Supporting Information

Brønsted Acid Catalyzed Enantioselective Addition of Hydrazones to 3-Indolylmethanols

Steffen Mader,† Modhu Sudan Maji,‡ Iuliana Atodiresei† and Magnus Rueping *†#

†Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
‡Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
#King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia

Table of Contents

I. General Information ...2
II. General Procedures ..3
 General Procedure A: Preparation of Hydrazones (2a-e)
 General Procedure B: Preparation of Alcohols (1a-r)
 General Procedure C: Preparation of Racemic Products
 General Procedure D: Preparation of Chiral Products
III. Characterization of Alcohols 1a-1r ...4
IV. Characterization of Products 4a-7a, 8a-r13
V. Determination of the absolute configuration26
VI. References ...27
VII. Copies of ¹H, ¹³C, HPLC and SFC Spectra of the Reported Compounds 28
I. General Information

Unless noted otherwise, all commercially available reagents were used without further purification. Organic solvents were routinely dried and/or distilled prior to use and stored over molecular sieves under argon. Solvents for chromatography were technical grade and distilled prior to use. Thin layer chromatography (TLC) was carried out on Macherey-Nagel ALUGRAM Xtra SIL G/UV F254, visualized by UV irradiation. Macherey-Nagel silica gel 60 (particle size 0.063-0.2 mm) was used for column chromatography. Solvent mixtures are understood as volume/volume. ¹H-NMR, ¹³C-NMR and ¹⁹F-NMR spectra were recorded on VNMR-400, VNMR-600 or Mercury 300 spectrometer in CDCl₃, CD₂Cl₂ and DMSO-d₆. Carbon NMR (¹³C) spectra were recorded using a broadband decoupled mode with the multiplicities obtained using a JMOD or DEPT sequence. Proton and carbon NMR chemical shifts (δ) are reported in parts per million (ppm) relative to the residual proton signals in CDCl₃ (δ = 7.26, 77.16), DMSO-d₆ (δ = 2.50, 39.52) or CD₂Cl₂ (δ = 5.32, 54.00). Coupling constants (J) are reported in Hertz (Hz) and refer to apparent multiplicities. The following abbreviations are used for the multiplicities: s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. Mass spectra (MS-EI, 70 eV) were conducted on GC-MS Shimadzu QP2010 (column: Equity®-5, length × I.D. 30 m × 0.25 mm, df 0.25 μm, lot # 28089-U, Supelco), High resolution mass spectra (HRMS-ESI) were acquired using a ThermoFisher Scientific LTQ-Orbitrap XL. Infrared Spectra were recorded on a Perkin Elmer Spektrum 100 infrared spectrometre with a Diamant/KRS5 ATR unit. For the most significant bands the wave number ñ is given in cm⁻¹. Signals with transmissions greater than 90% were not reported. Optical rotations were measured with a Perkin-Elmer 241 polarimeter in a 1 dm cuvette using a sodium lamp (589 nm). The optical rotation is given in degrees per mg per ml, sample concentrations are reported in g per 100 mL. Melting points (m.p.) were recorded using a Büchi SMP-20 melting point apparatus and were not corrected. High Performance Liquid Chromatography (HPLC) was carried out on a JASCO UV-2077 Plus with a PU-2080 Plus solvent pump. Operation and analysis were under control of JASCO ChromPass software. As chiral columns for determination of enantiomeric excess the following prefabricated columns from Daicel were used: Chiralpak AD-H (250 x 4.6 mm, 5 μm), Chiralpak IA (250 x 4.6 mm, 5 μm), and Chiralcel OD-H (250 x 4.6 mm, 5 μm). Supercritical Fluid Chromatography (SFC) was carried out using a (S,S)-Whelk-01 column. The chiral SFC methods were calibrated with the corresponding racemic mixtures. The CD-spectrum for the product 8i was recorded on a circular dichroism spectrometer (AVIV Model 62DS) at room temperature in acetonitrile.
II. General Procedures

General Procedure A: Preparation of Hydrazones (2a-e):
A suspension of the corresponding hydrazine hydrochloride (1.47 g, 12.0 mmol) in anhydrous THF (20 mL) was treated with triethylamine (12.0 mmol, 1.21 g) for 15 min before a solution of ethyl glyoxylate (50% in toluene, 2.45 g solution, 12.0 mmol) was added dropwise into the reaction mixture at 0 °C. The mixture was stirred for 30 min at 0 °C, then for 14 h at rt. The solvent was removed in vacuo and the crude product was purified by flash column chromatography (SiO₂ deactivated with NEt₃, n-pentane:ethyl acetate 9:1 to 7:3).

General Procedure B: Preparation of Alcohols (1a-r):
The corresponding bromo compound (3 equiv.) was added slowly to a suspension of magnesium (3.5 equiv.) in dry THF under vigorous stirring. The reaction mixture was stirred for 30 min, then a solution of the corresponding 1H-indole-3-carboxaldehyde (1 equiv.) in dry THF was added slowly to the Grignard solution at 0 °C. The resulting mixture was stirred at 0 °C for 30 min then for 14 h at rt. Water was added to quench the reaction at 0 °C. The reaction mixture was extracted with EtOAc (3x) and the combined organic layers were dried over MgSO₄. The solvent was removed in vacuo and the crude product was purified by flash column chromatography (SiO₂ deactivated with NEt₃, n-pentane:ethyl acetate 9:1 to 7:3). Alcohols 1a-r were synthesized as above, starting from the commercially available Grignard reagent and the corresponding aldehyde.
The products are not very stable at room temperature and should be stored under an atmosphere of argon in the refrigerator.

General Procedure C: Preparation of Racemic Products:
The catalyst (PhO)₂P(O)OH (0.01 mmol) was added to a solution of the corresponding alcohol (0.13 mmol) and hydrazone (0.10 mmol) in dry toluene (1.5 mL). The reaction mixture was stirred for 16 h at rt. The crude product was purified by flash column chromatography (SiO₂, n-pentane:Et₂O 9:1 to 7:3)

General Procedure D: Preparation of Chiral Products:
A solution of catalyst 3h (5 mol %) in toluene (1 mL) was added to a solution of the corresponding alcohol 1 (0.13 mmol) and hydrazone 2 (0.10 mmol) in toluene (1 mL) at -30 °C. The reaction mixture was stirred at -30 °C until complete conversion of the starting material (48-72 h). The crude product was purified by flash column chromatography. The enantiomeric excess was determined by HPLC or SFC analysis, using chiral stationary phases.
III. Characterization of Alcohols 1a-1r:

(2-Methyl-1H-indol-3-yl)(phenyl)methanol (1a)¹

The title compound was synthesized according to general procedure B, starting from 2-methyl-1H-indole-3-carboxaldehyde (1.59 g, 10 mmol), bromobenzene (4.71 g, 30 mmol) and magnesium (850.5 mg, 35 mmol) using THF (100 mL) as solvent. Purification by column chromatography (SiO₂ (NEt₃), n-pentane:ethyl acetate 8:2) afforded 1a (2.01 g, 8.45 mmol) as a yellow oil in 85% yield. ¹H NMR (600 MHz, CD₂Cl₂) δ = 8.03 (s, 1H), 7.50-7.47 (m, 2H), 7.38 (dd, <i>J</i> = 7.9 Hz, 0.8, 1H), 7.34-7.31 (m, 2H), 7.27 (dt, <i>J</i> = 8.1, 0.9 Hz, 1H), 7.24 (dd, <i>J</i> = 7.4, 0.4 Hz, 1H), 7.07 (ddd, <i>J</i> = 8.2, 7.1, 1.2 Hz, 1H), 6.94 (ddd, <i>J</i> = 8.0, 7.1, 1.0 Hz, 1H), 6.17 (s, 1H), 2.44 (s, 3H).¹³C NMR (150 MHz, CD₂Cl₂) δ = 144.7, 135.8, 133.1, 128.4, 127.1, 126.2, 121.6, 119.8, 119.6, 114.6, 110.7, 69.4, 12.2. IR (ATR, cm^{−1}) ν = 3397, 3055, 1694, 1606, 1454, 1374, 1302, 1241, 1154, 1007, 835, 735. EI-MS: m/z (%) = 237.3 (M⁺, 33), 220.2 (17), 159.9 (24), 131.5 (11), 117.0 (12), 105.1 (74), 82.9 (100), 77.1 (34).

(2-Methyl-1H-indol-3-yl)(p-tolyl)methanol (1b)^{1a}

The title compound was synthesized according to general procedure B, starting from 2-methyl-1H-indole-3-carboxaldehyde (796.0 mg, 5.0 mmol), 4-Me-phenyl bromide (2.57 g, 15 mmol) and magnesium (425.5 mg, 17.5 mmol) using THF (40 mL) as solvent. Purification by column chromatography (SiO₂ (NEt₃), n-pentane:ethyl acetate 8:2) afforded 1b (1.10 g, 4.37 mmol) as a yellow oil in 87% yield. ¹H NMR (600 MHz, DMSO-<i>d</i>₆) δ = 10.74 (s, 1H), 7.35 (d, <i>J</i> = 7.9 Hz, 1H), 7.29 (d, <i>J</i> = 8.0 Hz, 2H), 7.20 (d, <i>J</i> = 8.0 Hz, 1H), 7.06 (d, <i>J</i> = 7.9 Hz, 2H), 6.94-6.90 (m, 1H), 6.82-6.78 (m, 1H), 5.95 (d, <i>J</i> = 3.4 Hz, 1H), 5.37 (d, <i>J</i> = 3.5 Hz, 1H), 2.39 (s, 3H), 2.24 (s, 3H).¹³C NMR (150 MHz, DMSO-<i>d</i>₆) δ = 143.1, 135.2, 134.8, 131.8, 128.2, 126.8, 125.7, 119.8, 119.2, 118.0, 114.6, 110.2, 67.4, 20.7, 11.9. IR (ATR, cm^{−1}) ν = 3397, 3027, 2922, 1867, 1708, 1609, 1452, 1369, 1305, 1235, 1170, 1109, 1017, 815, 742. EI-MS: m/z (%) = 251.2 (M⁺, 17), 234.3 (43), 232.2 (100), 217.3 (63), 188.9 (27), 157.9 (23), 146.1 (45), 119.0 (52), 90.9 (48).
(2-Methyl-1H-indol-3-yl)(o-tolyl)methanol (1c)1a

The title compound was synthesized according to general procedure B, starting from 2-methyl-1H-indole-3-carboxaldehyde (318.0 mg, 2.0 mmol), 2-Me-phenyl bromide (1.03 g, 6 mmol) and magnesium (170.1 mg, 7.0 mmol) using THF (30 mL) as solvent. Purification by column chromatography (SiO\textsubscript{2} (NEt\textsubscript{3}), n-pentane:ethyl acetate 8:2) afforded 1c (486 mg, 1.93 mmol) as a yellow oil in 97% yield. 1H NMR (600 MHz, DMSO-d\textsubscript{6}) δ = 10.80 (s, 1H), 7.85 (d, J = 7.7 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 7.9 Hz, 1H), 7.12 (td, J = 7.4, 1.0 Hz, 1H), 7.04 (d, J = 7.4 Hz, 1H), 6.93-6.89 (m, 1H), 6.78-6.74 (m, 1H), 6.01 (d, J = 4.0 Hz, 1H), 5.28 (d, J = 4.0 Hz, 1H), 2.32 (s, 3H), 2.04 (s, 3H). 13C NMR (150 MHz, DMSO-d\textsubscript{6}) δ = 143.3, 135.1, 134.5, 133.0, 129.8, 127.1, 126.1, 126.0, 125.1, 119.7, 118.7, 118.0, 112.2, 110.3, 65.1, 18.9, 11.8. IR (ATR, cm-1) $\tilde{\nu}$ = 3528, 3395, 3058, 2915, 1916, 1716, 1568, 1453, 1247, 992, 846, 738. \textit{EI-MS}: m/z (%) = 251.3 (M+, 100), 234.3 (69), 218.2 (15), 160.2 (15), 132.2 (53), 91.2 (15).

