of the energetic minima was established by the absence of a negative frequency in the vibrational analysis. The linear-response (LR) approach was employed for computing the absorption and emission energies using the time-dependent density functional response theory (TD-DFT) with the same functional and basis set as used for the optimization of the S₀ and S₁ geometries and using the first ten excited states. The solvent effect was taken

into account by employing the polarizable-continuum model (PCM)¹² and toluene as solvent. The TPA cross sections were estimated at the TD-DFT/B3LYP/6-31G(d,p) level for the minimum ground-state geometries, using the software package Dalton 2018 with default parameters.^{13, 14}

2. Synthesis

General procedure for Suzuki coupling

Following a described procedure, a Schlenk tube was charged with the corresponding diboronic ester **1A–3A**, [Pd(PPh₃)₄] (6 mol%), and 1-chloroisoquinoline (2.6 equiv.). After three cycles of vacuum/nitrogen flushing, a deoxygenated toluene/methanol (2:1) mixture and Na₂CO₃ (2.6 equiv.) in water were added. The resulting reaction mixture was stirred at 90 °C for 18 hours, cooled to room temperature, diluted with CH₂Cl₂ (70 mL), and washed with H₂O (3×15 mL). The organic phase was dried over anhydrous MgSO₄, filtered, concentrated to dryness, and the crude product was purified by column chromatography, yielding **1B–3B**.

Synthesis of 1,5-di(isoquinolin-1-yl)naphthalene (1B). Following the general procedure starting from 1A (1.00 mmol, 380 mg) and using [Pd(PPh₃)₄] (6 mol%), 1-chloroisoquinoline (2.60 mmol, 425 mg), 9.5 mL of deoxygenated toluene/methanol (2:1) mixture and Na₂CO₃ (2.60 mmol, 276 mg) in 3.0 mL of H₂O. Flash chromatography on silica gel (cyclohexane/EtOAc 1:1 → 1:2) gave 267 mg (70%) of 1B as an amorphous pale brown solid. ¹H NMR (400 MHz, CDCl₃, 333 K): δ 8.75 (d, 2H, J = 5.7 Hz), 7.94 (d, 2H, J = 8.2 Hz), 7.77 (d, 2H, J = 5.7 Hz), 7.70 (t, 2H, J = 8.2 Hz), 7.65 (d, 2H, J = 8.5 Hz), 7.59–7.53 (m, 4H), 7.47–7.41 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃, 333 K): δ 160.8, 142.5, 137.6, 136.6, 132.7, 130.3, 128.6, 128.0,

127.7, 127.3, 127.0, 126.8, 125.6, 120.2 ppm. HRMS (ESI) calcd. for $C_{28}H_{19}N_2$ (M + H⁺) 383.1543. Found 383.1539.

Synthesis of 1,5-di(isoquinolin-1-yl)anthracene (2B). Following the general procedure starting from 2A (0.84 mmol, 360 mg) and using [Pd(PPh₃)₄] (6 mol%), 1- chloroisoquinoline (2.18 mmol, 356 mg), 8 mL of deoxygenated toluene/methanol (2:1) mixture and Na₂CO₃ (2.18 mmol, 231 mg) in 2.5 mL of H₂O. Flash chromatography on silica gel (toluene/EtOAc 2:1 → 1:1) gave 220 mg (61%) of 2B as a pale yellow amorphous solid. ¹H NMR (400 MHz, CDCl₃, 333 K): δ 8.78 (d, 2H, J = 5.7 Hz), 8.08 (s, 2H), 7.97 (d, 2H, J = 8.2 Hz), 7.83 (d, 2H, J = 9.5 Hz), 7.81 (d, 2H, J = 5.7 Hz), 7.72–7.65 (m, 4H), 7.53 (d, 2H, J = 5.7 Hz), 7.48 (m, 2H), 7.40 (t, 2H, J = 7.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃, 333 K): δ 160.5, 142.5, 137.0, 136.7, 132.1, 130.8, 130.1, 129.5, 128.5, 127.8, 127.4, 127.1, 126.8, 125.4, 124.5, 120.2 ppm. HRMS (ESI) calcd. for C₃₂H₂₁N₂ (M + H⁺) 433.1699. Found 433.1694.

Synthesis of 1,6-di(isoquinolin-1-yl)pyrene (3B). Following the general procedure starting from 3A (1.26 mmol, 570 mg) and using $[Pd(PPh_3)_4]$ (6 mol%), 1-chloroisoquinoline (3.28 mmol, 535 mg), 10 mL of deoxygenated toluene/methanol

(2:1) mixture and Na₂CO₃ (3.28 mmol, 348 mg) in 3.8 mL of H₂O. Flash chromatography on silica gel (toluene/EtOAc 3:1 \rightarrow 1:1) gave 460 mg (78%) of **3B** as a pale yellow amorphous solid. ¹H NMR (400 MHz, CDCl₃, 333 K) showed a ~1.1:0.9 mixture of rotamers: δ 8.80 (d, 2H, J = 5.6 Hz), 8.30 (d, 0.9H, J = 7.8 Hz), 8.29 (d, 1.1H, J = 7.8 Hz), 8.14 (d, 1.1H, J = 7.8 Hz), 8.13 (d, 0.9H, J = 7.8 Hz), 8.04–7.98 (m, 4H), 7.84 (d, 2H, J = 5.6 Hz), 7.76 (d, 1.1H, J = 9.2 Hz), 7.75 (d, 0.9H, J = 9.2 Hz), 7.72 (t, 2H, J = 7.8 Hz), 7.63 (d, 0.9H, J = 8.4 Hz), 7.62 (d, 1.1H, J = 8.4 Hz), 7.43 (t, 1.1H, J = 8.3 Hz), 7.41 (t, 0.9 H, J = 8.3 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃, 333 K): δ 160.7, 160.7, 142.5, 142.4, 136.5 (2×), 134.7, 134.6, 131.2, 130.3, 130.2, 129.9, 128.5, 128.0, 127.9 (2×), 127.4, 127.3, 127.0, 126.9, 125.6, 124.8 (2×), 120.3 ppm. HRMS (ESI) calcd. for C₃₄H₂₁N₂ (M + H⁺) 457.1699. Found 457.1692.

General procedure for C–H borylation/bromination

A dried Schlenk tube was charged with $[Ir(\mu-OMe)(cod)]_2$ (4 mol%, 13.3 mg), ligand (2-pyridinecarboxaldehyde *N*,*N*-dibenzylhydrazone, 8 mol%, 12 mg), B₂pin₂ (1.40 mmol, 356 mg), and **1B–3B** (0.500 mmol). After three cycles of vacuum/argon flushing, anhydrous 1,4-dioxane (5 mL) and HBpin (10 mol%, 8 µL) were added and the reaction mixture was stirred at 90–100 °C for 2–3 days (monitoring of the consumption of the starting materials by TLC analysis). Then the reaction mixture was dissolved in an ⁱPrOH/MeOH 2:3 mixture (9 mL) and treated with a solution of CuBr₂ (3.00 mmol, 676 mg in 3 mL H₂O). The mixture was stirred overnight at 90 °C, subsequently cooled to room temperature, diluted with CH₂Cl₂ (40 mL), and finally washed with aqueous NH₃ solution (30%) to remove the copper salts. The organic phase was dried over anhydrous MgSO₄, filtered, concentrated to dryness, and the crude product was purified by column chromatography, yielding **1C–3C**. Both *meso* and *rac* diastereomers could be separated by column chromatography, but they could not be differentiated by NMR spectroscopy due to the fact that both are symmetric. Herein the isomers are referred to **D1** (higher R_f) and **D2** (lower R_f).

Synthesis of 1,1'-(2,6-dibromonaphthalene-1,5-diyl)diisoquinoline (1C). Following the general procedure starting from 1B (0.500 mmol, 191 mg), flash chromatography on silica gel (*n*-hexane/EtOAc 1:1 \rightarrow 1:2) gave 65 mg of impure 1C.D1 and 83 mg 1C.D2, contaminated with a ~30% of the monobrominated product. Considering these impurities (the impurity for 1C.D1 isomer is unknown), we can estimate ~15% yield for 1C.D1 and ~22% yield for 1C.D2.

NMR data for **1C.D1** (low solubility in CDCl₃): ¹H NMR (400 MHz, CDCl₃, 298 K): δ 8.79 (d, 2H, J = 5.6 Hz), 7.99 (d, 2H, J = 8.2 Hz), 7.85 (d, 2H, J = 5.6 Hz), 7.76–7.72 (m, 4H), 7.59 (d, 2H, J = 8.9 Hz), 7.51–7.41 (m, 2H), 7.07 (d, 2H, J = 8.9 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 158.9, 142.6, 137.1, 136.4, 132.9, 131.3, 130.7, 128.2, 128.0, 127.1, 126.7, 122.3, 121.0, ppm. Some carbons are missing. HRMS (ESI) calcd. for C₂₈H₁₇Br₂N₂ (M + H⁺) 538.9753 (⁷⁹Br), 540.9733 (⁸¹Br). Found 538.9745, 540.9723.

NMR data for **1C.D2**: ¹H NMR (400 MHz, CDCl₃, 298 K): δ 8.79 (d, 2H, *J* = 5.7 Hz), 7.99 (d, 2H, *J* = 8.2 Hz), 7.84 (d, 2H, *J* = 5.7 Hz), 7.76–7.72 (m, 2H), 7.58 (d, 2H, *J* = 9.0 Hz), 7.51–7.41 (m, 4H), 7.09 (d, 2H, J = 9.0 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 158.7, 142.8, 137.2, 136.4, 132.8, 131.2, 130.5, 130.3, 128.0, 127.8, 127.2, 127.0, 126.9, 126.6, 122.2, 120.9 ppm. HRMS (ESI) calcd. for C₂₈H₁₇Br₂N₂ (M + H⁺) 538.9753 (⁷⁹Br), 540.9733 (⁸¹Br). Found 538.9749, 540.9728.

Synthesis of 1,1'-(2,6-dibromoanthracene-1,5-diyl)diisoquinoline (2C). Following the general procedure starting from 2B (0.500 mmol, 216 mg), flash chromatography on silica gel (toluene/EtOAc 4:1 \rightarrow 1:1) gave 68 mg (23%) of the first isomer 2C.D1 and 83 mg (28%) of the second isomer 2C.D2.

NMR data for **2C.D1** (low solubility in CDCl₃): ¹H NMR (400 MHz, CDCl₃, 298 K): δ 8.81 (d, 2H, J = 5.7 Hz), 8.01 (d, 2H, J = 8.3 Hz), 7.89 (d, 2H, J = 5.7 Hz), 7.74 (ddd, J = 8.1, 6.3 and 1.6 Hz, 2H), 7.67 (s, 2H), 7.66 (d, 2H, J = 9.1 Hz), 7.62 (d, 2H, J = 9.1 Hz), 7.48–7.41 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 159.1, 142.7, 136.5, 136.4, 131.9, 130.9, 130.6 (2x), 130.0, 127.9, 127.8, 127.1, 126.8, 125.6, 122.0, 121.0 ppm. HRMS (ESI) calcd. for C₃₂H₁₉Br₂N₂ (M + H⁺) 588.9910 (⁷⁹Br), 590.9889 (⁸¹Br). Found 588.9902, 590.9884.

NMR data for **2C.D2**: ¹H NMR (400 MHz, CDCl₃, 298 K): δ 8.83 (d, 2H, *J* = 5.8 Hz), 8.01 (d, 2H, *J* = 8.3 Hz), 7.89 (d, 2H, *J* = 5.8 Hz), 7.74–7.70 (m, 4H), 7.68 (d, 2H, *J* = 9.1 Hz), 7.62 (d, 2H, *J* = 9.1 Hz), 7.46–7.40 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 159.0, 142.8, 136.5, 136.3, 131.9, 130.8, 130.6, 130.5, 130.0, 127.8, 127.7, 127.2, 126.7, 125.5, 122.1, 120.9 ppm. HRMS (ESI) calcd. for $C_{32}H_{19}Br_2N_2$ (M + H⁺) 588.9910 (⁷⁹Br), 590.9889 (⁸¹Br). Found 588.9904, 590.9884.

Synthesis of 1,1'-(2,7-dibromopyrene-1,6-diyl)diisoquinoline (3C). Following the general procedure starting from 3B (0.500 mmol, 241 mg), flash chromatography on silica gel (*n*-hexane/EtOAc 2:1) gave 115 mg (37%) of the first isomer 3C.D1 and 130 mg (42%) of the second isomer 3C.D2.

NMR data for **1C.D1**: ¹H NMR (400 MHz, CDCl₃, 298 K): δ 8.83 (d, 2H, J = 5.7 Hz), 8.51 (s, 2H), 8.02 (d, 2H, J = 8.3 Hz), 7.91 (d, 2H, J = 8.9 Hz), 7.89 (d, 2H, J = 5.7 Hz), 7.74 (t, 2H, J = 8.0 Hz), 7.48–7.38 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 159.4, 142.6, 136.4, 135.1, 132.0, 131.7, 130.6, 128.9, 128.3, 127.9, 127.8, 127.1, 127.0, 126.6, 123.4, 122.1, 121.0 ppm. HRMS (ESI) calcd. for C₃₄H₁₉Br₂N₂ (M + H⁺) 612.9910 (⁷⁹Br), 614.9989 (⁸¹Br). Found 612.9904, 614.9883.

