Supporting Information

Chemo- and regioselective defluorinative annulation of (trifluoromethyl)alkenes with pyrazolones: synthesis and insecticidal activity of 6-fluoro-1,4-dihydropyrano[2,3-c]pyrazoles

Chengxi Li¹, Hengyuan Li¹, Guangkai Yao^{2*}, Xianghui Liang¹, Chen Zhao², Hanhong Xu^{2*}, Huanfeng Jiang¹ & Chuanle Zhu^{1*}

¹School of Chemistry and Chemical Engineering, Key Lab of Functional Molecular Engineering

of Guangdong Province, South China Univer-sity of Technology, Guangzhou 510640, China

²State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China.

E-mail: cechlzhu@scut.edu.cn; hhxu@scau.edu.cn; gkyao@scau.edu.cn; Fax and Tel.: (+86)

20-87112906

A. General Information	2
B. Synthesis of (Trifluoromethyl)alkenes and Pyrazolone	3
C. General Procedures	4
D. Analysis Data of Products	5
E. Further Derivations	
F. X-ray Crystallographic Data	21
G. Biological activity assays against Plutella xylostella	23
H. References	23
H. NMR Spectrum of New Compounds	

A. General Information

Melting points were measured using a melting point instrument and are uncorrected. Chemical shifts were reported in ppm from the solvent resonance as the internal standard (CDCl₃ $\delta_{\rm H}$ = 7.26 ppm, $\delta_{\rm C}$ = 77.16 ppm). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), quint)quintet), m (multiplet). Coupling constants were reported in Hertz (Hz). IR spectra were obtained with an infrared spectrometer on either potassium bromide pellets or liquid films between two potassium bromide pellets. HRMS was carried out on a high-resolution mass spectrometer (Agilent 6210 ESI/TOF MS or Thermo Q Exactive Plus). TLC was performed using commercially available 100–400 mesh silica gel plates (GF₂₅₄). X-ray structural analyses were conducted on Bruker APEX-II CCD Diffractometer.

Materials. Tetrahydrofuran (THF) and toluene were distilled from sodium/benzophenone; 1,2-dichloroethane (DCE) was distilled from calcium hydride; acetonitrile (CH₃CN) was distilled from phosphorus pentoxide. Other commercially available reagents were purchased and used without further purification. Analytical thin-layer chromatography was performed on 0.20 mm silica gel plates (GF₂₅₄) using UV light as a visualizing agent. Flash column chromatography was carried out using silica gel (200–300 mesh) with the indicated solvent system. All reactions were conducted in oven-dried Schlenk tubes. All the reaction temperatures reported are oil bath temperatures. For the biological activity assays, the *Plutella xylostella* (diamondback moth) has been in continuous colony at the glasshouse and raised with artificial feed for three generations.

B. Synthesis of (Trifluoromethyl)alkenes and Pyrazolone

(Trifluoromethyl)alkene 1n was purchased directly, and (trifluoromethyl)alkenes 1a¹, 1b¹, 1c², 1d², 1e², 1f³, 1g¹, 1h¹, 1i¹, 1j², 1k⁴, 1l⁵, 1m⁶, 1o⁷, 1p⁸ were synthesized according to the reported literatures.

In the scope of substrates, substituted pyrazolones 2c⁹, 2d⁹, 2g⁹, 2h¹⁰, 2j¹⁰, 2k⁹, 2l¹⁰, 2m¹¹, 8¹², 9¹³ were synthesized according to the reported literatures. 2a, 2b, 2e, 2f, 2i were bought and used directly.

C. General Procedures

Defluorinative cyclization of (trifluoromethyl)alkenes with pyrazolones

A 25 mL oven-dried graduated tube equipped with a magnetic stirring bar, pyrazolones **1** (0.4mmol), (trifluoromethyl)alkenes **2** (0.6 mmol), *t*-BuOLi (1.2 mmol), and DMSO (4 mL) was vigorously stirred at 80 °C for 12 h. Then the mixture was stopped stirring, quenched with H₂O (15 mL) and extracted with EtOAc (15 mL×3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. Further purification by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) provided the product **3**.

D. Analysis Data of Products

6-Fluoro-3-methyl-1,5-diphenyl-1,4-dihydropyrano[2,3-c]pyrazole (3a)

41.3 mg, 67% yield; yellow solid, mp: 89-90 °C; eluting with petroleum ether/ethyl acetate = 10:1; ¹H NMR (500 MHz, CDCl₃) δ 7.63-7.64 (m, 2H), 7.30-7.38 (m, 6H), 7.17-7.23 (m, 2H), 3.55 (d, *J* = 5.5 Hz, 2H), 2.20 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.3 (d, ¹*J*_{*F*-*C*} = 259.6 Hz), 146.1, 144.8 (d, ³*J*_{*F*-*C*} = 7.6 Hz), 137.8, 134.4 (d, ⁴*J*_{*F*-*C*} = 3.8 Hz), 129.2, 128.5, 127.4, 127.3, 126.3, 120.5, 95.6, 87.5 (d, ²*J*_{*F*-*C*} = 13.9 Hz), 22.8 (d, ⁴*J*_{*F*-*C*} = 3.8 Hz), 12.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -99.1 (s, 1F); IR (KBr): 3052, 2921, 1694, 1600, 1513, 1226, 1132, 1066 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₁₉H₁₅FN₂O+H, 307.1241; found, 307.1236.

6-Fluoro-3-methyl-5-phenyl-1-(p-tolyl)-1,4-dihydropyrano[2,3-c]pyrazole (3b)

52.3 mg, 82% yield; yellow solid, mp: 124-125 °C; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, J = 8.5 Hz, 2H), 7.44 (d, J = 8.5 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.29 (t, J = 7.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 3.59 (d, J = 3.5 Hz, 2H), 2.37 (s, 3H), 2.26 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.3 (d, ¹ $J_{F-C} = 260.8$ Hz), 145.7, 144.6 (d, ³ $J_{F-C} = 7.6$ Hz), 136.16, 135.43, 134.5 (d, ⁴ $J_{F-C} = 2.5$ Hz), 129.8, 128.5, 127.4 (d, ⁴ $J_{F-C} = 5.0$ Hz), 127.3, 120.6, 95.3, 87.5 (d, ² $J_{F-C} = 13.9$ Hz), 22.9 (d, ⁴ $J_{F-C} = 3.8$ Hz), 21.0, 12.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -99.2 (s, 1F); IR (KBr): 3053, 2924, 1694, 1519, 1227, 1112 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₂₀H₁₇FN₂O+H, 321.1398; found, 321.1393.

