Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supplementary Information

Modification of [2.2]paracyclophane through cobalt-catalyzed ortho-C-H allylation and acyloxylation

Hong Song, a,# Ya Li, a,# Qi-Jun Yaoa and Bing-Feng Shia,b,*

 ${\it ^a} Center of \ Chemistry, \ The jiang \ University, \ Hangzhou,$

Zhejiang, 310027, China

^bSchool of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China

*Corresponding author, Email: bfshi@zju.edu.cn

*These authors contributed equally to this work.

Contents

1. General Information	1
2. Reaction partners tested in this manuscript	2
3. Experimental sections.	3
3.1 Preparing the [2,2]paracyclophane derivatized amides	3
3.2 Resolution of 4-carbonyl[2.2]Paracyclophan-acid S2 ^[2]	7
3.3 Optimization of Reaction Conditions	10
3.4 Co(II)-Catalyzed ortho-C-H Allylation of [2,2]paracyclophane	12
3.5 Co(II)-Catalyzed ortho-C-H Acyloxylation of [2,2]paracyclophane	20
3.6 Synthetic Transformations	30
4. References:	34
5. NMR spectra	35

1. General Information

NMR spectra were recorded on a Bruke Avance operating for ¹H NMR at 400 MHz, ¹³C NMR at 100 MHz and ¹⁹F NMR at 376 MHz using TMS as internal standard. Chemical shifts were given relative to CDCl₃ (7.26 ppm for ¹H NMR, 77.16 ppm for ¹³C NMR).. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, brs = broad singlet. Mass spectroscopy data of the products were collected on an HRMS-TOF instrument or a low-resolution MS instrument using EI and ESI and MALDI ionization. The ee value was determined on Shimadzu HPLC using CHIRALPAK column with hexane and isopropanol as eluent, Wavelength = 254 nm. The Crystal data of the products were collected on a Bruker D8 Venture.

All the materials and solvents were purchased from commercial suppliers and used without additional purification. All solvents were analytical grade. Catalytic reactions were carried out in pre-dried Schlenk flask under N_2 atmosphere. [2,2]paracyclophane, cobalt catalysts and other additive chemicals were purchased from commercial companies. Model substrate rac-1 was reported compound and prepared according to the literature. [1] Enantiopure (S_p) -[2,2]paracyclophane carboxylic acid was obtained according to reported method. [2]

2. Reaction partners tested in this manuscript

Table S1. Aliphatic alkenes 2 and α -methyl acrylates 3

Table S2. Carboxylic acids 6

Table S3. [2,2]Paracyclophane amides

3. Experimental sections.

3.1 Preparing the [2,2]paracyclophane derivatized amides.

Scheme S1. Synthesis of rac-1a-1c.

Trifluoroacetic acid anhydride (6.75 mL, 47.75 mmol) dissolved in dichloromethane (30 mL) was added to a suspension of AlCl₃ (5.7 g, 43.13 mmol) in dichloromethane (120 mL) at 0 °C (ice bath). After 15 min, [2,2]paracyclophane (5 g, 24.03 mmol) was added while the temperature was held under 5 °C. After stirring for 30 min at room temperature, the reaction mixture was quenched at 0 °C by adding concentrated aqueous HCl (4.4 mL). Extraction with dichloromethane and subsequent column chromatography delivered **S1** in 92 % yield.

Compound **S1** (5 g, 16.45 mmol) was incubated in aqueous KOH (10 w%, 125 mL) and heated under reflux (110 °C, oil bath) for 5 h. The white solid residue was separated by filtration and subsequently washed with DCM. The organic phase was then extracted with water. Titration of the aqueous phase with concentrated aqueous HCl delivered a precipitate **S2** that was purified by recrystallization from a mixture of acetic acid and water (9/1, v/v) (yield 86 %).

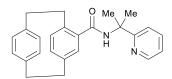
In a 100 mL round-bottom flask, thionyl chloride (10.0 mL) was added to Compound S2 (20 mmol, 1.00 equiv.) and the resulting mixture was stirred at 100 °C (oil bath) for 2 h under N₂. After cooling to room temperature, the excess thionyl chloride was removed under vacuum, the final traces were washed with toluene (2 × 5 mL) and removed under vacuum. The resulting crude acetyl chloride S3 was dissolved in CH₂Cl₂ (50 mL) and cooled to 0 °C (ice bath). A solution of directing group-tailored amine (20 mmol, 1.00 equiv.) and Et₃N (40 mmol, 2 equiv.) in CH₂Cl₂ (10 mL) was added, the reaction mixture was allowed to warm to room temperature and stirred for 24 h under N₂. Then the solution was washed with aq. HCl solution (1 N, 3 × 40 mL) and brine (100 mL). The organic phase was dried over MgSO₄, filtered, concentrated, and dried under vacuum to give the crude amide as brown solid, subsequent column chromatography (DCM:PE 1:1) delivered *rac-*1 as a pale-yellow solid in 80% yield.

rac-4-carbonyl[2,2]paracyclohexaphan-N-(quinoline-8-yl)amide (rac-1a)

rac-1a

Using the general procedure, the title compound *rac-***1a** was isolated by reacting the corresponding acetyl chloride with 8-aminoquinoline as pale-yellow solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 10.17 (s, 1H), 8.96 (d, J = 7.6 Hz, 1H), 8.84 - 8.78 (m, 1H), 8.20 (dd, J = 8.3, 1.6 Hz, 1H), 7.63 (t, J = 7.9

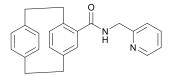

Hz, 1H), 7.56 (d, J = 8.2 Hz, 1H), 7.46 (dd, J = 8.4, 4.2 Hz, 1H), 6.99 (s, 1H), 6.89 (d, J = 7.8 Hz, 1H), 6.70 - 6.67 (m, 1H), 6.64 - 6.58 (m, 4H), 3.91 (ddd, J = 11.6, 9.4, 2.1 Hz, 1H), 3.29 - 2.94 (m, 7H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 167.4, 148.4, 140.4, 140.0, 139.8, 139.5, 138.9, 136.5, 136.4, 136.2, 135.5, 135.2, 132.9, 132.8, 132.6, 132.0, 131.8, 128.2, 127.6, 121.7, 121.6, 116.5, 35.6, 35.5, 35.4, 35.1.

HRMS (**ESI**) calculated for $([C_{26}H_{23}N_2O]+H)^+$: 379.1810, found: 379.1806

Melting point: 180.5-193.4 °C.

rac-4-carbonyl[2,2]paracyclohexaphan-N-(2-(pyridin-2-yl)propan-2-yl)amide (rac-1b)



Using the general procedure, the title compound *rac-***1e** was isolated by reacting the corresponding acetyl chloride with 2-(pyridin-2-yl)propan-2-amine as white solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.57 – 8.51 (m, 1H), 8.04 (s, 1H), 7.75 (td, J = 7.7, 1.8 Hz, 1H), 7.48 (d, J = 8.1 Hz, 1H), 7.21 (dd, J = 7.4, 4.8 Hz, 1H), 6.85 (d, J = 8.1 Hz, 1H), 6.79 (s, 1H), 6.59 (dd, J = 7.8, 1.9 Hz, 1H), 6.54 (d, J = 5.5 Hz, 4H), 3.82 (ddd, J = 12.9, 8.9, 3.5 Hz, 1H), 3.21 – 2.98 (m, 6H), 2.91 (ddd, J = 13.2, 9.2, 6.8 Hz, 1H), 1.92 (s, 3H), 1.91 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.26, 164.92, 147.83, 140.04, 139.90, 139.40, 138.82, 137.34, 137.21, 136.07, 134.55, 132.83, 132.73, 132.48, 132.08, 131.96, 121.97, 119.62, 56.99, 35.52, 35.32, 35.07, 27.79, 27.61.

HRMS (ESI) calculated for $([C_{25}H_{27}N_2O]+H)^+$: 371.2118, found: 371.2120.

*rac-*4-carbonyl[2,2]paracyclohexaphan-*N*-(pyridin-2-ylmethyl)amide (*rac-*1c)

Using the general procedure, the title compound *rac-***1f** was isolated by reacting the corresponding acetyl chloride with pyridin-2-ylmethanamine as off-white solid.

rac-1c ¹H NMR (400 MHz, Chloroform-*d*) δ 8.55 (d, J = 4.9 Hz, 1H), 7.70 (td, J = 7.7, 1.8 Hz, 1H), 7.35 (d, J = 7.8 Hz, 1H), 7.22 (dd, J = 7.5, 4.9 Hz, 1H), 6.96 (s, 1H), 6.78 (d, J = 5.7 Hz, 1H), 6.77 (s, 1H), 6.60 (dd, J = 7.8, 1.9 Hz, 1H), 6.55 (s, 2H), 6.50 (s, 1H), 6.47 (d, J = 7.9 Hz, 1H), 4.75 (d, J = 4.9 Hz, 2H), 3.76 (ddd, J = 12.8, 10.0, 2.5 Hz, 1H), 3.17 (ddd, J = 14.3, 11.9, 5.8 Hz, 3H), 3.11 – 2.96 (m, 3H), 2.90 (ddd, J = 13.0, 10.1, 5.9 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 169.23, 156.61, 149.20, 140.26, 140.04, 139.48, 139.37, 136.96, 136.18, 135.26, 135.17, 132.82, 132.72, 132.57, 131.94, 122.54, 122.31, 44.89, 35.54, 35.45, 35.29, 35.03.

HRMS (**ESI**) calculated for $([C_{23}H_{23}N_2O]+H)^+$: 343.1805, found: 343.1806.

Scheme S2. Synthesis of rac-1d-1f

Bromo-substituted [2,2]paracyclophane carboxylates **S4** were prepared according reported methods^[3-5]. To a pre-dried round-bottomed flask, equipped with a magnetic stirring bar, was added **S4** (4.0 mmol), 8-aminoquinoline (5.0 mmol) and anhydrous toluene (40 mL). The flask was charged with N₂ and cooled to 0 °C. Then, a solution of LiHMDS (10.0 mL, 1.0 M in THF) was added dropwise via syringe over 5 minutes and the suspension was slowly warm to room temperature and stirred overnight. The reaction mixture was then heated to 50 °C and stirred for another 24 hours. The reaction was quenched by slowly adding an aqueous solution of NH₄Cl and diluted with EtOAc. The organic phase was collected and washed with 1M HCl aq., water, sat. NaHCO₃ aq. and brine. The organic phase was collected, dried over Na₂SO₄ and concentrated under vacuo. The residue was purified through flash column chromatography, eluting with petroleum ether/EtOAc from 1/20 to 1/10.

<u>rac-13-bromo-4-carbonyl[2,2]paracyclohexaphan-N-(quinoline-8-yl)amide (rac-1d)</u>

Using the general procedure, the title compound rac-1d was isolated by reacting the corresponding rac-13-bromo-4-methoxycarbonyl [2,2]paracyclohexaphane with 8-aminoquinoline as pale-yellow solid.

¹H NMR (400 MHz, Chloroform-d) δ 10.41 (s, 1H), 8.98 (d, J = 7.6

Hz, 1H), 8.84 (d, J = 4.2 Hz, 1H), 8.16 (d, J = 8.2 Hz, 1H), 7.61 (t, J =

7.9 Hz, 1H), 7.52 (d, J = 8.2 Hz, 1H), 7.44 (dd, J = 8.3, 4.2 Hz, 1H), 7.38 (s, 1H), 6.74 (s, 1H), 6.71 – 6.57 (m, 4H), 4.26 (ddd, J = 14.6, 9.7, 6.0 Hz, 1H), 3.59 (ddd, J = 12.9, 9.6, 2.7 Hz, 1H), 3.32 (ddd, J = 13.2, 10.1, 2.6 Hz, 1H), 3.23 – 2.99 (m, 4H), 2.95 – 2.85 (m, 1H).

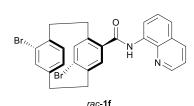
¹³C NMR (100 MHz, Chloroform-*d*) δ 166.34, 148.48, 141.52, 140.98, 139.68, 139.19, 138.77, 136.51, 135.60, 135.24, 134.82, 133.77, 133.69, 132.77, 131.37, 129.47, 128.15, 127.51, 126.76, 121.93, 121.85, 116.50, 35.93, 35.66, 32.29, 32.26.

HRMS (**ESI**) calculated for $([C_{26}H_{21}BrN_2O]+H)^+$: 457.0910, found: 457.0906.

<u>rac-12-bromo-4-carbonyl[2,2]paracyclohexaphan-N-(quinoline-8-yl)amide (rac-1e)</u>

rac-1e

Using the general procedure, the title compound *rac-***1e** was isolated by reacting the corresponding *rac-*12-bromo-4-methoxycarbonyl [2,2]paracyclohexaphane with 8-aminoquinoline as white solid.


¹H NMR (400 MHz, Chloroform-*d*) δ 10.13 (s, 1H), 8.98 (dd, J = 7.6, 1.4 Hz, 1H), 8.78 (dd, J = 4.2, 1.7 Hz, 1H), 8.16 (dd, J = 8.3, 1.7 Hz,

1H), 7.66 - 7.59 (m, 2H), 7.54 (dd, J = 8.3, 1.4 Hz, 1H), 7.44 (dd, J = 8.3, 4.2 Hz, 1H), 6.99 (d, J = 1.8 Hz, 1H), 6.69 - 6.59 (m, 3H), 6.56 (d, J = 7.8 Hz, 1H), 3.91 (ddd, J = 12.4, 10.1, 1.7 Hz, 1H), 3.51 (ddd, J = 13.4, 9.9, 1.6 Hz, 1H), 3.32 - 3.06 (m, 4H), 2.93 (ddd, J = 12.8, 10.1, 6.6 Hz, 1H), 2.83 (ddd, J = 13.4, 10.3, 6.9 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 167.32, 148.28, 142.17, 139.99, 139.79, 138.90, 138.87, 136.38, 136.10, 135.80, 135.76, 135.20, 135.05, 134.73, 131.24, 128.13, 127.64, 127.52, 127.08, 121.71, 121.63, 116.59, 35.92, 35.18, 34.71, 32.65.

HRMS (**ESI**) calculated for $([C_{26}H_{21}BrN_2O]+H)^+$: 457.0910, found: 457.0909.

rac-7,15-dibromo-4-carbonyl[2,2]paracyclohexaphan-N-(quinoline-8-yl)amide (rac-1f)

Using the general procedure, the title compound *rac-***1e** was isolated by reacting the corresponding *rac-*7,15-dibromo-4-methoxycarbonyl [2,2]paracyclohexaphane with 8-amino-quinoline as pale-brown solid.

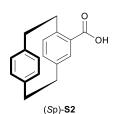
¹H NMR (400 MHz, Chloroform-*d*) δ 10.11 (s, 1H), 8.92 (d, J = 7.6 Hz, 1H), 8.79 (d, J = 4.3 Hz, 1H), 8.19 (d, J = 8.3 Hz, 1H), 7.62 (t, J = 7.9 Hz, 1H), 7.56 (d, J = 8.3 Hz, 1H), 7.46 (dd, J = 8.6, 4.2 Hz, 1H), 7.32 (s, 1H), 7.25 (d, J = 4.6 Hz, 1H), 7.03 (s, 1H), 6.95 (d, J = 8.1 Hz, 1H), 6.56 (d, J = 8.0 Hz, 1H), 3.73 (dd, J = 12.5, 9.5 Hz, 1H), 3.50 (t, J = 9.8 Hz, 1H), 3.41 (dd, J = 12.7, 9.5 Hz, 1H), 3.24 – 3.03 (m, 4H), 2.89 (dt, J = 17.3, 8.8 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 166.34, 148.48, 141.52, 140.98, 139.68, 139.19, 138.77, 136.51, 135.60, 135.24, 134.82, 133.77, 133.69, 132.77, 131.37, 129.47, 128.15, 127.51, 126.76, 121.93, 121.85, 116.50, 35.93, 35.66, 32.29, 32.26.