(4-(tert-Butyl)phenyl)(2-methyl-1H-indol-3-yl)methanol (1d)

The title compound was synthesized according to general procedure B, starting from 2-methyl-1H-indole-3-carboxaldehyde (318.0 mg, 2.0 mmol), 4-tBu-phenyl bromide (1.03 g, 6 mmol) and magnesium (170.1 mg, 7.0 mmol) using THF (30 mL) as solvent. Purification by column chromatography (SiO\textsubscript{2} (NEt\textsubscript{3}), n-pentane:ethyl acetate 8:2) afforded 1d (550 mg, 1.87 mmol) as a yellow oil in 94% yield. 1H NMR (600 MHz, DMSO-d\textsubscript{6}) δ = 10.75 (s, 1H), 7.46 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.0 Hz, 1H), 6.95-6.91 (m, 1H), 6.84-6.80 (m, 1H), 5.97 (d, J = 3.2 Hz, 1H), 5.39 (d, J = 3.3 Hz, 1H), 2.42 (s, 3H), 1.24 (s, 9H). 13C NMR (150 MHz, DMSO-d\textsubscript{6}) δ = 148.2, 143.2, 135.2, 131.6, 126.8, 125.5, 124.4, 119.8, 119.3, 118.0, 114.6, 110.2, 67.8, 34.1, 31.2, 11.9. IR (ATR, cm-1) $\tilde{\nu}$ = 3502, 3397, 329, 2958, 2870, 2711, 2083, 1910, 1709, 1612, 1513, 1458, 161, 1302, 1328, 1104, 1001, 836, 741. \textit{EI-MS}: m/z (%) = 293.3 (M+, 93), 276.3 (100), 260.3 (40), 218.2 (15), 160.2 (20), 132.2 (17), 117.1 (12).
(4-Methoxyphenyl)(2-methyl-1H-indol-3-yl)methanol (1e)1b

The title compound was synthesized according to general procedure B, starting from 2-methyl-1H-indole-3-carboxaldehyde (796.0 mg, 5.0 mmol), 4-MeO-phenyl bromide (2.57 g, 15 mmol) and magnesium (425.5 mg, 17.5 mmol) using THF (40 mL) as solvent. Purification by column chromatography (SiO\textsubscript{2} (NEt\textsubscript{3}), n-pentane:ethyl acetate 8:2) afforded 1e (565 mg, 2.12 mmol) as a yellow oil in 42% yield. 1H NMR (600 MHz, DMSO-d\textsubscript{6}) \(\delta = 10.74\) (s, 1H), 7.35 (d, \(J = 7.9\) Hz, 1H), 7.32 (d, \(J = 8.4\) Hz, 2H), 7.20 (d, \(J = 8.0\) Hz, 1H), 6.94-6.90 (m, 1H), 6.84-6.79 (m, 3H), 5.95 (d, \(J = 3.5\) Hz, 1H), 5.36 (d, \(J = 3.5\) Hz, 1H), 3.70 (s, 3H), 2.39 (s, 3H). 13C NMR (150 MHz, DMSO-d\textsubscript{6}) \(\delta = 157.6, 138.2, 135.2, 131.8, 126.9, 126.8, 119.8, 119.2, 118.0, 114.6, 113.1, 110.2, 67.3, 55.0, 11.9.\) IR (ATR, cm-1) \(\tilde{\nu} = 3395, 2936, 1724, 1604, 1576, 1453, 1367, 1299, 1240, 1169, 1024, 831, 743.\) EI-MS: m/z (%) = 267.1 (M+, 93), 250.3 (67), 249.3 (100), 234.2 (13), 205.3 (22), 157.9 (65), 134.9 (50), 116.9 (25), 107.9 (21), 76.8 (33).

(3-Methoxyphenyl)(2-methyl-1H-indol-3-yl)methanol (1f)1b

The title compound was synthesized according to general procedure B, starting from 2-methyl-1H-indole-3-carboxaldehyde (318.0 mg, 2.0 mmol), 3-MeO-phenyl bromide (1.03 g, 6 mmol) and magnesium (170.1 mg, 7.0 mmol) using THF (30 mL) as solvent. Purification by column chromatography (SiO\textsubscript{2} (NEt\textsubscript{3}), n-pentane:ethyl acetate 8:2) afforded 1f (501 mg, 1.87 mmol) as a yellow oil in 94% yield. 1H NMR (600 MHz, DMSO-d\textsubscript{6}) \(\delta = 10.77\) (s, 1H), 7.38 (d, \(J = 7.9\) Hz, 1H), 7.20 (d, \(J = 8.0\) Hz, 1H), 7.16 (t, \(J = 7.9\) Hz, 1H), 7.03 (s, 1H), 6.96-6.90 (m, 2H), 6.84-6.79 (m, 1H), 6.72 (dd, \(J = 8.1, 2.3\) Hz, 1H), 5.96 (d, \(J = 3.4\) Hz, 1H), 5.45 (d, \(J = 3.5\) Hz, 1H), 3.70 (s, 3H), 2.40 (s, 3H). 13C NMR (150 MHz, DMSO-d\textsubscript{6}) \(\delta = 158.9, 147.9, 135.2, 132.0, 128.7, 126.8, 119.9, 119.1, 118.2, 118.1, 114.3, 111.6, 111.0, 110.3, 67.5, 54.9, 11.9.\) IR (ATR, cm-1) \(\tilde{\nu} = 3396, 2938, 2076, 1711, 1595, 1455, 1249, 1145, 1034, 862, 744, 690.\) EI-MS: m/z (%) = 267.3 (M+, 100), 250.3 (51), 234.2 (10), 218.2 (7), 160.2 (30), 132.2 (23).
(2-Methoxyphenyl)(2-methyl-1H-indol-3-yl)methanol (1g)

The title compound was synthesized according to general procedure B, starting from 2-methyl-1H-indole-3-carboxaldehyde (796.0 mg, 5.0 mmol), 2-MeO-phenyl bromide (2.57 g, 15 mmol) and magnesium (425.5 mg, 17.5 mmol) using THF (40 mL) as solvent. Purification by column chromatography (SiO2 (NEt3), n-pentane:ethyl acetate 8:2) afforded 1g (974 mg, 3.64 mmol) as a yellow solid in 73% yield. m.p. 132 °C. 1H NMR (600 MHz, DMSO-d6) δ = 10.66 (s, 1H), 7.84 (dd, J = 7.6, 1.5 Hz, 1H), 7.48 (d, J = 7.9 Hz, 1H), 7.19-7.13 (m, 2H), 6.97 (td, J = 7.5, 0.7 Hz, 1H), 6.92-6.87 (m, 1H), 6.86-6.84 (m, 1H), 6.82 (s, 3H), 6.78 (m, 1H), 6.17 (d, J = 3.5 Hz, 1H), 5.21 (d, J = 3.5 Hz, 1H), 3.68 (s, 3H), 2.40 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ = 155.6, 135.0, 133.7, 132.0, 127.1, 126.9, 126.5, 119.7, 119.5, 119.3, 117.8, 113.3, 110.3, 110.2, 62.7, 55.2, 11.9. IR (ATR, cm⁻¹) ν = 3511, 3367, 1592, 1490, 1457, 1243, 998, 837, 738. EI-MS: m/z (%) = 267.2 (M⁺, 100), 250.2 (35), 234.2 (13), 218.2 (12), 160.1 (23), 135.1 (35), 132.1 (40), 83.0 (11).

(2-Methyl-1H-indol-3-yl)(4-(trifluoromethyl)phenyl)methanol (1h)

The title compound was synthesized according to general procedure B, starting from 2-methyl-1H-indole-3-carboxaldehyde (572.0 mg, 3.6 mmol), 4-F3C-phenyl bromide (2.42 g, 10.8 mmol) and magnesium (305.7 mg, 12.6 mmol) using THF (40 mL) as solvent. Purification by column chromatography (SiO2 (NEt3), n-pentane:ethyl acetate 8:2) afforded 1h (749 mg, 2.45 mmol) as a yellow solid in 68% yield. m.p. 82 °C. 1H NMR (400 MHz, DMSO-d6) δ = 10.84 (s, 1H), 7.63 (s, 4H), 7.31 (d, J = 8.0 Hz, 1H), 7.22 (dt, J = 8.0, 0.9 Hz, 1H), 6.93 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H), 6.81 (ddd, J = 8.0, 7.1, 1.1 Hz, 1H), 6.07 (d, J = 3.4 Hz, 1H), 5.69 (d, J = 3.5 Hz, 1H), 2.42 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ = 150.9, 135.2, 132.4, 126.5, 126.4, 124.6 (q, J = 3.7 Hz), 124.5 (q, J = 271.8 Hz), 120.0, 118.8, 118.3, 113.7, 110.4, 67.1, 11.8. 13C{19F} NMR (100 MHz, DMSO-d6) δ = 150.9, 135.2, 132.4, 126.7, 126.5, 126.4, 124.6, 124.5, 120.0, 118.8, 118.3, 113.7, 110.4, 67.1, 11.8. 19F NMR (376 MHz, DMSO-d6) δ = -60.65. IR (ATR, cm⁻¹) ν = 3394, 1703, 1616, 1321, 1163, 1115, 1063, 1014, 836, 745. EI-MS: m/z (%) = 305.2 (M⁺, 100), 288.2 (70), 218.2 (18), 173.1 (61), 160.1 (30), 145.1 (53), 132.1 (20), 117.1 (13), 83.1 (14).
(2-Methyl-1H-indol-3-yl)(naphthalen-1-yl)methanol (1i)

The title compound was synthesized according to general procedure B, starting from 2-methyl-1H-indole-3-carboxaldehyde (796.0 mg, 5.0 mmol), 1-naphthyl bromide (3.11 g, 15 mmol) and magnesium (425.5 mg, 17.5 mmol) using THF (40 mL) as solvent. Purification by column chromatography (SiO₂ (NEt₃), n-pentane:ethyl acetate 8:2) afforded 1i (1.43 g, 4.99 mmol) as a yellow oil in 99% yield. \(^1\)H NMR (600 MHz, DMSO-d₆) δ = 10.84 (s, 1H), 8.00 (d, J = 7.2 Hz, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.57 (dd, J = 8.0, 7.4 Hz, 1H), 7.43-7.38 (m, 1H), 7.37-7.33 (m, 1H), 7.20 (d, J = 8.0 Hz, 1H), 7.17 (d, J = 8.0 Hz, 1H), 6.92-6.87 (m, 1H), 6.75 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 6.63 (d, J = 4.2 Hz, 1H), 5.54 (d, J = 4.2 Hz, 1H), 2.36 (s, 3H). \(^{13}\)C NMR (150 MHz, DMSO-d₆) δ = 140.6, 135.1, 133.3, 132.8, 130.3, 128.4, 127.2, 127.0, 125.5, 125.2, 125.1, 123.7, 123.6, 119.8, 118.6, 118.2, 113.3, 110.3, 64.9, 12.0. IR (ATR, cm⁻¹) ν = 3534, 3399, 3050, 1724, 1586, 1506, 1451, 1370, 1228, 1154, 1042, 969, 864, 780, 741. EI-MS: m/z (%) = 287.4 (M⁺, 100), 270.2 (77), 254.3 (90), 226.2 (25), 159.4 (63), 131.7 (90), 100.6 (6).