NMR data for **1C.D2**: ¹H NMR (400 MHz, CDCl₃, 298 K): δ 8.83 (d, 2H, *J* = 5.7 Hz), 8.52 (s, 2H), 8.02 (d, 2H, *J* = 8.3 Hz), 7.91 (d, 2H, *J* = 9.6 Hz), 7.90 (d, 2H, *J* = 5.7 Hz), 7.74 (t, 2H, *J* = 8.3 Hz), 7.44–7.40 (m, 4H), 7.36 (d, 2H, *J* = 8.3Hz) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 159.4, 142.6, 136.4, 135.0, 131.9, 131.7, 130.5, 129.0, 128.3, 127.9, 127.7, 127.2, 126.8, 126.6, 123.4, 122.1, 120.9 ppm. HRMS (ESI) calcd. for $C_{34}H_{19}Br_2N_2$ (M + H⁺) 612.9910 (⁷⁹Br), 614.9889 (⁸¹Br). Found 612.9901, 614.9881.

General procedure for lithiation/borylation

A dried Schlenk tube was charged with the second isomer **1C–3C.D2** (1 eq.) and after three cycles of vacuum/argon flushing, dry THF (4 mL/0.1 mmol substrate) was added. The reaction mixture was cooled to -78 °C, then *n*-BuLi (1.6 M in hexane, 2.4 eq.) was added dropwise, and the resulting solution was stirred at this temperature for one hour. Then, Mes₂BF (3 eq.) was added at -78 °C under Schlenk conditions and the resulting mixture was stirred at this temperature for 15 minutes and then at room temperature overnight. The reaction was quenched with water and the mixture was extracted with CH₂Cl₂. The combined organic phase was dried over anhydrous MgSO₄, filtered, concentrated to dryness, and the crude product was purified by column chromatography (*n*-hexane/CH₂Cl₂ or cyclohexane/toluene as eluent mixtures), yielding the target dyes **1–3**.

Synthesis
of
13,13,29,29-Tetrakis(mesityl)-12,28-diaza-13,29

diboraoctacyclo[15.15.0.0^{2,14}.0^{3,12}.0^{4,9}.0^{18,30}.0^{19,28}.0^{20,25}]dotriaconta

1,3,5,7,9,11,14,18(30),19,21,23,25,27,31-tetradecaene-12,28-diiume-13,29-diuide (1). Following the general procedure starting from 1C.D2 (0.05 mmol, 27 mg), flash chromatography on silica gel (*n*-hexane/CH₂Cl₂ 10:1 \rightarrow CH₂Cl₂) gave 1 (20 mg, 46%) as an amorphous light yellow solid. M.p. > 250 °C. ¹H NMR (400 MHz, CDCl₃, 298 K): δ 8.88 (d, 2H, J = 8.6 Hz, H₆), 8.54 (d, 2H, J = 6.5 Hz, H₁), 8.10 (d, 2H, J = 8.3 Hz, H₈), 7.92–7.83 (m, 4H, H₄ and H₃), 7.80 (d, 2H, J = 8.4 Hz, H₇), 7.68 (t, 2H, J = 7.8 Hz, H₅), 7.54 (d, 2H, J = 6.5 Hz, H₂), 6.83 (br s, 2H, H₁₀), 6.72 (br s, 2H, H₁₀), 6.59 (br s, 2H, H₁₀), 6.39 (br s, 2H, H₁₀), 2.25–2.21 (br s, 18H, H₁₁ and H₉), 2.10 (br s, 6H, H₉), 1.78 (br s, 6H, H₉), 1.52 (br s, 6H, H₉) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 171.3, 160.5, 145.0, 143.6, 142.4, 142.1, 141.9, 137.8, 137.5 (C₁), 134.5, 133.4, 132.6 (C₄), 131.4, 130.1 (br), 130.1, 129.7 (C₆), 129.0, 128.9 (C₈), 128.2 (C₇), 127.5 (C₅), 127.1 (C₃), 124.3, 119.5 (C₂), 26.9 (br, C₉), 25.5 (br, C₉), 23.5 (br, C₉), 20.8 (C₁₁), 20.7 (C₁₁), (*C*–B and some *C_{quat}* were not observed) ppm. ¹¹B NMR (128 MHz, CDCl₃, 298 K): δ 6.2 (br s) ppm. HRMS (ESI) calcd. for C₆₄H₆₁B₂N₂ (M + H⁺) 879.5015. Found 879.5016.

Synthesis
of
15,15,33,33-Tetrakis(mesityl)-14,32-diaza-15,33

diboranonacyclo[19.15.0.0^{3,19}.0^{4,16}.0^{5,14}.0^{6,11}.0^{22,34}.0^{23,32}.0^{24,29}]hexatriaconta

1,3,5,7,9,11,13,16,18,20,22(34),23,25,27,29,31,35-heptadecaene-14,32-diiume-15,33diuide (2). Following the general procedure starting from **2C.D2** (0.1 mmol, 59 mg), flash chromatography on silica gel (cyclohexane/toluene 2:1→1:1) gave **2** (34 mg, 37%) as an amorphous orange solid. M.p. > 250 °C. ¹H NMR (400 MHz, CDCl₃, 343 K): δ 8.95 (d, 2H, J = 8.6 Hz, H₆), 8.68 (s, 2H, H₉), 8.51 (d, 2H, J = 6.6 Hz, H₁), 7.96 (d, 2H, J = 7.8 Hz, H₈), 7.88 (d, 2H, J = 8.0 Hz, H₃), 7.85 (t, 2H, J = 7.9 Hz, H₄), 7.68–7.61 (m, 4H, H₅ and H₇), 7.46 (d, 2H, J = 6.6 Hz, H₂), 6.62 (br s, 8H, H₁₁), 2.16 (s, 12H, H₁₂), 1.97 (br s, 24H, H₁₀) ppm. ¹³C NMR (100 MHz, CDCl₃, 343 K): δ 175.6, 161.0, 143.9 (br), 141.1 (br), 140.9 (br), 138.0, 137.3 (C₁), 134.1, 132.6 (C₄), 132.0 (C₇), 131.4, 129.8 (C₁₁), 129.5 (C₆), 129.4 (C₈), 128.4, 127.2, 127.1 (C₃), 126.9 (C₅), 124.4, 123.9 (C₉), 118.9 (C₂), 24.9 (br, C₁₀), 20.5 (C₁₂), (*C*–B and some *C_{quat}* were not observed) ppm. ¹¹B NMR (128 MHz, CDCl₃, 343 K): δ 6.1 (br) ppm. HRMS (ESI) calcd. for C₆₈H₆₃B₂N₂ (M + H⁺) 929.5172. Found 929.5173.

Synthesis
of
13,13,31,31-Tetrakis(mesityl)-12,30-diaza-13,31

diboradecacyclo[17.17.2.0^{2,14}.0^{3,12}.0^{4,9}.0^{16,37}.0^{20,32}.0^{21,30}.0^{22,27}.0^{34,38}]octatriaconta

1(37),2(14),3,5,7,9,11,15,17,19,21,23,25,27,29,32,34(38),35-octadecaene-12,30

diiume-13,31-diuide (3). Following the general procedure starting from 3C.D2 (0.1 mmol, 61 mg), flash chromatography on silica gel (cyclohexane/toluene 3:2) gave 3 (28 mg, 30%) as an amorphous orange solid. M.p. > 250 °C. ¹H NMR (400 MHz, CDCl₃, 343 K): δ 8.78 (d, 2H, J = 8.6 Hz, H₆), 8.62 (d, 2H, J = 6.5 Hz, H₁), 8.60 (s, 2H, H₇), 8.42 (d, 2H, J = 9.2 Hz, H₈), 7.97 (d, 2H, J = 9.2 Hz, H₉), 7.89–7.82 (m, 4H, H₄ and H₃), 7.66 (t, 2H, J = 7.9 Hz, H₅), 7.55 (d, 2H, J = 6.5 Hz, H₂), 6.62 (br s, 8H, H₁₁), 2.15 (br s, 12H, H₁₂), 1.98 (br s, 24H, H₁₀) ppm. ¹³C NMR (100 MHz, CDCl₃, 343 K): δ 167.7, 160.7, 145.2, 140.9, 137.9, 137.6 (C₁), 133.9, 132.6 (C₄), 131.1, 129.9 (C₆), 129.8 (C₁₁),

127.9 (C₇), 127.9 (C₉), 127.5 (C₅), 127.3, 126.9 (C₃), 126.2 (C₈), 124.8, 124.5, 119.9 (C₂), 25.1 (br, C₁₀), 20.5 (C₁₂), (*C*–B and some C_{quat} were not observed) ppm. ¹¹B NMR (128 MHz, CDCl₃, 343 K): δ 6.0 (br s) ppm. HRMS (ESI) calcd. for C₇₀H₆₃B₂N₂ (M + H⁺) 953.5172. Found 953.5175.

3. NMR spectra

Figure S1. ¹H NMR spectrum (400 MHz, CDCl₃, 333 K) of 1B.

Figure S2. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl₃, 333 K) of 1B.

Figure S3. HRMS of 1B.

Figure S4. ¹H NMR spectrum (400 MHz, CDCl₃, 333 K) of 2B.

Figure S5. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃, 333 K) of **2B**.

Figure S6. HRMS of 2B.

Figure S7. ¹H NMR spectrum (400 MHz, CDCl₃, 333 K) of **3B**.

Figure S8. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl₃, 333 K) of **3B**.

Figure S10. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of **1C.D1**. (* denotes traces of unknown impurities).

Figure S11. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃, 298 K) of **1C.D1**.

Figure S12. HRMS of 1C.D1.

Figure S13. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of **1C.D2**. (* denotes traces of monobrominated compound.)

Figure S14. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl₃, 298 K) of 1C.D2.

Figure S15. HRMS of 1C.D2.

Figure S16. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of **2C.D1**.

Figure S17. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃, 298 K) of 2C.D1.

Figure S18. HRMS of 2C.D1.

Figure S19. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of **2C.D2**.

Figure S20. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃, 298 K) of **2C.D2**.

Figure S21. HRMS of 2C.D2.

Figure S22. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of **3C.D1**.

Figure S23. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃, 298 K) of 3C.D1.

Figure S24. HRMS of 3C.D1.

Figure S25. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of **3C.D2**.

Figure S26. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃, 298 K) of **3C.D2**.

Figure S27. HRMS of 3C.D2.

Figure S28. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 1.

Figure S29. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃, 298 K) of 1.

Figure S30. COSY spectrum (100 MHz, CDCl₃, 298 K) of 1.

Figure S31. HSQC-edited spectrum (100 MHz, CDCl₃, 273 K) of 1.

Figure S32. HSQC-edited spectrum (100 MHz, CDCl₃, 273 K) of 1.

Figure S33. HRMS of 1.

Figure S34. ¹H NMR spectrum (400 MHz, CDCl₃, 343 K) of **2**.

Figure S35. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃, 343 K) of **2**.

Figure S36. COSY spectrum (100 MHz, CDCl₃, 343 K) of 2.

Figure S37. HSQC-edited spectrum (100 MHz, CDCl₃, 343 K) of 2.

Figure S38. HSQC-edited spectrum (100 MHz, CDCl₃, 343 K) of 2.

Figure S39. HRMS of 2.

Figure S40. ¹H NMR spectrum (400 MHz, CDCl₃, 343 K) of **3**.

Figure S41. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl₃, 343 K) of **3**.

Figure S42. COSY spectrum (400 MHz, CDCl₃, 343 K) of 3.

Figure S43. HSQC-edited spectrum (100 MHz, CDCl₃, 343 K) of 3.

Figure S44. HSQC-edited spectrum (100 MHz, CDCl₃, 343 K) of 3.

Figure S45. HRMS of 3.

Figure S46. a) Comparison of the ¹H NMR spectra of the diboranes **1–3** at 298 K. b) ¹H NMR spectra at variable temperature for dye **3**. All in CDCl₃ as solvent.