HRMS (**ESI**) calculated for $([C_{26}H_{20}Br_2N_2O]+H)^+$: 535.0915, found: 535.0914.

3.2 Resolution of 4-carbonyl[2.2]Paracyclophan-acid S2^[2]

$$(S_{p},S)-S5 \text{ (filtrate)}$$


$$H^{+}$$

Scheme S3. Isolation of chiral S2

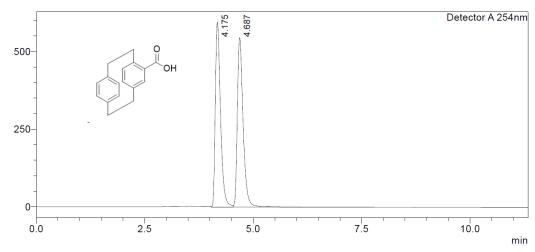
A mixture of racemic **S2** (1.0 g, 4.0 mmol) and (-)-(S)- α -(p-nitrophenyl)ethylamine (0.6 mL, 4.3 mmol) in CHCl₃ (35 mL) was stirred at room temperature for 1 h, then at 70 °C (oil bath) for 6 h until the white solid precipitated from the solution. To complete the precipitation the reaction mixture was kept overnight at -5 °C. The filtration and drying of the precipitate formed gave (S_P , S)-**S5** as white solid. The salt was dissolved in MeOH and hydrolyzed with 2 N HCl. The precipitated solid was washed twice with H₂O (2 × 50 mL) to yield 0.315 g (35%) of (S_P)-(+)-4-carbonyl[2.2]paracyclophanacid (S_P -**S2**).

The CHCl₃ filtrates, containing partially enriched (R_P,S) -S5, after evaporation and hydrolysis gave a partially resolved (R_P) -S2. This compound was mixed with (+)-(R)- α -(p-nitrophenyl)ethylamine in CHCl₃ (30 mL). Single crystallization of the resultant diastereomeric mixture from EtOH afforded of diastereomeric salt (R_P, R) -S5. Hydrolysis of (R_P, R) -S5 gave 0.403 g (40%) of (R_P) -S2.

(S_P) -(+)-4-carbonyl[2.2]paracyclophana $(S_P$ -S2)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 (s, 1H), 6.71 (dd, J = 7.7, 1.9 Hz, 1H), 6.59 (dd, J = 7.6, 3.8 Hz, 3H), 6.51 (t, J = 6.6 Hz, 2H), 4.20 (ddd, J = 11.6, 9.1, 2.2 Hz, 1H), 3.25 – 3.12 (m, 4H), 3.09 – 2.98 (m, 2H), 2.90 (ddd, J = 13.1, 10.0, 7.2 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 172.0, 143.9, 140.22, 140.2, 139.6, 137.5, 136.5, 136.3, 133.3, 132.9, 132.5, 131.9, 129.7, 36.4, 35.4, 35.2, 35.1.

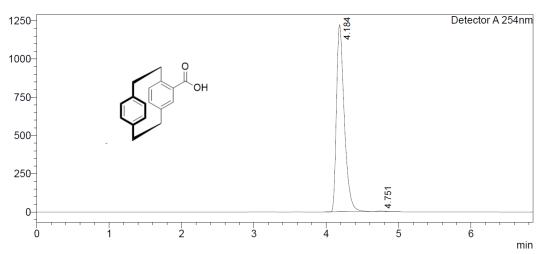

HRMS (ESI) calculated for $([C_{17}H_{16}O_2]+Na)^+: 275.1048$, found: 275.1044.

(Sp-S2): Enantiomeric excess was determined by HPLC with a Daicel Chiralpak AD-H, n-hexane/isopropanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 4.2 min, t (minor) = 4.7 min.

Copies of HPLC data:

<Chromatogram>

 mV


<Peak Table>

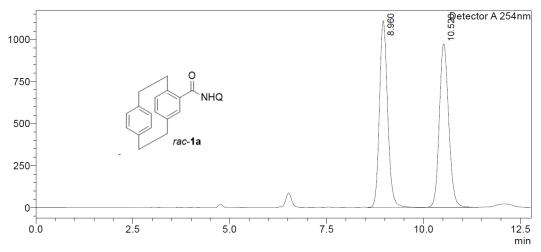
Detector A 254nm

Detector A 254nm							
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	4.175	4980769	595482	49.640			49.640
2	4.687	5052932	544852	50.360		V	50.360
Total		10033702	1140333				100.000

<Chromatogram>

mV

<Peak Table>

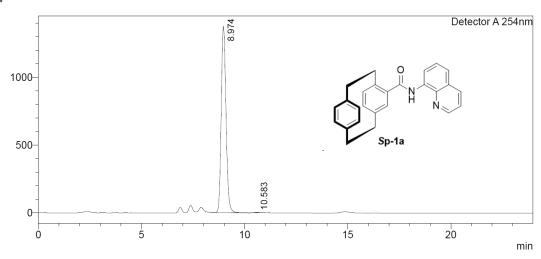

Detector A 254nm Peak# Ret. Time Area Height Conc. Unit Mark Area% 4.184 4.751 1223449 9183639 99.679 99.679 Μ 2 0.321 3558 0.321 29563 Total 9213202 1227008 100.000

(S_p)-1a was synthesized as rac-1a using enantiopure (S_p)-S2. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IA, n-hexane/isopropanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 9.0 min, t (minor) = 10.5 min.

Copies of HPLC data of (S_p) -1a:

<Chromatogram>

mV


<Peak Table>

Detector A 254nm

Detector A 204mm						
	Peak# Ret. Time		Area	Height	Conc.	Area%
	1	8.960	16374590	1109704	49.919	49.919
	2	10.520	16427888	972250	50.081	50.081
	Total		32802478	2081953		100.000

<Chromatogram>

m\/

<Peak Table>

Detector A 254nm

Detector A 254mm						
	Peak# Ret. Time		Area	Height	Conc.	Area%
	1	8.974	21964171	1374145	99.719	99.719
	2	10.583	61922	3710	0.281	0.281
	Total		22026093	1377855		100.000

3.3 Optimization of Reaction Conditions

Table S4. Optimization of ortho-Allylation Reaction Conditions^a

entry	solvent	reagent	silver salt	additives (X equiv.)	yields (%) ^b
1	toluene	2a	Ag ₂ O		53
2	toluene	2a	Ag ₂ CO ₃		31
3	toluene	2a	AgOAc		28
4	toluene	2a	AgF		13
5	toluene	2a	Ag ₂ O	Ac-Gly-OH (30 mol%)	55
6	toluene	2a	Ag ₂ O	(±)-Ac-Tle-OH (30 mol%)	57
7	toluene	2a	Ag ₂ O	(±)-Boc-Tle-OH (30 mol%)	53
8	toluene	2a	Ag ₂ O	(±)-Cbz-Phe-OH (30 mol%)	49
9	toluene	2a	Ag ₂ O	(±)-pGlu-OH (30 mol%)	74
10	DCE	2a	Ag ₂ O	(±)-pGlu-OH (30 mol%)	63
11	PhCl	2a	Ag ₂ O	(±)-pGlu-OH (30 mol%)	67
12°	toluene	3a	Ag ₂ O	(±)-pGlu-OH (30 mol%)	trace
13°	toluene	3a	Ag ₂ O	Na ₂ CO ₃ (3.0 equiv.)	5
14^c	toluene	3a	Ag ₃ PO ₄	Na ₂ CO ₃ (3.0 equiv.)	10
15°	toluene	3a	AgNO ₃	Na ₂ CO ₃ (3.0 equiv.)	trace
16^c	toluene	3a	Ag ₂ SO ₄	Na ₂ CO ₃ (3.0 equiv.)	28
17 ^c	DCE	3a	Ag ₂ SO ₄	Na ₂ CO ₃ (3.0 equiv.)	44
18 ^{c,d}	DCE	3a	Ag ₂ SO ₄	Na ₂ CO ₃ (3.0 equiv.)	55

^aReactions were performed with *rac*-1a (0.1 mmol), 2a or 3a (0.3 mmol), Co(OAc)₂·4H₂O (20 mol%), silver salt (2.0 equiv.), PivOH (1 equiv.) and additives in 1.0 mL toluene at 80 °C for 36 h under N₂. ^bIsolated yield. ^cReacted at 100 °C for 24 h. ^dAg₂SO₄ (1.0 equiv) and PivOH (50 mol%) were used.

Table S5. Optimization of ortho-Acyloxylation Reaction Conditions

entry	variation from standard conditions	yields (%) ^b
1		53
2	without Na ₂ CO ₃	31
3	Ag ₂ SO ₄ instead of Ag ₂ CO ₃	28
4	Co(acac) ₂ instead of Co(OAc)· ₄ H ₂ O	13
5	rac-1b instead of rac-1a	N.R.
6	rac-1c instead of rac-1a	N.R.

Conditions: Reactions were performed with *rac-***1a** (0.1 mmol), **4a** (0.2 mmol), Co(OAc)₂·4H₂O (20 mol%), Ag₂CO₃ (2 equiv.), Na₂CO₃ (2 equiv.), in 1 mL DCE at 80 °C for 24 h under N₂. ^bYields of isolated products.

3.4 Co(II)-Catalyzed ortho-C-H Allylation of [2,2]paracyclophane

General Procedure I for Cobalt-Catalyzed the *ortho*-Allylation of *rac-*1 with mono-substituted alkenes

To a 10-mL schlenk tube containing $Co(OAc)_2 \cdot 4H_2O$ (20 mol%), amide rac-1a (37.8 mg, 1.0 equiv, 0.1 mmol), (±)-pGlu-OH (30 mol%) and Ag_2O (2.0 equiv.) was added toluene (1.0 mL) via syringe. After that, alkenes 2 (3.0 equiv.) and pivalic acid (1.0 equiv.) were added via syringe sequentially. After that, a screw cap was used to cover the tube. Then, the vial was evacuated and filled with N_2 five times, and the reaction mixture was allowed to stir at 80 °C (aluminum heat transfer block) for 36 h. After cooling to ambient temperature, the reaction mixture was diluted with CH_2Cl_2 and EtOAc, filtered through Celite and the filtrate was concentrated. The crude residue was purified through preparative TLC using hexane/EtOAc (10:1–6:1, v/v) as the eluent to afford the racemic product 4.

General Procedure II for Cobalt-Catalyzed the ortho-Allylation of rac-1 with α-methyl acylates

To a 10-mL schlenk tube containing Co(OAc)₂·4H₂O (20 mol%), amide *rac*-1a (37.8 mg, 1.0 equiv, 0.1 mmol), Na₂CO₃ (3 equiv.) and Ag₂SO₄ (1.0 equiv.) was added DCE (1.0 mL) via syringe. After that, alkenes 3 (3.0 equiv) and pivalic acid (0.5 equiv.) were added via syringe sequentially. After that, a screw cap was used to cover the tube. Then, the vial was evacuated and filled with N₂ five times, and the reaction mixture was allowed to stir at 100 °C (aluminum heat transfer block) for 24 h. After cooling to ambient temperature, the reaction mixture was diluted with CH₂Cl₂ and EA, filtered through Celite and the filtrate was concentrated. The crude residue was purified through preparative TLC using hexane/EtOAc (10:1, v/v) as the eluent to afford the racemic product 5.

rac-(E)-4-carbonyl-5-(oct-2-en-1-yl)[2,2]paracyclophane-N-(quinolin-8-yl)amide (4a)

The title compound **4a** was prepared under the optimized conditions (General Procedure I) and purified by preparative TLC (petroleum ether: ethyl acetate =10: 1). **4a** was obtained as a yellow oil (36.1 mg, 74%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.58 (s, 1H), 9.01 (dd, J = 7.6, 1.4 Hz, 1H), 8.65 (dd, J = 4.2, 1.7 Hz, 1H), 8.14 (dd, J = 8.3, 1.7 Hz, 1H), 7.62 (t, J = 8.0 Hz, 1H), 7.54 (dd, J = 8.3, 1.4 Hz, 1H), 7.39 (dd, J = 8.3, 4.2 Hz, 1H), 7.21 (dd, J = 8.3, 1.5 Hz, 1H), 6.66 (dd, J = 8.5, 1.5 Hz, 1H), 6.61 (s, 2H), 6.57 (d, J = 7.7 Hz, 1H), 6.51 (d, J = 7.7 Hz, 1H), 5.44 – 5.35 (m, 1H), 5.29 – 5.19 (m, 1H), 3.42 – 3.33 (m, 2H),

3.32 - 3.17 (m, 3H), 3.16 - 3.04 (m, 2H), 3.03 - 2.93 (m, 2H), 2.88 (ddd, J = 13.5, 10.6, 5.8 Hz, 1H), 1.74 - 1.62 (m, 2H), 1.07 - 0.95 (m, 6H), 0.72 (t, J = 6.9 Hz, 3H).

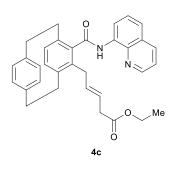
¹³C NMR (100 MHz, Chloroform-*d*) δ 168.8, 148.1, 139.5, 139.4, 139.3, 137.9, 136.4, 136.2, 135.9, 135.7, 134.8, 133.3, 132.7, 132.3, 132.0, 131.6, 129.5, 128.1, 127.9, 127.5, 121.7, 121.6, 116.4, 35.3, 34.4, 34.4, 33.5, 33.1, 32.5, 31.5, 28.8, 22.5, 14.1.

HRMS (ESI) calculated for $([C_{34}H_{36}N_2O]+H^+)$: 489.2906, found: 489.2899

rac-(E)-4-carbonyl-5-(3-(trimethylsilyl)allyl)[2,2]paracyclophan-N-(quinolin-8-yl)amide (4b)

The title compound **4b** was prepared under the optimized conditions (General Procedure I) and purified by preparative TLC (petroleum ether: ethyl acetate =10: 1). **4b** was obtained as a yellow oil (37.7 mg, 77%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.59 (s, 1H), 9.01 (dd, J = 7.6, 1.4 Hz, 1H), 8.66 (dd, J = 4.3, 1.7 Hz, 1H), 8.14 (dd, J = 8.3, 1.7 Hz, 1H), 7.62 (t, J = 7.9 Hz, 1H), 7.54 (dd, J = 8.3, 1.4 Hz, 1H), 7.39 (dd, J = 8.3, 4.2 Hz, 1H), 7.22 (d, J = 7.9 Hz, 1H), 6.68 (d, J = 7.9 Hz, 1H), 6.63 (s, 2H), 6.61 – 6.51 (m, 2H), 5.99 (dt, J = 18.4, 5.9 Hz, 1H), 5.53 (dt, J = 18.5, 1.7 Hz, 1H), 3.56 (ddd, J = 15.8, 6.3, 1.6 Hz, 1H), 3.40 – 3.31 (m,


2H), 3.30 - 3.20 (m, 2H), 3.17 - 3.05 (m, 2H), 3.04 - 2.94 (m, 2H), 2.88 (ddd, J = 13.5, 10.6, 5.8 Hz, 1H), -0.25 (s, 9H).

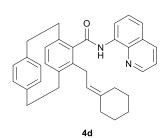
¹³C NMR (100 MHz, Chloroform-*d*) δ 168.7, 148.3, 144.2, 139.6, 139.5, 139.4, 138.6, 137.8, 136.3, 136.0, 135.9, 135.5, 134.8, 133.3, 132.8, 132.3, 132.0, 130.9, 129.5, 128.1, 127.4, 121.7, 121.6, 116.5, 38., 35.32, 34.3, 33.5, 33.2, -1.3.