6-Fluoro-3-methyl-5-phenyl-1-(*o*-tolyl)-1,4-dihydropyrano[2,3-*c*]pyrazole (3c)

101.7 mg, 79% yield; yellow solid, mp: 102-103 °C; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.54 (s, 1H), 7.49 (d, *J* = 10.0 Hz, 1H), 7.44 (d, *J* = 10.0 Hz, 2H), 7.39 (t, *J* = 5.0 Hz, 2H), 7.27-7.33 (m, 2H), 7.08 (d, *J* = 7.5 Hz, 1H), 3.58 (d, *J* = 4.0 Hz, 2H), 2.41 (s, 3H), 2.27 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.3 (d, ¹*J*_{*F*-*C*} = 260.8 Hz), 145.9, 144.7 (d, ³*J*_{*F*-*C*} = 6.3 Hz), 139.3, 137.8, 134.5 (d, ⁴*J*_{*F*-*C*} = 2.5 Hz), 129.0, 128.5, 127.4 (d, ⁴*J*_{*F*-*C*} = 5.0 Hz), 127.3, 127.1, 121.2, 117.6, 95.5, 87.5 (d, ²*J*_{*F*-*C*} = 13.9 Hz), 22.8 (d, ⁴*J*_{*F*-*C*} = 3.8 Hz), 21.5, 12.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -99.1 (s, 1F); IR (KBr): 2920, 1693, 1609, 1511, 1391, 1224, 1123 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₂₀H₁₇FN₂O+H, 321.1398; found, 321.1393.

6-Fluoro-1-(4-fluorophenyl)-3-methyl-5-phenyl-1,4-dihydropyrano[2,3-c]pyrazole (3d)

88.6 mg, 68% yield; yellow solid, mp: 118-119 °C; eluting with petroleum ether/ethyl acetate = 10:1; ¹H NMR (500 MHz, CDCl₃) δ 7.66-7.67 (m, 2H), 7.37-7.44 (m, 4H), 7.29 (t, J = 6.5 Hz, 1H), 7.12 (t, J = 8.5 Hz, 2H), 3.57 (s, 2H), 2.25 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 160.9 (d, ¹ $J_{F-C} = 245.7$ Hz), 152.2 (d, ¹ $J_{F-C} = 259.6$ Hz), 146.1, 144.6 (d, ³ $J_{F-C} = 7.6$ Hz), 134.3 (d, ⁴ $J_{F-C} = 3.8$ Hz), 134.0 (d, ⁴ $J_{F-C} = 2.5$ Hz), 128.5, 127.4 (d, ⁴ $J_{F-C} = 3.8$ Hz), 127.3, 122.2, 116.0 (d, ² $J_{F-C} = 22.7$ Hz), 95.5, 87.6 (d, ² $J_{F-C} = 13.9$ Hz), 22.8, 12.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -99.2 (s, 1F), -115.8 (s, 1F); IR (KBr): 2923, 1692, 1629, 1519, 1394, 1224, 1122 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₁₉H₁₄F₂N₂O+H, 325.1147; found, 325.1143.

1-(4-Chlorophenyl)-6-fluoro-3-methyl-5-phenyl-1,4-dihydropyrano[2,3-c]pyrazole (3e)

42.0 mg, 59% yield; yellow solid, mp: 124-125 °C; eluting with petroleum ether/ethyl acetate = 10:1; ¹H NMR (500 MHz, CDCl₃) δ 7.58-7.61 (m, 2H), 7.30-7.37 (m, 6H), 7.21-7.24 (m, 1H), 3.50 (d, *J* = 5.0 Hz, 2H), 2.81 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.1 (d, ¹*J*_{*F*-*C*} = 260.8 Hz), 146.4, 144.7 (d, ³*J*_{*F*-*C*} = 6.3 Hz), 136.5, 134.3 (d, ⁴*J*_{*F*-*C*} = 3.8 Hz), 131.6, 129.3, 128.5, 127.4, 127.3 (d, ⁴*J*_{*F*-*C*} = 3.8 Hz), 121.3, 95.9, 87.6 (d, ²*J*_{*F*-*C*} = 13.9 Hz), 22.8 (d, ⁴*J*_{*F*-*C*} = 2.5 Hz), 12.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -99.2 (s, 1F); IR (KBr): 2925, 1694, 1611, 1509, 1406, 1226, 1094 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₁₉H₁₄ClFN₂O+H, 341.0852; found, 341.0851.

1-(2-Chlorophenyl)-6-fluoro-3-methyl-5-phenyl-1,4-dihydropyrano[2,3-c]pyrazole (3f)

57.8 mg, 85% yield; yellow oil; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.42-7.44 (m, 1H), 7.34-7.38 (m, 3H), 7.27-7.31 (m, 4H), 7.18-7.21 (m, 1H), 3.53 (d, J = 5.0 Hz, 2H), 2.19 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.3 (d, ${}^{1}J_{F-C} = 260.8$ Hz), 146.8, 146.0 (d, ${}^{3}J_{F-C} = 7.6$ Hz), 134.6, 134.5 (d, ${}^{4}J_{F-C} = 2.5$ Hz), 131.6, 130.4, 130.3, 129.3, 128.5, 127.6, 127.4 (d, ${}^{4}J_{F-C} = 3.8$ Hz), 127.3, 94.4, 87.5 (d, ${}^{2}J_{F-C} = 13.9$ Hz), 23.1 (d, ${}^{4}J_{F-C} = 3.8$ Hz), 12.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -99.5 (s, 1F); IR (KBr): 3057, 2923, 1699, 1532, 1227, 1116 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₁₉H₁₄ClFN₂O+H, 341.0852; found, 341.0849.

6-Fluoro-1-(4-iodophenyl)-3-methyl-5-phenyl-1,4-dihydropyrano[2,3-c]pyrazole (3g)

54.3 mg, 64% yield; yellow solid, mp: 133-134 °C; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.5 Hz, 2H), 7.22–7.42 (m, 6H), 7.21-7.23 (m, 1H), 3.49 (d, *J* = 5.0 Hz, 2H), 2.17 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.1 (d, ¹*J*_{*F*-*C*} = 260.8 Hz), 146.5, 144.7 (d, ³*J*_{*F*-*C*} = 7.6 Hz), 138.2, 137.6, 134.2 (d, ⁴*J*_{*F*-*C*} = 3.8 Hz), 128.6, 127.5, 127.3 (d, ⁴*J*_{*F*-*C*} = 5.0 Hz), 121.8, 96.0, 90.4, 87.6 (d, ²*J*_{*F*-*C*} = 13.9 Hz), 27.7 (d, ⁴*J*_{*F*-*C*} = 2.5 Hz), 12.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -99.2(s, 1F); IR (KBr): 2918, 1689, 1506, 1396, 1222, 1064 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₉H₁₄FIN₂O+H, 433.0208; found, 433.0201.

4-(6-Fluoro-3-methyl-5-phenylpyrano[2,3-c]pyrazol-1(4H)-yl)benzonitrile (3h)

54.8 mg, 40% yield; white solid, mp: 188-189 °C; eluting with petroleum ether/ethyl acetate = 10:1 ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 8.5, 2H), 7.69 (d, J = 8.5 Hz, 2H), 7.38–7.44 (m, 4H), 7.31 (t, J = 7.0 Hz, 1H), 3.56 (d, J = 5.5 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 151.9 (d, ¹ $J_{F-C} = 262.1$ Hz), 147.8, 145.3 (d, ³ $J_{F-C} = 7.6$ Hz), 141.2, 133.9 (d, ⁴ $J_{F-C} = 2.5$ Hz), 133.4, 128.6, 127.6, 127.3 (d, ⁴ $J_{F-C} = 5.0$ Hz), 119.5 118.5, 109.0, 96.9, 87.8 (d, ² $J_{F-C} = 13.9$ Hz), 22.7 (d, ⁴ $J_{F-C} = 3.8$ Hz), 12.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -99.2 (s, 1F); IR (KBr): 2921, 2219, 1695, 1601, 1513, 1410, 1220 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₂₀H₁₄FN₃O+H, 332.1194; found, 332.1190.