4. Calculation of intersystem crossing quantum yields

The molar absorption coefficients of the dyes' triplet states were estimated by the energy-transfer method, using benzophenone (BP) as triplet energy donor [optical density - OD; $OD_{355 nm}(BP) > 3$ and [dye] *ca*. 20–40 µM in N₂-saturated acetonitrile]. Toluene could not be used for this experiment, due to the interception of photoinduced hydrogen transfer.¹⁵ The molar absorption coefficient of the excited triplet state of each dye was determined with equation (1).¹⁶

$$\varepsilon(^{3} dye^{*})_{\lambda} = \Delta A(^{3} dye^{*})_{\lambda} \times \varepsilon(^{3} BP^{*})_{525 \text{ nm}} / (\Delta A(^{3} BP^{*})_{525 \text{ nm}} \times (k_{2} - k_{1}/k_{2}))$$
(1)

 $\Delta A({}^{3}\text{BP*})_{525 \text{ nm}}$ is the absorbance change of ${}^{3}\text{BP*}$ at 525 nm, immediately after the laser flash, and k_{1} is the decay rate constant of ${}^{3}\text{BP*}$ in the absence of dye. $\Delta A({}^{3}\text{dye*})_{\lambda}$ corresponds to the absorbance change of ${}^{3}\text{dye*}$ at the observation wavelength λ and k_{2} is the decay rate constant of ${}^{3}\text{BP*}$ in the presence of dye. The molar absorption coefficient $\varepsilon({}^{3}\text{BP*})_{525 \text{ nm}}$ in acetonitrile was taken as 6500 M⁻¹cm⁻ 1 17

The intersystem crossing (ISC) quantum yields (Φ_{ISC}) of the dyes in toluene were obtained by a comparative method (see equation 2),¹⁶ assuming that the molar absorption coefficient of their excited triplet states has comparable values in acetonitrile and in toluene. Toluene solutions of each dye and acetonitrile solutions of BP, as reference, were used (OD_{355 nm} = 0.3).

$$\Phi_{\rm ISC}(\rm dye) = \Phi_{\rm ISC}(\rm BP) \times \Delta A(^{3}\rm dye^{*})_{\lambda} \times \varepsilon(^{3}\rm BP^{*})_{525 \text{ nm}} / (\Delta A(^{3}\rm BP^{*})_{525 \text{ nm}} \times \varepsilon(^{3}\rm dye^{*})_{\lambda}) (2)$$

5. Atomic coordinates for the optimized geometries of dyes 1–3

Atomic coordinates for the optimized ground state (S_0) of compound 1 at

Energy (Hartrees)	-2631.2757	30	
Imaginary freq.	0		
Point group	Ci		
0	Coord	inates (Angs	troms)
Atom type	Х	Ŷ	Z
С	2.534924	-0.218877	0.409755
С	1.723590	0.686366	-0.283126
С	0.305053	0.513271	-0.392978
С	-0.305053	-0.513271	0.392978
С	0.520767	-1.258954	1.274141
С	1.890618	-1.169979	1.229291
Н	-0.060725	1.939323	-1.981837
С	-0.520767	1.258954	-1.274141
С	-1.723590	-0.686366	0.283126
Н	0.060725	-1.939323	1.981837
Н	2.475962	-1.832624	1.858617
С	-2.534924	0.218877	-0.409755
Ċ	-1.890618	1.169979	-1.229291
Н	-2.475962	1.832624	-1.858617
С	-2.578480	-1.708887	0.882736
Ċ	-2.298761	-3.072440	1.227190
Ċ	-1.126497	-3.753349	0.816851
Ċ	-3.307431	-3.809881	1.914364
Ċ	-4.818475	-1.981039	1.568301
С	-0.921291	-5.067584	1.165215
Н	-0.398394	-3.242159	0.199151
C	-3.051800	-5.146851	2.296004
С	-4.574244	-3.205326	2.112063
H	-5.801018	-1.529393	1.575535
С	-1.874837	-5.759775	1.939031
Н	-0.022549	-5.577148	0.832604
Н	-3.816337	-5.689108	2.844810
Н	-5.367567	-3.746407	2.615843
Н	-1.691060	-6.791467	2.223700
C	2.578480	1.708887	-0.882736
Ċ	2.298761	3.072440	-1.227190
Ċ	1.126497	3.753349	-0.816851
Ċ	3.307431	3.809881	-1.914364
Č	4.818475	1.981039	-1.568301
Č	0.921291	5.067584	-1.165215
Ĥ	0.398394	3.242159	-0.199151
C	3.051800	5.146851	-2.296004
Č	4.574244	3.205326	-2.112063
H	5.801018	1.529393	-1.575535

С	1.874837	5.759775	-1.939031
Н	0.022549	5.577148	-0.832604
Н	3.816337	5.689108	-2.844810
Н	5.367567	3.746407	-2.615843
Н	1.691060	6.791467	-2.223700
Ν	3.838647	1.250830	-0.976686
Ν	-3.838647	-1.250830	0.976686
В	4.077102	-0.086617	-0.075379
В	-4.077102	0.086617	0.075379
С	5.316553	0.371628	0.904022
С	6.669678	0.130476	0.552484
С	5.092412	1.098712	2.102703
Ċ	7.710346	0.545369	1.392681
С	6.157747	1.484327	2.919149
С	7.482186	1.206273	2.593091
Н	8.736736	0.341720	1.089710
Н	5.943285	2.034297	3.834354
C	-5.316553	-0.371628	-0.904022
Č	-6.669678	-0.130476	-0.552484
Ċ	-5.092412	-1.098712	-2.102703
Ċ	-7.710346	-0.545369	-1.392681
Ċ	-6.157747	-1.484327	-2.919149
Ċ	-7.482186	-1.206273	-2.593091
H	-8.736736	-0.341720	-1.089710
Н	-5.943285	-2.034297	-3.834354
С	4.277615	-1.516280	-0.873079
С	4.682445	-2.647993	-0.119436
С	3.956348	-1.743870	-2.235662
С	4.807226	-3.903374	-0.722608
С	4.104960	-3.012801	-2.802920
С	4.541307	-4.112380	-2.070813
Н	5.124229	-4.746098	-0.108873
Н	3.855366	-3.145252	-3.854772
С	-4.277615	1.516280	0.873079
С	-4.682445	2.647993	0.119436
С	-3.956348	1.743870	2.235662
С	-4.807226	3.903374	0.722608
С	-4.104960	3.012801	2.802920
С	-4.541307	4.112380	2.070813
Н	-5.124229	4.746098	0.108873
Н	-3.855366	3.145252	3.854772
С	3.717888	1.513912	2.563204
Н	3.186449	2.095241	1.803596
Н	3.081104	0.656939	2.801235
Н	3.789912	2.134906	3.460723
С	-3.717888	-1.513912	-2.563204
Н	-3.081104	-0.656939	-2.801235
Н	-3.186449	-2.095241	-1.803596
Н	-3.789912	-2.134906	-3.460723
С	7.115066	-0.583859	-0.705626

Н	7.166714	-1.668111	-0.556162
Н	6.449347	-0.438852	-1.557486
Н	8.116397	-0.245434	-0.990822
С	-7.115066	0.583859	0.705626
Н	-6.449347	0.438852	1.557486
Н	-7.166714	1.668111	0.556162
Н	-8.116397	0.245434	0.990822
С	8.611987	1.604249	3.500608
Н	8.760799	0.863592	4.295804
Н	9.555059	1.687326	2.952694
Н	8.415347	2.564165	3.988136
С	-8.611987	-1.604249	-3.500608
Н	-9.555059	-1.687326	-2.952694
Н	-8.760799	-0.863592	-4.295804
Н	-8.415347	-2.564165	-3.988136
С	5.039940	-2.603231	1.349664
Н	4.783182	-3.554563	1.827293
Н	6.116171	-2.448685	1.491819
Н	4.549664	-1.799513	1.897228
С	-5.039940	2.603231	-1.349664
Н	-6.116171	2.448685	-1.491819
Н	-4.783182	3.554563	-1.827293
Н	-4.549664	1.799513	-1.897228
С	3.426233	-0.671314	-3.155060
Н	2.505811	-0.222030	-2.769166
Н	4.141704	0.140957	-3.316095
Н	3.194142	-1.096956	-4.135203
С	-3.426233	0.671314	3.155060
Н	-4.141704	-0.140957	3.316095
Н	-2.505811	0.222030	2.769166
Н	-3.194142	1.096956	4.135203
С	4.721749	-5.460343	-2.710517
Н	3.995904	-5.623652	-3.513040
Н	5.720437	-5.559951	-3.153309
Н	4.609534	-6.267754	-1.980765
С	-4.721749	5.460343	2.710517
Н	-5.720437	5.559951	3.153309
Н	-3.995904	5.623652	3.513040
Н	-4.609534	6.267754	1.980765

Atomic coordinates for the optimized excited state (S_1) of compound 1 at

Energy (Hartrees)	-2631.1785	72	
Imaginary freq.	0		
Point group	C1		
	Coord	inates (Angs	troms)
Atom type	Х	Y	Z
С	2.465397	-0.153863	0.410633
С	1.647117	0.713433	-0.333467
С	0.228228	0.515680	-0.452328
С	-0.368127	-0.500637	0.372940
С	0.461576	-1.191678	1.288543
С	1.832236	-1.076741	1.265828
Н	-0.166823	1.873287	-2.091743
С	-0.603526	1.210982	-1.354033
С	-1.780883	-0.729831	0.280403
Н	-0.001136	-1.858464	2.007711
Н	2.420352	-1.699930	1.931427
С	-2.605994	0.166141	-0.445577
Ċ	-1.984823	1.088401	-1.288721
H	-2.577927	1.716939	-1.946840
C	-2.581195	-1.788435	0.855953
Č	-2.264851	-3.146870	1,198087
Č	-1.045116	-3.786714	0.876627
Č	-3280357	-3944377	1 820961
Č	-4 876697	-2 195021	1 359075
C	-0 791823	-5.092586	1 263162
H	-0.298259	-3.254576	0.300530
C	-2.989294	-5.256430	2.222248
Č	-4.602.697	-3.403137	1.924670
H	-5.891464	-1.822743	1.279545
C	-1.750033	-5.827024	1.9682.57
H	0.159968	-5.546907	1.003154
H	-3.769406	-5.833131	2.712730
H	-5404810	$-4\ 004459$	2 337984
Н	-1539863	-6 844298	2 284305
C	2 495864	1 716765	-0.962523
C	2 209508	3 062590	-1.379983
C	1 024244	3 748788	-1.023397
C	3 222539	3 781417	-2.079401
C	4 749019	1 993764	-1.618836
C	0.812006	5 045649	-1430092
н	0.285228	3 247938	-0.410264
C II	2 960786	5.098135	-2522577
C	4 501680	3 186602	_2.322377
н	5 737433	1 555844	_1 585318
C	1 772502	5 715609	_2 213496
н	-0.099926	5.558278	-1.139847
**	J.J.J.J.L.J	2.220210	1.10/014

Н	3.730370	5.623635	-3.080757
Н	5.297868	3.714868	-2.739463
Н	1.584666	6.732068	-2.546587
Ν	3.769581	1.278939	-1.011033
Ν	-3.916455	-1.397148	0.845596
В	4.011034	-0.014150	-0.056413
В	-4.160875	-0.062121	0.044176
С	5.227160	0.498822	0.928185
С	6.590714	0.261733	0.615827
С	4.969883	1.274872	2.089011
Ċ	7.608242	0.725837	1.458878
Č	6.012697	1.710553	2.909445
Č	7.347023	1.434945	2.624387
Ĥ	8 643270	0 522955	1 185986
Н	5 771985	2 297325	3 794929
C	-5420387	-0.347896	-0.968261
C	-6 751747	-0.036621	-0.601841
C C	5 233751	1 028759	2 107000
C C	7 817860	0.335600	1 / 58/80
C C	6 3212/3	1 3016/3	3 030007
C C	-0.321243	-1.301043	-3.030007
С u	-7.023010	-0.946301	-2.091730 1 1/2620
п	-0.030044	-0.067633	-1.143039
п	-0.141/32	-1.823/33	-3.908/43
C C	4.249107	-1.408180	-0.799703
C	4.0031/3	-2.3001//	-0.002024
C	3.953430	-1./48/82	-2.158498
C	4.823/54	-3.83/996	-0.560043
C	4.136994	-3.032920	-2.6/9633
C	4.584215	-4.09/811	-1.904372
H	5.145510	-4.653286	0.08/402
H	3.904726	-3.206480	-3.729489
C	-4.301063	1.304983	0.940383
С	-4.483620	2.563903	0.224667
С	-4.007619	1.410201	2.358271
С	-4.172389	3.762759	0.832953
С	-3.718244	2.639293	2.916082
С	-3.765469	3.833844	2.174905
Н	-4.259252	4.684816	0.263998
Н	-3.447588	2.692088	3.967397
С	3.581069	1.694345	2.500649
Н	3.062373	2.235791	1.703558
Н	2.947674	0.841132	2.759637
Η	3.627114	2.354445	3.371891
С	-3.884338	-1.524732	-2.649021
Н	-3.205348	-0.707215	-2.908151
Н	-3.386618	-2.104754	-1.866621
Н	-3.989356	-2.167058	-3.528085
С	7.072695	-0.495751	-0.603014
Н	7.140161	-1.571900	-0.408299
Н	6.420671	-0.397677	-1.471836