HRMS (**ESI**) calculated for ([C₃₂H34N2OSi]+H⁺): 491.2512, found: 491.2511

rac-Ethyl (E)-5-(4-(N-quinolin-8-ylcarbamoyl))[2,2]paracyclophan-pent-3-enoate (4c)

The title compound **4c** was prepared under the optimized conditions (General Procedure I) and purified by preparative TLC (petroleum ether: ethyl acetate =10: 1). **4c** was obtained as a yellow oil (38.8 mg, 77%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.59 (s, 1H), 8.99 (dd, J = 7.6, 1.4 Hz, 1H), 8.66 (dd, J = 4.2, 1.7 Hz, 1H), 8.14 (dd, J = 8.3, 1.7 Hz, 1H), 7.61 (t, J = 7.9 Hz, 1H), 7.53 (dd, J = 8.3, 1.4 Hz, 1H), 7.39 (dd, J = 8.3, 4.2 Hz, 1H), 7.19 (dd, J = 7.9, 1.4 Hz, 1H), 6.66 – 6.62 (m, 1H), 6.61 (t, J = 1.1 Hz, 2H), 6.57 (d, J = 7.8 Hz, 1H), 6.51 (d, J = 7.7 Hz, 1H), 5.57 (dtt, J = 15.3, 6.3, 1.3 Hz, 1H), 5.40 (dtt, J = 15.3, 6.9, 1.5 Hz, 1H), 3.96 (qd, J = 7.1, 0.9 Hz, 2H), 3.46 – 3.32 (m, 2H), 3.31 –


 $3.19 \text{ (m, 3H)}, 3.15 - 3.03 \text{ (m, 2H)}, 3.02 - 2.93 \text{ (m, 2H)}, 2.92 - 2.76 \text{ (m, 2H)}, 2.68 \text{ (ddd, } J = 16.4, 6.8, 1.4 Hz, 1H)}, 1.12 \text{ (t, } J = 7.2 \text{ Hz, 3H)}.$

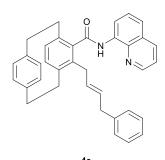
¹³C NMR (100 MHz, Chloroform-*d*) δ 171.8, 168.6, 148.1, 139.5, 139.4, 139.4, 138.5, 138.0, 136.3, 136.1, 135.7, 135.4, 134.7, 133.3, 132.9, 132.5, 132.2, 132.1, 129.5, 128.1, 127.5, 122.8, 121.8, 121.6, 116.5, 60.5, 37.9, 35.3, 34.3, 33.5, 33.1, 14.2.

HRMS (ESI) calculated for ($[C_{33}H_{32}N_2O_3]+Na^+$): 527.2311, found: 527.2306

rac-(E)-4-carbonyl-5-(2-cyclohexylideneethyl)[2,2]paracyclophan-N-(quinolin-8-yl)amide (4d)

The title compound **4d** was prepared under the optimized conditions (General Procedure I) and purified by preparative TLC (petroleum ether: ethyl acetate =10: 1). **4d** was obtained as a yellow oil (23.3 mg, 48%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.61 (s, 1H), 8.67 (dd, J = 4.2, 1.7 Hz, 1H), 8.14 (dd, J = 8.3, 1.7 Hz, 1H), 7.61 (t, J = 7.9 Hz, 1H), 7.53 (dd, J = 8.3, 1.4 Hz, 1H), 7.40 (dd, J = 8.2, 4.2 Hz, 1H), 7.22 (dd, J = 8.1, 1.4 Hz, 1H), 6.75 – 6.68 (m, 1H), 6.62 (dt, J = 1.7, 0.8 Hz, 2H), 6.57 (d, J = 7.7 Hz, 1H), 6.50 (d, J = 7.7 Hz, 1H), 5.09 – 4.96 (m, 1H), 3.47 – 3.31 (m, 2H), 3.30 – 3.11 (m, 4H), 3.08 – 3.01 (m, 1H), 3.01 – 2.95 (m,


2H), 2.88 (ddd, J = 13.4, 10.6, 5.9 Hz, 1H), 2.10 (ddd, J = 12.4, 7.6, 4.1 Hz, 1H), 1.90 – 1.80 (m, 2H), 1.69 (ddd, J = 12.8, 7.8, 4.1 Hz, 1H), 1.37 (qd, J = 8.7, 8.2, 4.0 Hz, 1H), 1.30 – 1.22 (m, 3H), 1.14 (qp, J = 10.7, 3.6, 2.9 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 168.9, 148.1, 139.5, 139.4, 139.4, 139.2, 138.6, 137.8, 136.3, 136.0, 135.8, 134.9, 133.3, 132.5, 132.3, 132.0, 129.5, 128.0, 127.5, 121.7, 121.6, 119.8, 116.4, 36.9, 35.4, 34.4, 33.5, 33.2, 29.5, 28.8, 28.2, 27.4, 26.8.

HRMS (**ESI**) calculated for ($[C_{34}H_{34}N_2O]+H^+$): 487.2749, found: 487.2746

rac-(E)-4-carbonyl-5-(4-phenylbut-2-en-1-yl)[2,2]paracyclophan-N-(quinolin-8-yl)amide (4e)

The title compound **4e** was prepared under the optimized conditions (General Procedure I) and purified by preparative TLC (petroleum ether: ethyl acetate =10: 1). **4e** was obtained as a yellow oil (36.1 mg, 71%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.64 (s, 1H), 9.02 (dd, J = 7.6, 1.4 Hz, 1H), 8.65 (dd, J = 4.2, 1.7 Hz, 1H), 8.17 (dd, J = 8.3, 1.7 Hz, 1H), 7.63 (t, J = 7.9 Hz, 1H), 7.56 (dd, J = 8.3, 1.4 Hz, 1H), 7.41 (dd, J = 8.3, 4.2 Hz, 1H), 7.22 (dd, J = 8.0, 1.5 Hz, 1H), 7.12 – 7.02 (m, 3H), 6.90 (dd, J = 7.4, 2.1 Hz, 2H), 6.67 (dd, J = 8.2, 1.5 Hz, 1H), 6.63 (s, 3H), 6.59 (d, J = 7.8 Hz, 2H), 6.53 (d, J = 7.8 Hz, 1H), 5.53 (dt, J = 15.3, 5.8 Hz, 1H), 5.44 (dt, J = 15.2, 6.3 Hz, 1H), 3.50 – 3.42 (m, 1H), 3.38 (ddd, J = 13.0,

10.0, 2.5 Hz, 1H), 3.33 - 3.21 (m, 3H), 3.19 - 3.05 (m, 3H), 3.01 (dd, J = 7.6, 5.1 Hz, 3H), 2.89 (ddd, J = 13.5, 10.7, 5.8 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 168.7, 148.2, 140.5, 139.5, 139.4, 139.3, 138.5, 138.0, 136.3, 136.0, 135.7, 134.8, 133.3, 132.8, 132.3, 132.0, 129.9, 129.8, 129.5, 128.4, 128.2, 128.1, 127.5, 125.8, 121.7, 121.7, 116.5, 38.8, 35.3, 34.3, 34.1, 33.5, 33.2.

HRMS (ESI) calculated for ($[C_{36}H_{32}N_2O]+H^+$): 509.2593, found: 509.2587

rac-(E)-4-carbonyl-5-(3-cyclohexylallyl)[2,2]paracyclophan-N-(quinolin-8-yl)amide (4f)

The title compound **4f** was prepared under the optimized conditions (General Procedure I) and purified by preparative TLC (petroleum ether: ethyl acetate =10: 1). **4f** was obtained as a yellow oil (35.1 mg, 70%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.58 (s, 1H), 9.02 (dd, J = 7.7, 1.4 Hz, 1H), 8.65 (dd, J = 4.2, 1.7 Hz, 1H), 8.14 (dd, J = 8.2, 1.7 Hz, 1H), 7.62 (t, J = 8.0 Hz, 1H), 7.54 (dd, J = 8.3, 1.4 Hz, 1H), 7.39 (dd, J = 8.3, 4.2 Hz, 1H), 7.24 – 7.18 (m, 1H), 6.69 – 6.66 (m, 1H), 6.62 (s, 2H), 6.57 (d, J = 7.8 Hz, 1H), 6.51 (d, J = 7.7 Hz, 1H), 5.39 – 5.27 (m, 1H), 5.23 (dd, J = 15.4, 6.1 Hz, 1H), 3.43 – 3.32 (m, 2H), 3.31 – 3.17 (m, 3H), 3.17 – 3.05 (m, 2H), 3.04 – 2.95 (m, 2H), 2.87 (ddd, J = 13.4, 10.6, 5.8 Hz,


1H), 1.56 (ddt, J = 10.1, 6.0, 3.8 Hz, 1H), 1.51 - 1.36 (m, 4H), 1.32 - 1.29 (m, 1H), 1.07 - 0.85 (m, 3H), 0.82 - 0.58 (m, 2H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 168.9, 148.1, 139.5, 139.5, 139.4, 138.6, 137.9, 137.32, 136.5, 136.3, 136.0, 135.8, 134.9, 133.3, 132.7, 132.3, 132.1, 129.6, 128.1, 127.5, 125.5, 121.7, 121.6, 116.53, 40.3, 35.3, 34.4, 34.4, 33.5, 33.2, 32.7, 32.6, 26.2, 26.1, 26.0.

HRMS (**ESI**) calculated for ($[C_{35}H_{36}N_2O]+H^+$): 501.2906, found: 501.2901

rac-(E)-4-carbonyl-5-(8-bromooct-2-en-1-yl)[2,2]paracyclophan-N-(quinolin-8-yl)amide (4g)

The title compound **4g** was prepared under the optimized conditions (General Procedure I) and purified by preparative TLC (petroleum ether: ethyl acetate =10: 1). **4g** was obtained as a yellow oil (28.3 mg, 50%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.58 (s, 1H), 9.01 (dd, J = 7.6, 1.4 Hz, 1H), 8.66 (dd, J = 4.2, 1.7 Hz, 1H), 8.16 (dd, J = 8.2, 1.7 Hz, 1H), 7.62 (t, J = 8.0 Hz, 1H), 7.55 (dd, J = 8.3, 1.4 Hz, 1H), 7.41 (dd, J = 8.3, 4.2 Hz, 1H), 7.20 (dd, J = 8.0, 1.4 Hz, 1H), 6.65 (dd, J = 8.0, 1.4 Hz, 1H), 6.61 (t, J = 1.1 Hz, 2H), 6.57 (d, J = 7.8 Hz, 1H), 6.51 (d, J = 7.8 Hz, 1H), 5.39 (dddt, J = 15.3, 6.9, 5.5, 1.4 Hz, 1H),

5.22 (dtt, J = 14.9, 6.6, 1.5 Hz, 1H), 3.44 - 3.33 (m, 2H), 3.30 - 3.10 (m, 6H), 3.09 - 3.03 (m, 1H), 3.02 - 2.95 (m, 2H), 2.88 (ddd, J = 13.5, 10.7, 5.8 Hz, 1H), 1.76 - 1.64 (m, 2H), 1.54 (pd, J = 7.0, 4.4 Hz, 2H), 1.16 - 1.07 (m, 2H), 1.05 - 0.93 (m, 2H).

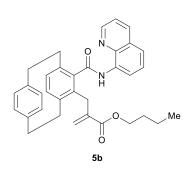
¹³C NMR (101 MHz, Chloroform-*d*) δ 168.9, 148.2, 139.6, 139.4, 139.3, 138.6, 138.0, 136.4, 136.4, 136.0, 135.8, 134.8, 133.4, 132.8, 132.3, 132.1, 131.0, 129.6, 128.5, 128.1, 127.6, 121.8, 121.7, 116.52, 35.3, 34.4, 34.2, 33.9, 33.5, 33.2, 32.6, 32.2, 28.2, 27.7.

HRMS (ESI) calculated for ($[C_{34}H_{35}BrN_2O]+H^+$): 567.2011, found: 567.2006

rac-Ethyl (E)-2-(4-(N-quinolin-8-ylcarbamoyl)[2,2]paracyclophan-5-yl)methyl)acrylate (5a)

The title compound **5a** was prepared under the optimized conditions (General Procedure **II**) and purified by preparative TLC (petroleum ether: ethyl acetate =5: 1). **5a** was obtained as a yellow oil (27.0 mg, 68%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.55 (s, 1H), 8.95 (dd, J = 7.5, 1.3 Hz, 1H), 8.63 (dd, J = 4.3, 1.7 Hz, 1H), 8.12 (dd, J = 8.2, 1.7 Hz, 1H), 7.59 (t, J = 7.9 Hz, 1H), 7.52 (dd, J = 8.4, 1.3 Hz, 1H), 7.38 (dd, J = 8.3, 4.2 Hz, 1H), 7.22 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 7.9 Hz, 1H), 6.64 – 6.58 (m, 3H), 6.56 (d, J = 7.7 Hz, 1H), 6.10 (s, 1H), 5.26 (s, 1H), 3.90 (q, J = 7.1 Hz, 2H), 3.77 (d, J = 17.4 Hz, 1H), 3.51 (d, J = 17.4, 1H), 3.35 – 3.17 (m, 3H), 3.16 – 3.05 (m, 2H), 3.05 – 2.95 (m, 2H), 2.86 (ddd, J =


13.3, 10.6, 5.7 Hz, 1H), 1.00 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 168.4, 166.8, 148.1, 140.0, 139.6, 139.6, 139.4, 138.5, 138.4, 136.2, 136.1, 136.0, 134.7, 134.3, 133.4, 133.4, 132.1, 132.1, 129.5, 128.0, 127.4, 126.2, 121.7, 121.6, 116.5, 60.6, 35.3, 34.3, 33.6, 33.3, 32.5, 13.9.

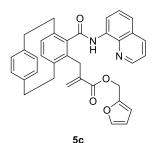
HRMS (**ESI**) calculated for ($[C_{32}H_{30}N_2O_3]+Na^+$): 513.2154, found: 513.2151

rac-Butyl (E)-2-(4-(N-quinolin-8-ylcarbamoyl)[2,2]paracyclophan-5-yl)methyl)acrylate (5b)

The title compound **5b** was prepared under the optimized conditions (General Procedure II) and purified by preparative TLC (petroleum ether: ethyl acetate =5: 1). **5b** was obtained as a yellow oil (30.0 mg, 58%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.55 (s, 1H), 8.95 (dd, J = 7.7, 1.4 Hz, 1H), 8.63 (dd, J = 4.3, 1.7 Hz, 1H), 8.12 (dd, J = 8.3, 1.7 Hz, 1H), 7.59 (t, J = 7.9 Hz, 1H), 7.52 (dd, J = 8.3, 1.3 Hz, 1H), 7.38 (dd, J = 8.3, 4.2 Hz, 1H), 7.22 (d, J = 7.9 Hz, 1H), 6.73 – 6.68 (m, 1H), 6.64 – 6.59 (m, 3H), 6.56 (d, J = 7.7 Hz, 1H), 6.09 (d, J = 1.7 Hz, 1H), 5.25 (d, J = 2.0 Hz, 1H), 3.85 (t, J = 6.7 Hz, 2H), 3.75 (d, J = 17.6, 1H), 3.51 (d, J = 17.5, 1H), 3.35 – 2.79 (m, 8H), 1.40 – 1.30

(m, 2H), 1.15 (h, J = 7.4 Hz, 2H), 0.80 (t, J = 7.4 Hz, 3H).


¹³C NMR (101 MHz, Chloroform-*d*) δ 168.3, 166.8, 148.1, 140.0, 139.6, 139.6, 139.4, 138.4, 136.2, 136.0, 134.7, 134.3, 133.4, 133.4, 132.1, 132.1, 129.5, 127.4, 126.2, 121.7, 121.6, 116.5, 64.5, 35.3, 34.3, 33.6, 33.2, 32.5, 30.4, 19.1, 13.7.