6-Fluoro-1,3-dimethyl-5-phenyl-1,4-dihydropyrano[2,3-c]pyrazole (3i)

39.7 mg, 81% yield; yellow solid, mp: 79-80 °C; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.29-7.36 (m, 4H), 7.18-7.22 (m, 1H), 3.60 (s, 3H), 3.45 (d, *J* = 5.0 Hz, 2H), 2.11 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.3 (d, ¹*J*_{*F*-*C*} = 259.6 Hz), 145.5 (d, ³*J*_{*F*-*C*} = 6.3 Hz), 144.1, 134.7 (d, ⁴*J*_{*F*-*C*} = 2.5 Hz), 128.5, 127.4 (d, ³*J*_{*F*-*C*} = 5.0 Hz), 127.2, 93.3, 87.5 (d, ²*J*_{*F*-*C*} = 13.9 Hz), 33.6, 23.0 (d, ⁴*J*_{*F*-*C*} = 3.8 Hz), 12.7; ¹⁹F NMR (471 MHz, CDCl₃) δ -99.8 (s, 1F); IR (KBr): 2928, 1691, 1557, 1488, 1226 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₁₄H₁₃FN₂O+H, 245.1084; found, 245.1081.

3-Ethyl-6-fluoro-1,5-diphenyl-1,4-dihydropyrano[2,3-c]pyrazole (3j)

71.1 mg, 55% yield; yellow solid, mp: 89-90 °C; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.37-7.45 (m, 6H), 7.24-7.30 (m, 2H), 3.63 (d, *J* = 5.5 Hz, 2H), 2.66 (q, *J* = 7.5 Hz, 2H), 1.29 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.3 (d, ¹*J*_{*F*-*C*} = 259.6 Hz), 151.3, 144.8 (d, ³*J*_{*F*-*C*} = 6.3 Hz), 137.9, 134.5 (d, ⁴*J*_{*F*-*C*} = 3.8 Hz), 129.2, 128.5, 127.4 (d, ⁴*J*_{*F*-*C*} = 5.0 Hz), 127.3, 126.2, 120.6, 94.8, 87.5 (d, ²*J*_{*F*-*C*} = 13.9 Hz), 23.1 (d, ⁴*J*_{*F*-*C*} = 2.5 Hz), 21.4, 12.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -99.1 (s, 1F); IR (KBr): 2924, 1697, 1600, 1517, 1450, 1404, 1345, 1227, 1132 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₂₀H₁₇FN₂O+H, 321.1398; found, 321.1394.

3-Benzyl-6-fluoro-1,5-diphenyl-1,4-dihydropyrano[2,3-c]pyrazole (3k)

62.0 mg, 40% yield; yellow solid, mp: 107-108 °C; eluting with petroleum ether/ethyl acetate = 10:1; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.0 Hz, 2H), 7.51 (t, J = 7.2 Hz, 2H), 7.28-7.41 (m, 11H), 4.06 (s, 2H), 3.36 (d, J = 5.2 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 152.1 (d, ¹ $J_{F-C} = 260.8$ Hz), 148.7, 145.0 (d, ³ $J_{F-C} = 6.3$ Hz), 138.3, 137.9, 134.4 (d, ⁴ $J_{F-C} = 3.8$ Hz), 129.3, 128.8, 128.6, 128.5, 127.4, 127.3, 126.5, 126.4, 120.7, 95.5, 87.6 (d, ² $J_{F-C} = 13.9$ Hz), 34.7, 22.9 (d, ⁴ $J_{F-C} = 2.5$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -99.4 (s, 1F); IR (KBr): 3049, 2922, 1696, 1599, 1512, 1403, 1225, 1128, 1068 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₂₅H₁₉FN₂O+H, 383.1554; found, 383.1548.

1-(2-Chlorophenyl)-6-fluoro-3-methyl-5-(naphthalen-2-yl)-1,4-dihydropyrano[2,3-c]pyrazole (3n)

142.2 mg, 91% yield; yellow solid, mp: 107-108 °C; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.80–7.83 (m, 4H), 7.57 (d, *J* = 9.0 Hz, 1H), 7.44–7.51 (m, 4H), 7.33–7.35 (m, 2H), 3.68 (d, *J* = 4.5 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.6 (d, ¹*J*_{*F*-*C*} = 260.8 Hz), 146.8, 146.0 (d, ¹*J*_{*F*-*C*} = 6.3 Hz), 134.6, 133.3, 132.5, 132.0 (d, ⁴*J*_{*F*-*C*} = 2.5 Hz), 131.6, 130.5, 130.3, 129.3, 128.0, 128.0, 127.6, 126.4, 126.2, 126.2, 125.5 (d, ³*J*_{*F*-*C*} = 6.3 Hz), 94.4, 87.6 (d, ²*J*_{*F*-*C*} = 13.9 Hz), 23.1 (d, ⁴*J*_{*F*-*C*} = 3.8 Hz), 12.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -98.8 (s, 1F); IR (KBr): 2922, 1690, 1529, 1386, 1236, 1117 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₂₃H₁₆ClFN₂O+H, 391.1008; found, 391.1004.

5-(4-(*tert*-Butyl)phenyl)-1-(2-chlorophenyl)-6-fluoro-3-methyl-1,4-dihydropyrano[2,3-c]pyraz ole (30)

126.4 mg, 80% yield; yellow oil; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.51–7.53 (m, 1H), 7.45–7.47 (m, 1H), 7.36–7.42 (m, 6H), 3.61 (d, *J* = 5.0 Hz, 2H), 2.28 (s, 3H), 1.33 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 152.2 (d, ¹*J*_{*F*-*C*} = 260.8 Hz), 150.3, 146.8, 146.1 (d, ³*J*_{*F*-*C*} = 7.6 Hz), 134.6, 131.6, 131.4 (d, ⁴*J*_{*F*-*C*} = 3.8 Hz), 130.4, 130.3, 129.3, 127.5 127.0 (d, ⁴*J*_{*F*-*C*} = 3.8 Hz), 125.4, 94.4, 87.3 (d, ²*J*_{*F*-*C*} = 13.9 Hz), 34.6, 31.3, 22.9 (d, ⁴*J*_{*F*-*C*} = 2.5 Hz), 12.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -99.7 (s, 1F); IR (KBr): 3055, 2960, 1696, 1575, 1528, 1395, 1229, 1104, 1044 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₂₃H₂₂ClFN₂O+H, 397.1478; found, 397.1473.