Η	8.073460	-0.151139	-0.883123
С	-7.125851	0.612363	0.711763
Η	-6.518606	0.259384	1.550439
Η	-7.027788	1.704473	0.686182
Η	-8.169815	0.396976	0.959177
С	8.452534	1.884812	3.537697
Η	8.601965	1.173523	4.359230
Н	9.403561	1.968820	3.003683
Н	8.228838	2.856044	3.989981
С	-8.774694	-1.226069	-3.619527
Η	-9.730439	-1.212129	-3.088015
Η	-8.831424	-0.474581	-4.416388
Н	-8.669762	-2.201188	-4.105290
С	4.991974	-2.466480	1.471043
Н	4.729639	-3.401235	1.977478
Η	6.064721	-2.301754	1.628265
Η	4.486584	-1.646592	1.978964
С	-4.989873	2.631062	-1.185673
Н	-6.082326	2.545650	-1.205208
Н	-4.721068	3.587681	-1.640570
Н	-4.626577	1.814820	-1.808334
С	3.411132	-0.722021	-3.122404
Н	2.478288	-0.278282	-2.761155
Н	4.111285	0.098216	-3.308671
Н	3.196488	-1.189835	-4.087269
С	-3.968548	0.223233	3.274639
Н	-4.890507	-0.362682	3.231663
Н	-3.153535	-0.455945	3.014625
Н	-3.823942	0.552384	4.306151
С	4.800493	-5.462995	-2.494419
Η	4.100124	-5.661682	-3.311420
Н	5.813007	-5.563820	-2.904642
Η	4.676496	-6.247864	-1.742283
С	-3.402998	5.134643	2.803432
Н	-3.699812	5.169255	3.855184
Н	-2.312549	5.264355	2.776657
Н	-3.847112	5.980613	2.274178

Atomic coordinates for the optimized ground state (S_0) of compound 2 at

Energy (Hartrees)	-2784.7439	49	
Imaginary freq.	0		
Point group	Ci		
	Coord	linates (Angs	troms)
Atom type	Х	Y	Ζ
С	-0.304815	-0.601674	-3.702142
С	0.563093	0.044787	-2.822144
С	0.336394	0.048553	-1.396867
С	-0.655539	-0.860120	-0.892653
С	-1.420343	-1.637479	-1.812316
С	-1.305025	-1.456551	-3.161042
С	0.935499	0.911825	-0.477240
С	-0.935499	-0.911825	0.477240
С	-0.336394	-0.048553	1.396867
С	0.655539	0.860120	0.892653
С	1.420343	1.637479	1.812316
Н	2.159248	2.326803	1.410145
С	1.305025	1.456551	3.161042
Ċ	0.304815	0.601674	3.702142
Ċ	-0.563093	-0.044787	2.822144
H	1.655393	1.650583	-0.812253
H	-2.159248	-2.326803	-1.410145
H	-1.979931	-1.984734	-3.825939
H	-1.655393	-1.650583	0.812253
H	1.979931	1.984734	3.825939
C	-1.585993	-0.739786	3.594218
С	-2.916654	-1.133394	3.230871
С	-3.560636	-0.694946	2.048609
С	-3.664243	-1.910418	4.163409
С	-1.922094	-1.571784	5.775748
С	-4.844081	-1.095342	1.758907
Н	-3.046294	-0.014701	1.381110
С	-4.966921	-2.340509	3.822219
С	-3.108959	-2.151617	5.445416
Н	-1.513104	-1.619933	6.775479
С	-5.541025	-1.950804	2.635965
Н	-5.326532	-0.741027	0.853439
Н	-5.516229	-2.955430	4.529283
Н	-3.660623	-2.723425	6.183314
Н	-6.547076	-2.274629	2.386608
С	1.585993	0.739786	-3.594218
С	2.916654	1.133394	-3.230871
С	3.560636	0.694946	-2.048609
Ē	3.664243	1.910418	-4.163409
С	1.922094	1.571784	-5.775748
С	4.844081	1.095342	-1.758907

Н	3.046294	0.014701	-1.381110
С	4.966921	2.340509	-3.822219
С	3.108959	2.151617	-5.445416
Н	1.513104	1.619933	-6.775479
С	5.541025	1.950804	-2.635965
Н	5.326532	0.741027	-0.853439
Н	5.516229	2.955430	-4.529283
Н	3.660623	2.723425	-6.183314
Н	6.547076	2.274629	-2.386608
Ν	-1.176287	-0.894470	4.865689
Ν	1.176287	0.894470	-4.865689
В	0.121708	0.026448	5.207344
В	-0.121708	-0.026448	-5.207344
С	-0.415370	0.924465	6.476966
С	-0.241292	0.491792	7.816489
С	-1.150200	2.124203	6.287605
С	-0.735317	1.253884	8.882567
Ċ	-1.614452	2.862148	7.378400
C	-1.409395	2.453567	8.693369
Н	-0.582717	0.889214	9.897691
Н	-2.168458	3.780838	7.191000
С	0.415370	-0.924465	-6.476966
Ċ	0.241292	-0.491792	-7.816489
Ċ	1.150200	-2.124203	-6.287605
С	0.735317	-1.253884	-8.882567
С	1.614452	-2.862148	-7.378400
С	1.409395	-2.453567	-8.693369
Н	0.582717	-0.889214	-9.897691
Н	2.168458	-3.780838	-7.191000
С	1.564102	-0.742679	5.426551
С	2.651647	0.009266	5.942272
С	1.846994	-2.072488	5.022383
С	3.915229	-0.570512	6.091896
С	3.121746	-2.617629	5.200687
C	4.175575	-1.891327	5.745738
Н	4.723161	0.039975	6.493990
Н	3.297124	-3.645297	4.885548
С	-1.564102	0.742679	-5.426551
С	-2.651647	-0.009266	-5.942272
С	-1.846994	2.072488	-5.022383
Ċ	-3.915229	0.570512	-6.091896
Ċ	-3.121746	2.617629	-5.200687
C	-4.175575	1.891327	-5.745738
H	-4.723161	-0.039975	-6.493990
Н	-3.297124	3.645297	-4.885548
C	0.831476	-2.976023	4.367534
H	-0.011171	-3.214054	5.023930
H	0.418691	-2.530999	3.456750
H	1.298505	-3.923221	4.084009
С	-0.831476	2.976023	-4.367534
	· •		

Н	-0.418691	2.530999	-3.456750
Н	0.011171	3.214054	-5.023930
Н	-1.298505	3.923221	-4.084009
С	2.548443	1.448637	6.396741
Н	2.311262	1.512724	7.465241
Н	3.505733	1.958111	6.245301
Н	1.771861	2.017203	5.886243
С	-2.548443	-1.448637	-6.396741
Н	-3.505733	-1.958111	-6.245301
Н	-2.311262	-1.512724	-7.465241
Н	-1.771861	-2.017203	-5.886243
С	5.530016	-2.508186	5.954299
Н	5.597115	-2.998298	6.933423
Н	5.744732	-3.268816	5.197515
Н	6.322855	-1.755278	5.914573
С	-5.530016	2.508186	-5.954299
Н	-5.744732	3.268816	-5.197515
Н	-5.597115	2.998298	-6.933423
Н	-6.322855	1.755278	-5.914573
С	-1.489654	2.668421	4.923003
Н	-0.598487	2.940566	4.349576
Н	-2.041852	1.944246	4.316307
Н	-2.112227	3.563038	5.014818
С	1.489654	-2.668421	-4.923003
Н	2.041852	-1.944246	-4.316307
Н	0.598487	-2.940566	-4.349576
Н	2.112227	-3.563038	-5.014818
С	0.484085	-0.773148	8.223477
Н	0.415238	-1.580725	7.493742
Н	1.556463	-0.593467	8.359740
Н	0.090975	-1.137333	9.178175
С	-0.484085	0.773148	-8.223477
Н	-1.556463	0.593467	-8.359740
Н	-0.415238	1.580725	-7.493742
Н	-0.090975	1.137333	-9.178175
С	-1.894032	3.276865	9.853421
Н	-2.010292	2.668399	10.754907
Н	-1.186905	4.080883	10.091124
Н	-2.856609	3.749685	9.634967
С	1.894032	-3.276865	-9.853421
Н	1.186905	-4.080883	-10.091124
Н	2.010292	-2.668399	-10.754907
Н	2.856609	-3.749685	-9.634967