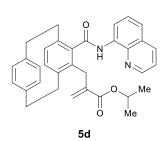
HRMS (ESI) calculated for ($[C_{34}H_{34}N_2O_3]+Na^+$): 541.2467, found: 541.2462

$\underline{rac}\text{-}\text{Furan-2-ylmethyl} \qquad \qquad \underline{(E)\text{-}2\text{-}(4\text{-}(N\text{-}\text{quinolin-8-ylcarbamoyl})[2,2]\text{paracyclophan-5-}}$

yl)methyl)acrylate (5c)

The title compound **5c** was prepared under the optimized conditions (General Procedure II) and purified by preparative TLC (petroleum ether: ethyl acetate =5: 1). **5c** was obtained as a yellow oil (27.6 mg, 51%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.56 (s, 1H), 8.94 (dd, J = 7.6, 1.4 Hz, 1H), 8.62 (dd, J = 4.2, 1.6 Hz, 1H), 8.13 (dd, J = 8.3, 1.7 Hz, 1H), 7.59 (t, J = 7.9 Hz, 1H), 7.53 (dd, J = 8.3, 1.4 Hz, 1H), 7.38 (dd, J = 8.3, 4.2 Hz, 1H), 7.33 (d, J = 1.8 Hz, 1H), 7.24 – 7.15 (m, 1H), 6.73 – 6.67 (m, 1H), 6.62 (s, 2H), 6.57 (q, J = 7.8 Hz, 2H), 6.28 (dd, J = 3.3, 1.9 Hz, 1H), 6.22 (d, J = 3.2 Hz, 1H), 6.11 (d, J = 1.6 Hz, 1H), 5.30 (d, J = 2.0 Hz, 1H), 4.91


-4.78 (m, 2H), 3.78 (d, J = 17.3, 1H), 3.52 (d, J = 17.3, 1H), 3.34 -3.25 (m, 2H), 3.24 -3.16 (m, 2H), 3.13 -3.03 (m, 1H), 3.02 -2.94 (m, 2H), 2.82 (ddd, J = 13.3, 10.5, 5.7 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 168.2, 166.3, 149.3, 148.1, 143.0, 140.0, 139.5, 139.3, 138.9, 138.4, 138.2, 136.1, 135.9, 134.6, 134.1, 133.3, 133.2, 132.0, 132.0, 129.4, 127.9, 127.3, 126.9, 121.7, 121.5, 116.5, 110.4, 110.4, 58.2, 35.2, 34.2, 33.5, 33.1, 32.3.

HRMS (**ESI**) calculated for ($[C_{35}H_{30}N_2O_4]+Na^+$): 565.2103, found: 565.2096

rac-iso-Propyl (E)-2-(4-(N-quinolin-8-ylcarbamoyl)[2,2]paracyclophan-5-yl)methyl)acrylate (5d)

The title compound **5d** was prepared under the optimized conditions (General Procedure **II**) and purified by preparative TLC (petroleum ether: ethyl acetate =10: 1). **5d** was obtained as a yellow oil (21.7 mg, 43%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.55 (s, 1H), 8.95 (dd, J = 7.6, 1.3 Hz, 1H), 8.63 (dd, J = 4.2, 1.7 Hz, 1H), 8.12 (dd, J = 8.2, 1.7 Hz, 1H), 7.59 (t, J = 7.9 Hz, 1H), 7.51 (dd, J = 8.3, 1.4 Hz, 1H), 7.38 (dd, J = 8.2, 4.2 Hz, 1H), 7.23 – 7.18 (m, 1H), 6.72 – 6.68 (m, 1H), 6.64 – 6.52 (m, 4H), 6.07 (d, J = 1.7 Hz, 1H), 5.23 (d, J = 1.8 Hz, 1H), 4.77 (p, J = 6.3 Hz, 1H), 3.77 – 3.69 (m, 1H), 3.49 (dt, J = 17.4, 2.0 Hz, 1H), 3.35 – 3.17

(m, 3H), 3.16 - 3.04 (m, 2H), 3.03 - 2.94 (m, 2H), 2.86 (ddd, J = 13.3, 10.6, 5.7 Hz, 1H), 0.96 (dd, J = 6.3, 1.7 Hz, 6H).

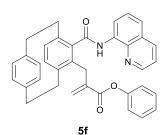
¹³C NMR (100 MHz, Chloroform-*d*) δ 168.4, 166.3, 148.1, 140.1, 139.9, 139.6, 139.4, 138.4, 136.2, 136.0, 134.7, 134.4, 133.4, 133.3, 132.1, 132.1, 129.5, 128.0, 127.4, 126.0, 121.7, 121.6, 116.5, 68.0, 35.3, 34.3, 33.6, 33.3, 32.5, 21.6, 21.6.

HRMS (ESI) calculated for ([C33H32N2O3]+Na⁺): 527.2311, found: 527.2308

rac-tert-Butyl (E)-2-(4-(N-quinolin-8-ylcarbamoyl)[2,2]paracyclophan-5-yl)methyl)acrylate (5e)

The title compound **5e** was prepared under the optimized conditions (General Procedure **II**) and purified by preparative TLC (petroleum ether: ethyl acetate =10: 1). **5e** was obtained as a yellow oil (26.0 mg, 50%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.53 (s, 1H), 8.96 (d, J = 7.5 Hz, 1H), 8.63 (dd, J = 4.2, 1.7 Hz, 1H), 8.12 (dd, J = 8.3, 1.7 Hz, 1H), 7.59 (t, J = 8.0 Hz, 1H), 7.51 (d, J = 8.2 Hz, 1H), 7.38 (dd, J = 8.3, 4.2 Hz, 1H), 7.24 – 7.19 (m, 1H), 6.72 – 6.68 (m, 1H), 6.61 (d, J = 8.1 Hz, 3H), 6.55 (d, J = 7.7 Hz, 1H), 6.00 (d, J = 1.9 Hz, 1H), 5.16 (d, J = 2.1 Hz, 1H), 3.68 (d, J = 17.6 Hz, 1H), 3.45 (d, J = 17.6, 2.1 Hz, 1H), 3.35 – 2.79 (m,


8H), 1.15 (s, 9H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 168.3, 166.1, 148.1, 141.0, 140.0, 139.7, 139.4, 138.6, 138.5, 136.2, 136.0, 134.7, 134.6, 133.4, 133.3, 132.1, 129.4, 128.0, 127.4, 125.3, 121.6, 121.6, 116.4, 80.5, 35.3, 34.3, 33.6, 33.2, 32.5, 27.8.

HRMS (ESI) calculated for $([C_{34}H_{34}N_2O_3]+Na^+)$: 541.2467, found: 541.2461

<u>rac-Phenyl (E)-2-(4-(N-quinolin-8-ylcarbamoyl)[2,2]paracyclophan-5-yl)methyl)acrylate (5f)</u>

The title compound **5f** was prepared under the optimized conditions (General Procedure **II**) and purified by preparative TLC (petroleum ether: ethyl acetate =10: 1). **5f** was obtained as a yellow oil (28.0 mg, 52%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.62 (s, 1H), 8.99 (dd, J = 7.6, 1.4 Hz, 1H), 8.62 (dd, J = 4.2, 1.7 Hz, 1H), 8.13 (dd, J = 8.2, 1.7 Hz, 1H), 7.61 (t, J = 7.9 Hz, 1H), 7.54 (dd, J = 8.3, 1.4 Hz, 1H), 7.37 (dd, J = 8.3, 4.2 Hz, 1H), 7.26 – 7.20 (m, 3H), 7.13 (t, J = 7.4 Hz, 1H), 6.73 (d, J = 7.9 Hz, 1H), 6.69 (dd, J = 7.7, 1.5 Hz, 2H), 6.66 – 6.62 (m, 3H), 6.60 (d, J = 7.7 Hz, 1H), 6.33 (s, 1H), 5.49 (s, 1H), 3.91 (d, J = 17.4 Hz, 1H),

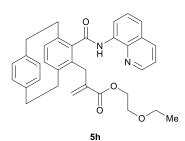
3.64 (d, J = 17.4, 1H), 3.37 - 3.24 (m, 3H), 3.21 - 3.06 (m, 2H), 3.05 - 2.98 (m, 2H), 2.91 (ddd, J = 13.5, 10.6, 5.8 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 168.3, 165.2, 150.7, 148.2, 140.1, 139.6, 139.4, 138.9, 138.5, 136.2, 136.1, 134.6, 134.0, 133.5, 133.4, 132.1, 129.5, 129.2, 128.1, 128.1, 127.5, 125.6, 121.8, 121.7, 121.4, 116.6, 35.3, 34.4, 33.7, 33.3, 32.5.

rac-Benzyl (E)-2-(4-(N-quinolin-8-ylcarbamoyl)[2,2]paracyclophan-5-yl)methyl)acrylate (5g)

The title compound **5g** was prepared under the optimized conditions (General Procedure **II**) and purified by preparative TLC (petroleum ether: ethyl acetate =5:1). **5g** was obtained as a yellow oil (24.8 mg, 45%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.57 (s, 1H), 8.95 (d, J = 7.5 Hz, 1H), 8.60 (dd, J = 4.2, 1.6 Hz, 1H), 8.12 (dd, J = 8.3, 1.7 Hz, 1H), 7.60 (t, J = 7.9 Hz, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.35 (dd, J = 8.3, 4.2 Hz, 1H), 7.25 – 7.17 (m, 2H), 7.15 – 7.06 (m, 2H), 6.70 (d, J = 7.9 Hz, 1H), 6.66 – 6.52 (m, 4H), 6.14 (s, 1H), 5.31 (s, 1H), 4.97 – 4.86 (m, 2H), 3.81 (d, J = 17.4 Hz, 1H), 3.55 (d, J = 17.4 Hz, 1H), 3.55 – 3.16 (m, 3H), 3.15 –


3.04 (m, 2H), 3.00 (dd, J = 8.2, 5.8 Hz, 2H), 2.83 (ddd, J = 13.3, 10.6, 5.7 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 168.3, 166.6, 148.1, 140.1, 139.6, 139.4, 139.3, 138.5, 138.4, 136.2, 136.1, 134.7, 134.2, 133.4, 133.4, 132.1, 132.1, 129.5, 128.5, 128.0, 127.8, 127.4, 126.8, 121.8, 121.6, 116.6, 66.3, 35.3, 34.3, 33.7, 33.3, 32.5.

HRMS (**ESI**) calculated for ($[C_{37}H_{32}N_2O_3]+Na^+$): 575.2311, found: 575.2305

$\underline{\textit{rac-2-Ethoxyethyl}} \hspace{0.2cm} (E) - 2 - (4 - (N - \text{quinolin-8-ylcarbamoyl})[2,2] \\ \text{paracyclophan-5-yl)} \\ \text{methyl)} \\ \text{acrylate} \\ \text{(5h)}$

The title compound **5h** was prepared under the optimized conditions (General Procedure **II**) and purified by preparative TLC (petroleum ether: ethyl acetate =3:1). **5h** was obtained as a yellow oil (26.7 mg, 50%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.56 (s, 1H), 8.95 (d, J = 7.6 Hz, 1H), 8.64 (dd, J = 4.1, 1.6 Hz, 1H), 8.13 (dd, J = 8.3, 1.7 Hz, 1H), 6.71 (d, J = 7.9 Hz, 1H), 6.65 – 6.52 (m, 4H), 6.13 (s, 1H), 5.29 (s, 1H), 4.01 (t, J = 5.0 Hz, 2H), 3.77 (d, J = 17.5 Hz, 1H), 3.53 (d, J = 17.5 Hz, 1H), 3.44 – 3.36 (m, 4H), 3.34 – 3.18 (m, 3H), 3.16 – 3.05 (m, 2H), 2.99 (dd, J = 8.3, 5.6 Hz, 2H), 2.86 (ddd, J = 13.4,

10.5, 5.7 Hz, 1H), 1.12 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 168.3, 166.7, 148.2, 140.1, 139.6, 139.4, 139.2, 138.3, 136.2, 136.0, 134.7, 134.2, 133.4, 133.4, 132.1, 129.4, 128.0, 127.4, 126.7, 121.7, 121.6, 116.5, 68.1, 66.6, 63.9, 35.3, 34.3, 33.6, 33.2, 32.4, 15.2.

HRMS (ESI) calculated for ($[C_{34}H_{34}N_2O_4]+Na^+$): 557.2416, found: 557.2413

3.5 Co(II)-Catalyzed ortho-C-H Acyloxylation of [2,2]paracyclophane

General Procedure III for Cobalt-Catalyzed the ortho-Acyloxylation of rac-1a

A 10-mL schlenk tube was charged with *rac*-1a (0.1 mmol), carboxylic acids 6 (0.2 mmol), Co(OAc)₂·4H₂O (5 mg, 0.02 mmol), Ag₂CO₃ (55 mg, 0.2 mmol, 2 eq.), Na₂CO₃ (21.2 mg, 0.2 mmol, 2 eq.) and DCE (1.0 mL), the mixture stirred at 100 °C for 24 h. The mixture was then cooled to room temperature, diluted with EtOAc, filtered through a celite pad, and concentrated under vacuum. The crude residue was purified through preparative TLC using hexane/EtOAc(10:1–5:1, v/v) as the eluent to afford the desired acyoxylated products 7.

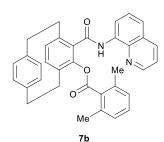
rac-4-(N-quinolin-8-yl carbamoyl)[2,2]paracyclophan-4-yl 2',4',6'-trimethylbenzoate (7a)

The title compound **7a** was prepared under the optimized conditions (General Procedure **III**) and purified by preparative TLC (petroleum ether: ethyl acetate =7:1). **7a** was obtained as a beige foamy solid (48.1 mg, 89%).

¹H NMR (400 MHz, Chloroform-*d*) δ 10.05 (s, 1H), 8.88 (dd, J = 7.6, 1.4 Hz, 1H), 8.65 (dd, J = 4.2, 1.7 Hz, 1H), 8.08 (dd, J = 8.4, 1.7 Hz, 1H), 7.56 (t, J = 7.9 Hz, 1H), 7.50 (dd, J = 8.3, 1.4 Hz, 1H), 7.35 (dd, J = 8.2, 4.2 Hz, 1H), 7.23 (dd, J = 8.0, 1.9 Hz, 1H), 6.93 (dd, J = 8.0, 1.9 Hz, 1H), 6.72 (d, J = 7.9 Hz, 1H), 6.70 – 6.58 (m, 5H), 3.44 – 3.34 (m, 1H), 3.25 (tt, J = 13.2, 3.8 Hz, 2H), 3.19 – 2.96 (m, 4H), 2.91 (ddd, J = 14.0, 10.2,

4.4 Hz, 1H), 2.34 (s, 6H), 2.16 (s, 3H).

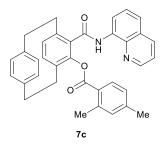
¹³C NMR (100 MHz, Chloroform-*d*) δ 167.9, 164.9, 148.3, 145.8, 140.9, 139.9, 139.6, 139.5, 138.5, 136.8, 136.7, 136.0, 134.7, 133.0, 132.7, 132.6, 132.2, 130.0, 129.9, 129.0, 128.8, 127.9, 127.2, 121.8, 121.6, 116.5, 35.3, 34.5, 33.7, 31.0, 21.1, 20.7.


HRMS (ESI) calculated for $([C_{36}H_{32}N_2O_3]+H^+)$: 541.2491, found: 541.2488

The gram-scale synthesis of **7a** were carried out with 10.0 mol% of *rac-***1**, and the product was isolated 80% yield, 4.32 g)

rac-4-(N-quinolin-8-yl carbamoyl)[2,2]paracyclophan-4-yl 2',6'-dimethylbenzoate (7b)

The title compound **7b** was prepared under the optimized conditions (General Procedure **III**) and purified by preparative TLC (petroleum ether: ethyl acetate =7:1). **7b** was obtained as a beige foamy solid (46.3 mg, 88%).