1-(2-Chlorophenyl)-6-fluoro-3-methyl-5-(*p*-tolyl)-1,4-dihydropyrano[2,3-*c*]pyrazole (3p)

89.9 mg, 63% yield; yellow solid, mp: 110-111°C; eluting with petroleum ether/ethyl acetate = 10:1; ¹H NMR (500 MHz, CDCl₃) δ 7.49-7.51 (m, 1H), 7.44-7.46 (m, 1H), 7.34-7.36 (m, 2H), 7.31-7.33 (m, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 3.59 (d, *J* = 1.3 Hz, 2H), 2.34 (s, 3H), 2.27 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.1 (d, ¹*J*_{*F*-*C*} = 260.8 Hz), 146.7, 146.1 (d, ¹*J*_{*F*-*C*} = 6.3 Hz), 137.1, 134.7, 131.6, 131.5 (d, ³*J*_{*F*-*C*} = 2.5 Hz), 130.4, 130.2, 129.3, 129.2, 127.5, 127.2 (d, ⁴*J*_{*F*-*C*} = 5.0 Hz), 94.4, 87.4 (d, ³*J*_{*F*-*C*} = 13.9 Hz), 23.1 (d, ³*J*_{*F*-*C*} = 3.8 Hz), 21.2, 12.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -99.8 (s, 1F); IR (KBr): 3052, 2921, 1694, 1600, 1513, 1226, 1132, 1066 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₂₀H₁₆CIFN₂O+H, 355.1008; found, 355.1004.

1-(2-Chlorophenyl)-5-(3,4-dimethylphenyl)-6-fluoro-3-methyl-1,4-dihydropyrano[2,3-*c*]pyra zole (3q)

95.2 mg, 65% yield; yellow solid, mp: 114-115 °C; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.51–7.53 (m, 1H), 7.45–7.47 (m, 1H), 7.36–7.38 (m, 2H), 7.20 (m, 3H), 3.59 (d, *J* = 5.5 Hz, 2H), 2.28 (s, 6H), 2.26 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.1 (d, ¹*J*_{*F*-*C*} = 259.6 Hz), 146.7, 146.1 (d, ³*J*_{*F*-*C*} = 6.3 Hz), 136.7, 135.8, 134.7, 131.9 (d, ⁴*J*_{*F*-*C*} = 2.5 Hz), 131.6, 130.4, 130.2, 129.8, 129.3, 128.5 (d, ²*J*_{*F*-*C*} = 3.8 Hz), 127.5, 124.8 (d, ²*J*_{*F*-*C*} = 3.8 Hz), 94.4, 87.4 (d, ²*J*_{*F*-*C*} = 15.1 Hz), 23.2 (d, ²*J*_{*F*-*C*} = 3.8 Hz), 19.9, 19.5, 12.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -99.9 (s, 1F); IR (KBr): 2924, 1693, 1626, 1528, 1446, 1391, 1230, 1118, 1032 cm⁻¹; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₂₁H₁₈ClFN₂O+H, 369.1165; found, 369.1162.

1-(2-Chlorophenyl)-6-fluoro-5-(4-methoxyphenyl)-3-methyl-1,4-dihydropyrano[2,3-*c*]pyrazo le (3r).

95.8 mg, 65% yield; yellow solid, mp: 87-88 °C; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.51–7.53 (m, 1H), 7.45–7.47 (m, 1H), 7.36 (d, J = 7.5 Hz, 4H), 6.92 (d, J = 8.5 Hz, 2H), 3.81 (s, 3H), 3.58 (d, J = 5.0 Hz, 2H), 2.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 158.7, 152.0 (d, ¹ J_{F-C} = 259.6 Hz), 146.72, 146.1 (d, ³ J_{F-C} = 6.3 Hz), 134.7, 131.6, 130.4, 130.2, 129.3, 128.5 (d, ⁴ J_{F-C} = 5.0 Hz), 127.5, 126.7 (d, ⁴ J_{F-C} = 3.8 Hz), 113.9, 94.3, 87.0 (d, ² J_{F-C} = 13.9 Hz), 55.3, 23.2 (d, ⁴ J_{F-C} = 2.5 Hz), 12.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -100.5 (s, 1F); IR (KBr): 2840, 1693, 1605, 1516, 1228, 1181, 1097, 1034 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₂₀H₁₆ClFN₂O₂+H, 371.0957; found, 371.0954. 5-(Benzo[*d*][1,3]dioxol-5-yl)-1-(2-chlorophenyl)-6-fluoro-3-methyl-1,4-dihydropyrano[2,3-*c*]p yrazole (3s)

117.0 mg, 76% yield; yellow solid, mp: 118-119 °C; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.51–7.52 (m, 1H), 7.45–7.46 (m, 1H), 7.36–7.38 (m, 2H), 6.81–6.94 (m, 3H), 5.96 (s, 2H), 3.55 (d, *J* = 4.5 Hz, 2H), 2.27 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.1 (d, ¹*J*_{*F*-*C*} = 259.6 Hz), 147.8, 146.7, 146.0 (d, ³*J*_{*F*-*C*} = 7.6 Hz), 134.6, 131.6, 130.4, 130.3, 129.3, 128.2 (d, ⁴*J*_{*F*-*C*} = 2.5 Hz), 127.5, 120.9 (d, ⁴*J*_{*F*-*C*} = 3.8 Hz), 108.3, 108.1 (d, ⁴*J*_{*F*-*C*} = 5.0 Hz), 101.2, 94.3, 87.3 (d, ²*J*_{*F*-*C*} = 13.9 Hz), 23.4 (d, ³*J*_{*F*-*C*} = 3.8 Hz), 12.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -99.8(s, 1F); IR (KBr): 2900, 1694, 1623, 1493, 1442, 1391, 1337, 1238, 1100, 1039 cm⁻¹; HRMS (APCI, m/z): [M]⁺ Calcd. for C₂₀H₁₄ClFN₂O₃+H, 385.0750; found, 385.0745.

1-(2-Chlorophenyl)-6-fluoro-5-(4-fluorophenyl)-3-methyl-1,4-dihydropyrano[2,3-*c*]pyrazole (3t)

112.2 mg, 77% yield; yellow oil; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.50-7.52 (m, 1H), 7.44-7.46 (m, 1H), 7.35–7.40 (m, 4H), 7.05 (t, *J* = 8.5 Hz, 2H), 3.57 (d, *J* = 5.0 Hz, 2H), 2.27 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.8 (d, ¹*J*_{*F*-*C*} = 247.0 Hz), 152.3 (d, ¹*J*_{*F*-*C*} = 259.6 Hz), 146.7, 145.9 (d, ³*J*_{*F*-*C*} = 6.3 Hz), 134.6, 131.6, 130.4, 130.3, 129.3, 129.1 (d, ³*J*_{*F*-*C*} = 5.0 Hz), 127.6, 115.4 (d, ²*J*_{*F*-*C*} = 20.2 Hz), 94.2 (d, ⁴*J*_{*F*-*C*</sup> = 1.3 Hz), 86.8 (d, ²*J*_{*F*-*C*} = 13.9 Hz), 23.2 (d, ⁴*J*_{*F*-*C*} = 3.8 Hz), 12.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -99.7 (s,1F), -114.4 (s, 1F); IR (KBr): 3065,2925, 1702, 1584, 1511, 1232, 1126 cm⁻¹; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₁₉H₁₃ClF₂N₂O+H, 359.0757; found, 359.0753.}

1-(2-Chlorophenyl)-5-(4-chlorophenyl)-6-fluoro-3-methyl-1,4-dihydropyrano[2,3-*c*]pyrazole (3u)

128.7 mg, 86% yield, yellow solid, mp: 101-102 °C; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.52 (m, 1H), 7.44–7.46 (m, 1H), 7.34–7.37 (m, 6H), 3.58 (d, J = 5.0 Hz, 2H), 2.28 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 152.4 (d, ¹ $J_{F-C} = 260.8$ Hz), 146.7, 145.8 (d, ¹ $J_{F-C} = 7.6$ Hz), 134.6, 133.0, 132.9 (d, ⁴ $J_{F-C} = 2.5$ Hz), 131.6, 130.4, 130.3, 129.3, 128.7, 128.6, 127.6, 94.1, 86.7 (d, ² $J_{F-C} = 13.9$ Hz), 22.9 (d, ⁴ $J_{F-C} = 2.5$ Hz), 12.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -98.4 (s, 1F); IR (KBr): 2924, 1692, 1517, 1232, 1097 cm⁻¹; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₁₉H₁₃Cl₂FN₂O+H, 375.0462; found, 375.0459.