(2-Methyl-1H-indol-3-yl)(naphthalen-2-yl)methanol (1j)\(^{1b}\)

The title compound was synthesized according to general procedure B, starting from 2-methyl-1H-indole-3-carboxaldehyde (796.0 mg, 5.0 mmol), 2-naphthyl bromide (3.11 g, 15 mmol) and magnesium (425.5 mg, 17.5 mmol) using THF (40 mL) as solvent. Purification by column chromatography (SiO₂ (NEt₃), n-pentane:ethyl acetate 8:2) afforded 1j (261 mg, 0.91 mmol) as a yellow oil in 18% yield. \(^1\)H NMR (600 MHz, DMSO-d₆) δ = 10.82 (s, 1H), 8.05 (s, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.76 (d, J = 8.5 Hz, 1H), 7.49-7.41 (m, 3H), 7.35 (d, J = 7.9 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 6.93-6.89 (m, 1H), 6.79-6.75 (m, 1H), 6.17 (d, J = 3.1 Hz, 1H), 5.61 (d, J = 3.5 Hz, 1H), 2.46 (s, 3H). \(^{13}\)C NMR (150 MHz, DMSO-d₆) δ = 144.1, 135.6, 133.2, 132.7, 132.3, 128.2, 127.8, 127.6, 127.3, 126.3, 125.7, 125.6, 123.7, 120.3, 119.4, 118.5, 114.6, 110.7, 68.0, 12.3. IR (ATR, cm⁻¹) ν = 3542, 3394, 3050, 1687, 1611, 1455, 1363, 1304, 1227, 1153, 1116, 1010, 859, 818, 741. EI-MS: m/z (%) = 287.4 (M⁺, 25), 269.4 (74), 253.5 (21), 226.2 (37), 157.6 (62), 146.4 (69), 131.4 (75), 127.4 (100), 116.6 (40), 77.0 (61).
(4-Fluorophenyl)(2-methyl-1H-indol-3-yl)methanol (1k)

Iso-propylmagnesium chloride (2 M in hexane, 10.5 mL, 21 mmol) was added dropwise to a solution of 4-iodo-fluorobenzene (4.44 g, 20 mmol) in dry THF (15 mL) at 0 °C. The reaction mixture was stirred for 30 min at 0 °C, then 1 h at rt. A solution of 2-methyl-1H-indole-3-carboxaldehyde (796 mg, 5.0 mmol) in dry THF (20 mL) was added slowly to the Grignard solution at 0 °C. The resulting mixture was stirred at 0 °C for 15 min, then for 14 h at rt. Water was added to quench the reaction. The reaction mixture was extracted with Et2O (3x25 mL) and the combined organic layer were dried over MgSO4. The crude product was purified by flash chromatography (SiO2 (NEt3), n-pentane:EtOAc 8:2) to yield 1k (1.19 g, 4.67 mmol) as a yellow solid in 93% yield. m.p. 137 °C. 1H NMR (400 MHz, DMSO-d6) δ = 10.79 (s, 1H), 7.46-7.39 (m, 2H), 7.32 (d, J = 7.9 Hz, 1H), 7.23-7.20 (m, 1H), 7.12-7.04 (m, 2H), 6.93 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H), 6.81 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 5.99 (d, J = 3.2 Hz, 1H), 5.52 (d, J = 3.5 Hz, 1H), 2.40 (s, 3H).

13C NMR (100 MHz, DMSO-d6) δ = 160.65 (d, J = 241.2 Hz), 142.2, 142.2, 135.2, 132.1, 127.56 (d, J = 7.9 Hz), 126.7, 119.9, 119.0, 118.1, 114.33 (d, J = 21.1 Hz), 114.2, 110.3, 67.0, 11.8. 19F NMR (376 MHz, DMSO-d6) δ = -117.51. IR (ATR, cm⁻¹) ν = 3401, 3138, 3021, 1738, 1504, 1450, 1365, 1219, 1022, 831, 743. EI-MS: m/z (%) = 255.2 (M⁺, 100), 238.2 (58), 159.6 (33), 131.7 (33), 122.9 (19), 95.1 (8), 82.9 (8).

Cyclohexyl(2-methyl-1H-indol-3-yl)methanol (1l)

The title compound was synthesized according to general procedure B, starting from 2-methyl-1H-indole-3-carboxaldehyde (796.0 mg, 5.0 mmol), bromo cyclohexane (2.45 g, 15 mmol) and magnesium (425.5 mg, 17.5 mmol) using THF (40 mL) as solvent. Purification by column chromatography (SiO2 (NEt3), n-pentane:ethyl acetate 8:2) afforded 1l (950 mg, 3.9 mmol) as a yellow solid in 78% yield. m.p. 105 °C. 1H NMR (600 MHz, DMSO-d6) δ = 10.65 (s, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 6.96-6.92 (m, 1H), 6.89-6.84 (m, 1H), 4.63 (d, J = 3.3 Hz, 1H), 4.45 (dd, J = 8.1, 3.3 Hz, 1H), 2.32 (s, 3H), 2.13 (d, J = 12.7 Hz, 1H), 1.80-1.69 (m, 2H), 1.60-1.52 (m, 2H), 1.28 (d, J = 12.8 Hz, 1H), 1.23-1.14 (m, 1H), 1.12-0.95 (m, 3H), 0.87-0.78 (m, 1H). 13C NMR (150 MHz, DMSO-d6) δ = 135.2, 131.7, 127.3, 119.6, 119.5, 117.8, 113.4, 110.2, 71.2, 44.3, 29.9, 29.2, 26.3, 25.8, 25.8, 12.0. IR (ATR, cm⁻¹) ν = 3533, 3258, 2921, 2849, 1709, 1616, 1456, 1298, 1071, 995, 889, 739, 699. EI-MS: m/z (%) = 243.2 (M⁺, 37), 226.2 (7), 174.1 (11), 160.1 (100), 132.1 (36), 117.1 (13).
1-(2-Methyl-1H-indol-3-yl)-3-phenylprop-2-yn-1-ol (1m)

Iso-propylmagnesium chloride (2 M in hexane, 8.0 mL, 16 mmol) was added dropwise to a solution of phenyl acetylene (1.53 g, 1.65 ml, 15 mmol) in dry THF (8 mL) at 0 °C. The reaction mixture was stirred for 30 min at 0 °C, then 1 h at rt. A solution of 2-methyl-1H-indole-3-carboxaldehyde (796 mg, 5.0 mmol) in dry THF (20 mL) was added slowly to the Grignard solution at 0 °C. The resulting mixture was stirred at 0 °C for 15 min, then for 14 h at rt. Water was added to quench the reaction. The reaction mixture was extracted with Et₂O (3x25 mL) and the combined organic layer were dried over MgSO₄. The crude product was purified by flash chromatography (SiO₂ (NEt₃), n-pentane:EtOAc 8:2) to yield 1k (282 mg, 1.08 mmol) as a yellow solid in 22% yield. m.p. 109 °C. ¹H NMR (400 MHz, DMSO-d₆) δ = 10.83 (s, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.46-7.26 (m, 4H), 7.23 (d, J = 7.9 Hz, 1H), 6.98-6.92 (m, 1H), 6.90-6.84 (m, 1H), 5.81 (s, 1H), 2.45 (s, 3H).

(2-Ethyl-1H-indol-3-yl)(phenyl)methanol (1n)

The title compound was synthesized according to general procedure B, starting from 2-ethyl-1H-indole-3-carboxaldehyde (600.0 mg, 3.46 mmol), bromobenzene (1.21 g, 7.71 mmol) and magnesium (218.8 mg, 9.0 mmol) using THF (30 mL) as solvent. Purification by column chromatography (SiO₂ (NEt₃), n-pentane:ethyl acetate 8:2) afforded 1n (647 mg, 2.57 mmol) as a brown solid in 74% yield. m.p. 77 °C. ¹H NMR (600 MHz, DMSO-d₆) δ = 10.78 (s, 1H), 7.41 (d, J = 7.7 Hz, 2H), 7.35 (d, J = 7.9 Hz, 1H), 7.26 (t, J = 7.7 Hz, 2H), 7.22 (d, J = 8.0 Hz, 1H), 7.14 (t, J = 7.3 Hz, 1H), 6.96-6.91 (m, 1H), 6.80 (t, J = 7.4 Hz, 1H), 6.01 (d, J = 3.3 Hz, 1H), 5.45 (d, J = 3.5 Hz, 1H), 2.81 (q, J = 7.6 Hz, 2H), 1.23 (t, J = 7.6 Hz, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ = 146.2, 137.9, 135.4, 127.7, 126.6, 125.9, 125.8, 119.9, 119.4, 118.0, 113.6, 110.4, 67.4, 19.2, 14.6. IR (ATR, cm⁻¹) ν = 3470, 3401, 3256, 2972, 1696, 1612, 1491, 1451, 1313, 1009, 834, 730. EI-MS: m/z (%) = 293.2 (M+MeO⁻, 28), 244.1 ([M-OH]⁺, 100), 214.2 (20), 202.1 (14), 102.1 (43).
Phenyl(2-propyl-1H-indol-3-yl)methanol (1o)1b

The title compound was synthesized according to general procedure B, starting from 2-propyl-1H-indole-3-carboxaldehyde (600.0 mg, 3.20 mmol), bromobenzene (993 mg, 6.33 mmol) and magnesium (179.7 mg, 7.39 mmol) using THF (30 mL) as solvent. Purification by column chromatography (SiO\textsubscript{2} (NEt\textsubscript{3}), n-pentane:ethyl acetate 8:2) afforded 1o (561 mg, 2.11 mmol) as a yellow solid in 66% yield. m.p. 75 °C. 1H NMR (600 MHz, DMSO-\textit{d}\textsubscript{6}) δ = 10.76 (s, 1H), 7.42 (d, \textit{J} = 7.7 Hz, 2H), 7.33 (d, \textit{J} = 7.9 Hz, 1H), 7.26 (t, \textit{J} = 7.6 Hz, 2H), 7.22 (d, \textit{J} = 8.0 Hz, 1H), 7.15 (t, \textit{J} = 7.4 Hz, 1H), 6.93 (t, \textit{J} = 7.4 Hz, 1H), 6.79 (t, \textit{J} = 7.4 Hz, 1H), 6.00 (d, \textit{J} = 3.4 Hz, 1H), 5.43 (d, \textit{J} = 3.6 Hz, 1H), 2.76 (t, \textit{J} = 7.6 Hz, 2H), 1.73-1.59 (m, 2H), 0.93 (t, \textit{J} = 7.3 Hz, 3H).

13C NMR (150 MHz, DMSO-\textit{d}\textsubscript{6}) δ = 146.1, 136.6, 135.4, 127.6, 126.6, 125.9, 125.8, 119.9, 119.4, 118.0, 114.2, 110.4, 67.4, 27.9, 22.9, 14.0. IR (ATR, cm-1) \textit{v} = 3410, 3058, 2926, 2868, 1887, 1698, 1598, 1457, 1381, 1232, 1179, 1099, 999, 840, 742. \textbf{EI-MS}: m/z (%) = 265.3 (M+, 100), 248.3 (56), 218.2 (39), 188.2 (53), 160.2 (27), 130.2 (13), 118.1 (13), 105.1 (26), 91.1 (11), 77.2 (15).