¹H NMR (400 MHz, Chloroform-*d*) δ 10.05 (s, 1H), 8.89 (d, J = 7.5 Hz, 1H), 8.66 (d, J = 4.2 Hz, 1H), 8.09 (d, J = 8.2 Hz, 1H), 7.57 (t, J = 7.9 Hz, 1H), 7.51 (d, J = 8.2 Hz, 1H), 7.35 (dd, J = 8.4, 4.1 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 6.87 (d, J = 7.6 Hz, 2H), 6.70 (dd, J = 13.6, 7.9 Hz, 2H), 6.63 (dd, J = 11.2, 7.8 Hz, 2H), 3.43 – 2.87 (m, 8H), 2.36 (s, 6H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 168.0, 165.0, 148.4, 145.6, 140.8, 139.6, 139.5, 138.6, 136.8, 136.3, 136.1, 134.7, 133.2, 132.8, 132.6, 132.3, 132.2, 130.1, 130.0, 129.9, 128.0, 127.3, 122.0, 121.7, 116.7, 35.3, 34.6, 33.7, 31.1, 20.6.

HRMS (ESI) calculated for $([C_{35}H_{30}N_2O_3]+Na^+)$: 549.2154, found: 549.2150.

<u>rac-4-(N-quinolin-8-yl carbamoyl)[2,2]paracyclophan-4-yl 2',4'-dimethylbenzoate (7c)</u>

The title compound **7c** was prepared under the optimized conditions (General Procedure **III**) and purified by preparative TLC (petroleum ether: ethyl acetate =7:1). **7c** was obtained as a beige foamy solid (24.7 mg, 47%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.95 (s, 1H), 8.87 (dd, J = 7.6, 1.4 Hz, 1H), 8.69 (dd, J = 4.3, 1.7 Hz, 1H), 8.10 (d, J = 7.9 Hz, 1H), 8.07 (dd, J = 8.3, 1.7 Hz, 1H), 7.52 (t, J = 7.9 Hz, 1H), 7.45 (dd, J = 8.3, 1.5 Hz, 1H), 7.36 (dd, J = 8.2, 4.2 Hz, 1H), 7.25 – 7.22 (m,

1H), 7.05 (dd, J = 7.9, 1.9 Hz, 1H), 6.90 – 6.84 (m, 2H), 6.72 (d, J = 7.9 Hz, 1H), 6.69 (dd, J = 7.9, 1.9 Hz, 1H), 6.65 – 6.58 (m, 2H), 3.51 – 3.43 (m, 1H), 3.32 (td, J = 11.1, 9.9, 3.4 Hz, 1H), 3.15 – 2.97 (m, 5H), 2.92 – 2.80 (m, 1H), 2.43 (s, 3H), 2.25 (s, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 165.1, 164.8, 148.1, 146.2, 143.4, 141.7, 141.4, 139.7, 139.6, 138.5, 136.8, 136.0, 134.7, 133.2, 132.9, 132.8, 132.6, 132.5, 131.9, 131.4, 129.7, 127.9, 127.3, 126.5, 125.0, 121.7, 121.5, 116.4, 35.4, 34.6, 33.7, 31.2, 21.8, 21.5.

HRMS (**ESI**) calculated for ($[C_{35}H_{30}N_2O_3]+H^+$): 527.2335, found: 527.2330.

rac-4-(N-quinolin-8-yl carbamoyl)[2,2]paracyclophan-4-yl 3'-dimethylbenzoate (7d)

The title compound **7d** was prepared under the optimized conditions (General Procedure **III**) and purified by preparative TLC (petroleum ether: ethyl acetate =10:1). **7d** was obtained as a beige foamy solid (37.9 mg, 74%).

¹H NMR (400 MHz, Chloroform-*d*) δ 10.02 (s, 1H), 8.86 (dd, J = 7.5, 1.4 Hz, 1H), 8.73 (dd, J = 4.2, 1.6 Hz, 1H), 8.07 (dd, J = 8.3, 1.7 Hz, 1H), 7.94 (d, J = 7.7 Hz, 1H), 7.85 (s, 1H), 7.52 (t, J = 7.9 Hz, 1H), 7.45 (dd, J = 8.3, 1.4 Hz, 1H), 7.36 (dd, J = 8.3, 4.2 Hz, 1H), 7.25 – 7.20 (m, 2H), 7.18 – 7.10 (m, 2H), 6.76 – 6.69 (m, 2H), 6.68 – 6.62 (m, 2H), 3.54 – 3.46 (m, 1H), 3.34 – 3.27 (m, 1H), 3.15 – 3.08 (m, 3H), 3.08 – 3.02 (m,

2H), 2.91 – 2.81 (m, 1H), 2.18 (s, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 164.7, 164.6, 148.2, 141.5, 139.6, 138.2, 136.9, 136.1, 134.7, 134.3, 133.3, 133.0, 132.9, 132.7, 131.7, 130.5, 129.7, 129.5, 128.2, 127.9, 127.4, 127.3, 121.7, 121.5, 116.4, 35.3, 34.7, 33.7, 31.3, 21.2.

HRMS (ESI) calculated for $([C_{34}H_{28}N_2O_3]+Na^+):535.1998$, found: 535.1993.

rac-4-(N-quinolin-8-yl carbamoyl)[2,2]paracyclophan-4-yl 3',5'-dimethylbenzoate (7e)

The title compound **7e** was prepared under the optimized conditions (General Procedure **III**) and purified by preparative TLC (petroleum ether: ethyl acetate =10:1). **7e** was obtained as a beige foamy solid (34.7 mg, 66%).

¹H NMR (400 MHz, Chloroform-*d*) δ 10.05 (s, 1H), 8.86 (dd, J = 7.5, 1.4 Hz, 1H), 8.74 (dd, J = 4.2, 1.7 Hz, 1H), 8.08 (dd, J = 8.3, 1.7 Hz, 1H), 7.66 (d, J = 1.7 Hz, 2H), 7.52 (t, J = 7.9 Hz, 1H), 7.45 (dd, J = 8.3, 1.4 Hz, 1H), 7.37 (dd, J = 8.3, 4.2 Hz, 1H), 7.26 – 7.23 (m, 1H), 7.14 (dd, J = 7.9, 1.9 Hz, 1H), 7.02 (s, 1H), 6.75 – 6.68 (m, 2H), 6.67 – 6.59 (m, 2H), 3.52 – 3.44 (m, 1H), 3.34 – 3.23 (m, 1H), 3.15 – 2.99 (m, 5H), 2.85

(ddd, J = 13.0, 8.9, 5.4 Hz, 1H), 2.13 (s, 6H).

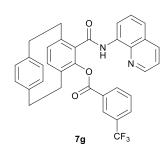
¹³C NMR (100 MHz, Chloroform-*d*) δ 164.8, 164.6, 148.2, 145.9, 141.4, 139.7, 139.7, 138.5, 138.0, 136.9, 136.1, 135.2, 134.7, 133.3, 133.0, 132.9, 132.7, 131.7, 129.8, 129.5, 128.9, 127.9, 127.8, 127.4, 121.7, 121.5, 116.4, 35.3, 34.6, 33.7, 31.3, 21.0.

HRMS (**ESI**) calculated for ($[C_{35}H_{30}N_2O_3]+Na^+$): 549.2154, found: 549.2151.

rac-4-(N-quinolin-8-yl carbamoyl)[2,2]paracyclophan-4-yl 2'-naphthoate (7f)

The title compound **7f** was prepared under the optimized conditions (General Procedure **III**) and purified by preparative TLC (petroleum ether: ethyl acetate =10:1). **7f** was obtained as a beige foamy solid (29.6 mg, 54%).

¹H NMR (400 MHz, Chloroform-*d*) δ 10.01 (s, 1H), 8.89 – 8.76 (m, 2H), 8.60 (dd, J = 4.2, 1.7 Hz, 1H), 8.46 (dd, J = 7.3, 1.3 Hz, 1H), 8.02 – 7.97 (m, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.76 (dd, J = 8.1, 1.5 Hz, 1H), 7.50 – 7.34 (m, 4H), 7.33 – 7.27 (m, 2H), 7.25 (d, J = 4.4 Hz, 1H), 7.06 (dd, J = 7.9, 1.9 Hz, 1H), 6.77 (d, J = 7.9 Hz, 1H), 6.71 (dd, J = 7.8, 1.9 Hz, 1H), 6.67 – 6.62 (m, 2H), 3.54 – 3.45 (m, 1H), 3.38 – 3.30 (m, 1H),


3.24 - 2.99 (m, 5H), 2.96 - 2.85 (m, 1H).

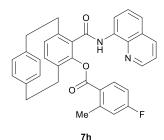
¹³C NMR (100 MHz, Chloroform-*d*) δ 164.8, 164.6, 148.2, 146.1, 141.6, 139.7, 139.7, 138.5, 137.0, 136.1, 135.7, 134.7, 133.4, 133.0, 132.7, 132.3, 131.9, 131.8, 129.6, 129.4, 128.6, 128.2, 127.9, 127.7, 127.3, 126.7, 126.3, 125.5, 121.7, 121.5, 116.5, 35.4, 34.6, 33.8, 31.4.

HRMS (**ESI**) calculated for ($[C_{37}H_{28}N_2O_3]+Na^+$): 571.1998, found: 571.1994

rac-4-(N-quinolin-8-yl carbamoyl)[2,2]paracyclophan-4-yl 3'-trifluoromethylbenzoate (7g)

The title compound **7g** was prepared under the optimized conditions (General Procedure **III**) and purified by preparative TLC (petroleum ether: ethyl acetate =10:1). **7g** was obtained as a beige foamy solid (22.6 mg, 40%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.92 (s, 1H), 8.82 (dd, J = 7.6, 1.4 Hz, 1H), 8.68 (dd, J = 4.2, 1.6 Hz, 1H), 8.33 – 8.22 (m, 2H), 8.05 (dd, J = 8.3, 1.6 Hz, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.50 (t, J = 7.9 Hz, 1H), 7.44 (dd, J = 8.4, 1.4 Hz, 1H), 7.41 – 7.33 (m, 2H), 7.23 (dd, J = 8.0, 1.9 Hz, 1H), 7.06 (dd, J = 8.0, 1.9 Hz, 1H), 6.75 (d, J = 7.9 Hz, 1H), 6.71 (dd, J = 7.9, 1.9 Hz, 1H), 6.67 – 6.59 (m, 2H), 3.53 – 3.45 (m, 1H), 3.36


-3.26 (m, 1H), 3.16 - 3.00 (m, 5H), 2.88 (ddd, J = 13.3, 8.9, 6.2 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 164.4, 163.3, 148.3, 145.7, 141.7, 139.7, 139.5, 138.4, 137.0, 136.1, 134.5, 133.4, 133.2, 133.1, 132.8, 132.7, 131.8, 131.1 (q, ${}^{2}J$ = 32.9 Hz), 130.04, 129.99 (q, ${}^{3}J$ = 3.6 Hz), 129.5, 129.4, 129.1, 127.9, 127.3, 126.9 (q, ${}^{3}J$ = 3.8 Hz), 123.5 (q, ${}^{1}J$ = 247.0 Hz), 121.8, 121.6, 116.4, 35.3, 34.6, 33.7, 31.2, 29.8.

¹⁹F NMR (**376 MHz, Chloroform-***d*) δ -62.91.

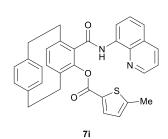
HRMS (**ESI**) calculated for ($[C_{34}H_{25}F_3N_2O_3]+H^+$): 589.1715, found: 589.1708

rac-4-(N-quinolin-8-yl carbamoyl)[2,2]paracyclophan-4-yl 3'-fluoro-2-methylbenzoate (7h)

The title compound **7h** was prepared under the optimized conditions (General Procedure **III**) and purified by preparative TLC (petroleum ether: ethyl acetate =10:1). **7h** was obtained as a beige foamy solid (24.9 mg, 47%).

¹H NMR (400 MHz, Chloroform-d) δ 9.92 (s, 1H), 8.90 – 8.83 (m, 1H),

8.68 (dd, J = 4.2, 1.6 Hz, 1H), 8.20 (dd, J = 8.7, 6.0 Hz, 1H), 8.09 (dd, J = 8.2, 1.5 Hz, 1H), 7.53 (t, J = 7.9 Hz, 1H), 7.50 – 7.45 (m, 1H), 7.37 (dd, J = 8.2, 4.1 Hz, 1H), 7.23 (dd, J = 8.1, 1.9 Hz, 1H), 7.01 (dd, J = 8.0, 1.9 Hz, 1H), 6.79 – 6.67 (m, 4H), 6.66 – 6.59 (m, 2H), 3.51 – 3.41 (m, 1H), 3.31 (td, J = 11.0, 9.6, 3.1 Hz, 1H), 3.15 – 2.98 (m, 5H), 2.94 – 2.83 (m, 1H), 2.46 (s, 3H)


¹³C NMR (101 MHz, Chloroform-*d*) δ 165.0 (d, ${}^{1}J$ = 253.0 Hz), 164.8, 164.2, 148.1, 146.0, 145.3 (d, J = ${}^{3}9.0$ Hz), 141.4, 139.7, 139.6, 138.5, 136.9, 136.2, 134.7, 133.9 (d, J = ${}^{3}9.5$ Hz), 133.3, 133.0, 132.9, 132.7, 131.9, 129.7, 129.6, 128.0, 127.4, 124.1 (d, ${}^{4}J$ = 2.8 Hz), 121.9, 121.7, 118.5 (d, ${}^{2}J$ = 21.4 Hz), 116.5, 112.9 (d, ${}^{2}J$ = 21.5 Hz), 35.4, 34.6, 33.7, 31.1, 22.0.

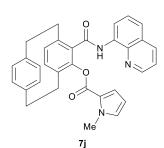
¹⁹F NMR (376 MHz, Chloroform-d) δ -106.32.

HRMS (**ESI**) calculated for ([C₃₄H₂₇FN₂O₃]+Na⁺): 553.1903, found: 553.1901

<u>rac-4-(N-quinolin-8-yl carbamoyl)[2,2]paracyclophan-4-yl 5'-methylthiophene-2'-carboxylate (7i)</u>

The title compound **7i** was prepared under the optimized conditions (General Procedure **III**) and purified by preparative TLC (petroleum ether: ethyl acetate =7:1). **7i** was obtained as a beige foamy solid (26.4 mg, 51%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.94 (s, 1H), 8.86 (dd, J = 7.6, 1.4 Hz, 1H), 8.73 (dd, J = 4.1, 1.7 Hz, 1H), 8.08 (dd, J = 8.2, 1.7 Hz, 1H), 7.67 (d, J = 3.8 Hz, 1H), 7.53 (t, J = 7.9 Hz, 1H), 7.46 (dd, J = 8.3, 1.4 Hz, 1H), 7.37 (dd, J = 8.2, 4.2 Hz, 1H), 7.22 (dd, J = 7.9, 1.9 Hz, 1H), 7.08 (dd, J = 7.9, 1.9 Hz, 1H), 6.71 (d, J = 7.9 Hz, 1H), 6.68 (dd, J = 7.9, 1.9 Hz, 1H), 6.63 – 6.58 (m, 3H), 3.53 – 3.45 (m, 1H), 3.31 (td, J = 11.1,


9.9, 3.5 Hz, 1H), 3.17 – 2.95 (m, 5H), 2.88 – 2.79 (m, 1H), 2.41 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 164.5, 159.9, 149.4, 148.2, 145.8, 141.6, 139.6, 139.6, 138.6, 136.9, 136.0, 135.3, 134.8, 133.2, 133.0, 132.9, 132.6, 131.7, 129.6, 129.5, 127.9, 127.3, 126.5, 121.6, 121.5, 116.5, 35.3, 34.4, 33.8, 31.4, 15.8.

HRMS (**ESI**) calculated for ($[C_{32}H_{26}N_2O_3S]+H^+$): 519.1742, found: 519.1739.

<u>rac-4-(N-quinolin-8-yl_carbamoyl)[2,2]paracyclophan-4-yl_1'-methyl-1'H-pyrrole-2'-carboxylate (7i)</u>

The title compound 7j was prepared under the optimized conditions (General Procedure III) and

purified by preparative TLC (petroleum ether: ethyl acetate =7:1). **7j** was obtained as a beige foamy solid (37.6 mg, 75%).