1-(2-Chlorophenyl)-5-(3,5-dichlorophenyl)-6-fluoro-3-methyl-1,4-dihydropyrano[2,3-*c*]pyraz ole (3v)

126.9 mg, 77% yield, yellow solid, mp: 134-135 °C; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.53 (m, 1H), 7.44–7.46 (m, 1H), 7.36–7.38 (m, 2H), 7.32 (s, 2H), 7.26 (t, *J* = 2.0 Hz, 1H), 3.57 (d, *J* = 5.0 Hz, 2H), 2.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 153.1 (d, ¹*J*_{*F*-*C*} = 263.3 Hz), 146.7, 145.5 (d, ³*J*_{*F*-*C*} = 6.3 Hz), 137.5 (d, ⁴*J*_{*F*-*C*} = 3.8 Hz), 135.1, 134.5, 131.5, 130.4, 130.4, 129.2, 127.6, 127.2, 125.8 (d, ⁴*J*_{*F*-*C*} = 5.0 Hz), 93.9, 86.0 (d, ²*J*_{*F*-*C*} = 12.6 Hz), 22.8 (d, ⁴*J*_{*F*-*C*} = 2.5 Hz), 12.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -95.8 (s, 1F); IR (KBr): 2921, 1689, 1558, 1433, 1233, 1126 cm⁻¹; HRMS (APCI, m/z): [M+H]⁻ Calcd. for C₁₉H₁₂Cl₃FN₂O+H⁻, 409.0072; found, 409.0070.

1-(2-Chlorophenyl)-6-fluoro-3-methyl-5-(4-(trifluoromethyl)phenyl)-1,4-dihydropyrano[2,3c]pyrazole (3w)

150.8 mg, 92% yield; yellow oil; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.60 (dd, J = 4.0, 5.0 Hz, 4H), 7.52–7.54 (m, 1H), 7.46–7.48 (m, 1H), 7.38–7.40 (m, 2H), 3.64 (d, J = 5.0 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 153.0 (d, ¹ $J_{F-C} = 263.3$ Hz), 146.7, 145.7 (d, ³ $J_{F-C} = 7.6$ Hz), 138.3, 134.5, 131.6, 130.4, 130.4, 129.3, 127.6, 127.6 (d, ⁴ $J_{F-C} = 1.3$ Hz), 125.4 (q, ⁴ $J_{F-C} = 3.8$ Hz), 124.1 (d, ¹ $J_{F-C} = 273.4$ Hz), 94.1, 86.8 (d, ² $J_{F-C} = 12.6$ Hz), 22.8 (d, ⁴ $J_{F-C} = 3.8$ Hz), 12.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.6 (s, 3F), -97.3 (s, 1F); IR (KBr): 2923, 1688, 1572, 1391, 1324, 1267, 1119 cm⁻¹; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₂₀H₁₃ClF₄N₂O+H, 409.0725; found, 409.0722.

5-(Benzo[*b*]thiophen-3-yl)-1-(2-chlorophenyl)-6-fluoro-3-methyl-1,4-dihydropyrano[2,3-*c*]py razole (3x)

58.6 mg, 37% yield; yellow solid, mp: 141-142 °C; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 7.5 Hz, 1H), 7.53–7.55 (m, 1H), 7.48–7.50 (m, 1H), 7.38–7.40 (m, 5H), 3.63 (d, *J* = 5.0 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.2 (d, ¹*J*_{*F*-*C*} = 259.6 Hz), 146.7, 146.3 (d, ³*J*_{*F*-*C*} = 6.3 Hz), 140.0, 137.5, 134.6, 131.7, 130.5, 130.4, 130.0, 129.3, 127.6, 124.9, 124.6, 124.3, 122.9, 122.8 (d, ⁴*J*_{*F*-*C*} = 2.5 Hz), 94.4, 82.6 (d, ²*J*_{*F*-*C*} = 18.9 Hz), 24.4 (d, ⁴*J*_{*F*-*C*} = 2.5 Hz), 12.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -95.6 (s, 1F); IR (KBr): 3069, 2924, 1705, 1529, 1246, 1102, 1039 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₂₁H₁₄ClFN₂OS+H, 397.0572; found, 397.0569.

1-(2-Chlorophenyl)-6-fluoro-3-methyl-5-(phenylethynyl)-1,4-dihydropyrano[2,3-*c*]pyrazole (3z)

114.5 mg, 79% yield; yellow solid, mp: 80-81 °C; eluting with petroleum ether/ethyl acetate = 10:1; ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.52 (m, 1H), 7.43–7.46 (m, 3H), 7.36–7.38 (m, 2H), 7.30–7.32 (m, 3H), 3.48 (d, *J* = 5.0 Hz, 2H), 2.25 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.8 (d, ¹*J*_{*F*-*C*} = 264.6 Hz), 146.6, 145.4 (d, ⁴*J*_{*F*-*C*} = 5.0 Hz), 134.4, 131.6, 131.4, 130.4, 130.4, 129.2, 128.3, 127.6, 123.0, 93.9, 93.7 (d, ⁴*J*_{*F*-*C*} = 5.0 Hz), 81.8 (d, ⁴*J*_{*F*-*C*} = 2.5 Hz), 73.1 (d, ²*J*_{*F*-*C*} = 16.4 Hz), 22.9, 12.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -89.3 (s, 1F); IR (KBr): 2924, 1686, 1620, 1527, 1389, 1261, 1121 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₂₁H₁₄ClFN₂O+H, 365.0852; found, 365.0850.