(2-Isopropyl-1H-indol-3-yl)(phenyl)methanol (1p)

The title compound was synthesized according to general procedure B, starting from 2-isopropyl-1H-indole-3-carboxaldehyde (1.59 g, 3.2 mmol), bromobenzene (1.51 g, 9.6 mmol) and magnesium (272.2 mg, 11.2 mmol) using THF (30 mL) as solvent. Purification by column chromatography (SiO\textsubscript{2} (NEt\textsubscript{3}), n-pentane:ethyl acetate 8:2) afforded 1p (670.0 mg, 2.525 mmol) as a yellow oil in 79% yield. 1H NMR (600MHz, DMSO-\textit{d}\textsubscript{6}): δ = 10.75 (s, 1H), 7.42 (d, \textit{J} = 7.7 Hz, 2H), 7.35 (d, \textit{J} = 7.9 Hz, 1H), 7.29-7.23 (m, 3H), 7.14 (t, \textit{J} = 7.3 Hz, 1H), 6.96-6.92 (m, 1H), 6.82-6.78 (m, 1H), 6.04 (d, \textit{J} = 3.2 Hz, 1H), 5.45 (d, \textit{J} = 3.4 Hz, 1H), 3.44 (sept., \textit{J} = 6.9 Hz, 1H), 1.30 (d, \textit{J} = 7.0 Hz, 3H), 1.26 (d, \textit{J} = 7.0 Hz, 3H). 13C NMR (150MHz, DMSO-\textit{d}\textsubscript{6}): δ = 146.2 (s), 141.9 (s), 135.5 (s), 127.7 (d, 2C), 126.4 (s), 125.9 (d), 125.7 (d, 2C), 119.9 (d), 119.5 (d), 118.0 (d), 112.7 (s), 110.5 (d), 67.3 (d), 25.2 (q), 22.8 (q), 22.5 (q). IR (ATR, cm-1): \textit{v} = 3856, 3505, 3275, 3062, 2965, 2871, 2733, 2492, 2322, 2106, 192, 1883, 1804, 1680, 1603, 1560, 1453, 1368, 1300, 1231, 1171, 1104, 1064, 1002, 917, 833, 719, 660. \textbf{EI-MS}: m/z (%) = 265.3 (M+, 100), 250.3 (7), 249.3 (10), 248.3 (53), 232.3 (16), 222.2 (14), 188.2 (63), 160.2 (18), 144.2 (9), 118.1 (25), 105.1 (30), 77.2 (12).
(2,7-Dimethyl-1H-indol-3-yl)(phenyl)methanol (1q)1a

The title compound was synthesized according to general procedure B, starting from 2,7-dimethyl-1H-indole-3-carboxaldehyde (152.0 mg, 0.86 mmol), bromobenzene (254.1 mg, 1.62 mmol) and magnesium (46.0 mg, 1.89 mmol) using THF (15 mL) as solvent. Purification by column chromatography (SiO\textsubscript{2} (NEt\textsubscript{3}), n-pentane:ethyl acetate 8:2) afforded 1q (135 mg, 0.54 mmol) as a yellow oil in 61% yield. 1H NMR (600 MHz, DMSO-d\textsubscript{6}) \(\delta = 10.63 \text{ (s, 1H)}, 7.41 \text{ (d, } J = 7.8 \text{ Hz, 2H)}, 7.25 \text{ (t, } J = 7.7 \text{ Hz, 2H)}, 7.20-7.16 \text{ (m, 1H)}, 7.15-7.12 \text{ (m, 1H)}, 6.73-6.69 \text{ (m, 2H)}, 5.98 \text{ (d, } J = 3.4 \text{ Hz, 1H}), 5.41 \text{ (d, } J = 3.5 \text{ Hz, 1H}), 2.42 \text{ (s, 3H)}, 2.39 \text{ (s, 3H)}. 13C NMR (150 MHz, DMSO-d\textsubscript{6}) \(\delta = 146.2, 134.6, 131.8, 127.7, 126.4, 125.9, 125.7, 120.5, 119.3, 118.3, 116.8, 114.8, 67.7, 16.8, 11.9. IR (ATR, cm-1) \(\tilde{\nu} = 3499, 3287, 1733, 1618, 1494, 1447, 1377, 1227, 1176, 1037, 997, 868, 836, 784, 751, 699. EI-MS: m/z (%) = 251.2 (M+, 100), 234.2 (59), 218.2 (17), 174.1 (54), 146.1 (48), 131.1 (13) 105.1 (23), 77.2 (10).

(5-Methoxy-2-methyl-1H-indol-3-yl)(phenyl)methanol (1r)1b

The title compound was synthesized according to general procedure B, starting from 5-methoxy-2-methyl-1H-indole-3-carboxaldehyde (193.0 mg, 1.02 mmol), bromobenzene (480.0 mg, 3.06 mmol) and magnesium (89.8 mg, 3.57 mmol) using THF (30 mL) as solvent. Purification by column chromatography (SiO\textsubscript{2} (NEt\textsubscript{3}), n-pentane:ethyl acetate 8:2) afforded 1r (251 mg, 0.94 mmol) as a yellow oil in 92% yield. 1H NMR (300 MHz, DMSO-d\textsubscript{6}) \(\delta = 10.61 \text{ (s, 1H)}, 7.42 \text{ (d, } J = 7.6 \text{ Hz, 2H)}, 7.27 \text{ (t, } J = 7.5 \text{ Hz, 2H)}, 7.15 \text{ (t, } J = 7.3 \text{ Hz, 1H)}, 7.09 \text{ (d, } J = 8.7 \text{ Hz, 1H)}, 6.82 \text{ (d, } J = 2.4 \text{ Hz, 1H}), 6.57 \text{ (dd, } J = 8.7 \text{ Hz, 2.4, 1H}), 5.97 \text{ (d, } J = 3.5 \text{ Hz, 1H)}, 5.41 \text{ (d, } J = 3.6 \text{ Hz, 1H)}, 3.61 \text{ (s, 3H)}, 2.37 \text{ (s, 3H)}. 13C NMR (75 MHz, DMSO-d\textsubscript{6}) \(\delta = 152.6, 146.0, 132.9, 130.3, 127.7, 127.2, 126.0, 125.8, 114.3, 110.7, 109.2, 101.7, 67.6, 55.2, 12.0. IR (ATR, cm-1) \(\tilde{\nu} = 3788, 3391, 3244, 2932, 2846, 2638, 2322, 2175, 2104, 1970, 1708, 1584, 1457, 1297, 1196, 1107, 1022, 977, 918, 856, 706. EI-MS: m/z (%) = 267.1 (M+, 26), 249.1 (100), 234.1 (31), 206.1 (9), 190.1 (13), 165.0 (17).
IV. Characterization of Products 4a-7a, 8a-r:

Ethyl (R,Z)-3-(2-methyl-1H-indol-3-yl)-3-phenyl-2-(2-phenylhydrazono)propanoate (4a)

The title compound was synthesized according to general procedure D, starting from 1a (30.8 mg, 0.13 mmol), 2a (19.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL) at 0 °C. Purification by column chromatography (SiO2, n-pentane / Et2O 8: 2) afforded 4a (28.0 mg, 0.068 mmol, 68%) as a yellow oil. 65% ee. **HPLC** (AD-H, n-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, λ = 220 nm) tR = 29.1 min (minor); 35.7 min (major). **1H NMR** (600 MHz, CDCl3) δ = 12.16 (s, 1H), 7.79 (s, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.34-7.31 (m, 2H), 7.29-7.25 (m, 3H), 7.23-7.18 (m, 3H), 7.10-7.06 (m, 1H), 6.99-6.93 (m, 3H), 6.92-6.88 (m, 1H), 5.81 (s, 1H), 4.21-4.15 (m, 2H), 2.37 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H). **13C NMR** (150 MHz, CDCl3) δ = 163.9, 143.8, 142.5, 135.3, 132.4, 129.8, 129.3, 129.1, 128.7, 127.9, 125.9, 121.8, 120.9, 120.1, 119.3, 113.7, 111.8, 110.1, 60.8, 44.2, 12.7. **IR** (ATR, cm⁻¹) ν = 3406, 3257, 2980, 2923, 1675, 1597, 1544, 1500, 1456, 1225, 1148, 1018, 905, 732. **EI-MS**: m/z (%) = 411.2 (M⁺, 100), 319.2 (29), 281.1 (19), 245.1 (72), 220.1 (45), 131.1 (70). **HRMS (ESI)**: m/z: calcd. for [M+Na]⁺ = [C26H25O2N3Na]⁺: 434.1839; found 434.1839.

Ethyl (R,Z)-2-(2-(4-methoxyphenyl)hydrazono)-3-(2-methyl-1H-indol-3-yl)-3-phenylpropanoate (5a)

The title compound was synthesized according to general procedure D, starting from 1a (30.8 mg, 0.13 mmol), 2b (22.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL) at 0 °C. Purification by column chromatography (SiO2, n-pentane / Et2O 8: 2) afforded 5a (36.2 mg, 0.082 mmol, 82%) as a yellow oil. 70% ee. **HPLC** (AD-H, n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 310 nm) tR = 26.9 min (minor); 34.7 min (major). **1H NMR** (600 MHz, CDCl3) δ = 12.17 (s, 1H), 7.79 (s, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.34-7.31 (m, 2H), 7.29-7.24 (m, 3H), 7.23-7.18 (m, 1H), 7.10-7.05 (m, 1H), 6.98-6.94 (m, 1H), 6.92-6.88 (m, 2H), 6.79-6.76 (m, 2H), 5.80 (s, 1H), 4.21-4.14 (m, 2H), 3.76 (s, 3H), 2.36 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H). **13C NMR** (150 MHz, CDCl3) δ = 164.0, 155.0, 142.7, 137.8, 135.3, 132.3, 129.1, 128.7, 128.5, 127.9, 125.8, 120.8, 120.2, 119.3, 114.8, 114.7, 112.1, 110.1, 60.6, 55.7, 44.0, 14.2, 12.6. **IR** (ATR, cm⁻¹) ν = 3404, 2935, 1739, 1671, 1510, 1453, 1366, 1217, 1149, 1025, 906, 728. **EI-**
MS: m/z (%) = 441.3 (M+, 100), 319.2 (13), 310.2 (44), 245.1 (52), 220.2 (39), 131.1 (49), 122.1 (25), 107.1 (18). HRMS (ESI): m/z: calcd. for [M+Na]+ = [C27H27O3N3Na]+: 464.1945; found 464.1944.

Ethyl (R,Z)-2-(2-(4-chlorophenyl)hydrazono)-3-(2-methyl-1H-indol-3-yl)-3-phenylpropanoate (6a)

The title compound was synthesized according to general procedure D, starting from 1a (30.8 mg, 0.13 mmol), 2c (22.7 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL) at 0 °C. Purification by column chromatography (SiO2, n-pentane / Et2O 8: 2) afforded 6a (8.9 mg, 0.02 mmol, 20%) as a yellow oil. 62% ee. HPLC (AD-H, n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 220 nm) tR = 23.2 min (minor); 28.2 min (major). 1H NMR (600 MHz, CDCl3) δ = 12.13 (s, 1H), 7.81 (s, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.46-7.28 (m, 2H), 7.28-7.24 (m, 3H), 7.22-7.18 (m, 1H), 7.15-7.12 (m, 2H), 7.09-7.05 (m, 1H), 6.97-6.93 (m, 1H), 6.86-6.82 (m, 2H), 5.79 (s, 1H), 4.20-4.14 (m, 2H), 2.37 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ = 163.9, 142.5, 142.3, 135.4, 132.4, 130.5, 129.3, 129.1, 128.7, 127.9, 126.5, 126.0, 120.9, 120.1, 119.4, 114.8, 111.6, 110.2, 60.9, 44.2, 14.1, 12.6. IR (ATR, cm⁻¹) ν = 3404, 2924, 1739, 1676, 1547, 1494, 1456, 1225, 1144, 1093, 1017, 822, 730. EI-MS: m/z (%) = 445.3 (M+, 100), 319.2 (65), 315.2 (27), 273.2 (34), 245.2 (86), 220.2 (78), 169.1 (14), 131.1 (98). HRMS (ESI): m/z: calcd. for [M+Na]+ = [C28H25O2N3ClNa]+: 468.1449; found 468.1454.

Ethyl (R,Z)-3-(2-methyl-1H-indol-3-yl)-2-(2-methylhydrazono)-3-phenylpropanoate (7a)

The title compound was synthesized according to general procedure D, starting from 1a (30.8 mg, 0.13 mmol), 2d (13.0 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL) at 0 °C. Purification by column chromatography (SiO2, hexane / Et2O 8: 2) afforded 7a (14.3 mg, 0.041 mmol, 41%) as a yellow oil. 29% ee. HPLC (AD-H, n-hexane/2-propanol = 97/3, flow rate = 1.0 mL/min, λ = 220 nm) tR = 29.4 min (minor); 37.9 min (major). 1H NMR (600 MHz, CDCl3) δ = 10.12 (s, 1H), 7.74 (s, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.26-7.20 (m, 5H), 7.16-7.13 (m, 1H), 7.08-7.06 (m, 1H), 6.99-6.96 (m, 1H), 5.71 (s, 1H), 4.12 (q, J = 7.1 Hz, 2H), 3.13 (s, 3H), 2.33 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ = 164.0, 143.6, 135.3, 132.4, 128.9, 128.8, 127.8, 126.6, 125.5, 120.7, 120.6, 119.0,
112.8, 110.0, 60.0, 43.4, 38.7, 14.3, 12.7. **IR** (ATR, cm\(^{-1}\)) \(\tilde{\nu} = 3401, 3279, 2922, 1665, 1535, 1453, 1366, 1103, 908, 855, 733.** **EI-MS:** m/z (%) = 349.3 (M\(^+\), 42), 245.2 (100), 220.2 (48), 204.2 (12), 131.1 (17). **HRMS (ESI):** m/z: calcd. for [M+Na]\(^+\) = [C\(_{21}\)H\(_{23}\)O\(_3\)N\(_3\)Na]\(^+\): 372.1683; found 372.1687.