¹H NMR (400 MHz, Chloroform-*d*) δ 10.07 (s, 1H), 8.90 (dd, J = 7.6, 1.4 Hz, 1H), 8.76 (dd, J = 4.2, 1.7 Hz, 1H), 8.10 (dd, J = 8.3, 1.7 Hz, 1H), 7.53 (t, J = 7.9 Hz, 1H), 7.47 (dd, J = 8.3, 1.4 Hz, 1H), 7.39 (dd, J = 8.2, 4.2 Hz, 1H), 7.27 – 7.24 (m, 1H), 7.20 (dd, J = 7.9, 1.9 Hz, 1H), 7.11 (dd,

J = 7.9, 1.9 Hz, 1H), 6.71 (d, J = 7.9 Hz, 1H), 6.68 (dd, J = 8.0, 1.8 Hz, 1H), 6.65 – 6.59 (m, 3H), 5.95 (dd, J = 4.0, 2.5 Hz, 1H), 3.72 (s, 3H), 3.49 (ddd, J = 13.0, 10.5, 2.5 Hz, 1H), 3.27 (td, J = 11.0, 9.7, 3.6 Hz, 1H), 3.18 – 2.94 (m, 5H), 2.88 – 2.77 (m, 1H).

¹³C NMR (100 MHz, Chloroform-*d*)) δ 164.8, 158.9, 148.0, 145.6, 141.7, 139.7, 139.7, 138.7, 136.8, 136.2, 134.9, 133.3, 133.2, 132.8, 132.7, 131.7, 130.6, 130.1, 129.6, 128.0, 127.4, 121.7, 121.6, 121.2, 119.6, 116.5, 108.2, 36.7, 35.3, 34.5, 33.8, 31.4.

HRMS (ESI) calculated for $([C_{32}H_{27}N_3O_3]+H^+)$: 502.2131, found: 502.2125.

rac-4-(N-quinolin-8-yl carbamoyl)[2,2]paracyclophan-4-yl pivalate (7k)

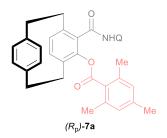
The title compound **7k** was prepared under the optimized conditions (General Procedure **III**) and purified by preparative TLC (petroleum ether: ethyl acetate =10:1). **7k** was obtained as a beige foamy solid (27.2 mg, 57%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.76 (s, 1H), 8.93 (d, J = 7.5 Hz, 1H), 8.76 – 8.72 (m, 1H), 8.17 –8.11 (m, 1H), 7.59 (t, J = 7.9 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.41 (dd, J = 8.3, 4.2 Hz, 1H), 7.26 – 7.23 (m, 1H), 6.92 (dd, J = 8.0, 1.9 Hz, 1H), 6.69 – 6.63 (m, 2H), 6.61 – 6.54 (m, 2H), 3.34 (tt, J = 12.5, 9.2 Hz, 2H), 3.16 – 2.91 (m, 5H), 2.80 (ddd, J = 13.6, 9.8, 5.8 Hz, 1H), 1.11 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ176.4, 164.8, 148.4, 146.0, 141.2, 139.7, 139.4, 138.5, 136.9, 136.2, 134.8, 133.3, 132.6, 132.6, 132.5, 132.0, 129.6, 129.3, 128.0, 127.5, 121.8, 121.8, 116.5, 39.0, 35.3, 34.5, 33.5, 30.9, 27.1.

HRMS (ESI) calculated for $([C_{31}H_{30}N_2O_3]+H^+)$: 479.2335, found: 479.2330.

rac-4-(N-quinolin-8-yl carbamoyl)[2,2]paracyclophan-4-yl acetate (71)

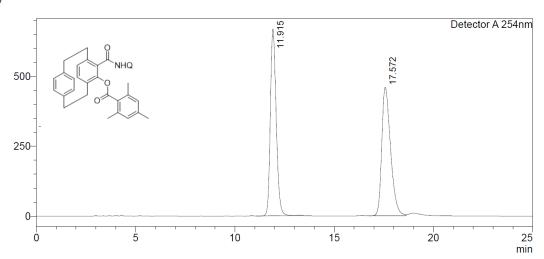

The title compound **71** was prepared under the optimized conditions (General Procedure **III**), in which sodium acetate was utilized instead of acetic acid, and purified by preparative TLC (petroleum ether: ethyl acetate =10:1). **71** was obtained as a beige foamy solid (15 mg, 43%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.88 (s, 1H), 8.93 (d, J = 7.4 Hz, 1H), 8.77 (d, J = 4.0 Hz, 1H), 8.16 (dd, J = 8.2, 1.7 Hz, 1H), 7.61 (t, J = 7.9 Hz, 1H), 7.55 (d, J = 8.2 Hz, 1H), 7.44 (dd, J = 8.3, 4.2 Hz, 1H), 7.12 (d, J = 7.8 Hz, 1H), 6.93 (d, J = 7.9 Hz, 1H), 6.67 (dd, J = 8.3, 3.3 Hz, 2H), 6.60 (d, J = 7.8 Hz, 1H), 6.57 (d, J = 7.9 Hz, 1H), 3.47 (m, 1H),

3.29 (td, J = 11.5, 4.0 Hz, 1H), 3.06 (m, 5H), 2.84 (m, 1H), 2.10 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 169.21, 164.70, 148.48, 141.62, 139.68, 139.48, 136.85, 136.35, 134.75, 133.11, 133.00, 132.65, 131.86, 129.54, 129.16, 128.11, 127.51, 121.94, 121.85, 116.67, 35.30, 34.39, 33.80, 30.96, 20.92.

(R_P) -4-(N-quinolin-8-yl carbamoyl)[2,2]paracyclophan-4-yl 2',4',6'-trimethylbenzoate $((R_P)$ -7a)

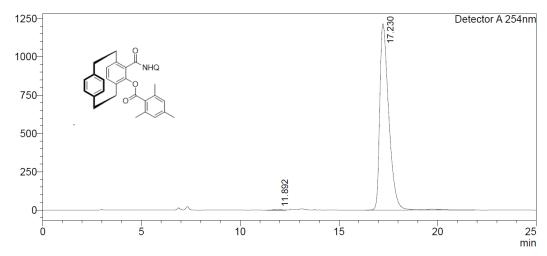

The title compound (R_P) -7a was prepared under the optimized conditions (General Procedure III) on a 3.0 mmol scale and purified by preparative TLC (petroleum ether: ethyl acetate =7:1). (R_P) 7a was obtained as a beige foamy solid (1.38 g, 85%). The NMR data is consistence with rac-7a. A single crystal of (R_P) -7a suitable for X-ray crystallography was obtained by crystallization via evaporation from its hexane/EA solution.

((*Rp*)-7a): Enantiomeric excess was determined by HPLC with a Daicel Chiralpak IA, n-hexane/isopropanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 11.9 min, t (minor) = 17.6 min.

Copies of HPLC data:

<Chromatogram>

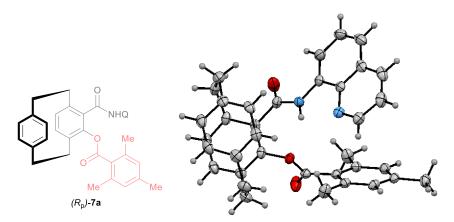
mV



<Peak Table>

Detector A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	11.915	13701391	669286	48.961		48.961
2	17.572	14283093	461199	51.039		51.039
Total		27984485	1130485			100.000

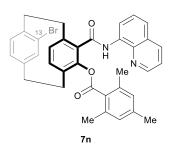
<Chromatogram>


mV

<Peak Table>

Detector A 254nm							
	Peak#	Ret. Time	Area	Height	Conc.	Area%	
	1	11.892	108597	5208	0.279	0.279	
	2	17.230	38752930	1215769	99.721	99.721	
	Total		38861527	1220076		100 000	

X-ray Crystallographic Data:


Table S5. X-Ray crystallographic data of (R_P) -7a. The ellipsoids drawn at 30% probability level.

Bond precision:	C-C = 0.0030 A		Wavelength = 1.54178
Cell:	a = 7.9718 (5)	b=16.3516(16)	c=10.9681(11)
	Alpha = 90	beta = 103.980(3)	gamma = 90
Temperature:	170 K		
	Calculated		Reported
Volume	1387.4. (2)		1387.4. (2)
Space group	P 21		P 1 21 1
Hall group	P 2yb		P 2yb

Moiety formula	C36 H32 N2 O3		C36 H32 N2 O3
Sum formula	C36 H32 N2 O3		C36 H32 N2 O3
Mr	540.64		540.63
Dx, g cm ⁻³	1.294		1.294
Z	2		2
Mu (mm ⁻¹)	0.651		0.651
F000	572.0		572.0
F000'	573.64		
H, k, lmax	9, 19, 13		9, 19, 13
Nref	5111 [2653]		5072
Tmin,Tmax	0.743, 0.812		0.633, 0.753
Tmin'	0.736		
Correction method = #	T Limits: Tmin =	Tmax = 0.753	AbsCorr = MULTI-
Reported	0.633		SCAN
Data completeness =		Theta(max) = 68.365	
1.91/0.99			
R (reflections) = 0.0340		wR2(reflections) =	
(5055)		0.0828 (5072)	
S = 1.077		Npar = 373	
Flack parameter	0.06(4)		

rac-13-bromo-4-(N-quinolin-8-yl carbamoyl)[2,2]paracyclophan-4-yl 2',4',6'-trimethylbenzoate (7n)

The title compound 7n was prepared under the optimized conditions (General Procedure III) and purified by preparative TLC (petroleum ether: ethyl acetate = 10:1). 7n was obtained as a white foamy solid (46.8 mg, 76%).

¹H NMR (400 MHz, Chloroform-*d*) δ 10.84 (s, 1H), 8.86 (dd, J = 7.6, 1.4 Hz, 1H), 8.47 (dd, J = 4.2, 1.7 Hz, 1H), 8.01 (dd, J = 8.3, 1.7 Hz, 1H), 7.51 (t, J = 7.9 Hz, 1H), 7.43 (dd, J = 8.2, 1.4 Hz, 1H), 7.28 – 7.23 (m, 1H), 7.10 (d, J = 1.7 Hz, 1H), 6.80 (d, J = 7.8 Hz, 1H), 6.75 – 6.66 (m, 3H), 6.37 (s, 2H), 3.89 (ddd, J = 13.9, 9.6, 6.7 Hz, 1H), 3.57 (ddd, J = 13.6, 9.7, 1.9 Hz, 1H), 3.39 (ddd, J = 13.6, 9.7, 2.0 Hz, 1H), 3.25

(dddd, J = 25.9, 12.8, 10.1, 1.9 Hz, 2H), 3.09 (ddd, J = 13.2, 9.7, 6.6 Hz, 1H), 2.91 (tdd, J = 13.1, 10.2, 6.6 Hz, 2H), 2.29 (s, 6H), 1.98 (s, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 167.37, 163.18, 147.59, 145.82, 143.32, 141.35, 139.49, 139.32, 138.49, 137.41, 136.23, 135.51, 135.40, 134.68, 133.90, 133.86, 132.16, 131.36, 130.20, 129.07, 128.38, 127.63, 127.17, 126.06, 121.38, 121.03, 116.07, 36.47, 33.96, 32.28, 31.83, 20.97, 20.56.

HRMS (**ESI**) calculated for ($[C_{36}H_{31}BrN_2O_3]+H^+$): 619.1591, found: 619.1593.

<u>rac-7,25-dibromo-4-(N-quinolin-8-yl</u> carbamoyl)[2,2]paracyclophan-4-yl 2',4',6'-trimethyl benzoate (7p)

The title compound **7p** was prepared under the optimized conditions (General Procedure **III**) and purified by preparative TLC (petroleum ether: ethyl acetate = 10:1). **7p** was obtained as a white foamy solid (46.8 mg, 76%).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.97 (s, 1H), 8.84 (dd, J = 7.4, 1.6 Hz, 1H), 8.67 (dd, J = 4.2, 1.7 Hz, 1H), 8.08 (dd, J = 8.3, 1.7 Hz, 1H), 7.56 (t, J = 7.9 Hz, 1H), 7.51 (dd, J = 8.3, 1.6 Hz, 1H), 7.36 (d, J = 3.6 Hz, 1H), 7.34 (d, J = 3.8 Hz, 1H), 7.31 (d, J = 1.8 Hz, 1H), 7.29 (s, 1H), 6.81 (dd, J = 8.0, 1.8 Hz, 1H), 6.73 (s, 2H), 3.47 – 3.37 (m, 1H), 3.21 (qt, J = 9.1, 4.8 Hz, 3H), 3.11 – 2.96 (m, 4H), 2.34 (s, 6H), 2.19 (s,

3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 167.77, 164.26, 148.51, 147.02, 141.20, 140.93, 140.60, 138.74, 138.48, 137.24, 136.08, 134.42, 134.24, 132.92, 132.82, 132.58, 129.80, 129.52, 129.19, 129.02, 128.23, 127.96, 127.15, 126.59, 122.24, 121.78, 116.70, 35.52, 31.66, 31.51, 29.51, 21.17, 20.97.

HRMS (**ESI**) calculated for $([C_{36}H_{30}Br_2N_2O_3]+H^+)$: 697.0696, found: 697.0696.

3.6 Synthetic Transformations

Removal of directing group

The o-acyloxylation amide rac-7a (1 mmol, 1 equiv.) was taken in an oven-dried round-bottom flask which was connected through a condenser under an N_2 atmosphere, and 10 mL of 40% H_2SO_4 were added. Then the mixture was stirred for 12 h at 110 °C (oil bath) followed by cooling. EtOAc (10 mL) was added to the solution. The aqueous layer was extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine (10 mL), dried over Na_2SO_4 , filtered, and concentrated under vacuum. The residue was purified by preparative TLC with silica gel to afford the hydroxyl carboxylic acid 8 as a white solid. (CH₂Cl₂/MeOH=15/1).

rac-5-Carboxyl-4-hydroxy[2,2]cyclohexaphane (8)

¹H NMR (400 MHz, Chloroform-*d*) δ 11.24 (s, 1H), 6.97 (dd, J = 8.1, 6.2 Hz, 1H), 6.63 (t, J = 8.3 Hz, 2H), 6.44 (t, J = 8.2 Hz, 2H), 6.31 (d, J = 7.6 Hz, 1H), 4.03 (dd, J = 13.1, 9.6 Hz, 1H), 3.48 (ddd, J = 13.0, 10.1, 2.8 Hz, 1H), 3.20 (ddd, J = 28.5, 14.2, 10.1 Hz, 2H), 3.09 – 3.01 (m, 1H), 2.99 – 2.89 (m, 1H), 2.87 – 2.77 (m, 1H), 2.63 (ddd, J = 15.9, 10.7, 5.1 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.1, 162.8, 144.9, 140.2, 140.0, 138.8, 133.9, 132.3, 131.1, 128.9, 127.7, 127.1, 112.9, 37.4, 34.8, 33.8, 30.4.

HRMS (ESI) calculated for ($[C_{17}H_{16}O_3]+H^+$): 269.1178, found: 269.1172.

Melting point: 179.5-186.6 °C.

Selective hydrolysis of acyloxyl protecting group^[3]

To a solution of K_2CO_3 (0.8 mmol, 4 equiv.) and H_2O (5 equiv.) in MeOH (5 mL), rac-7a (0.2 mmol) was added at room temperature. The mixture was refluxed at 120 °C (aluminum heat transfer block)

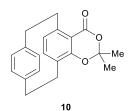
under nitrogen for 4 h. After cooling to room temperature, diluted with EtOAc, filtered through a dried Na₂SO₄ pad, and concentrated under vacuum. After removing the solvent, the residue was purified by preparative TLC with silica gel (petroleum ether/ethyl acetate, 10/1) to give the product **9** (85%) as a white solid.