1-(2-Chlorophenyl)-6-fluoro-3-methyl-5-(oct-1-yn-1-yl)-1,4-dihydropyrano[2,3-c]pyrazole (3aa)

97.1 mg, 65% yield; yellow oil; eluting with petroleum ether/ethyl acetate = 10:1; ¹H NMR (500 MHz, CDCl₃) δ 7.48–7.50 (m, 1H), 7.40–7.42 (m, 1H), 7.34–7.36 (m, 2H), 3.35 (d, *J* = 5.0 Hz, 2H), 2.34 (t, *J* = 8.0 Hz, 2H), 2.23 (s, 3H), 1.52–1.58 (m, 2H), 1.38–1.44 (m, 2H), 1.28–1.34 (m, 4H), 0.90 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.6 (d, ¹*J*_{*F*-*C*} = 262.1 Hz), 146.5, 145.5 (d, ³*J*_{*F*-*C*} = 6.3 Hz), 134.5, 131.6, 130.4, 130.3, 129.2, 127.5, 94.9 (d, ⁴*J*_{*F*-*C*} = 5.0 Hz), 94.0, 73.7 (d, ²*J*_{*F*-*C*} = 16.4 Hz), 72.7 (d, ⁴*J*_{*F*-*C*} = 1.3 Hz), 31.3, 28.7, 28.5, 23.2 (d, ⁴*J*_{*F*-*C*} = 1.3 Hz), 22.5, 19.5, 14.0, 12.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -92.3 (s, 1F); IR (KBr): 2927, 2858, 1691, 1530, 1257, 1111 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₂₁H₂₂ClFN₂O+H, 373.1478; found, 373.1474.

1-(2-Chlorophenyl)-5-ethynyl-6-fluoro-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole (3ab')

64.5 mg, 56% yield; yellow solid, mp: 107-108 °C; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.52 (m, 1H), 7.36–7.43 (m, 3H), 3.41 (d, J = 5.0 Hz, 2H), 3.11 (s, 1H), 2.24 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.0 (d, ¹ $J_{F-C} = 265.9$ Hz), 146.5, 145.2 (d, ³ $J_{F-C} = 6.3$ Hz), 134.3, 131.6, 130.4, 130.4, 129.2, 127.6, 93.8, 81.8 (d, ⁴ $J_{F-C} = 5.0$ Hz), 76.3 (d, ⁴ $J_{F-C} = 2.5$ Hz), 72.6 (d, ² $J_{F-C} = 16.4$ Hz), 22.6 (d, ⁴ $J_{F-C} = 1.3$ Hz), 12.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -89.0 (s, 1F); IR (KBr): 2921, 2855, 1688, 1623, 1528, 1390, 1340, 1264 1088, 1038 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₁₅H₁₀ClFN₂O+H, 289.0539; found, 289.0534.

4-(3,3-Difluoro-2-phenylallyl)-4,5-dimethyl-2-phenyl-2,4-dihydro-3*H*-pyrazol-3-one (10)

100.5 mg, 74% yield; yellow oil; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.42-7.44 (m, 2H), 7.19–7.22 (m, 2H), 7.00–7.07 (m, 6H), 2.94 (dt, *J* = 3.0, 3.0 Hz, 1H), 2.69 (dd, *J* = 2.0, 2.0 Hz, 1H), 1.86 (s, 3H), 1.22 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 174.6, 162.8, 154.1 (t, ¹*J*_{*F*·*C*} = 291.1 Hz), 137.7, 131.1 (dd, ⁴*J*_{*F*·*C*} = 3.8, 2.5 Hz), 128.9 (t, ⁴*J*_{*F*·*C*} = 2.5 Hz), 128.5, 128.2, 128.0, 124.8, 118.7, 89.1 (dd, ²*J*_{*F*·*C*} = 20.2, 17.6 Hz), 54.1 (t, ⁴*J*_{*F*·*C*} = 2.5 Hz), 33.9 (d, ⁴*J*_{*F*·*C*} = 2.5 Hz), 21.0, 13.5 (d, ⁴*J*_{*F*·*C*} = 2.5 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -88.7 (d, ³*J*_{*F*·*H*} = 37.7 Hz, 1F), -89.8 (d, ³*J*_{*F*·*H*} = 37.7 Hz, 1F); IR (KBr): 2968, 1712, 1595, 1497, 1450, 1399, 1365, 1296, 1240, 1140 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. for C₂₀H₁₈F₂N₂O+H, 341.1460; found, 341.1457.

E. Further Derivations

A 25 mL oven-dried tube equipped with a magnetic stirring bar, **3n** (77.7 mg, 0.2 mmol), indole (46.9 mg, 0.4 mmol), *t*-BuONa (57.7 mg, 0.6 mmol), and DMF (2 mL) was vigorously stirred at room temperature for 16 h. Then the mixture was stopped stirring, added water (15 mL), extracted with EtOAc (15 mL \times 3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Further purification by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate = 5:1) provided product **4** in 87% isolated yield.

1-(2-Chlorophenyl)-6-(1*H*-indol-1-yl)-3-methyl-5-(naphthalen-2-yl)-1,4-dihydropyrano[2,3-*c*] pyrazole (4)

84.9 mg, 87% yield; yellow solid, mp: 96-98 °C; eluting with petroleum ether/ethyl acetate = 5:1; ¹H NMR (400 MHz, CDCl₃) δ 7.68–7.72 (m, 3H), 7.43–7.56 (m, 7H), 7.32–7.36 (m, 2H), 7.13–7.19 (m, 2H), 6.90–6.93 (m, 2H), 6.42 (d, *J* = 3.6 Hz, 1H), 4.00 (s, 2H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 146.8, 140.3, 136.0, 135.0, 134.9, 133.2, 132.5, 131.7, 130.4, 130.2, 129.4, 128.6, 128.1, 128.0, 127.9, 127.6, 127.6, 126.2, 126.1, 125.9, 125.0, 122.8, 121.0, 120.9, 111.5, 108.6, 104.8, 93.9, 25.9, 13.0; IR (KBr): 3055, 2924, 1669, 1521, 1453, 1389, 1303, 1223, 1119 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. For C₃₁H₂₂ClN₃O+H, 488.1524; found, 488.1520.

A 25 mL oven-dried Schlenk tube equipped with a magnetic stirring bar, **3n** (77.7 mg, 0.2 mmol) and phenol (188.2 mg, 2.0 mmol) were dissolved in 4 mL of dichloromethane, and the HBr (0.4 mL, 33 wt.% in AcOH) was added dropwise. The resulting mixture was vigorously stirred at 90 °C for 48 h. Then the mixture was stopped stirring, added water (15 mL), extracted with EtOAc (15 mL \times 3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Further purification by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate = 10:1) provided product **5** in 73% isolated yield.

6-Bromo-1-(2-chlorophenyl)-6-fluoro-3-methyl-5-(naphthalen-2-yl)-1,4,5,6-tetrahydropyran o[2,3-c]pyrazole (5)

69.0 mg, 73% yield; colorless oil; eluting with petroleum ether/ethyl acetate = 10:1; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.88–7.98 (m, 3H), 7.50–7.62 (m, 5H), 7.40–7.42 (m, 2H), 3.65–3.70 (m, 1H), 3.38–3.45 (m, 1H), 2.97 (dt, J = 13.6, 5.6 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.9, 145.9 (d, ³*J*_{*F*-*C*} = 6.1 Hz), 134.6, 133.3, 133.1, 132.1, 131.7, 130.4, 130.3, 129.5, 129.2, 128.2, 128.0, 127.7, 127.6, 127.4, 126.6, 126.4, 122.2 (d, ¹*J*_{*F*-*C*} = 284.8 Hz), 96.1, 51.8 (d, ²*J*_{*F*-*C*} = 17.2 Hz), 23.3 (d, ³*J*_{*F*-*C*} = 5.1 Hz), 12.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.9 (s, 1F); IR (KBr): 2923, 1617, 1523, 1489, 1441, 1390, 1304, 1262, 1212, 1164, 1105 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. For C₂₃H₁₇BrClFN₂O+H, 471.0270; found, 471.0264.