Ethyl (R,Z)-2-(2-tert-butylhydrazono)-3-(2-methyl-1H-indol-3-yl)-3-phenylpropanoate (8a)

The title compound was synthesized according to general procedure D, starting from 1a (30.8 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO\(_2\), n-pentane / Et\(_2\)O 8: 2) afforded 8a (37.6 mg, 0.096 mmol, 96%) as a yellow oil. 93% ee. **HPLC** (AD-H, n-hexane/2-propanol = 97/3, flow rate = 1.0 mL/min, \(\lambda = 220\) nm) tR = 9.1 min (minor); 10.4 min (major). **\(^1\)H NMR** (600 MHz, CDCl\(_3\)) \(\delta = 10.16\) (s, 1H), 7.74 (s, 1H), 7.48 (d, \(J = 8.0\) Hz, 1H), 7.25-7.24 (m, 3H), 7.22-7.19 (m, 2H), 7.15-7.12 (m, 1H), 7.07-7.04 (m, 1H), 6.96-6.93 (m, 1H), 5.71 (s, 1H), 4.10 (q, \(J = 7.1\) Hz, 2H), 2.33 (s, 3H), 1.16 (t, \(J = 7.1\) Hz, 3H), 1.13 (s, 9H). **\(^{13}\)C NMR** (150 MHz, CDCl\(_3\)) \(\delta = 163.8, 143.4, 135.4, 132.2, 129.2, 128.9, 127.6, 125.8, 125.4, 120.6, 118.9, 112.9, 109.9, 59.9, 54.7, 43.7, 28.9, 14.3, 12.6. **IR** (ATR, cm\(^{-1}\)) \(\tilde{\nu} = 3405, 2974, 2248, 1670, 1531, 1459, 1365, 1201, 1129, 1023, 910, 735.** **EI-MS:** m/z (%) = 391.3 (M\(^+\), 84), 334.2 (5), 261.3 (59), 245.2 (100), 220.2 (38), 131.1 (9), 57.3 (16). **HRMS (ESI):** m/z: calcd. for [M+Na]\(^+\) = [C\(_{21}\)H\(_{23}\)O\(_3\)N\(_3\)Na]\(^+\): 414.2152; found 414.2158.

Ethyl (R,Z)-ethyl 2-(2-(tert-butyl)hydrazono)-3-(2-methyl-1H-indol-3-yl)-3-(p-tolyl)propanoate (8b)

The title compound was synthesized according to general procedure D, starting from 1b (32.7 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO\(_2\), n-pentane / Et\(_2\)O 8: 2) afforded 8b (40.2 mg, 0.099 mmol, 99%) as a yellow oil. 93% ee. **HPLC** (IA, n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, \(\lambda = 220\) nm) tR = 17.5 min (minor); 20.6 min (major). **\(^1\)H NMR** (600 MHz, CDCl\(_3\)) \(\delta = 10.18\) (s, 1H), 7.72 (s, 1H), 7.50 (d, \(J = 7.9\) Hz, 1H), 7.24 (d, \(J = 8.0\) Hz, 1H), 7.14 (d, \(J = 8.0\) Hz, 2H), 7.08-7.04 (m, 1H), 7.03 (d, \(J = 8.0\) Hz, 2H), 6.97-6.93 (m, 1H), 5.69 (s, 1H), 4.11 (q, \(J = 7.1\) Hz, 2H), 2.33 (s, 3H), 2.31 (s, 3H), 1.18 (t, \(J =
7.1 Hz, 3H), 1.15 (s, 9H). 13C NMR (150 MHz, CDCl$_3$) δ = 163.9, 140.3, 135.3, 134.7, 132.1, 129.0, 128.9, 128.3, 125.9, 120.7, 120.6, 118.9, 113.1, 109.9, 59.8, 54.7, 43.1, 29.0, 21.1, 14.3, 12.6. IR (ATR, cm$^{-1}$) $\tilde{\nu}$ = 3404, 2972, 2926, 1670, 1525, 1459, 1207, 1129, 1024, 754. EI-MS: m/z (%) = 405.2 (M$^+$, 100), 274.2 (23), 259.1 (70), 234.9 (7).

EI-MS: m/z (%) = 405.2 (M$^+$, 100), 274.2 (23), 259.1 (70), 234.9 (7).

HRMS (ESI): m/z: calcd. for [M+Na]$^+$ = [C$_{25}$H$_{31}$O$_2$N$_3$Na]$^+$: 428.2309; found 428.2296. $[\alpha]_D^{\text{rt}}$: -29.2 (c 1.5, CHCl$_3$).

Ethyl (R,Z)-2-(2-tert-butylhydrazono)-3-(2-methyl-1H-indol-3-yl)-3-o-tolylpropanoate (8c)

The title compound was synthesized according to general procedure D, starting from 1c (32.7 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO$_2$, n-pentane / Et$_2$O 8: 2) afforded 8c (34.1 mg, 0.084 mmol, 84%) as a yellow oil. 97% ee. HPLC (AD-H, n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, λ = 220 nm) tR = 8.0 min (minor); 9.7 min (major).

1H NMR (400 MHz, CDCl$_3$) δ = 10.03 (s, 1H), 7.73 (s, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.25 (d, J = 8.4 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 7.14-6.95 (m, 5H), 5.71 (s, 1H), 4.08 (qd, J = 7.1, 1.6 Hz, 2H), 2.27 (s, 3H), 2.26 (s, 3H), 1.11 (t, J = 7.1 Hz, 3H), 1.06 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ = 163.5, 141.6, 136.2, 135.3, 132.2, 129.8, 129.5, 129.0, 125.7, 125.4, 125.2, 120.5, 120.2, 119.0, 111.9, 109.9, 59.8, 54.6, 41.8, 28.8, 19.9, 14.2, 12.6. IR (ATR, cm$^{-1}$) $\tilde{\nu}$ = 3405, 2970, 2249, 1669, 1536, 1458, 1368, 1299, 1288, 19.9, 14.2, 12.6. EI-MS: m/z (%) = 405.2 (M$^+$, 100), 348.2 (5), 274.4 (16), 259.0 (72), 234.1 (12), 216.8 (11). HRMS (ESI): m/z: calcd. for [M+Na]$^+$ = [C$_{25}$H$_{31}$O$_2$N$_3$Na]$^+$: 428.2309; found 428.2296. $[\alpha]_D^{\text{rt}}$: -64.2 (c 2.04, CHCl$_3$).

Ethyl (R,Z)-2-(2-tert-butylhydrazono)-3-(4-tert-butylphenyl)-3-(2-methyl-1H-indol-3-yl)propanoate (8d)

The title compound was synthesized according to general procedure D, starting from 1d (38.1 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO$_2$, n-pentane / Et$_2$O 8: 2) afforded 8d (34.2 mg, 0.076 mmol, 76%) as a yellow oil. 95% ee. HPLC (AD-H, n-hexane/2-propanol = 99/1, flow rate = 1.0 mL/min, λ = 220 nm) tR = 16.2 min (major); 20.5 min (minor). 1H NMR (400 MHz, CDCl$_3$) δ = 10.14 (s, 1H), 7.71 (s, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.25-7.22 (m, 3H), 7.18-7.16 (m, 2H), 7.07-7.04 (m, 1H), 6.97-6.93 (m, 1H), 5.69 (s, 1H), 4.10
(q, J = 7.1 Hz, 2H), 2.34 (s, 3H), 1.29 (s, 9H), 1.17 (t, J = 7.1 Hz, 3H), 1.13 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ = 163.8, 148.1, 140.3, 135.4, 132.1, 128.9, 128.7, 125.9, 124.4, 120.8, 120.6, 118.8, 113.2, 109.9, 59.8, 54.7, 43.2, 34.4, 31.6, 28.9, 14.3, 12.6. IR (ATR, cm$^{-1}$) ν = 3403, 2964, 1669, 1527, 1459, 1364, 1299, 1192, 1126, 1022, 910, 791, 736. EI-MS: m/z (%) = 447.5 (M$^+$, 42), 317.4 (44), 301.3 (100), 276.3 (21), 246.2 (9), 57.3 (14). HRMS (ESI): m/z: calcd. for [M+Na]$^+$ = [C$_{28}$H$_{37}$O$_2$N$_3$Na]$^+$: 470.2778; found 470.2782. [α]D$^\text{rt}$: -33.6 (c 1.50, CHCl$_3$).

Ethyl (R,Z)-2-(2-(tert-butyl)hydrazono)-3-(4-methoxyphenyl)-3-(2-methyl-1H-indol-3-yl)propanoate (8e)

The title compound was synthesized according to general procedure D, starting from 1e (34.8 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO$_2$, n-pentane / Et$_2$O 8: 2) afforded 8e (33.7 mg, 0.080 mmol, 80%) as a yellow oil. 90% ee. HPLC (IA, n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, λ = 220 nm) tR = 23.0 min (minor); 32.6 min (major). 1H NMR (600 MHz, CDCl$_3$) δ = 10.16 (s, 1H), 7.74 (s, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 8.4 Hz, 2H), 7.08-7.04 (m, 1H), 6.97-6.93 (m, 1H), 6.79-6.75 (m, 2H), 5.66 (s, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 2.33 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H), 1.15 (s, 9H). 13C NMR (150 MHz, CDCl$_3$) δ = 163.8, 157.5, 135.6, 135.3, 132.1, 130.0, 128.8, 126.0, 120.6, 120.6, 118.9, 113.1, 112.9, 109.9, 59.8, 55.3, 54.7, 42.8, 28.9, 14.3, 12.6. IR (ATR, cm$^{-1}$) ν = 3402, 3266, 2970, 1883, 1670, 1610, 1517, 1458, 1367, 1299, 1179, 1030, 753. EI-MS: m/z (%) = 421.2 (M$^+$, 100), 291.8 (9), 274.7 (74), 250.0 (10). HRMS (ESI): m/z: calcd. for [M+H]$^+$ = [C$_{25}$H$_{32}$O$_3$N$_3$]$^+$: 422.2438; found 422.2427. [α]D$^\text{rt}$: -42.2 (c 1.18, CHCl$_3$).

Ethyl (R,Z)-2-(2-(tert-butyl)hydrazono)-3-(3-methoxyphenyl)-3-(2-methyl-1H-indol-3-yl)propanoate (8f)

The title compound was synthesized according to general procedure D, starting from 1f (34.8 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO$_2$, n-pentane / Et$_2$O 8: 2) afforded 8f (35.9 mg, 0.085 mmol, 85%) as a yellow oil. 96% ee. HPLC (OD-H, n-
hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, λ = 254 nm) tR = 11.8 min (major); 15.6 min (minor). 1H NMR (400 MHz, CDCl$_3$) δ = 10.19 (br s, 1H), 7.73 (br s, 1H), 7.51 (d, J = 7.9 Hz, 1H), 7.23 (dt, J = 8.0 & 0.8 Hz, 1H), 7.13 (t, J = 8.1 Hz, 1H), 7.07-7.03 (m, 1H), 6.97-6.93 (m, 1H), 6.86-6.83 (m, 2H), 6.72-6.69 (m, 1H), 5.70 (s, 1H), 4.11 (q, J = 7.1 Hz, 2H), 3.72 (s, 3H), 2.33 (s, 3H), 1.17 (s, 9H).