Atomic coordinates for the optimized excited state (S_1) of compound 2 at

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Energy (Hartrees)	-2784.6556	90	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Imaginary freq.	0		
Atom typeXYZC -0.302256 -0.629881 -3.707684 C 0.578053 0.044011 -2.811381 C 0.330390 0.046627 -1.400923 C -0.634233 -0.894575 -0.896665 C -1.366311 -1.690637 -1.796215 C -1.252993 -1.502594 -3.168731 C 0.890442 0.945835 -0.486954 C -0.890442 -0.945835 0.486954 C -0.330390 -0.046627 1.400923 C 0.634233 0.894575 0.896665 C 1.366311 1.690637 1.796215 H 2.088662 2.398654 1.398105 C 1.252993 1.502594 3.168731 C 0.302256 0.629881 3.707684 C -0.578053 -0.044011 2.811381 H 1.561912 1.720964 -0.841387 H -1.561912 -1.720964 -0.841387 H -1.561912 -1.720964 0.841387 H -1.5297814 -0.77286 3.565830 C -2.914756 -1.165316 3.188874 C -3.556381	Point group	Ci		
Atom typeXYZC -0.302256 -0.629881 -3.707684 C 0.578053 0.044011 -2.811381 C 0.330390 0.046627 -1.400923 C -0.634233 -0.894575 -0.896665 C -1.366311 -1.690637 -1.796215 C -1.252993 -1.502594 -3.168731 C 0.890442 0.945835 -0.486954 C -0.890442 0.945835 0.486954 C -0.330390 -0.046627 1.400223 C 0.634233 0.894575 0.896665 C 1.366311 1.690637 1.796215 H 2.088662 2.398654 1.398105 C 1.252993 1.502594 3.168731 C 0.302256 0.629881 3.707684 C -0.578053 -0.044011 2.811381 H 1.561912 1.720964 -0.841387 H -1.561912 -1.720964 -0.841387 H -1.561912 -1.720964 0.841387 H -1.561912 -1.720964 0.87137 H -1.561912 -1		Coord	linates (Angs	troms)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Atom type	Х	Y	Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-0.302256	-0.629881	-3.707684
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	0.578053	0.044011	-2.811381
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	0.330390	0.046627	-1.400923
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-0.634233	-0.894575	-0.896665
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-1.366311	-1.690637	-1.796215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-1.252993	-1.502594	-3.168731
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	0.890442	0.945835	-0.486954
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-0.890442	-0.945835	0.486954
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-0.330390	-0.046627	1.400923
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ċ	0.634233	0.894575	0.896665
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	1.366311	1.690637	1.796215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H	2.088662	2.398654	1.398105
$\begin{array}{cccccc} C & 0.302256 & 0.629881 & 3.707684 \\ C & -0.578053 & -0.044011 & 2.811381 \\ H & 1.561912 & 1.720964 & -0.841387 \\ H & -2.088662 & -2.398654 & -1.398105 \\ H & -1.922117 & -2.049221 & -3.824457 \\ H & -1.561912 & -1.720964 & 0.841387 \\ H & 1.922117 & 2.049221 & 3.824457 \\ C & -1.597814 & -0.737286 & 3.565830 \\ C & -2.914756 & -1.165316 & 3.188874 \\ C & -3.556381 & -0.779881 & 1.988538 \\ C & -3.658820 & -1.945197 & 4.127993 \\ C & -1.938583 & -1.535886 & 5.761436 \\ C & -4.824717 & -1.230328 & 1.686027 \\ H & -3.058919 & -0.097133 & 1.310155 \\ C & -4.940086 & -2.419506 & 3.778490 \\ C & -3.111418 & -2.148434 & 5.422660 \\ H & -1.548851 & -1.562069 & 6.770495 \\ C & -5.510530 & -2.080994 & 2.569547 \\ H & -5.298382 & -0.914390 & 0.761607 \\ H & -5.481616 & -3.031920 & 4.493908 \\ H & -3.661050 & -2.716304 & 6.165152 \\ H & -6.501212 & -2.444012 & 2.313370 \\ C & 1.597814 & 0.737286 & -3.565830 \\ C & 2.914756 & 1.165316 & -3.188874 \\ C & 3.556381 & 0.779881 & -1.988538 \\ \end{array}$	C	1.252993	1.502594	3.168731
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Č	0.302256	0.629881	3.707684
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Č	-0.578053	-0.044011	2.811381
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	H	1.561912	1.720964	-0.841387
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	H	-2.088662	-2.398654	-1.398105
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	H	-1.922117	-2.049221	-3.824457
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	H	-1 561912	-1.720964	0.841387
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H	1 922117	2 049221	3 824457
$\begin{array}{ccccc} C & -2.914756 & -1.165316 & 3.188874 \\ C & -3.556381 & -0.779881 & 1.988538 \\ C & -3.658820 & -1.945197 & 4.127993 \\ C & -1.938583 & -1.535886 & 5.761436 \\ C & -4.824717 & -1.230328 & 1.686027 \\ H & -3.058919 & -0.097133 & 1.310155 \\ C & -4.940086 & -2.419506 & 3.778490 \\ C & -3.111418 & -2.148434 & 5.422660 \\ H & -1.548851 & -1.562069 & 6.770495 \\ C & -5.510530 & -2.080994 & 2.569547 \\ H & -5.298382 & -0.914390 & 0.761607 \\ H & -5.481616 & -3.031920 & 4.493908 \\ H & -3.661050 & -2.716304 & 6.165152 \\ H & -6.501212 & -2.444012 & 2.313370 \\ C & 1.597814 & 0.737286 & -3.565830 \\ C & 2.914756 & 1.165316 & -3.188874 \\ C & 3.556381 & 0.779881 & -1.988538 \\ \end{array}$	C	-1.597814	-0.737286	3.565830
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Č	-2.914756	-1.165316	3.188874
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Č	-3.556381	-0.779881	1.988538
$\begin{array}{cccccc} C & -1.938583 & -1.535886 & 5.761436 \\ C & -4.824717 & -1.230328 & 1.686027 \\ H & -3.058919 & -0.097133 & 1.310155 \\ C & -4.940086 & -2.419506 & 3.778490 \\ C & -3.111418 & -2.148434 & 5.422660 \\ H & -1.548851 & -1.562069 & 6.770495 \\ C & -5.510530 & -2.080994 & 2.569547 \\ H & -5.298382 & -0.914390 & 0.761607 \\ H & -5.298382 & -0.914390 & 0.761607 \\ H & -5.481616 & -3.031920 & 4.493908 \\ H & -3.661050 & -2.716304 & 6.165152 \\ H & -6.501212 & -2.444012 & 2.313370 \\ C & 1.597814 & 0.737286 & -3.565830 \\ C & 2.914756 & 1.165316 & -3.188874 \\ C & 3.556381 & 0.779881 & -1.988538 \\ \end{array}$	Č	-3.658820	-1.945197	4.127993
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Č	-1.938583	-1 535886	5 761436
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Č	-4.824717	-1.230328	1.686027
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H	-3 058919	-0.097133	1 310155
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	-4 940086	-2 419506	3 778490
$\begin{array}{rcl} H & -1.548851 & -1.562069 & 6.770495 \\ C & -5.510530 & -2.080994 & 2.569547 \\ H & -5.298382 & -0.914390 & 0.761607 \\ H & -5.481616 & -3.031920 & 4.493908 \\ H & -3.661050 & -2.716304 & 6.165152 \\ H & -6.501212 & -2.444012 & 2.313370 \\ C & 1.597814 & 0.737286 & -3.565830 \\ C & 2.914756 & 1.165316 & -3.188874 \\ C & 3.556381 & 0.779881 & -1.988538 \\ \end{array}$	C	-3.111418	_2 148434	5 422660
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н	_1 548851	-1.562069	6 770495
$\begin{array}{rcl} H & -5.298382 & -0.914390 & 0.761607 \\ H & -5.481616 & -3.031920 & 4.493908 \\ H & -3.661050 & -2.716304 & 6.165152 \\ H & -6.501212 & -2.444012 & 2.313370 \\ C & 1.597814 & 0.737286 & -3.565830 \\ C & 2.914756 & 1.165316 & -3.188874 \\ C & 3.556381 & 0.779881 & -1.988538 \\ \end{array}$	C II	-5510530	-2.080994	2 569547
H -5.481616 -3.031920 4.493908 H -3.661050 -2.716304 6.165152 H -6.501212 -2.444012 2.313370 C 1.597814 0.737286 -3.565830 C 2.914756 1.165316 -3.188874 C 3.556381 0.779881 -1.988538	H	-5298382	-0.914390	0 761607
H -3.661050 -2.716304 6.165152 H -6.501212 -2.444012 2.313370 C 1.597814 0.737286 -3.565830 C 2.914756 1.165316 -3.188874 C 3.556381 0.779881 -1.988538	Н	-5 481616	-3.031920	4 493908
H -6.501000 2.710004 0.100102 H -6.501212 -2.444012 2.313370 C 1.597814 0.737286 -3.565830 C 2.914756 1.165316 -3.188874 C 3.556381 0.779881 -1.988538 C 2.650202 1.045107 4.102022	Н	-3.661050	-2716304	6 165152
C 1.597814 0.737286 -3.565830 C 2.914756 1.165316 -3.188874 C 3.556381 0.779881 -1.988538	H	-6 501212	-2 444012	2 313370
C 2.914756 1.165316 -3.188874 C 3.556381 0.779881 -1.988538	C II	1 597814	0 737286	_3 565830
C 3.556381 0.779881 -1.988538	C	2 914756	1 165316	-3 188874
$C = \frac{1.00000}{0.0000} + \frac{1.0000}{0.0000} + \frac{1.0000}{0.00$	C	3 556381	0 779881	_1 988538
(1) (1) (1) (1) (1) (2) (1) (2) (1) (2)	C	3 658820	1 945197	_4 127993
C = 1.938583 = 1.535886 = 5.761436	Č	1 938583	1 535886	_5 761436
C 4.824717 1.230328 -1.686027	č	4.824717	1.230328	-1.686027

Н	3.058919	0.097133	-1.310155
С	4.940086	2.419506	-3.778490
С	3.111418	2.148434	-5.422660
Н	1.548851	1.562069	-6.770495
С	5.510530	2.080994	-2.569547
Н	5.298382	0.914390	-0.761607
Н	5.481616	3.031920	-4.493908
Н	3.661050	2.716304	-6.165152
Н	6.501212	2.444012	-2.313370
Ν	-1.195235	-0.857080	4.861924
Ν	1.195235	0.857080	-4.861924
В	0.107182	0.041417	5.210417
В	-0.107182	-0.041417	-5.210417
С	-0.403071	0.951088	6.480931
С	-0.216691	0.528663	7.822964
С	-1.144696	2.147216	6.290157
С	-0.701622	1.298370	8.887071
С	-1.600915	2.892717	7.379090
С	-1.379487	2.496256	8.694957
Н	-0.542136	0.940776	9.903612
Н	-2.161571	3.807033	7.189842
С	0.403071	-0.951088	-6.480931
С	0.216691	-0.528663	-7.822964
С	1.144696	-2.147216	-6.290157
С	0.701622	-1.298370	-8.887071
С	1.600915	-2.892717	-7.379090
С	1.379487	-2.496256	-8.694957
Н	0.542136	-0.940776	-9.903612
Н	2.161571	-3.807033	-7.189842
С	1.538899	-0.757413	5.418601
С	2.647631	-0.017259	5.907042
С	1.794282	-2.098283	5.030701
С	3.905141	-0.612691	6.041304
С	3.064751	-2.658966	5.192649
С	4.140057	-1.941298	5.706210
Н	4.728689	-0.009534	6.422369
Н	3.219012	-3.693959	4.890626
С	-1.538899	0.757413	-5.418601
С	-2.647631	0.017259	-5.907042
С	-1.794282	2.098283	-5.030701
С	-3.905141	0.612691	-6.041304
С	-3.064751	2.658966	-5.192649
Ċ	-4.140057	1.941298	-5.706210
H	-4.728689	0.009534	-6.422369
Н	-3.219012	3.693959	-4.890626
C	0.755052	-3.005138	4.416418
Ĥ	-0.072490	-3.226164	5.097498
H	0.319800	-2.576442	3.508766
H	1.209285	-3.960300	4.138690
C	-0.755052	3.005138	-4.416418

Н	-0.319800	2.576442	-3.508766
Н	0.072490	3.226164	-5.097498
Н	-1.209285	3.960300	-4.138690
С	2.573037	1.426708	6.352244
Н	2.384020	1.498905	7.429982
Н	3.525697	1.929798	6.156200
Н	1.777113	1.995760	5.874088
С	-2.573037	-1.426708	-6.352244
Н	-3.525697	-1.929798	-6.156200
Н	-2.384020	-1.498905	-7.429982
Н	-1.777113	-1.995760	-5.874088
С	5.489409	-2.575023	5.895409
Н	5.570281	-3.050887	6.880521
Н	5.676628	-3.350421	5.146375
Н	6.292193	-1.834808	5.827113
С	-5.489409	2.575023	-5.895409
Н	-5.676628	3.350421	-5.146375
Н	-5.570281	3.050887	-6.880521
Н	-6.292193	1.834808	-5.827113
С	-1.500068	2.679220	4.924699
Н	-0.623370	3.039878	4.377874
Н	-1.971467	1.918729	4.294708
Н	-2.201463	3.513930	5.013276
С	1.500068	-2.679220	-4.924699
Н	1.971467	-1.918729	-4.294708
Н	0.623370	-3.039878	-4.377874
Н	2.201463	-3.513930	-5.013276
С	0.503722	-0.738951	8.229452
Н	0.388381	-1.560122	7.520661
Н	1.583937	-0.578609	8.318800
Н	0.141667	-1.075869	9.206038
С	-0.503722	0.738951	-8.229452
Н	-1.583937	0.578609	-8.318800
Н	-0.388381	1.560122	-7.520661
Н	-0.141667	1.075869	-9.206038
С	-1.853885	3.327306	9.853457
Н	-1.964516	2.724558	10.759478
Н	-1.143286	4.131254	10.081105
Н	-2.817029	3.800857	9.639215
С	1.853885	-3.327306	-9.853457
Н	1.143286	-4.131254	-10.081105
Н	1.964516	-2.724558	-10.759478
Н	2.817029	-3.800857	-9.639215

Atomic coordinates for the optimized ground state (S_0) of compound 3 at

Energy (Hartrees)	-2860.9000	57	
Imaginary freq.	0		
Point group	Ci		
	Coord	linates (Angs	troms)
Atom type	Х	Y	Z
С	-0.229713	-0.309336	-3.533336
С	0.888136	0.317268	-2.930962
С	0.960618	0.549214	-1.533559
С	-0.015205	-0.080711	-0.708472
С	-1.042501	-0.865348	-1.306690
С	-1.168935	-0.905156	-2.700554
С	1.883735	1.447016	-0.903146
С	0.015205	0.080711	0.708472
С	1.042501	0.865348	1.306690
С	1.934921	1.579308	0.449346
С	1.168935	0.905156	2.700554
Н	2.030690	1.417748	3.118094
С	0.229713	0.309336	3.533336
С	-0.888136	-0.317268	2.930962
С	-0.960618	-0.549214	1.533559
С	-1.883735	-1.447016	0.903146
С	-1.934921	-1.579308	-0.449346
Η	-2.656411	-2.253601	-0.903283
Η	-2.546141	-2.044212	1.518950
Н	2.546141	2.044212	-1.518950
Η	-2.030690	-1.417748	-3.118094
Η	2.656411	2.253601	0.903283
С	-1.817763	-0.723550	3.980128
С	-3.235410	-0.931229	3.930780
С	-4.039087	-0.550538	2.828744
С	-3.878196	-1.442322	5.096467
С	-1.813578	-1.188596	6.290019
С	-5.397016	-0.765598	2.844773
Н	-3.582382	-0.059598	1.978233
С	-5.269773	-1.690330	5.070294
С	-3.111467	-1.601908	6.277469
Н	-1.220679	-1.171271	7.194063
С	-6.012775	-1.370050	3.959713
Η	-6.000330	-0.457033	1.996911
Н	-5.743718	-2.105994	5.954744
Н	-3.573841	-1.972448	7.185720
Н	-7.083474	-1.550643	3.951226
С	1.817763	0.723550	-3.980128
С	3.235410	0.931229	-3.930780
С	4.039087	0.550538	-2.828744
С	3.878196	1.442322	-5.096467