A 25 mL oven-dried Schlenk tube equipped with a magnetic stirring bar, **3ab'** (86.6 mg, 0.3 mmol) and azidoacetic acid ethyl ester **6** (77.5 mg, 0.6 mmol) were dissolved in 2 mL of a 1:1 water/*tert*-butanol mixture. Sodium ascorbate (5.9 mg, 0.03 mmol, 300µL of freshly prepared 0.1 M solution in water) and copper(II) sulfate pentahydrate (7.5 mg, 0.03 mmol, 300µL of freshly prepared 0.1 M solution in water) were added. The mixture was vigorously stirred at 60 °C for 12 h. Then the mixture was stopped stirring, added water (15 mL), extracted with EtOAc (15 mL × 3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Further purification by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate = 1:1) provided product **7** in 69% isolated yield.

Ethyl-2-(4-(1-(2-chlorophenyl)-6-fluoro-3-methyl-1,4-dihydropyrano[2,3-*c*]pyrazol-5-yl)-1*H*-1,2,3-triazol-1-yl)acetate (7)

111.4 mg, 69% yield; white solid, eluting with petroleum ether/ethyl acetate = 1:1; ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 3.5 Hz, 1H), 7.43–7.45 (m, 1H), 7.37–7.39 (m, 1H), 7.29–7.32 (m, 2H), 5.11 (s, 2H), 4.17–4.20 (m, 2H), 3.79 (s, 2H), 2.23 (s, 3H), 1.21–1.23 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.2, 152.8 (d, ¹*J*_{*F*-*C*} = 260.8 Hz), 147.1, 145.5 (d, ³*J*_{*F*-*C*} = 7.6 Hz), 141.5, 134.5, 131.5, 130.4, 130.3, 129.3, 127.6, 122.3 (d, ²*J*_{*F*-*C*} = 11.3 Hz), 94.6, 90.0 (d, ²*J*_{*F*-*C*} = 13.9 Hz), 62.5, 51.0, 29.7, 20.0 (d, ⁴*J*_{*F*-*C*} = 2.5 Hz), 14.06, 12.91; ¹⁹F NMR (471 MHz, CDCl₃) δ -92.7 (s, 1F); IR (KBr): 2986, 2920, 2852, 1751, 1709, 1529, 1489, 1464, 1391, 1253, 1206, 1121 cm⁻¹; HRMS (APCI, m/z): [M+H]⁺ Calcd. For C₁₈H₁₅ClFN₅O₃+H, 404.0920; found, 404.0915.

A 25 mL oven-dried Schlenk tube equipped with a magnetic stirring bar, **3ab'** (115.4 mg, 0.4 mmol), Pd(PPh₃)₂Cl₂ (4.9 mg, 1.5 mol%), CuI (2.3 mg, 0.012 mmol) were added. The tube was evacuated and filled with N₂, then THF (2 mL) and Et₃N (1 mmol, 138 μ L) was added. The mixture was sealed and vigorously stirred at 60 °C for 12 h. Then the mixture was stopped stirring, added water (15 mL), extracted with EtOAc (15 mL × 3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Further purification by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) provided defluorination product **3z** in 83% isolated yield.

F. X-ray Crystallographic Data

The preparation of crystal of 3j

The obtained compound 3j (71.1 mg, 55% yield) was dissolved in the appropriate amount of CH₂Cl₂ to form a saturated solution in a test tube at room temperature. Then petroleum ether (15 mL) was added to the solution slowly along the tube wall, resulting in a two-phase mixture. Finally, sealed the test tube with a rubber plug. Then the colorless crystal of 3j was formed after the two-phase mixture has diffused.

The X-ray crystallographic structures for **3j**. ORTEP representation with 50% probability thermal ellipsoids. Solvent and hydrogen are omitted for clarity. Crystal data have been deposited to CCDC, number 2171272.

Empirical formula	$C_{20}H_{17}FN_2O$
Formula weight	320.35
Temperature	170 K
Crystal system, Space group	Triclinic, P-1
Unit cell dimensions	a = 5.0036(15) Å $alpha = 86.545(10)$ deg. $b = 14.799(4)$ Å $beta = 86.339(9)$ deg. $c = 21.367(7)$ Å $gamma = 83.061(11)$ deg.
Volume	1565.2(8) Å ³
Z	4
$\rho_{calc}g/cm3$	1.359
μ	0.093 mm ⁻¹
F(000)	672.0
Crystal size	$0.11 \times 0.05 \times 0.02 \text{ mm}^3$
Radiation	MoK\a ($\lambda = 0.71073$)
Theta range for data collection	1.913 to 25.026 deg.
Index ranges	$\text{-5} \leq h \leq 5, \text{-17} \leq k \leq \!\!\! 16, \text{-25} \leq l \leq \!\!\! 25$
Reflections collected	15038
Independent reflections	5420 [$R_{int} = 0.0746$, $R_{sigma} = 0.0930$]
Data/restraints/parameters	5420/0/435
Goodness-of-fit on F ²	1.117
Final R indexes [I>=2 σ (I)]	$R_1 = 0.1143, wR_2 = 0.2975$
Final R indexes [all data]	$R_1 = 0.1835, wR_2 = 0.3519$

G. Biological activity assays against Plutella xylostella

All of the tested compounds were dissolved in DMSO, and diluted with distilled water containing 0.1% Tween-80 to a solution at a concentration of 0.1 mg/mL. The leaf disks (at a diameter of 1.8 cm) were excised from cabbages, dipped in the test solution for 30 s, and allowed to dry naturally. For blank control experiments, leaf disks were dipped in the solution of distilled water containing 0.1% Tween-80 and 0.01% DMSO for 30 s, and allowed to dry naturally. The treated leaf disks were placed in petri dishes lined with filter paper. 30 second-instar larvae of *Plutella xylostella* raised in our laboratory were transferred to each petri dish. Petri dishes were kept in an incubator at 26 $\$ and 85 % relative humidity under a photoperiod of 16:8 h (light/dark). Mortalities were determined 48 h later after the treatment of the leaf disks. Three independent biological replicates were carried out for each experiment.

The corrected mortality (%) was obtained as follows:

$$mortality = \frac{mortality in treatment - mortality in blank control}{1 - mortality in blank control} \times 100\%$$

H. References

[1] Xia, P. J.; Song, D.; Ye, Z. P.; Hu, Y. Z.; Xiao, J. A.; Xiang, H. Y.; Chen, X. Q.; Yang, H. Photoinduced Single-Electron Transfer as an Enabling Principle in the Radical Borylation of Alkenes with NHC–Borane. *Angew. Chem. Int. Ed.* **2020**, *59*, 6706-6710.

[2] Guo, Y.; Cao, Y.; Song, H.; Liu, Y.; Wang, Q. Photoredox relay-catalyzed gem-difluoroallylation of alkyl iodides. *Chem. Commun.* **2021**, *57*, 9768-9771.