13C NMR (100 MHz, CDCl$_3$) δ = 163.8, 159.2, 145.2, 135.3, 132.2, 128.9, 128.4, 125.6, 121.8, 120.6, 120.6, 118.9, 115.0, 112.9, 111.0, 109.9, 59.9, 55.3, 54.7, 43.6, 29.0, 14.3, 12.6. IR (ATR, cm$^{-1}$) $\tilde{\nu}$ = 3402, 2970, 1668, 1597, 1530, 1457, 1194, 1040, 909, 736.

EI-MS: m/z (%) = 421.6 (M^+, 87), 348.8 (6), 290.7 (34), 274.5 (72), 216.4 (14). HRMS (ESI): m/z: calcd. for [M+H]$^+$ = [C$_{25}$H$_{32}$O$_3$N$_3$]$: 422.2438; found 422.2426. [α]$_D^{rt}$: -142.6 (c 1.29, CHCl$_3$).

Ethyl (S,Z)-2-(2-tert-butylhydrazono)-3-(2-methoxyphenyl)-3-(2-methyl-1H-indol-3-yl)propanoate (8g)

The title compound was synthesized according to general procedure D, starting from 1g (34.8 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO$_2$, n-pentane / Et$_2$O 8: 2) afforded 8g (26.5 mg, 0.063 mmol, 63%) as a yellow solid. m.p. 106 °C. 84% ee. HPLC (AD-H, n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, λ = 220 nm) tR = 14.2 min (minor); 18.8 min (major). 1H NMR (600 MHz, CDCl$_3$) δ = 9.89 (s, 1H), 7.78 (s, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.30-7.25 (m, 1H), 7.20-7.16 (m, 2H), 7.09 (t, J = 7.5 Hz, 1H), 7.02-6.98 (m, 1H), 6.88-6.84 (m, 1H), 6.80 (td, J = 7.5, 1.0 Hz, 1H), 5.89 (s, 1H), 4.09 (qq, J = 10.9, 7.1 Hz, 2H), 3.82 (s, 3H), 2.38 (s, 3H), 1.13 (t, J = 7.1 Hz, 3H), 1.10 (s, 9H). 13C NMR (150 MHz, CDCl$_3$) δ = 163.7, 156.8, 156.8, 135.3, 132.2, 131.9, 130.0, 129.5, 126.7, 126.4, 120.7, 120.4, 119.8, 118.9, 111.7, 109.9, 109.8, 59.6, 55.7, 54.3, 38.7, 28.8, 14.2, 12.5. IR (ATR, cm$^{-1}$) $\tilde{\nu}$ = 3401, 2968, 1669, 1538, 1457, 1184, 1123, 1026, 742. EI-MS: m/z (%) = 421.6 (M^+, 87), 348.8 (6), 290.7 (34), 274.5 (72), 216.4 (14). HRMS (ESI): m/z: calcd. for [M+H]$^+$ = [C$_{25}$H$_{32}$O$_3$N$_3$]$: 422.2438; found 422.2426. [α]$_D^{rt}$: -142.6 (c 1.29, CHCl$_3$).
Ethyl (R,Z)-2-(2-(tert-butyl)hydrazono)-3-(2-methyl-1H-indol-3-yl)-3-(4-(trifluoromethyl)phenyl)propanoate (8h)

The title compound was synthesized according to general procedure D, starting from 1h (39.7 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO2, n-pentane / Et2O 8: 2) afforded 8h (43.0 mg, 0.094 mmol, 94%) as a yellow oil. 90% ee. HPLC (IA, n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, λ = 254 nm) tR = 12.7 min (minor); 13.9 min (major). 1H NMR (600 MHz, CDCl$_3$) $\delta = 10.21$ (s, 1H), 7.80 (s, 1H), 7.49 - 7.44 (m, 3H), 7.36 (d, $J = 8.1$ Hz, 2H), 7.25-7.28 (m, 1H), 7.11-7.07 (m, 1H), 6.99-6.95 (m, 1H), 5.73 (s, 1H), 4.16-4.06 (m, 2H), 2.35 (s, 3H), 1.17 (t, $J = 7.1$ Hz, 3H), 1.13 (s, 9H). 13C NMR (150 MHz, CDCl$_3$) $\delta = 163.6, 147.6, 135.4, 132.4, 129.5, 128.6, 127.7$ (q, $J_{CF} = 32.0$ Hz), 125.0, 124.4 (q, $J_{CF} = 3.6$ Hz), 120.9, 120.4, 119.2, 111.9, 110.1, 60.0, 54.8, 43.7, 28.9, 14.3, 12.5. 19F NMR (564 MHz, CDCl$_3$) $\delta = -62.12$. IR (ATR, cm$^{-1}$) $\tilde{\nu} = 3400$, 2973, 1736, 1669, 1531, 1459, 1320, 1117, 1019, 736. EI-MS: m/z (%) = 458.9 (M$^+$, 100), 328.5 (24), 313.6 (40), 286.8 (20). HRMS (ESI): m/z: calcd. for [M+Na]$^+$ = [C$_{25}$H$_{28}$O$_2$N$_3$F$_3$Na]$^+$: 482.2026; found 482.2017. $[\alpha]_{D}^{rt}$: -61.9 (c 1.68, CHCl$_3$).

Ethyl (R,Z)-2-(2-(tert-butyl)hydrazono)-3-(2-methyl-1H-indol-3-yl)-3-(naphthalen-1-yl) propanoate (8i)

The title compound was synthesized according to general procedure D, starting from 1i (37.4 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO2, n-pentane / Et2O 8: 2) afforded 8i (28.2 mg, 0.064 mmol, 64%) as a yellow oil. 98% ee. HPLC (AD-H, n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, λ = 220 nm) tR = 13.7 min (minor); 16.9 min (major). 1H NMR (600 MHz, CDCl$_3$) $\delta = 9.93$ (s, 1H), 7.96-7.91 (m, 1H), 7.82-7.78 (m, 1H), 7.74 (s, 1H), 7.67-7.63 (m, 1H), 7.49 (d, $J = 7.9$ Hz, 1H), 7.41-7.35 (m, 2H), 7.27-7.22 (m, 3H), 7.06 (t, $J = 7.5$ Hz, 1H), 6.96 (t, $J = 7.5$ Hz, 1H), 6.27 (s, 1H), 4.13-4.05 (m, 2H), 2.22 (s, 3H), 1.10 (t, $J = 7.1$ Hz, 3H), 0.80 (s, 9H). 13C NMR (150 MHz, CDCl$_3$) $\delta = 163.4, 139.1, 135.3, 133.9, 132.5, 129.5, 128.6, 126.6, 126.5, 125.7, 125.5, 125.2, 124.8, 124.8, 120.6, 120.1, 119.2, 112.1, 110.0, 59.9, 54.5, 41.3, 28.6, 14.3, 12.6. IR (ATR, cm$^{-1}$) $\tilde{\nu} = 3406$, 2970, 1669, 1534, 1457, 1300, 1203, 1129, 1026, 755. EI-MS: m/z (%) = 441.3 (M$^+$, 100), 311.4
Ethyl (R,Z)-2-(2-(tert-butyl)hydrazono)-3-(2-methyl-1H-indol-3-yl)-3-(naphthalen-2-yl) propanoate (8j)

The title compound was synthesized according to general procedure D, starting from 1j (37.4 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO2, n-pentane / Et2O 8: 2) afforded 8j (40.3 mg, 0.091 mmol, 91%) as a yellow oil. 96% ee. HPLC (IA, n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, λ = 220 nm) tR = 24.0 min (minor); 32.9 min (major). 1H NMR (600 MHz, CDCl3) δ = 10.24 (s, 1H), 7.80-7.76 (m, 2H), 7.70 (d, J = 8.7 Hz, 1H), 7.69-7.66 (m, 1H), 7.63 (s, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.44 (dd, J = 8.5, 1.7 Hz, 1H), 7.41-7.37 (m, 2H), 7.28-7.25 (m, 1H), 7.10-7.05 (m, 1H), 6.96-6.92 (m, 1H), 5.87 (s, 1H), 4.13 (q, J = 7.1 Hz, 2H), 2.34 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H), 1.12 (s, 9H). 13C NMR (150 MHz, CDCl3) δ = 163.9, 141.1, 135.4, 133.4, 132.4, 130.5, 128.9, 128.8, 128.0, 127.5, 126.8, 126.7, 125.6, 125.5, 125.0, 120.7, 120.5, 119.0, 112.7, 110.0, 59.9, 54.7, 43.7, 29.0, 14.4, 12.7. IR (ATR, cm−1) ν = 3405, 3265, 3052, 2973, 1670, 1530, 1459, 1367, 1205, 1024, 753. EI-MS: m/z (%) = 441.3 (M+, 72), 310.4 (13), 295.2 (100), 270.8 (7). HRMS (ESI): m/z: calcd. for [M+Na]+ = [C28H31O2N3Na]+: 464.2309; found 464.2296. [α]D rt: -149.6 (c 1.38, CHCl3).

Ethyl (R,Z)-2-(2-(tert-butyl)hydrazono)-3-(4-fluorophenyl)-3-(2-methyl-1H-indol-3-yl) propanoate (8k)

The title compound was synthesized according to general procedure D, starting from 1k (33.2 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO2, n-pentane / Et2O 8: 2) afforded 8k (31.1 mg, 0.076 mmol, 76%) as a yellow oil. 95% ee. HPLC (IA, n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, λ = 220 nm) tR = 17.6 min (minor); 20.0 min (major). 1H NMR (400 MHz, CDCl3) δ = 10.16 (s, 1H), 7.76 (s, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.27-7.23 (m, 1H), 7.22-7.16 (m, 2H), 7.07 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H), 6.96 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 6.93-6.86 (m, 2H), 5.66 (s, 1H), 4.14-4.05 (m, 2H), 2.34 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H), 1.14 (s, 9H). 13C NMR (100 MHz, CDCl3) δ = 163.7, 161.1 (d, Jc,F = 242.7 Hz),
139.0, 135.4, 132.1, 130.6 (d, \(J_{CF} = 5.0 \) Hz), 128.7, 125.6, 120.8, 120.4, 119.0, 114.2 (d, \(J_{CF} = 21.0 \) Hz), 112.7, 110.0, 59.9, 54.7, 43.1, 28.9, 14.3, 12.5. \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta = -118.83 \). IR (ATR, cm\(^{-1}\)) \(\tilde{\nu} = 3401, 3266, 2971, 2250, 1887, 1668, 1603, 1514, 1457, 1369, 1210, 1024, 910, 738, 606 \). EI-MS: m/z (%) = 409.1 (M\(^+\), 87), 278.5 (17), 263.0 (100), 236.6 (13).

HRMS (ESI): m/z: calcd. for \([M+H]^+ = [C_{24}H_{30}O_2N_3F]^+\): 410.2238; found 410.2228.

\([\alpha]_D^{rt}\): -72.1 (c 1.17, CHCl\(_3\)).

Ethyl (R,Z)-2-(2-(tert-butyl)hydrazono)-3-cyclohexyl-3-(2-methyl-1H-indol-3-yl)propanoate (8l)

The title compound was synthesized according to general procedure D, starting from 1l (31.6 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO\(_2\), n-pentane / Et\(_2\)O 8: 2) afforded 8l (37.3 mg, 0.094 mmol, 94%) as a yellow oil. 93 % ee. HPLC (IA, n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, \(\lambda = 220 \) nm) \(t_R = 7.7 \) min (minor); 8.3 min (major).