<u>rac-5-Carbonyl-4-hydroxy[2,2]paracyclophan-N-(quinolin-8-ylamide (9)</u>

¹H NMR (400 MHz, Chloroform-*d*) δ 11.82 (br, 1H), 10.45 (s, 1H), 8.89 (dd, J = 7.3, 1.7 Hz, 1H), 8.20 (dd, J = 8.3, 1.7 Hz, 1H), 7.66 – 7.56 (m, 2H), 7.49 (dd, J = 8.3, 4.2 Hz, 1H), 7.15 (dd, J = 7.7, 1.9 Hz, 1H), 6.67 – 6.55 (m, 3H), 6.51 – 6.37 (m, 2H), 4.17 – 4.03 (m, 1H), 3.49 (ddd, J = 13.1, 10.3, 2.9 Hz, 1H), 3.23 (ddd, J = 12.8, 10.3, 5.0 Hz, 1H), 3.17 –

3.00 (m, 3H), 2.78 (ddd, J = 11.5, 9.3, 6.6 Hz, 1H), 2.61 (ddd, J = 13.0, 10.7, 5.0 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-d) δ 169.2, 160.5, 148.8, 140.1, 139.1, 139.0, 138.2, 138.0, 136.6, 134.3, 133.4, 131.9, 131.5, 129.4, 128.3, 127.8, 127.8, 127.6, 122.4, 122.0, 118.7, 117.1, 37.2, 35.4, 34.1, 30.4.


HRMS (**ESI**) calculated for ([C26H22N2O2]+Na⁺): 417.1579, found: 417.1575.

Melting point: 190.0-193.3 °C.

Synthesis of 4,5-disubstituted [2,2]paracyclophane derivative 10

To a stirred solution of **PCP-1** (0.2 mmol) in TFA (0.1mL) was added a solution of acetone (1 mmol) in TFAA (80 μ L) at 0 °C and stirred for 24 h at room temperature. After this time, EA was added to the mixture and concentrated (x 3). The residue was diluted with EtOAc and saturated aqueous NaHCO₃. The mixture was extracted with EtOAc. The extracts were dried over Na₂SO₄ and concentrated. Purification of the residue by preparative TLC with silica gel (petroleum ether/ethyl acetate, 10/1) gave compound **10** in 82% yield.

rac-2',2'-Dimethyl-4'H-1(4,5)-benzo[d][1',3']dioxina-[2,2]paracyclohexaphan-4'-one (10)

¹H NMR (400 MHz, Chloroform-*d*) δ 6.89 (dd, J = 7.9, 2.0 Hz, 1H), 6.66 – 6.57 (m, 2H), 6.52 (dd, J = 7.8, 2.0 Hz, 1H), 6.43 (dd, J = 7.9, 2.0 Hz, 1H), 6.36 (d, J = 7.8 Hz, 1H), 4.17 (ddd, J = 12.0, 9.6, 1.9 Hz, 1H), 3.31 (ddd, J = 13.3, 9.8, 3.5 Hz, 1H), 3.24 – 2.99 (m, 4H), 2.79 (ddd, J = 12.4, 10.0, 6.7 Hz,

1H), 2.65 (ddd, J = 13.2, 10.2, 5.4 Hz, 1H), 1.85 (s, 3H), 1.45 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 160.2, 155.1, 146.2, 139.9, 139.4, 139.4, 133.6, 132.9, 130.2, 128.6, 128.2, 127.5, 115.2, 104.0, 35.4, 33.9, 33.3, 29.5, 28.3, 24.1.

HRMS (**ESI**) calculated for ([C20H20O3]+Na⁺): 331.1310, found: 331.1307

Synthesis of 4,5-disubstituted [2,2]paracyclophane 11

NaOH (0.2 mmol) was added to a stirred solution of 8 (0.2 mmol) in Ac₂O (0.2 mL) at room temperature and stirred for 30 min. Upon completion, the residue was diluted with EtOAc and washed with 1 M HCl (aq.). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The crude residue was purified by preparative TLC (petroleum ether: ethyl acetate =1:1) to afford 11 as a white solid in 97% yield.

rac-5-Carboxyl-4-acetoxy[2,2]paracyclohexaphane (11)

¹H NMR (400 MHz, Chloroform-d) δ 6.79 (qd, J = 7.9, 1.8 Hz, 1H), 6.71 (d, J = 8.0 Hz, 0H), 6.65 (dd, J = 7.9, 1.8 Hz, 1H), 6.58 – 6.51 (m, 1H), 3.64 (ddd, J = 12.6, 10.3, 2.0 Hz, 1H), 3.30 (ddd, J = 12.6, 10.4, 5.5 Hz, 1H), 3.19 – 2.99 (m, 4H), 2.92 (ddd, J = 12.7, 10.5, 5.5 Hz, 1H), 2.85 – 2.76 (m, 1H), 2.36 (s, 3H).

¹¹ C NMR (101 MHz, Chloroform-d) δ 171.1, 169.2, 148.4, 143.9, 139.6, 139.5, 138.4, 133.1, 133.0, 133.0, 132.9, 131.3, 129.5, 124.2, 34.9, 34.8, 34.2, 30.5, 21.0.

HRMS (ESI) calculated for $([C_{19}H_{18}O_4]+Na^+)$: 333.1103, found: 333.1098

Methylation of Hydroxyaromatic Acids

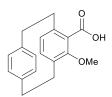
To a solution of K₂CO₃ (2 mmol, 5 equiv.) and the hydroxyl carboxylic acid **8** (0.4 mmol) in acetone (5 mL), methyl iodide (2.4 mmol, 6 equiv.) was added at room temperature. The mixture was refluxed under nitrogen for 24 h. After cooling to room temperature, the mixture was filtrated and concentrated. Then, the residue was extracted with ether (3 x 5 mL), and the combined organic layers were washed by brine (2 x 10 mL), and then dried over anhydrous Na₂SO₄. After removing the solvent, the residue

was purified by preparative TLC with silica gel (petroleum ether/ethyl acetate, 10/1) to give the product 12 (92%) as a white solid.

<u>rac-4-Methoxy-5-methoxycarbonyl[2,2]paracyclohexaphane (12)</u>

OMe

¹H NMR (400 MHz, Chloroform-*d*) δ 6.87 (d, J = 8.0 Hz, 1H), 6.70 (d, J = 8.1 Hz, 1H), 6.61 – 6.57 (m, 1H), 6.56 – 6.51 (m, 2H), 6.33 (d, J = 7.9 Hz, 1H), 3.88 (d, J = 1.3 Hz, 3H), 3.71 (d, J = 1.3 Hz, 3H), 3.32 – 3.11 (m, 4H), 3.08 – 2.91 (m, 2H), 2.79 (dddd, J = 23.3, 13.7, 9.6, 3.6 Hz, 2H).


¹² NMR (101 MHz, Chloroform-d) δ 168.2, 157.2, 141.4, 139.6, 139.2, 138.0, 132.5, 132.5, 132.3, 131.4, 130.6, 129.4, 126.2, 62.2, 51.7, 34.9, 34.4, 33.8, 30.5.

HRMS (**ESI**) calculated for ([C19H20O3]+Na⁺):319.1310, found: 319.1306

Hydrolysis of esters 12 to carboxylic acid 13

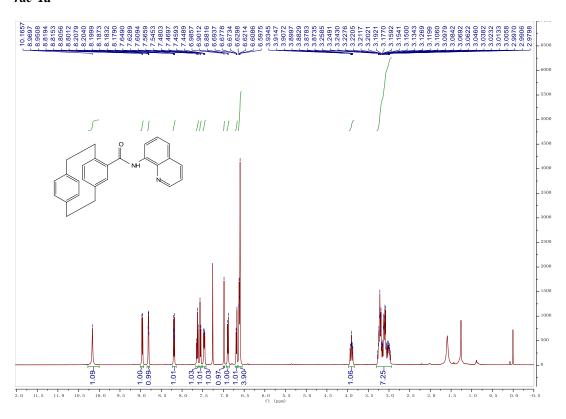
To a stirred solution of 12 (0.2 mmol) in THF (2.0 mL), H₂O (0.2 mL) and MeOH (2.0 mL) was added NaOH (20 equiv.) and the reaction mixture was stirred at 100 °C (aluminum heat transfer block) for 12 h under N₂. Upon completion, the organic layer was washed with 1 M HCl (aq.). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The crude residue was purified by preparative TLC (petroleum ether: ethyl acetate =1:1) to afford 13 as a white solid in 96% yield.

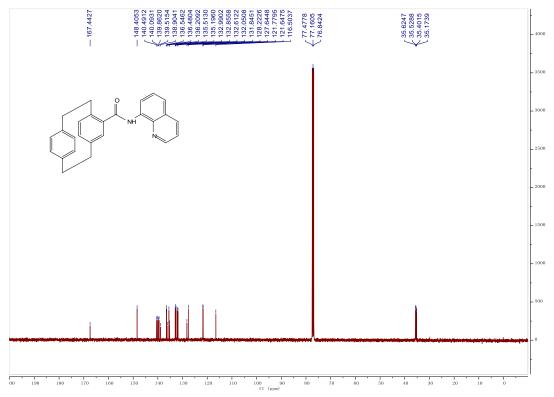
rac-5-Carboxyl-4-methoxy[2,2]paracyclohexaphane (13)

¹H NMR (400 MHz, Chloroform-*d*) δ 6.79 (dd, J = 7.9, 2.0 Hz, 1H), 6.65 (dd, J = 7.9, 1.9 Hz, 2H), 6.60 (dd, J = 7.9, 1.9 Hz, 1H), 6.51 (d, J = 7.9 Hz, 1H), 6.48 (dd, J = 7.9, 2.0 Hz, 1H), 4.02 (ddd, J = 12.5, 9.6, 2.3 Hz, 1H), 3.83 (s, 3H), 3.30 (ddd, J = 13.5, 9.9, 3.7 Hz, 1H), 3.21 – 2.98 (m, 4H), 2.87 – 2.75 (m, 2H).

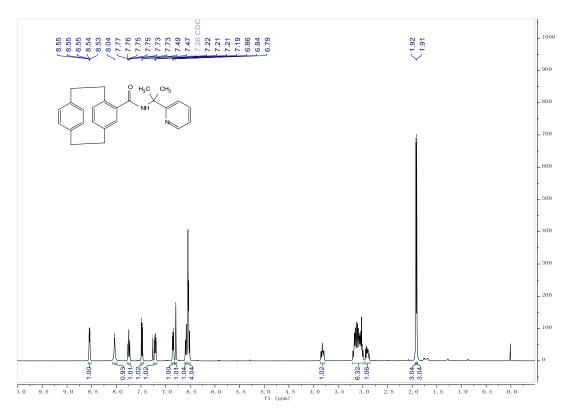
13 Lagrangian 13 NMR (101 MHz, Chloroform-d) δ 168.4, 157.8, 144.8, 139.6, 139.3, 138.9, 133.2, 132.6, 132.2, 132.0, 131.3, 128.9, 124.7, 62.8, 35.2, 34.4, 34.2, 30.9.

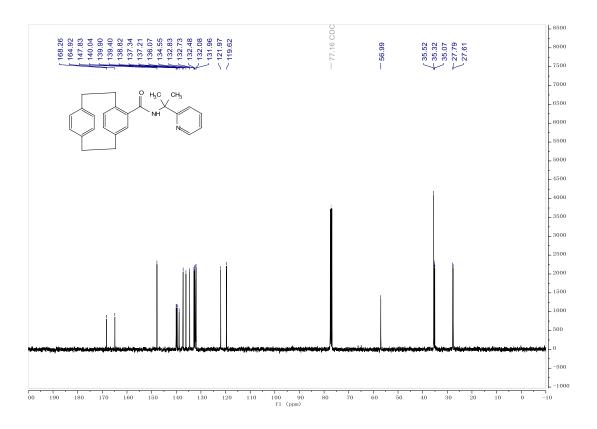
HRMS (**ESI**) calculated for $([C_{18}H_{18}O_3]+Na^+)$: 305.1154, found: 305.1149.

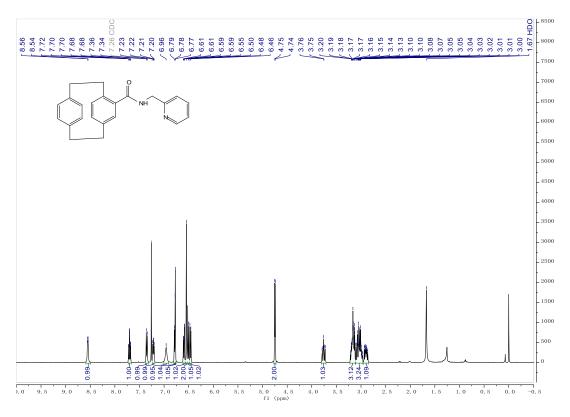

Melting point: 150.5-152.8 °C.

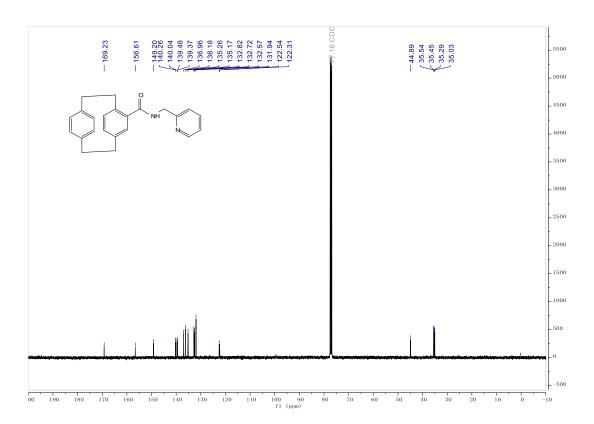

4. References:

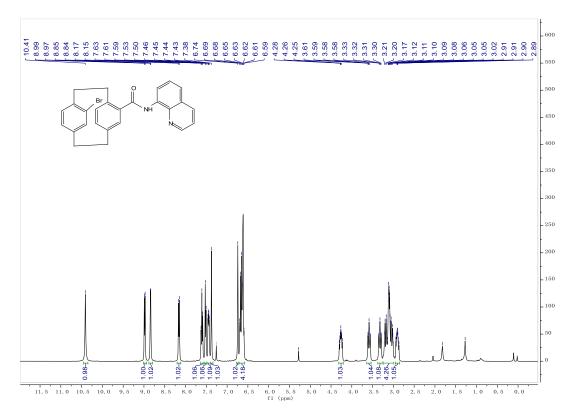
- [1] Lennartz, P.; Raabe G.; Bolm, C.; Palladium-Catalyzed C-H Bond Acetoxylation: An Approach to *ortho*-Substituted Hydroxy[2.2]paracyclophane Derivatives. *Adv. Synth. Catal.* **2012**, *354*, 3237–3249.
- [2] Rozenberg, V.; Dubrovina, N.; Sergeeva, E.; Antonov, D.; Belokon, Y.; An improved synthesis of (S)-(+)- and (R)-(-)-[2.2]paracyclophane-4-carboxylic acid. *Tetrahedron: Asymmetry*, **1998**, *9*, 653–656.
- [3] Schneider, J. F.; Falk, F. C.; Fröhlich, R.; Paradies, J. Planar-Chiral Thioureas as Hydrogen-Bond Catalysts. *Eur. J. Org. Chem.* **2010**, 2265–226.
- [4] Mungalpara, M. N.; Plieger, P. G.; Rowlands, G. J. The Synthesis of Pyridyl[2.2]paracyclophanes by Palladium-Catalyzed Cross-Coupling of Pyridine Sulfinates. Adv. Synth. Catal. 2021, 363, 1069–1080.
- [5] Dominguez, B.; Zanotti-Gerosa, A.; Hems, W. Electrophilic Substitution of Dibromoparacyclophane: A Route to Novel Paracyclophane Phosphine Ligands. *Org. Lett.* 2004, 6, 1927–1930.
- [6] A. Yamada, S. Fujii, S. Mori and H. Kagechika, Design and Synthesis of 4-(4-Benzoylaminophenoxy)phenol Derivatives As Androgen Receptor Antagonists. ACS Med. Chem. Lett. 2013, 4, 10, 937–941.