[3] Li, Y.; Zhao, B.; Dai, K.; Tu, D.; Wang, B.; Wang, Y. et al. Palladium-catalyzed Suzuki–Miyaura reaction of fluorinated vinyl chloride: a new approach for synthesis α and α , β -trifluoromethylstyrenes. *Tetrahedron*. **2016**, *72*, 5684-5690.

[4] Chen, F. L.; Xu, X. F.; He, Y. L.; Huang, G. P.; Zhu, S. L. NiH-Catalyzed Migratory Defluorinative Olefin Cross-Coupling: Trifluoromethyl-Substituted Alkenes as Acceptor Olefins to Form *gem*-Difluoroalkenes. *Angew. Chem. Int. Ed.* **2020**, *59*, 5398-5402.

[5] Dai, W.; Lin, Y.; Wan, Y.; Cao, S. Cu-catalyzed Tertiary Alkylation of α -(Trifluoromethyl)styrenes with Tertiary Alkylmagnesium Reagents. Org. Chem. Front., 2018, 5, 55-58.

[6] Gao, P.; Wang, G.; Xi, L.; Wang, M.; Li, S.; Shi, Z.; Transition-Metal-Free Defluorosilylation of Fluoroalkenes with Silylboronates. Chin. J. Chem. 2019, 37, 1009-1014.

[7] Zatolochnaya, O. V.; Gevorgyan, V. Synthesis of Fluoro- and Perfluoroalkyl Arenes via

Palladium-Catalyzed [4 + 2] Benzannulation Reaction. Org. Lett. 2013, 15, 2562-2565.

[8] Chen, S.; Zhang, J.; Yang, M.; Liu, F.; Xie, Z.; Liu, Y.; Lin, W.; Wang, D.; Li, X.; Wang, J. Diastereoselective Synthesis of Cyclopropanes Bearing Trifluoromethyl-substituted All-carbon Quaternary Centers from 2-Trifluoromethyl-1,3-Enynes beyond Fluorine Elimination. *Chem. Commun.*, **2019**, *55*, 3879-3882.

[9] Peng, Y.; He, Q.; Zhang, X.; Yang, C. Pd-Catalyzed intramolecular C–H activation and C–S formation to synthesize pyrazolo[5,1-b]benzothiazoles without an additional oxidant. *Org. Chem. Front.* **2019**, *6*, 3234-3237.

[10] Yuan, H.; Li, Y.; Zhao, H.; Yang, Z.; Li, X.; Li, W. Asymmetric synthesis of atropisomeric pyrazole via an enantioselective reaction of azonaphthalene with pyrazolone. *Chem. Commun.* **2019**, 55, 12715-12718.

[11] Poon, S.; St. Jean, D.; Harrington, P.; Henley, C.; Davis, J.; Morony, S.; Lott, F.; Reagan, J.; Lu, J.; Yang, Y.; Fotsch, C. Discovery and Optimization of Substituted 1-(1-Phenyl-1H-pyrazol-3-yl)methanamines as Potent and Efficacious Type II Calcimimetics. *J. Med. Chem.* **2009**, *52*, 6535-6538.

[12] Sheng, X.; Zhang, J.; Yang, H.; Jiang, G. Tunable Aerobic Oxidative Hydroxylation/Dehydrogenative Homocoupling of Pyrazol-5-ones under Transition-Metal-Free Conditions. *Org. Lett.* **2017**, 19, 2618-2621.

[13] Polkam, N.; Ramaswamy, V.; Rayam, P.; Allaka, T.; Anantaraju, H.; Dharmarajan, S. et al. Synthesis, molecular properties prediction and anticancer, antioxidant evaluation of new edaravone derivatives. *Bioorg. Med. Chem. Lett.* **2016**, 26, 2562-2568.

H. NMR Spectrum of New Compounds

¹H NMR (500 MHz, CDCl₃) Spectrum for 3a

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3a

¹⁹F NMR Spectrum (471 MHz, CDCl₃) for 3a

¹H NMR (500 MHz, CDCl₃) Spectrum for 3b

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3b

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3b

5.5 5.0 f1 (ppm)

4.5 4.0 3.0

3. 5

6.5 6. 0 1.5 1.0 0.5 0.0

-0.5 -1.0

2.0

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3c

8.0

.0 10.5 10.0 9.5 9.0 8.5

¹H NMR (500 MHz, CDCl₃) Spectrum for 3c

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3c

¹H NMR (500 MHz, CDCl₃) Spectrum for 3d

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3d

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3e

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3e

¹H NMR (500 MHz, CDCl₃) Spectrum for 3f

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3f

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3f

¹H NMR (500 MHz, CDCl₃) Spectrum for 3g

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3g

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3g

¹H NMR (500 MHz, CDCl₃) Spectrum for 3h

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3h

¹H NMR Spectrum (500 MHz, CDCl₃) for 3i

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3i

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3i

¹H NMR (500 MHz, CDCl₃) Spectrum for 3j

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3j

¹H NMR (400 MHz, CDCl₃) Spectrum for 3k

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3k

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3k

¹H NMR (500 MHz, CDCl₃) Spectrum for 3n

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3n

¹H NMR (500 MHz, CDCl₃) Spectrum for 30

¹³C NMR (126 MHz, CDCl₃) Spectrum for 30

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 30

¹H NMR (500 MHz, CDCl₃) Spectrum for 3p

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3p

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3p

¹H NMR (500 MHz, CDCl₃) Spectrum for 3q

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3q

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3q

¹H NMR (500 MHz, CDCl₃) Spectrum for 3r

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3r

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3r

¹H NMR (500 MHz, CDCl₃) Spectrum for 3s

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3s

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3s

¹H NMR (500 MHz, CDCl₃) Spectrum for 3t

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3t

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3t

¹H NMR (500 MHz, CDCl₃) Spectrum for 3u

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3u

¹H NMR (500 MHz, CDCl₃) Spectrum for 3v

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3v

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3v

¹H NMR (500 MHz, CDCl₃) Spectrum for 3w

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3w

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3w

¹H NMR (500 MHz, CDCl₃) Spectrum for 3x

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3x

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3x

¹H NMR (400 MHz, CDCl₃) Spectrum for 3z

¹³C NMR (101 MHz, CDCl₃) Spectrum for 3z

¹H NMR (500 MHz, CDCl₃) Spectrum for 3aa

¹³C NMR (126 MHz, CDCl₃) Spectrum for 3aa

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 3aa

¹³C NMR (126 MHz, CDCl₃) pectrum for 3ab⁴

¹H NMR (400 MHz, CDCl₃) Spectrum for 4

¹³C NMR (101 MHz, CDCl₃) Spectrum for 4

¹H NMR (400 MHz, CDCl₃) Spectrum for 5

¹⁹F NMR (376 MHz, CDCl₃) Spectrum for 5

¹H NMR (500 MHz, CDCl₃) Spectrum for 7

¹³C NMR (126 MHz, CDCl₃) Spectrum for 7

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 7

¹H NMR (500 MHz, CDCl₃) Spectrum for 10

¹³C NMR (126 MHz, CDCl₃) Spectrum for 10

¹⁹F NMR (471 MHz, CDCl₃) Spectrum for 10