\(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta = 10.08 \) (s, 1H), 7.85 (d, \(J = 7.9 \) Hz, 1H), 7.65 (s, 1H), 7.21 (d, \(J = 8.0 \) Hz, 1H), 7.05 (t, \(J = 7.4 \) Hz, 1H), 6.98 (t, \(J = 7.5 \) Hz, 1H), 4.13-4.01 (m, 2H), 3.82 (d, \(J = 10.9 \) Hz, 1H), 2.51 (ddd, \(J = 19.0, 10.9, 3.0 \) Hz, 1H), 2.43 (s, 3H), 2.14-2.07 (m, 1H), 1.77-1.71 (m, 1H), 1.67-1.60 (m, 1H), 1.60-1.52 (m, 1H), 1.36 (s, 9H), 1.34-1.26 (m, 2H), 1.22 (t, \(J = 7.1 \) Hz, 3H), 1.18-1.10 (m, 2H), 0.97-0.88 (m, 1H), 0.80-0.72 (m, 1H). \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) \(\delta = 164.2, 135.4, 131.7, 128.5, 125.0, 120.8, 120.5, 118.5, 112.8, 109.9, 59.7, 54.5, 44.6, 38.6, 33.0, 31.6, 29.2, 27.0, 26.8, 26.6, 14.4, 12.4. IR (ATR, cm\(^{-1}\)) \(\tilde{\nu} = 3402, 2922, 2850, 1666, 1528, 1455, 1363, 1299, 1263, 1194, 1142, 1023, 909, 801, 735. EI-MS: m/z (%) = 397.4 (M\(^+\), 58), 314.3 (100), 267.3 (11), 241.2 (9), 195.2 (16), 184.2 (19), 169.2 (16), 144.2 (16), 86.3 (13), 57.3 (24). HRMS (ESI): m/z: calcd. for \([M+H]^+ = [C_{24}H_{36}O_2N_3]^+\): 398.2802; found 398.2798. \([\alpha]_D^{rt}\): -75.4 (c 1.40, CHCl\(_3\)).

Ethyl (R,Z)-2-(2-(tert-butyl)hydrazono)-3-(2-methyl-1H-indol-3-yl)-5-phenylpent-4-ynoate (8m)

The title compound was synthesized according to general procedure D, starting from 1m (34.0 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO\(_2\), n-pentane / Et\(_2\)O 8: 2) afforded 8m (9.0 mg,
0.022 mmol, 22%) as a yellow oil. 86% ee. **HPLC** (IA, n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, λ = 220 nm) tR = 33.6 min (major); 36.5 min (minor). **^1H NMR** (600 MHz, CDCl₃) δ = 10.15 (s, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.73 (s, 1H), 7.43-7.40 (m, 2H), 7.28-7.22 (m, 3H), 7.10-7.03 (m, 2H), 5.47 (s, 1H), 4.21-4.10 (m, 2H), 2.55 (s, 3H), 1.33 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H). **IR** (ATR, cm⁻¹) ν = 3399, 3262, 3054, 2969, 2242, 1886, 1671, 1531, 1455, 1373, 1191, 1026, 911, 742, 611. **EI-MS**: m/z (%) = 415.5 (M⁺, 75), 358.3 (13), 312.7 (22), 284.9 (27), 268.1 (100), 243.8 (85). **HRMS (ESI)**: m/z: calcd. for [M+H]⁺ = [C₂₅H₃₁O₂N₃]⁺: 416.2333; found 416.2329. \[\alpha\]D: -7.9 (c 0.45, CHCl₃).

Ethyl (R,Z)-2-(2-(tert-butyl)hydrazono)-3-(2-ethyl-1H-indol-3-yl)-3-phenylpropanoate (8n)

The title compound was synthesized according to general procedure D, starting from 1n (32.7 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO₂, n-pentane / Et₂O 8: 2) afforded 8n (40.5 mg, 0.10 mmol, 99%) as a yellow oil. 98% ee. **HPLC** (IA, n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, λ = 220 nm) tR = 9.7 min (minor); 11.8 min (major). **^1H NMR** (600 MHz, CDCl₃) δ = 10.17 (s, 1H), 7.81 (s, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.28-7.23 (m, 3H), 7.16-7.12 (m, 1H), 7.09-7.05 (m, 1H), 6.97-6.93 (m, 1H), 5.73 (s, 1H), 4.15-4.05 (m, 2H), 2.82 (dq, J = 15.2, 7.6 Hz, 1H), 2.75 (dq, J = 15.2, 7.6 Hz, 1H), 1.19 (t, J = 7.6 Hz, 3H), 1.15 (t, J = 7.1 Hz, 3H), 1.13 (s, 9H). **^13C NMR** (150 MHz, CDCl₃) δ = 163.8, 143.6, 137.9, 135.4, 129.1, 128.8, 127.5, 125.8, 125.4, 120.9, 120.6, 118.9, 112.0, 110.0, 59.9, 54.7, 43.6, 28.9, 19.8, 14.3, 14.2. **IR** (ATR, cm⁻¹) ν = 3405, 3266, 3056, 2971, 2248, 1883, 1668, 1534, 1455, 1369, 1314, 1201, 1128, 1023, 910, 735, 629. **EI-MS**: m/z (%) = 405.4 (M⁺, 37), 259.2 (100), 234.2 (34), 218.2 (18), 145.1 (15), 57.2 (13). **HRMS (ESI)**: m/z: calcd. for [M+Na]⁺ = [C₂₆H₃₀O₂N₃Na]⁺: 428.2309; found 428.2299. \[\alpha\]D: -57.5 (c 1.74, CHCl₃).
Ethyl \((R,Z)-2-(2-(\text{tert}-\text{butyl})\text{hydrazono})-3\text{-phenyl}-3-(2\text{-propyl-1H-indol-3-yl})\text{propanoate} (8o)\)

The title compound was synthesized according to general procedure D, starting from 1o (34.5 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO2, n-pentane / Et2O 8: 2) afforded 8o (41.2 mg, 0.098 mmol, 98%) as a yellow oil. 96% ee. HPLC (AD-H, n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, λ = 220 nm) tR = 9.7 min (minor); 13.6 min (major).

\[^1H \text{NMR} (600 \text{ MHz, CDCl}_3) \delta = 10.17 (s, 1H), 7.79 (s, 1H), 7.47 (d, J = 8.0 \text{ Hz}, 1H), 7.28-7.23 (m, 3H), 7.23-7.19 (m, 2H), 7.16-7.12 (m, 1H), 7.09-7.05 (m, 1H), 6.96-6.92 (m, 1H), 5.72 (s, 1H), 4.15-4.06 (m, 2H), 2.79 (dt, J = 15.5, 7.7 \text{ Hz}, 1H), 2.69 (dt, J = 14.9, 7.4 \text{ Hz}, 1H), 1.65-1.56 (m, 2H), 1.15 (t, J = 7.1 \text{ Hz}, 3H), 1.13 (s, 9H), 0.91 (t, J = 7.4 \text{ Hz}, 3H). \]

\[^{13}C \text{NMR} (150 \text{ MHz, CDCl}_3) \delta = 163.8, 143.6, 136.6, 135.4, 129.1, 128.8, 127.5, 125.8, 125.4, 121.0, 120.6, 118.8, 112.6, 110.0, 59.8, 54.7, 43.7, 28.9, 28.7, 23.1, 14.3, 14.2. IR (ATR, \text{cm}^{-1}) \tilde{\nu} = 3406, 2967, 2872, 2249, 1728, 1668, 1532, 1457, 1369, 1201, 1128, 1024, 910, 735, 627. \]

MS: m/z (%) = 419.5 (M+\(^+\), 45), 273.3 (100), 261.3 (78), 248.3 (34), 218.2 (27), 159.2 (15), 57.2 (16). HRMS (ESI): m/z: calcld. for [M+Na\(^+\)] = [C\(_{26}\)H\(_{33}\)O\(_2\)N\(_3\)Na\(^+\)]: 442.2465; found 442.2462. \([\alpha]_D^{20}: -42.6 (c 1.86, \text{CHCl}_3)\).

Ethyl \((R,Z)-2-(2-(\text{tert}-\text{butyl})\text{hydrazinyliden})-3-(2\text{-isopropyl-1H-indol-3-yl})-3\text{-phenyl propanoat (8p)\)}

The title compound was synthesized according to general procedure D, starting from 1p (34.5 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO2, n-pentane / Et2O 7: 3) afforded 8p (41.5 mg, 0.099 mmol, 99%) as a yellow oil. 70% ee. HPLC (IA, n-hexane/2-propanol = 98/2, flow rate = 1.0 mL/min, λ = 220 nm) tR = 7.3 min (minor); 10.2 min (major). \[^1H \text{NMR} (600\text{MHz, CDCl}_3): \delta = 10.17 (s, 1H), 7.84 (s, 1H), 7.47 (d, J = 8.0 \text{ Hz}, 1H), 7.28 (d, J = 8.1 \text{ Hz}, 1H), 7.25-7.18 (m, 4H), 7.15-7.11 (m, 1H), 7.09-7.04 (m, 1H), 6.95-6.91 (m, 1H), 5.75 (s, 1H), 4.16-4.04 (m, 2H), 3.40 (sept., J = 7.0 \text{ Hz}, 1H), 1.31 (d, J = 7.0 \text{ Hz}, 3H), 1.19 (d, J = 7.0 \text{ Hz}, 3H), 1.14 (t, J = 7.2 \text{ Hz}, 3H), 1.13 (s, 9H). \[^{13}C \text{NMR} (151\text{MHz, CDCl}_3): \delta = 163.8, 143.6, 141.6, 135.3, 129.2, 128.7, 127.5, 125.8, 125.4, 121.2, 120.6, 118.9, 111.0, 110.1, 59.9, 54.7, 43.6, 28.9, 25.4, 23.4, 22.2, 14.3. IR (ATR, \text{cm}^{-1}): \tilde{\nu} = 3414, 3270, 3056, 2969, 2248, 1882, \]
Ethyl (R,Z)-2-(2-((tert-butyl)hydrazono)-3-(2,7-dimethyl-1H-indol-3-yl)-3-phenylpropanoate (8q)

The title compound was synthesized according to general procedure D, starting from 1q (32.7 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO₂, n-pentane / Et₂O 8: 2) afforded 8q (32.1 mg, 0.079 mmol, 79%) as a yellow oil. 89% ee. SFC (WHELK-01 column, 5% MeOH/CO₂, flow rate = 4 mL/min, λ = 250 nm) tR = 7.5 min (major); 8.9 min (minor). ¹H NMR (400 MHz, CDCl₃) δ = 10.17 (s, 1H), 7.67 (s, 1H), 7.39-7.33 (m, 1H), 7.26-7.18 (m, 4H), 7.16-7.10 (m, 1H), 6.90-6.96 (m, 2H), 5.72 (s, 1H), 4.11 (qd, J = 7.1, 1.9 Hz, 2H), 2.47 (s, 3H), 2.37 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H), 1.14 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ = 163.8, 143.5, 134.8, 131.9, 129.2, 128.4, 127.5, 125.8, 125.4, 121.4, 119.1, 119.0, 118.5, 113.4, 59.9, 54.7, 43.7, 29.0, 16.7, 14.4, 12.7. IR (ATR, cm⁻¹) ν = 3378, 2963, 2925, 2322, 1891, 1647, 1524, 1453, 1366, 1198, 1022, 784, 739, 702. EI-MS: m/z (%) = 405.4 (M⁺, 36), 259.2 (100), 234.2 (26), 145.1 (18). HRMS (ESI): m/z: calcd. for [M+Na]⁺ = [C₂₅H₃₁O₂N₃Na]⁺: 428.2309; found: 428.2308. [α]D^{27}: -44.2 (c 1.87, CHCl₃).