C	1 012570	1 100506	(200010
C	1.813578	1.188596	-6.290019
C	5.397016	0.765598	-2.844773
Н	3.582382	0.059598	-1.978233
С	5.269773	1.690330	-5.070294
С	3.111467	1.601908	-6.277469
Н	1.220679	1.171271	-7.194063
С	6.012775	1.370050	-3.959713
Н	6.000330	0.457033	-1.996911
Н	5.743718	2.105994	-5.954744
Н	3.573841	1.972448	-7.185720
Н	7.083474	1.550643	-3.951226
N	1.183202	0.769014	-5.163627
N	-1.183202	-0.769014	5.163627
R	-0.271869	0.026196	-5 124524
B	0.271869	-0.026196	5 124524
C	0.008083	1 112811	6 301588
C	-0.098983	-1.112011	7 644733
C C	-0.460366	-0.837333	-7.044733
C C	0.310643	-2.307002	-0.040701
C C	-0.502081	-1.030029	-0.055095
C	0.003/83	-3.313033	-/.001491
C	0.250086	-3.07/049	-8.368233
H	-0.607725	-1.59/694	-9.655006
H	1.137054	-4.26/328	-6.822431
C	0.098983	1.112811	6.301588
С	0.480588	0.857555	7.644733
С	-0.516845	2.367002	6.046701
С	0.302081	1.830829	8.635695
С	-0.665785	3.315055	7.061491
С	-0.250086	3.077049	8.368233
Н	0.607725	1.597694	9.655006
Н	-1.137054	4.267328	6.822431
С	-1.610853	0.978655	-5.238530
С	-2.865103	0.342983	-5.425889
С	-1.634769	2.383373	-5.047493
С	-4.046465	1.089259	-5.475769
С	-2.836451	3.094314	-5.116827
С	-4.061001	2.472163	-5.336835
Н	-4.988135	0.563187	-5.630378
Н	-2.811132	4.174531	-4.979556
C	1.610853	-0.978655	5.238530
C	2 865103	-0.342983	5 425889
C	1 634769	-2 383373	5 047493
C C	4 046465	_1 089259	5 475769
C C	2 836451	3 00/31/	5 116827
C	2.050451	-3.07+31+	5 226825
С U	4.001001	-2.472103	5.530855
и П	דיייייייייייייייייייייייייייייייייייי	-0.30310/	J.030370 1070556
п С	2.011132	-4.1/4331	4.7/7330
	1.000208	-2.733241	-4.0943//
П	1./819/0	-2.023992	-4.3139/9
н	0.2/485/	-2.838208	-3.938047

Н	1.570801	-3.720693	-4.754531
С	-1.060268	2.755241	4.694577
Н	-0.274857	2.838208	3.938047
Н	-1.781970	2.025992	4.313979
Н	-1.570801	3.720693	4.754531
С	-1.108869	0.430904	-8.132165
Н	-2.200423	0.405953	-8.040606
Н	-0.792041	1.317374	-7.581545
Н	-0.873581	0.581380	-9.190738
С	1.108869	-0.430904	8.132165
Н	0.792041	-1.317374	7.581545
Н	2.200423	-0.405953	8.040606
Н	0.873581	-0.581380	9.190738
С	0.392385	-4.122140	-9.438639
Н	-0.450363	-4.823944	-9.421161
Н	0.420478	-3.672665	-10.435512
Н	1.304628	-4.711666	-9.304581
С	-0.392385	4.122140	9.438639
Н	-0.420478	3.672665	10.435512
Н	0.450363	4.823944	9.421161
Н	-1.304628	4.711666	9.304581
С	-3.038086	-1.147383	-5.620720
Н	-4.001059	-1.469202	-5.210541
Н	-3.032592	-1.413951	-6.684314
Н	-2.251600	-1.744511	-5.160491
С	3.038086	1.147383	5.620720
Н	3.032592	1.413951	6.684314
Н	4.001059	1.469202	5.210541
Н	2.251600	1.744511	5.160491
С	-0.403546	3.203002	-4.746637
Н	0.120519	2.838640	-3.857628
Н	0.317248	3.208248	-5.570341
Н	-0.682092	4.243002	-4.555343
С	0.403546	-3.203002	4.746637
Н	-0.317248	-3.208248	5.570341
Н	-0.120519	-2.838640	3.857628
Н	0.682092	-4.243002	4.555343
С	-5.344217	3.254243	-5.371807
Н	-5.763164	3.377842	-4.365505
Н	-5.190564	4.256827	-5.782453
Н	-6.102561	2.751242	-5.979185
С	5.344217	-3.254243	5.371807
Н	5.190564	-4.256827	5.782453
Н	5.763164	-3.377842	4.365505
Н	6.102561	-2.751242	5.979185

Atomic coordinates for the optimized excited state (S_1) of compound 3 at

Energy (Hartrees)	-2860.8157	61	
Imaginary freq.	0		
Point group	Ci		
	Coord	linates (Angs	troms)
Atom type	Х	Y	Ζ
С	-0.199173	-0.280004	-3.545852
С	0.919906	0.350711	-2.945377
С	0.962771	0.585913	-1.525266
С	-0.007396	-0.076771	-0.706139
С	-1.016318	-0.873392	-1.312727
С	-1.140673	-0.880072	-2.724303
С	1.853674	1.479502	-0.891605
С	0.007396	0.076771	0.706139
С	1.016318	0.873392	1.312727
С	1.898278	1.597016	0.481905
С	1.140673	0.880072	2.724303
Н	2.007735	1.378015	3.148195
С	0.199173	0.280004	3.545852
С	-0.919906	-0.350711	2.945377
Ċ	-0.962771	-0.585913	1.525266
С	-1.853674	-1.479502	0.891605
С	-1.898278	-1.597016	-0.481905
Н	-2.622709	-2.263398	-0.942720
Н	-2.522174	-2.084013	1.493260
Н	2.522174	2.084013	-1.493260
Н	-2.007735	-1.378015	-3.148195
Н	2.622709	2.263398	0.942720
С	-1.851458	-0.745075	3.972129
С	-3.269022	-0.988906	3.917379
С	-4.077505	-0.649979	2.809457
С	-3.909749	-1.498948	5.086709
С	-1.861153	-1.169209	6.301428
С	-5.433582	-0.904703	2.814455
Н	-3.630773	-0.161847	1.951753
С	-5.290871	-1.782755	5.053207
С	-3.148541	-1.619954	6.281978
Н	-1.285117	-1.121143	7.216199
С	-6.040840	-1.504014	3.930308
Н	-6.033951	-0.630881	1.952329
Н	-5.759264	-2.196102	5.942066
Н	-3.612993	-1.980937	7.192754
Н	-7.105320	-1.718333	3.918982
С	1.851458	0.745075	-3.972129
С	3.269022	0.988906	-3.917379
С	4.077505	0.649979	-2.809457
С	3.909749	1.498948	-5.086709

~	1 0 (1 1 5 0	1 1 (0 0 0 0	6 2 2 1 4 2 2
С	1.861153	1.169209	-6.301428
С	5.433582	0.904703	-2.814455
Н	3.630773	0.161847	-1.951753
С	5.290871	1.782755	-5.053207
С	3.148541	1.619954	-6.281978
Н	1.285117	1.121143	-7.216199
С	6.040840	1.504014	-3.930308
Н	6.033951	0.630881	-1.952329
Н	5.759264	2.196102	-5.942066
Н	3.612993	1.980937	-7.192754
Н	7.105320	1.718333	-3.918982
Ν	1.223244	0.755059	-5.184270
N	-1.223244	-0.755059	5.1842.70
B	-0.216318	0.029900	-5 145406
B	0.216318	-0.029900	5 145406
C	_0.091986	-1.123870	_6 305778
C	0.001000	0.877/31	-0.303778
C C	-0.494009	-0.077431	-7.043218
C C	0.309728	-2.383037	-0.043827
C	-0.531/32	-1.804999	-8.023370
C	0.621812	-3.34/4//	-/.0501/8
C	0.183882	-3.11802/	-8.351522
H	-0.670855	-1.638911	-9.642188
H	1.083028	-4.304062	-6.808690
С	0.091986	1.123870	6.305778
С	0.494009	0.877431	7.643218
С	-0.509728	2.383637	6.045827
С	0.351752	1.864999	8.625376
С	-0.621812	3.347477	7.050178
С	-0.183882	3.118027	8.351522
Н	0.670855	1.638911	9.642188
Н	-1.083028	4.304062	6.808690
С	-1.560978	0.980845	-5.218282
С	-2.826532	0.346066	-5.386680
С	-1.580038	2.387494	-4.995402
С	-4.003484	1.096399	-5.408557
С	-2.778521	3.098191	-5.039203
С	-4.009345	2.479235	-5.256218
H	-4.950440	0.576863	-5.549038
Н	-2 752536	4 175138	_4 881009
C	1 560978	_0 980845	5 218282
C	2 826532	_0.346066	5 386680
C	1 580038	2 3 8 7 / 0 /	1 005402
C C	1.380038	1.006200	4.993402 5.408557
C C	4.003464	-1.090399	5.408337
C	2.778321	-3.098191	5.039203
	4.009343	-2.4/9233	5.230218
H H	4.950440	-0.5/6863	5.549038
Н	2./52536	-4.1/5138	4.881009
U	1.0/14/0	-2./54805	-4.69/296
H	1.773360	-2.003949	-4.322639
Н	0.290619	-2.856564	-3.936745

Н	1.605285	-3.707644	-4.756523
С	-1.071470	2.754805	4.697296
Н	-0.290619	2.856564	3.936745
Н	-1.773360	2.003949	4.322639
Н	-1.605285	3.707644	4.756523
С	-1.103778	0.420923	-8.126794
Н	-2.195325	0.417050	-8.028025
Н	-0.760463	1.300451	-7.580213
Н	-0.874824	0.567923	-9.187236
С	1.103778	-0.420923	8.126794
Н	0.760463	-1.300451	7.580213
Н	2.195325	-0.417050	8.028025
Н	0.874824	-0.567923	9.187236
С	0.287517	-4.178306	-9.411276
Н	-0.569441	-4.861947	-9.372643
Н	0.309681	-3.741285	-10.413816
Н	1.189148	-4.785309	-9.283961
С	-0.287517	4.178306	9.411276
H	-0.309681	3.741285	10.413816
Н	0.569441	4.861947	9.372643
Н	-1.189148	4.785309	9.283961
С	-3.009003	-1.140197	-5.592720
Н	-3.963640	-1.461671	-5.163587
Н	-3.031174	-1.391190	-6.659769
Н	-2.212201	-1.746419	-5.163700
С	3.009003	1.140197	5.592720
Н	3.031174	1.391190	6.659769
Н	3.963640	1.461671	5.163587
Н	2.212201	1.746419	5.163700
С	-0.343491	3.192275	-4.687621
Н	0.173661	2.813954	-3.800323
Н	0.379942	3.187967	-5.508032
Н	-0.612076	4.233908	-4.492005
С	0.343491	-3.192275	4.687621
Н	-0.379942	-3.187967	5.508032
Н	-0.173661	-2.813954	3.800323
Н	0.612076	-4.233908	4.492005
С	-5.281038	3.273225	-5.322153
Н	-5.266993	4.111580	-4.618900
Н	-5.429604	3.696176	-6.323593
Н	-6.153045	2.652254	-5.098451
С	5.281038	-3.273225	5.322153
Н	5.429604	-3.696176	6.323593
Н	5.266993	-4.111580	4.618900
Н	6.153045	-2.652254	5.098451

Atomic coordinates for the optimized ground state (S_0) of compound 1 at

Energy (Hartrees)	-2634.3820	904	
Imaginary freq.	0		
Point group	Ci		
0 1	Coord	inates (Angs	troms)
Atom type	Х	Ŷ	Ź
C	2.544406	-0.228176	0.401222
С	1.732885	0.685572	-0.288713
С	0.307723	0.515827	-0.393755
С	-0.307723	-0.515827	0.393755
С	0.522894	-1.267944	1.270203
С	1.895991	-1.179697	1.221984
Н	-0.066712	1.950251	-1.976409
С	-0.522894	1.267944	-1.270203
Ċ	-1.732885	-0.685572	0.288713
H	0.066712	-1.950251	1.976409
Н	2.479981	-1.844730	1.848785
C	-2.544406	0.228176	-0.401222
Ċ	-1.895991	1.179697	-1.221984
H	-2.479981	1.844730	-1.848785
C	-2.592442	-1.712310	0.890072
Ċ	-2.317238	-3.084925	1.225400
Ċ	-1.148598	-3.775443	0.806180
С	-3.328574	-3.824490	1.918677
Ċ	-4.835779	-1.979615	1.597757
С	-0.948628	-5.095869	1.147723
H	-0.419583	-3.268193	0.189029
C	-3.077171	-5.168404	2.292797
Ċ	-4.592453	-3.211579	2.131645
Н	-5.814761	-1.524637	1.624085
С	-1.903983	-5.789008	1.924637
Н	-0.054207	-5.608462	0.808756
Н	-3.841215	-5.708316	2.844088
Н	-5.383405	-3.750032	2.641499
Н	-1.724572	-6.823004	2.202898
С	2.592442	1.712310	-0.890072
С	2.317238	3.084925	-1.225400
С	1.148598	3.775443	-0.806180
С	3.328574	3.824490	-1.918677
С	4.835779	1.979615	-1.597757
С	0.948628	5.095869	-1.147723
Н	0.419583	3.268193	-0.189029
Ċ	3.077171	5.168404	-2.292797
С	4.592453	3.211579	-2.131645
Н	5.814761	1.524637	-1.624085
С	1.903983	5.789008	-1.924637

тт	0.054007	5 (00 1 (0	0.000756
H	0.054207	5.608462	-0.808/56
H	3.841215	5.708316	-2.844088
H	5.383405	3.750032	-2.641499
Н	1.724572	6.823004	-2.202898
Ν	3.856536	1.246733	-0.995656
Ν	-3.856536	-1.246733	0.995656
В	4.095922	-0.107067	-0.078836
В	-4.095922	0.107067	0.078836
С	5.333545	0.364755	0.913474
С	6.696448	0.142207	0.563439
С	5.102783	1.084683	2.122366
С	7.734101	0.567854	1.407966
С	6.167478	1.480325	2.941556
С	7.498340	1.222059	2.613763
Н	8.762422	0.377985	1.104664
Н	5.946802	2.021584	3.859802
С	-5.333545	-0.364755	-0.913474
С	-6.696448	-0.142207	-0.563439
С	-5.102783	-1.084683	-2.122366
С	-7.734101	-0.567854	-1.407966
С	-6.167478	-1.480325	-2.941556
С	-7.498340	-1.222059	-2.613763
Н	-8.762422	-0.377985	-1.104664
Н	-5.946802	-2.021584	-3.859802
С	4.309901	-1.545029	-0.879124
С	4.715476	-2.682655	-0.124466
С	4.001900	-1.775014	-2.250628
С	4.847643	-3.940077	-0.730976
С	4.158237	-3.046551	-2.818906
С	4.585546	-4.150524	-2.082321
Н	5.169577	-4.781133	-0.118525
Н	3.926142	-3.176464	-3.874533
С	-4.309901	1.545029	0.879124
С	-4.715476	2.682655	0.124466
С	-4.001900	1.775014	2.250628
С	-4.847643	3.940077	0.730976
С	-4.158237	3.046551	2.818906
С	-4.585546	4.150524	2.082321
Н	-5.169577	4.781133	0.118525
Н	-3.926142	3.176464	3.874533
С	3.721032	1.487249	2.600919
Н	3.177819	2.074354	1.854903
Н	3.091513	0.625480	2.838696
Н	3.798171	2.099352	3.504197
C	-3.721032	-1.487249	-2.600919
Н	-3.091513	-0.625480	-2.838696
Н	-3.177819	-2.074354	-1.854903
Н	-3.798171	-2.099352	-3.504197
С	7.163315	-0.566837	-0.700381
Н	7.229310	-1.650460	-0.554429

Н	6.507013	-0.425333	-1.558646
Н	8.162965	-0.214988	-0.975409
С	-7.163315	0.566837	0.700381
Н	-6.507013	0.425333	1.558646
Н	-7.229310	1.650460	0.554429
Н	-8.162965	0.214988	0.975409
С	8.628687	1.632485	3.527221
Н	8.792107	0.889406	4.318210
Н	9.569957	1.734411	2.978631
Н	8.418762	2.586274	4.022161
С	-8.628687	-1.632485	-3.527221
Н	-9.569957	-1.734411	-2.978631
Н	-8.792107	-0.889406	-4.318210
Н	-8.418762	-2.586274	-4.022161
С	5.073250	-2.646886	1.353763
Н	4.835761	-3.609219	1.819334
Н	6.145548	-2.472725	1.501120
Н	4.563440	-1.864351	1.912084
С	-5.073250	2.646886	-1.353763
Н	-6.145548	2.472725	-1.501120
Н	-4.835761	3.609219	-1.819334
Н	-4.563440	1.864351	-1.912084
С	3.484250	-0.700878	-3.189188
Н	2.562363	-0.242129	-2.820047
Н	4.205008	0.106063	-3.351672
Н	3.260549	-1.134168	-4.168034
С	-3.484250	0.700878	3.189188
Н	-4.205008	-0.106063	3.351672
Н	-2.562363	0.242129	2.820047
Н	-3.260549	1.134168	4.168034
С	4.713920	-5.517371	-2.712319
Н	3.747227	-6.036241	-2.747405
Н	5.078946	-5.451205	-3.742418
Н	5.403424	-6.153887	-2.149407
С	-4.713920	5.517371	2.712319
Н	-5.078946	5.451205	3.742418
Н	-3.747227	6.036241	2.747405
Н	-5.403424	6.153887	2.149407

Atomic coordinates for the optimized ground state (S_0) of compound 2 at

Energy (Hartrees)	-2788.0278	477	
Imaginary freq.	0		
Point group	Ci		
	Coord	linates (Angs	stroms)
Atom type	Х	Y	Z
С	-0.318472	-0.586161	-3.716578
С	0.557331	0.057547	-2.835749

C	0 22//20	0.054710	1 402702
C	0.334430	0.034/10	-1.403/92
C C	-0.003030	-0.833470	-0.89/388
C	-1.452477 1.216025	-1.030373	-1.820000
C	-1.310933	-1.440283	-3.1/2138
C	0.940019	0.91169/	-0.4//114
C	-0.940019	-0.911697	0.4//114
C	-0.334430	-0.054710	1.403/92
C	0.663650	0.855476	0.897388
С	1.432477	1.630373	1.820606
Н	2.171114	2.320831	1.420812
С	1.316935	1.446283	3.172158
С	0.318472	0.586161	3.716578
С	-0.557331	-0.057547	2.835749
Н	1.662000	1.647946	-0.808510
Н	-2.171114	-2.320831	-1.420812
Н	-1.990813	-1.975648	-3.835849
Н	-1.662000	-1.647946	0.808510
Н	1.990813	1.975648	3.835849
С	-1.583552	-0.756672	3.611339
С	-2.924161	-1.140663	3.252719
С	-3.578941	-0.690109	2.075878
Ċ	-3.673220	-1.925867	4.186281
C	-1.911485	-1.616894	5.792949
C	-4 870123	-1.081690	1 792174
н	-3.068282	-0.009601	1 408231
C	_4 984318	-2346502	3 849809
C C	3 106030	2.546502	5.042002
ч	1 /06753	1 687275	6 787343
II C	-1.+00733	-1.067275	0.767343
С U	-5.367831	-1.941879	0.802881
П П	-5.550824	-0./18134	0.092001
	-3.331131	-2.903183	4.333130
П	-5.034304	-2.700349	0.197432
П	-0.377324	-2.237323	2.423147
C	1.383332	0.730072	-3.011339
C	2.924101	1.140003	-3.232/19
C	3.5/8941	0.690109	-2.0/58/8
C	3.6/3220	1.925867	-4.186281
C	1.911485	1.616894	-5./92949
C	4.8/0123	1.081690	-1./921/4
H	3.068282	0.009601	-1.408231
C	4.984318	2.346502	-3.849809
C	3.106930	2.186248	-5.463285
Н	1.496753	1.687275	-6.787343
С	5.567851	1.941879	-2.669444
H	5.356824	0.718134	-0.892881
Н	5.531131	2.965185	-4.555136
Н	3.654504	2.766349	-6.197452
Н	6.577524	2.257525	-2.425147
Ν	-1.164980	-0.925483	4.885712
Ν	1.164980	0.925483	-4.885712

В	0.146438	0.013596	5.231159
В	-0.146438	-0.013596	-5.231159
С	-0.408431	0.923340	6.498671
С	-0.252120	0.493607	7.847692
С	-1.140548	2.130829	6.302333
С	-0.758367	1.260350	8.909373
С	-1.617001	2.871464	7.391135
Ċ	-1.429404	2.463606	8.711724
Н	-0.618070	0.896978	9.926126
Н	-2.165462	3.791413	7.197032
C	0.408431	-0.923340	-6.498671
C	0 252120	-0.493607	-7 847692
C	1 140548	-2130829	-6 302333
C	0 758367	-1.260350	-8 909373
C	1 617001	-2 871464	-7 391135
C C	1 429404	-2 463606	-8 711724
Ч	0.618070	0 806078	0 026126
и П	2 165462	-0.870778	7 107032
II C	2.105402	-3.791413	-7.197032
C C	2 688502	-0.750084	5.087142
C C	2.088302	-0.002548	5.987142
C C	1.005000	-2.093093	5.070597
C C	2 162507	-0.364102	0.143021
C C	3.103307	-2.038/31	5.238313
	4.21/440	-1.909130	5.800190
Н	4./60249	0.02/338	0.5485/4
H	3.340581	-3.66/484	4.949846
C	-1.59698/	0./56684	-5.46/263
C	-2.688502	0.002548	-5.98/142
C	-1.885888	2.093693	-5.070597
C	-3.954257	0.584162	-6.145621
C	-3.163507	2.638/51	-5.258513
C	-4.217440	1.909150	-5.806196
H	-4.760249	-0.027338	-6.548574
Н	-3.340581	3.667484	-4.949846
C	0.874769	-3.013854	4.412256
Н	0.035279	-3.262929	5.068227
Η	0.455616	-2.577980	3.500768
Н	1.353221	-3.955985	4.130482
С	-0.874769	3.013854	-4.412256
Н	-0.455616	2.577980	-3.500768
Н	-0.035279	3.262929	-5.068227
Н	-1.353221	3.955985	-4.130482
С	2.592501	1.447548	6.438090
Η	2.340072	1.519787	7.502289
Н	3.558108	1.945306	6.300610
Н	1.835087	2.025088	5.911357
С	-2.592501	-1.447548	-6.438090
Н	-3.558108	-1.945306	-6.300610
Н	-2.340072	-1.519787	-7.502289
Н	-1.835087	-2.025088	-5.911357

С	5.577425	-2.528081	6.025372
Н	5.643992	-3.010277	7.009226
Н	5.794382	-3.295804	5.275829
Η	6.371529	-1.776180	5.980760
С	-5.577425	2.528081	-6.025372
Н	-5.794382	3.295804	-5.275829
Н	-5.643992	3.010277	-7.009226
Н	-6.371529	1.776180	-5.980760
С	-1.470030	2.690941	4.932007
Н	-0.575976	2.963028	4.364216
Н	-2.027258	1.979307	4.315911
Н	-2.085459	3.589975	5.029494
С	1.470030	-2.690941	-4.932007
Н	2.027258	-1.979307	-4.315911
Н	0.575976	-2.963028	-4.364216
Н	2.085459	-3.589975	-5.029494
С	0.469595	-0.776334	8.277511
Н	0.406649	-1.591595	7.557638
Н	1.539927	-0.598362	8.428796
Η	0.062462	-1.130721	9.230130
С	-0.469595	0.776334	-8.277511
Н	-1.539927	0.598362	-8.428796
Н	-0.406649	1.591595	-7.557638
Н	-0.062462	1.130721	-9.230130
С	-1.927879	3.293207	9.870954
Н	-2.070611	2.682957	10.767911
Н	-1.215735	4.087710	10.128082
Н	-2.879986	3.780097	9.636097
С	1.927879	-3.293207	-9.870954
Н	1.215735	-4.087710	-10.128082
Н	2.070611	-2.682957	-10.767911
Н	2.879986	-3.780097	-9.636097

Atomic coordinates for the optimized ground state (S_0) of compound 3 at

Energy (Hartrees)	-2864.2663573				
Imaginary freq.	0				
Point group	Ci				
	Coord	stroms)			
Atom type	Х	Y	Z		
С	-0.234814	-0.295949	-3.546141		
С	0.890371	0.327854	-2.943041		
С	0.964492	0.554188	-1.539085		
С	-0.015633	-0.078345	-0.711060		
С	-1.047798	-0.861621	-1.312978		
С	-1.173074	-0.896446	-2.711008		
С	1.893127	1.447249	-0.901320		
С	0.015633	0.078345	0.711060		

C	1 047709	0.061601	1 212070
C	1.04//98	0.861621	1.312978
C	1.944295	1.5/5984	0.454862
C	1.1/30/4	0.896446	2.711008
H	2.033/34	1.408690	3.128902
С	0.234814	0.295949	3.546141
С	-0.890371	-0.327854	2.943041
С	-0.964492	-0.554188	1.539085
С	-1.893127	-1.447249	0.901320
С	-1.944295	-1.575984	-0.454862
Н	-2.669280	-2.245417	-0.909846
Н	-2.559242	-2.042826	1.512398
Н	2.559242	2.042826	-1.512398
Н	-2.033734	-1.408690	-3.128902
Н	2.669280	2.245417	0.909846
С	-1.823769	-0.736435	3.996000
С	-3.248701	-0.934050	3.950061
С	-4.059456	-0.541396	2.851970
С	-3.894573	-1.452414	5.118050
С	-1.818100	-1.227945	6.309850
С	-5.422146	-0.748072	2.872069
Н	-3.606198	-0.049621	2.002015
С	-5.291705	-1.691061	5.095008
Ċ	-3.122291	-1.630776	6.296673
H	-1.225072	-1.231904	7.212130
С	-6.039779	-1.356524	3.988059
H	-6.026278	-0.431021	2.028137
Н	-5.764544	-2.110393	5.978014
Н	-3.583603	-2.009681	7.201759
Н	-7.111543	-1.529589	3.982710
C	1.823769	0.736435	-3.996000
С	3.248701	0.934050	-3.950061
Ċ	4.059456	0.541396	-2.851970
C	3.894573	1.452414	-5.118050
C	1 818100	1 227945	-6 309850
C	5 422146	0 748072	-2872069
Н	3 606198	0.049621	-2 002015
C	5 291705	1 691061	-5.095008
C C	3 122291	1.630776	-6 296673
н	1 225072	1 231904	_7 212130
C II	6 039779	1 356524	_3 988059
н	6.026278	0.431021	-2.028137
H	5 764544	2 110393	-2.020137 -5.978014
н Н	3 583603	2.110575	7 201750
н Ц	7 1115/3	1 520580	-7.201739
II N	1 182206	0.705614	-3.982/10
IN N	1.103370	0.793014	-3.1039/1
TN D	-1.103390	-0.735014	5 1/2020
р D	-0.20093/	0.03/30/	-3.143928
с С	0.20093/	-0.03/30/	5.145720
C	-0.102340	-1.113310	-0.32101/
\mathbf{C}	0.700071	-0.001002	-1.013913