Ethyl (R,Z)-2-(2-((tert-butyl)hydrazono)-3-(5-methoxy-2-methyl-1H-indol-3-yl)-3-phenylpropanoate (8r)

The title compound was synthesized according to general procedure D, starting from 1r (34.8 mg, 0.13 mmol), 2e (17.2 mg, 0.10 mmol) and 3h (3.0 mg, 5 mol%) in toluene (2 mL). Purification by column chromatography (SiO₂, n-pentane / Et₂O 8: 2) afforded 8r (41.8 mg, 0.099 mmol, 99%) as a yellow oil. 90% ee. SFC (WHELK-01 column, 5% MeOH/CO₂, flow rate = 4 mL/min, λ = 250 nm) tR = 10.7 min (major); 12.0 min (minor). ¹H NMR (600 MHz, CDCl₃) δ = 10.15 (s, 1H), 7.63 (s, 1H), 7.26-7.20 (m, 4H), 7.16-7.10 (m, 2H), 6.91 (d, J = 2.2 Hz, 1H), 6.72 (dd, J = 8.7, 2.2 Hz, 1H), 5.66 (s, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.72 (s, 3H), 2.30 (s, 3H), 1.15 (t, J = 7.1 Hz, 3H),
1.11 (s, 9H). 13C NMR (150 MHz, CDCl$_3$) δ = 163.8, 153.6, 143.3, 133.1, 130.5, 129.5, 129.2, 127.6, 126.0, 125.5, 112.8, 110.5, 110.3, 103.1, 59.9, 56.1, 54.7, 43.9, 28.9, 14.3, 12.7. IR (ATR, cm$^{-1}$) ν = 3403, 2970, 1669, 1449, 1205, 1123, 1028, 910, 720. EI-MS: m/z (%) = 421.3 (M$^+$, 54), 275.2 (100), 261.3 (37), 250.2 (34), 218.2 (11), 161.2 (21). HRMS (ESI): m/z: calcd. for [M+Na]$^+$ = [C$_{25}$H$_{31}$O$_3$N$_3$Na]$^+$: 444.2258; found 444.2254. $[^\alpha]_D$$^\text{rt}$: -39.4 (c 1.71, CHCl$_3$).
V. Determination of the absolute configuration

The structure of product 8i was confirmed by single-crystal X-ray analysis. However, the values of the Flack parameter and standard uncertainty did not allow an unambiguous determination of the absolute configuration. As an alternative, CD-spectroscopy was considered and the recorded and theoretically calculated (TD-DFT/B3LYP/6-31G*/B3LYP/6-31G*) CD-spectra of compound 8i were analyzed (Figure 1).2,3 Since the measured spectrum resembles the spectrum calculated for the \((R)\)-enantiomer, we conclude that the absolute configuration of the compound present in our sample is \((R)\).

![Figure 1. Recorded and calculated CD-spectra for 8i.](image)
VI. References:

2. The calculations have been performed by using the facilities and computing resources offered by the Center for Computing and Communication of the RWTH Aachen University.

VII. Copies of 1H, 13C, HPLC and SFC Spectra of the Reported Compounds

1H NMR (600 MHz, CD$_2$Cl$_2$) for 1a

13C NMR (150 MHz, CD$_2$Cl$_2$) for 1a
\(^1\)H NMR (600 MHz, DMSO-\(d_6\)) for 1b

\(^{13}\)C NMR (150 MHz, DMSO-\(d_6\)) for 1b
1H NMR (600 MHz, DMSO-$_d_6$) for 1c

13C NMR (150 MHz, DMSO-$_d_6$) for 1c
1H NMR (600 MHz, DMSO-d_6) for 1d

13C NMR (150 MHz, DMSO-d_6) for 1d
1H NMR (600 MHz, DMSO-d_6) for 1e

13C NMR (150 MHz, DMSO-d_6) for 1e
1H NMR (600 MHz, DMSO-d_6) for 1f

13C NMR (150 MHz, DMSO-d_6) for 1f
1H NMR (600 MHz, DMSO-d_6) for 1g

13C NMR (150 MHz, DMSO-d_6) for 1g
$^1\text{H NMR}$ (400 MHz, DMSO-d_6) for 1h

$^{13}\text{C NMR}$ (100 MHz, DMSO-d_6) for 1h
19F NMR (376 MHz, DMSO-d$_6$) for 1h
1H NMR (600 MHz, DMSO-d_6) for 1i

13C NMR (150 MHz, DMSO-d_6) for 1i
1H NMR (600 MHz, DMSO-d_6) for 1j

13C NMR (150 MHz, DMSO-d_6) for 1j
^{1}H NMR (400 MHz, DMSO-d_6) for 1k

^{13}C NMR (100 MHz, DMSO-d_6) for 1k
19F NMR (376 MHz, DMSO-d_6) for 1k
1H NMR (600 MHz, DMSO-d_6) for 1l

13C NMR (150 MHz, DMSO-d_6) for 1l
1H NMR (400 MHz, DMSO-d_6) for 1m

13C NMR (100 MHz, DMSO-d_6) for 1m
1H NMR (600 MHz, DMSO-d_6) for 1n

13C NMR (150 MHz, DMSO-d_6) for 1n
1H NMR (600 MHz, DMSO-d_6) for 1o

13C NMR (150 MHz, DMSO-d_6) for 1o
1H NMR (600 MHz, DMSO-d_6) for 1p

13C NMR (150 MHz, DMSO-d_6) for 1p
1H NMR (600 MHz, DMSO-d_6) for 1q

13C NMR (150 MHz, DMSO-d_6) for 1q
^{1}H NMR (300 MHz, DMSO-d_6) for 1r

^{13}C NMR (75 MHz, DMSO-d_6) for 1r
1H NMR (600 MHz, CDCl$_3$) for 4a

13C NMR (150 MHz, CDCl$_3$) for 4a
Chromatogram: MM 1342-ADH 9505_flow1_acq6018

Data file: MM 1342-ADH 9505_flow1_acq6018.DAT
Method: HPLC2 ADH 9505_flow1_acq60
Date: 29.01.2013 15:43:00

<table>
<thead>
<tr>
<th>Index</th>
<th>Time</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.459</td>
<td>49.914</td>
</tr>
<tr>
<td>2</td>
<td>56.188</td>
<td>50.086</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>

Chromatogram: MM 1372-ADH 9505_flow1_acq6015

Data file: MM 1372-ADH 9505_flow1_acq6015.DAT
Method: HPLC2 ADH 9505_flow1_acq60
Date: 06.03.2013 21:51:07

<table>
<thead>
<tr>
<th>Index</th>
<th>Time</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29.070</td>
<td>17.465</td>
</tr>
<tr>
<td>2</td>
<td>56.702</td>
<td>82.535</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>

49
1H NMR (600 MHz, CDCl$_3$) for 5a

13C NMR (150 MHz, CDCl$_3$) for 5a
1H NMR (600 MHz, CDCl$_3$) for 6a

13C NMR (150 MHz, CDCl$_3$) for 6a
1H NMR (600 MHz, CDCl$_3$) for 7a

13C NMR (150 MHz, CDCl$_3$) for 7a
1H NMR (600 MHz, CDCl$_3$) for 8a

13C NMR (150 MHz, CDCl$_3$) for 8a
1H NMR (600 MHz, CDCl$_3$) for 8b

13C NMR (150 MHz, CDCl$_3$) for 8b
Chromatogram: SM 46-IA_982_flow1_acq60158

Data file: SM 46-IA_982_flow1_acq60158.DAT
Method: HPLC2_IA_982_flow1_acq60158
Date: 20.04.2013 01:46:47

![Chromatogram Image](image1)

<table>
<thead>
<tr>
<th>Index</th>
<th>Start</th>
<th>Time (min)</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.39</td>
<td>11.601</td>
<td>49.614</td>
</tr>
<tr>
<td>2</td>
<td>18.667</td>
<td>19.462</td>
<td>50.135</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.000</td>
</tr>
</tbody>
</table>

Chromatogram: SM 50-IA_982_flow1_acq30152

Data file: SM 50-IA_982_flow1_acq30152.DAT
Method: HPLC2_IA_982_flow1_acq30152
Date: 22.04.2013 23:14:55

![Chromatogram Image](image2)

<table>
<thead>
<tr>
<th>Index</th>
<th>Start</th>
<th>Time (min)</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.617</td>
<td>17.760</td>
<td>48.162</td>
</tr>
<tr>
<td>2</td>
<td>21.822</td>
<td>21.861</td>
<td>51.838</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.000</td>
</tr>
</tbody>
</table>
1H NMR (400 MHz, CDCl$_3$) for 8c

13C NMR (100 MHz, CDCl$_3$) for 8c
1H NMR (400 MHz, CDCl$_3$) for 8d

13C NMR (100 MHz, CDCl$_3$) for 8d
^{1}H NMR (600 MHz, CDCl$_3$) for 8e

^{13}C NMR (150 MHz, CDCl$_3$) for 8e
1H NMR (400 MHz, CDCl$_3$) for 8f

13C NMR (100 MHz, CDCl$_3$) for 8f
Chromatogram: MM 1430_ODH_982_flow1_181

Data file: MM 1430_ODH_982_flow1_181.DAT
Method: HPLC1_ODH_982_flow1_acq_90
Date: 18.04.2013 21:28:56

MM 1430_ODH_982_flow1_181.DAT [Jasco UV 1]

<table>
<thead>
<tr>
<th>Index</th>
<th>Start Time</th>
<th>Start End</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Min)</td>
<td>(Min)</td>
<td>(%)</td>
</tr>
<tr>
<td>1</td>
<td>12.428</td>
<td>14.042</td>
<td>49.768</td>
</tr>
<tr>
<td>2</td>
<td>18.605</td>
<td>20.362</td>
<td>50.211</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.000</td>
</tr>
</tbody>
</table>

Chromatogram: MM 1431_ODH_982_flow1_281

Data file: MM 1431_ODH_982_flow1_281.DAT
Method: HPLC1_ODH_982_flow1_acq_30
Date: 19-Apr-13 1:06:03 PM

MM 1431_ODH_982_flow1_281.DAT [Jasco UV 2]

<table>
<thead>
<tr>
<th>Index</th>
<th>Start Time</th>
<th>Start End</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Min)</td>
<td>(Min)</td>
<td>(%)</td>
</tr>
<tr>
<td>1</td>
<td>11.638</td>
<td>13.200</td>
<td>68.220</td>
</tr>
<tr>
<td>2</td>
<td>15.639</td>
<td>16.403</td>
<td>31.780</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.000</td>
</tr>
</tbody>
</table>
1H NMR (600 MHz, CDCl$_3$) for 8g

13C NMR (150 MHz, CDCl$_3$) for 8g
1H NMR (600 MHz, CDCl$_3$) for 8h

13C NMR (150 MHz, CDCl$_3$) for 8h
19F NMR (564 MHz, CDCl$_3$) for 8h
1H NMR (600 MHz, CDCl$_3$) for 8i

13C NMR (150 MHz, CDCl$_3$) for 8i
1H NMR (600 MHz, CDCl$_3$) for 8j

13C NMR (150 MHz, CDCl$_3$) for 8j
1H NMR (400 MHz, CDCl$_3$) for 8k

13C NMR (100 MHz, CDCl$_3$) for 8k
$^{19}\text{F NMR}$ (376 MHz, CDCl$_3$) for 8k
1H NMR (600 MHz, CDCl$_3$) for 8I

13C NMR (150 MHz, CDCl$_3$) for 8I
1H NMR (600 MHz, CDCl$_3$) for 8m

13C NMR (150 MHz, CDCl$_3$) for 8m
1H NMR (600 MHz, CDCl$_3$) for 8n

13C NMR (150 MHz, CDCl$_3$) for 8n
1H NMR (600 MHz, CDCl$_3$) for 8o

13C NMR (150 MHz, CDCl$_3$) for 8o
1H NMR (400 MHz, CDCl$_3$) for 8p

13C NMR (100 MHz, CDCl$_3$) for 8p
1H NMR (400 MHz, CDCl$_3$) for 8q

13C NMR (100 MHz, CDCl$_3$) for 8q
<table>
<thead>
<tr>
<th>Peak Info</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Area %</td>
<td>Area</td>
<td>RT (min)</td>
<td>St. (min)</td>
<td>End (min)</td>
</tr>
<tr>
<td>1</td>
<td>94.3396</td>
<td>3305.9288</td>
<td>7.5</td>
<td>7.0078</td>
<td>7.9544</td>
</tr>
<tr>
<td>2</td>
<td>5.6604</td>
<td>203.155</td>
<td>8.93</td>
<td>8.6395</td>
<td>9.3214</td>
</tr>
</tbody>
</table>
1H NMR (600 MHz, CDCl$_3$) for 8r

13C NMR (150 MHz, CDCl$_3$) for 8r