C	0 507794	_2 375901	-6.060259
C C	0.207724	1 839070	8 666024
C C	0.666280	-3.326568	-7.076579
C C	0.000200	3 089001	8 301/152
ч	0.207242	-5.065001	0.688461
П П	-0.373400 1 120700	-1.000347	-9.000401
II C	0.102540	-4.260041	-0.031303
C C	0.102340	0.961662	0.521017
C	0.408341	0.801002	7.073973
C	-0.30//94	2.3/3901	0.000239
C	0.280052	1.839070	8.666024
C	-0.666280	3.326568	/.0/65/9
C	-0.26/242	3.089001	8.391452
H	0.573466	1.606547	9.688461
Н	-1.130700	4.280041	6.831583
С	-1.638363	0.991306	-5.267191
С	-2.898807	0.354896	-5.455289
С	-1.667062	2.402092	-5.078084
С	-4.083611	1.102630	-5.504057
С	-2.873570	3.112644	-5.146813
С	-4.100531	2.488394	-5.364815
Н	-5.024574	0.576184	-5.657820
Н	-2.849733	4.192559	-5.011492
С	1.638363	-0.991306	5.267191
С	2.898807	-0.354896	5.455289
С	1.667062	-2.402092	5.078084
С	4.083611	-1.102630	5.504057
С	2.873570	-3.112644	5.146813
С	4.100531	-2.488394	5.364815
Н	5.024574	-0.576184	5.657820
Н	2.849733	-4.192559	5.011492
С	1.038810	-2.781007	-4.698336
Н	1.764229	-2.063745	-4.303837
Н	0.247628	-2.867309	-3.948872
Н	1.541833	-3.750159	-4.763341
C	-1.038810	2.781007	4.698336
H	-0.247628	2.867309	3.948872
Н	-1.764229	2.063745	4.303837
Н	-1541833	3 750159	4 763341
C	-1.094313	0 430471	-8 183687
н	-2 187074	0.404588	_8 112230
Н	_0 785806	1 321104	-7 637469
Н	_0.842090	0 574251	_9 239410
n C	1 00/313	0.374231	8 183687
ч	0.785806	1 321104	7 637/60
П П	0.783800 2.187074	-1.321104	8 112220
н Ц	2.10/0/4	-0.404388	0.112230 0.220410
Γ	0.042090	-0.3/4231	7.23741U 0.161151
	0.420283	-4.1404//	-7.404431
п u	-U.429942	-4.034314	-7.400/33
П	0.4/4088	-3.09114/	-10.400/82
п	1.323433	-4./40402	-9.312//3

С	-0.420283	4.140477	9.464451
Н	-0.474088	3.691147	10.460782
Н	0.429942	4.834514	9.466735
Н	-1.323433	4.740402	9.312775
С	-3.081024	-1.143055	-5.651308
Н	-4.054801	-1.454911	-5.259164
Н	-3.058616	-1.414140	-6.713279
Н	-2.313094	-1.747087	-5.171570
С	3.081024	1.143055	5.651308
Н	3.058616	1.414140	6.713279
Н	4.054801	1.454911	5.259164
Н	2.313094	1.747087	5.171570
С	-0.435471	3.237742	-4.779880
Н	0.097370	2.881802	-3.893411
Н	0.282105	3.251648	-5.605950
Н	-0.724020	4.275068	-4.588362
С	0.435471	-3.237742	4.779880
Н	-0.282105	-3.251648	5.605950
Н	-0.097370	-2.881802	3.893411
Н	0.724020	-4.275068	4.588362
С	-5.391137	3.272520	-5.398748
Н	-5.817934	3.387008	-4.393892
Н	-5.237480	4.279595	-5.799321
Н	-6.146034	2.774519	-6.015243
С	5.391137	-3.272520	5.398748
Н	5.237480	-4.279595	5.799321
Н	5.817934	-3.387008	4.393892
Н	6.146034	-2.774519	6.015243

6. Additional theoretical calculation data

1 PCM((toluene)/PBE0/6-31G(d,p)			
Energy (Hartree)	-2631.2757300				
Energy (kcal/mol)	-1651151.83				
Dipole Moment (Debye)	0.00				
LUMO+1 (eV)	-2.01				
LUMO (eV)	-2.17				
HOMO (eV)	-5.65	B. N+			
HOMO-1 (eV)	-5.87				
Gap LUMO- HOMO (eV)	3.48	P			
LUMO+1 (-2.01 eV	V) (isosurface=0.03)	LUMO (-2.17 eV) (isosurface=0.03)			
	All A				

AN	
HOMO (-5.65 eV) (isosurface=0.03)	HOMO-1 (-5.87 eV) (isosurface=0.03)
NTO Analysis	Transition $S_1 \leftarrow S_0$ (0.311) NTO weight (95%)
Hole NTO	Electron NTO

2	PCM	(toluene)/ PBE0/6-31G(d,p)
Energy (Hartree)	-2784.7439491	
Energy (kcal/mol)	-1747454.68	
Dipole Moment	0.00	
(Debye)	0.00	N ^t B
LUMO+1 (eV)	-2.01	
LUMO (eV)	-2.25	
HOMO (eV)	-5.44	B ^R N ⁺
HOMO-1 (eV)	-5.82	
Gap LUMO-	2 10	J F
HOMO (eV)	5.19	

3	РСМ	(toluene)/ PBE0/6-31G(d,p)
Energy (Hartree)	-2860.9000569	
Energy (Kcal/mol)	-1795243.39	Å
Dipole Moment	0.00	
(Debye)	0.00	B C C C C C C C C C C C C C C C C C C C
LUMO+1 (eV)	-2.01	
LUMO (eV)	-2.50	
HOMO (eV)	-5.51	B _{N+}
HOMO-1 (eV)	-5.74	ALL
Gap LUMO-	2.01	Je la
HOMO (eV)	5.01	

	B 3	3LYP	CAM	-B3LYP	M	06-2X	P	BEO	
	E_{calc}	ΔE	E_{calc}	ΔE	E_{calc}	ΔE	$E_{\rm calc}$	ΔE	E_{exp}
	(eV)	$(eV)^{[a]}$	(eV)	$(eV)^{[a]}$	(eV)	$(eV)^{[a]}$	(eV)	$(eV)^{[a]}$	(eV)
Absorption									
1	2.67	-0.10	3.28	+0.51	3.28	+0.51	2.81	+0.04	2.77
2	2.40	-0.13	3.00	+0.47	2.99	+0.46	2.54	+0.01	2.53
3	2.31	-0.20	2.92	+0.41	2.93	+0.42	2.44	-0.07	2.51
Emission									
1	2.42	-0.17					2.54	-0.05	2.59
2	2.16	-0.16					2.27	-0.05	2.32
2	2.05	-0.62					2.16	-0.51	2.67
3	2.30	-0.09					2.43	+0.04	2.39
a AF F	E								

Table S1. Benchmark of TD-DFT calculated photophysical data for 1–3 at the PCM(toluene)/*functional*/6-31G(d,p) level.

^[a] $\Delta E = E_{\text{calc}} - E_{\text{exp}}$
7. UV/vis absorption and fluorescence spectra of 1-3 in THF

Figure S47. UV/vis absorption (black line) and fluorescence ($\lambda_{exc} = 422$ nm, red line) spectra of **1** (25 μ M) in THF.

Figure S48. UV/vis absorption (black line) and fluorescence ($\lambda_{exc} = 459$ nm, red line) spectra of **2** (30 μ M) in THF.

Figure S49. UV/vis absorption (black line) and fluorescence ($\lambda_{exc} = 459$ nm, red line) spectra of **3** (30 μ M) in THF.

8. Photoreactivity of the dyes 1-3 in air-equilibrated toluene

Figure S50. UV/vis absorption spectra for the continuous irradiation of 1 (150 W xenon lamp, $\lambda_{irr} > 395$ nm) in air-equilibrated toluene (black; t = 0 and red; t = 4 h).

Figure S51. UV/vis absorption spectra for the continuous irradiation of **2** (150 W xenon lamp, $\lambda_{irr} > 395$ nm) in air-equilibrated toluene (black; *t* = 0 and red; *t* = 4 h).

Figure S52. UV/vis absorption spectra for the continuous irradiation of **3** (150 W xenon lamp, $\lambda_{irr} > 395$ nm) in air-equilibrated toluene (black; *t* = 0 and red; *t* = 4 h).

Figure S53. First-order plot of the photoreaction of the dyes 1 (black points) 2 (red points) and 3 (blue points) in air-equilibrated toluene under continuous irradiation (150 W xenon lamp, $\lambda_{irr} > 395$ nm).

9. References

- K. Xu, Y. Fu, Y. Zhou, F. Hennersdorf, P. Machata, I. Vincon, J. J. Weigand, A. A. Popov, R. Berger and X. Feng, Cationic Nitrogen-Doped Helical Nanographenes, *Angew. Chem. Int. Ed.*, 2017, 56, 15876-15881.
- S. Liu, C. Li, Y. Xu, Z. Li, H. Huang, N. Fu, J. Shao, B. Zhao, H. Huang and W. Huang, Optoelectronic properties and aggregation effects on the performance of planar *versus* contorted pyrene-cored perylenediimide dimers for organic solar cells, *Dyes Pigm.*, 2020, **173**, 107976.
- V. F. Pais, M. M. Alcaide, R. López-Rodríguez, D. Collado, F. Nájera, E. Pérez-Inestrosa, E. Álvarez, J. M. Lassaletta, R. Fernández, A. Ros and U. Pischel, Strongly Emissive and Photostable Four-Coordinate Organoboron N,C Chelates and Their Use in Fluorescence Microscopy, *Chem. Eur. J.*, 2015, 21, 15369-15376.

- 4. W. H. Melhuish, A Standard Fluorescence Spectrum for Calibrating Spectro-Fluorophotometers, J. Phys. Chem., 1960, 64, 762-764.
- W. H. Melhuish, Quantum Efficiencies of Fluorescence of Organic Substances: Effect of Solvent and Concentration of the Fluorescent Solute, *J. Phys. Chem.*, 1961, 65, 229-235.
- S. de Reguardati, J. Pahapill, A. Mikhailov, Y. Stepanenko and A. Rebane, Highaccuracy reference standards for two-photon absorption in the 680–1050 nm wavelength range, *Opt. Express*, 2016, 24, 9053-9066.
- H. G. O. Becker, H. Böttcher, F. Dietz, D. Rehorek, G. Roewer, K. Schiller and H.-J. Timpe, *Einführung in die Photochemie*, Deutscher Verlag der Wissenschaften, Berlin, 3rd edn., 1991.
- C. Grewer and H. D. Brauer, Temperature-Dependence of the Oxygen Quenching of π,π*-Singlet and π,π*-Triplet States of Singlet Oxygen Sensitizers, J. Phys. Chem., 1993, 97, 5001-5006.
- Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,

M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

- 10. C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, *J. Chem. Phys.*, 1999, **110**, 6158-6170.
- 11. M. Ernzerhof and G. E. Scuseria, Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional, *J. Chem. Phys.*, 1999, **110**, 5029-5036.
- J. Tomasi, B. Mennucci and R. Cammi, Quantum Mechanical Continuum Solvation Models, *Chem. Rev.*, 2005, **105**, 2999-3094.
- 13. K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson, A. Sánchez de Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski, H. Ågren, "The Dalton quantum chemistry program system", WIREs Comput. Mol. Sci. 2014, 4, 269-284 (doi: 10.1002/wcms.1172).

- Dalton a molecular electronic structure program, Release v2018.2 (2018), see http://daltonprogram.org.Journal.
- 15. P. Jacques, X. Allonas, M. von Raumer, P. Suppan and E. Haselbach, Quenching of triplet benzophenone by methyl and methoxy benzenes: are triplet exciplexes involved?, J. Photochem. Photobiol. A: Chem., 1997, 111, 41-45.
- I. Carmichael and G. L. Hug, Triplet-Triplet Absorption Spectra of Organic Molecules in Condensed Phases, J. Phys. Chem. Ref. Data, 1986, 15, 1-250.
- R. V. Bensasson and J.-C. Gramain, Benzophenone triplet properties in acetonitrile and water - Reduction by lactams, *J. Chem. Soc., Faraday Trans. 1*, 1980, 76, 1801-1810.