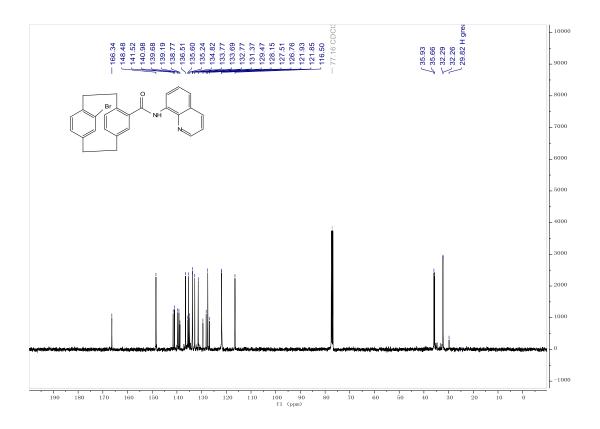

5. NMR spectra

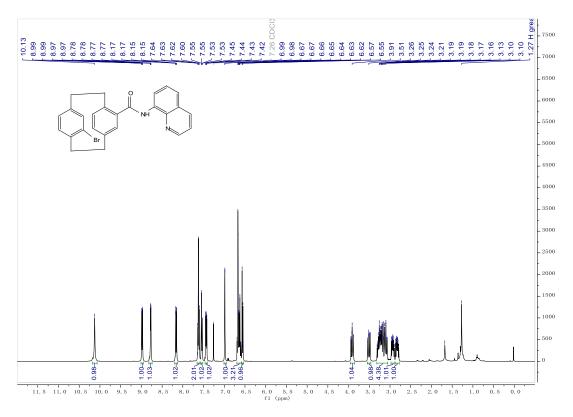

rac-1a

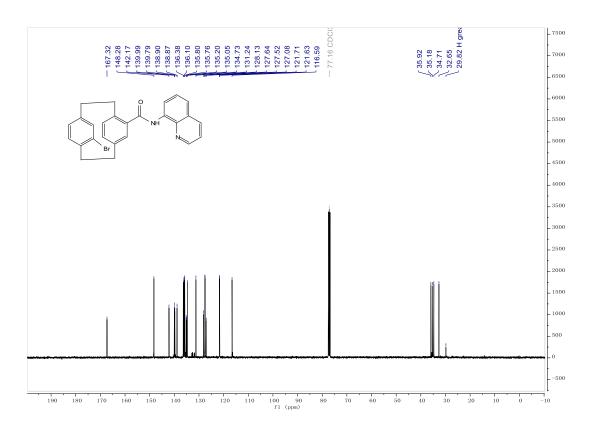


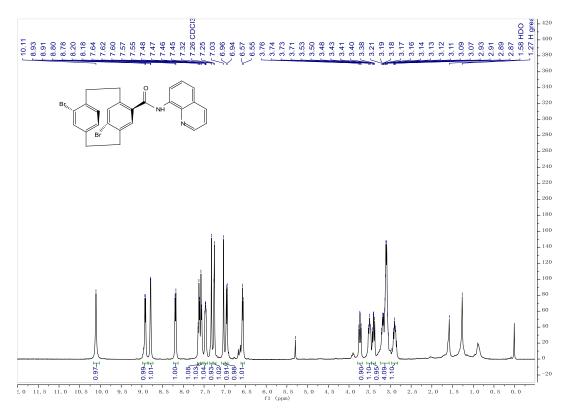

rac-1b

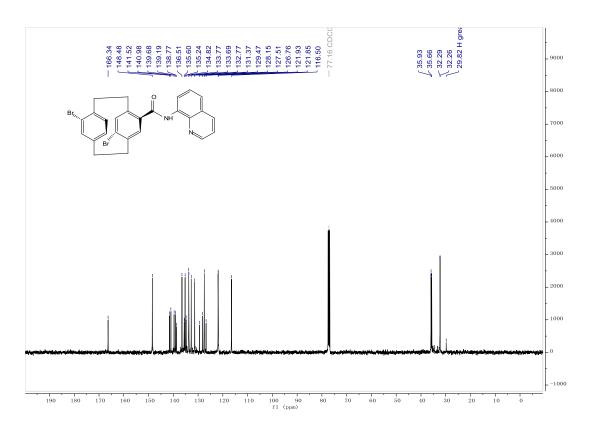


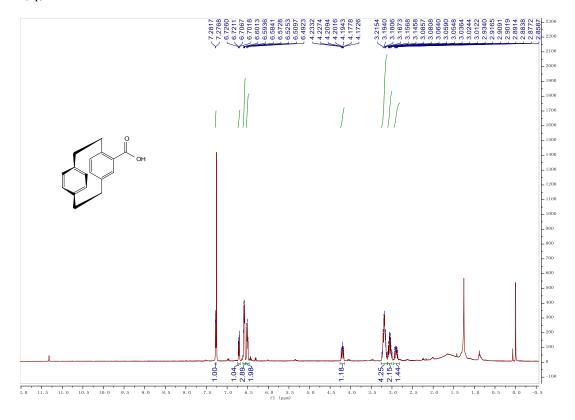

rac-1c

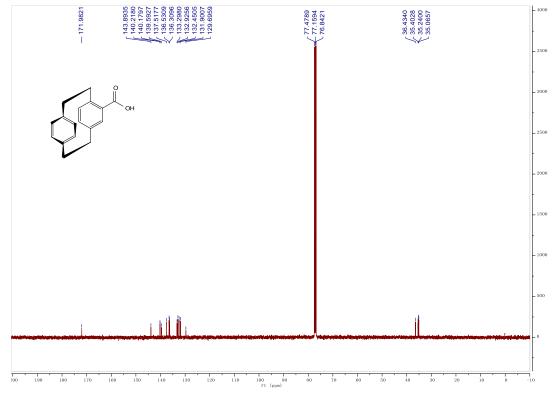



rac-1d

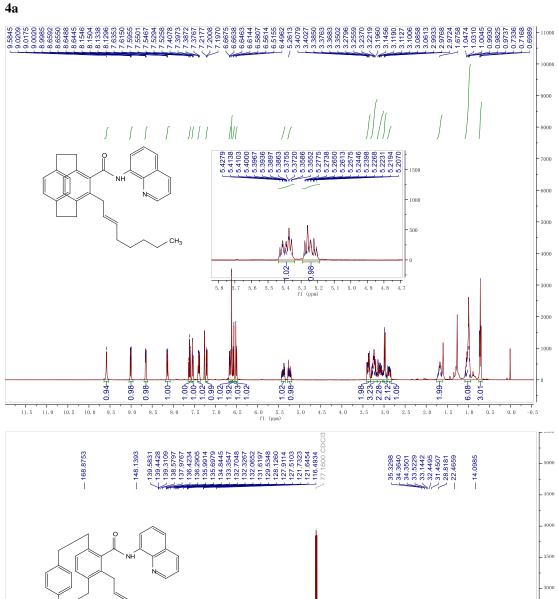


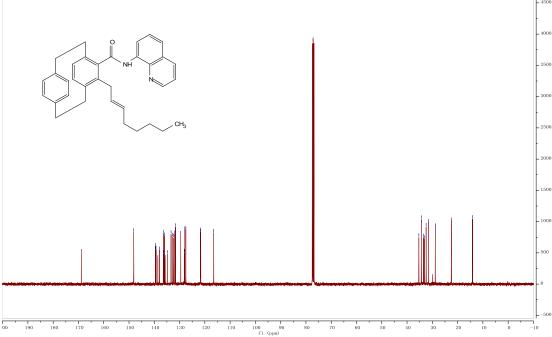

rac-1e

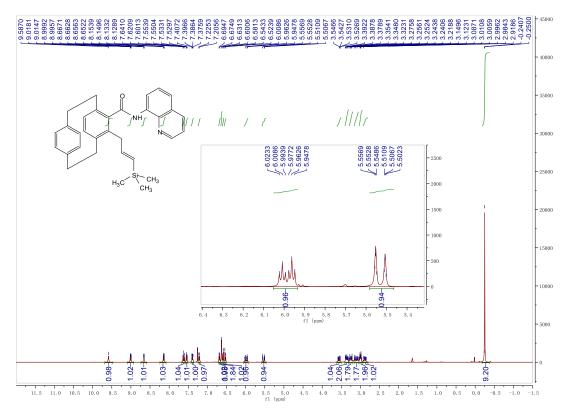


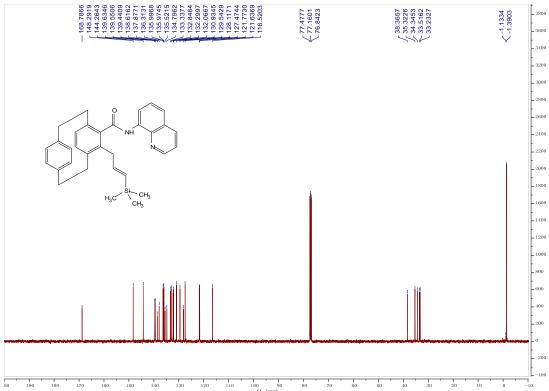


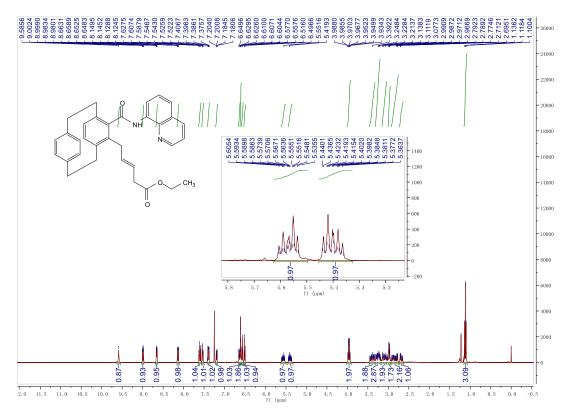
rac-1f

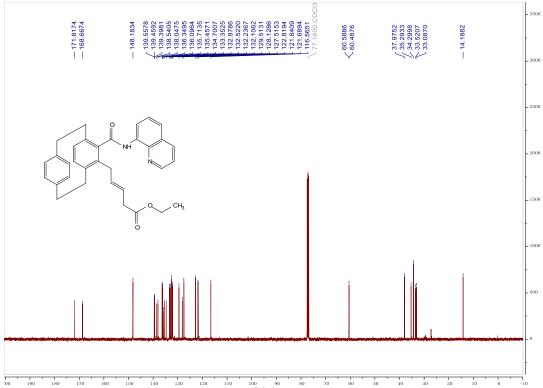


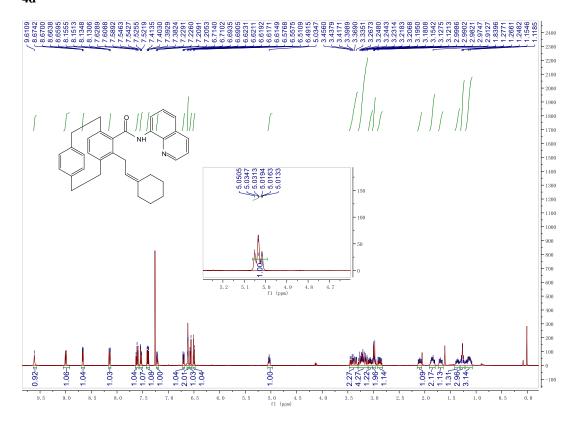


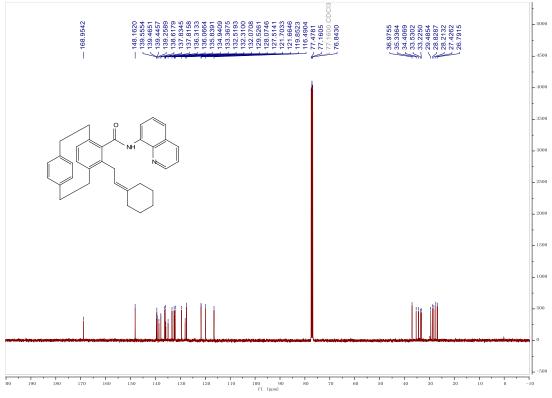


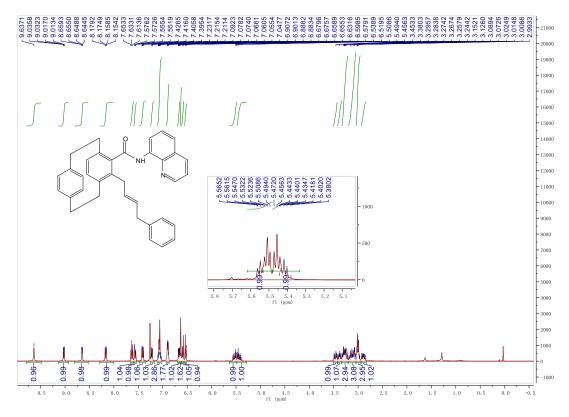


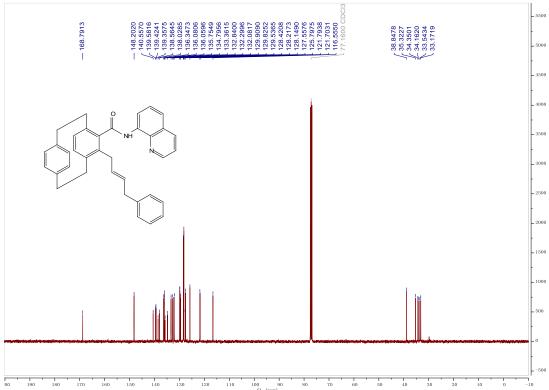


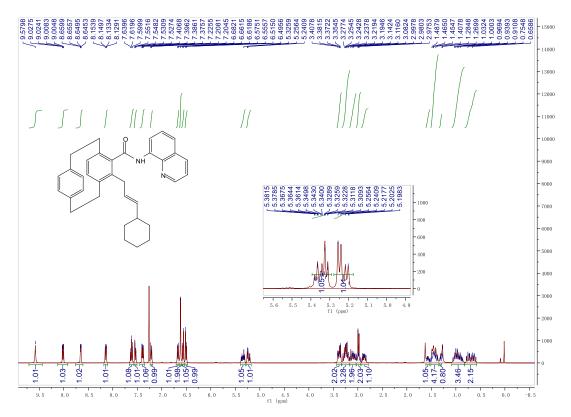


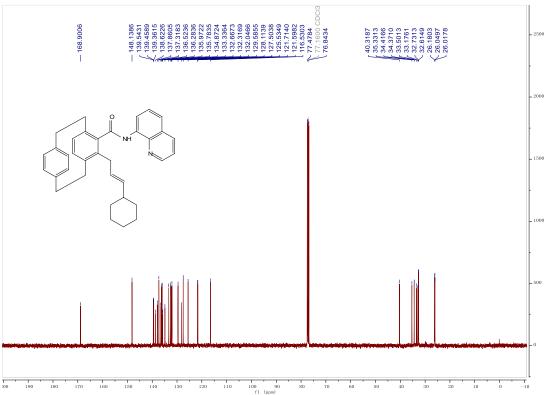


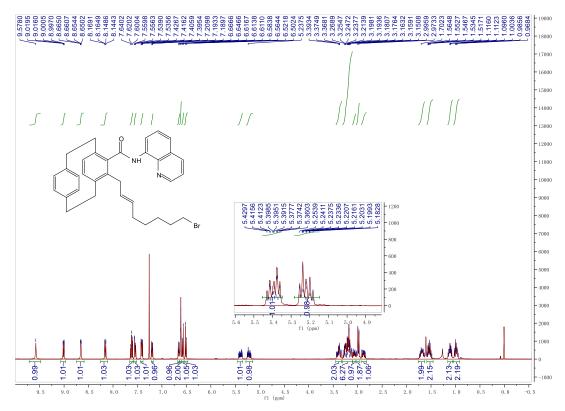


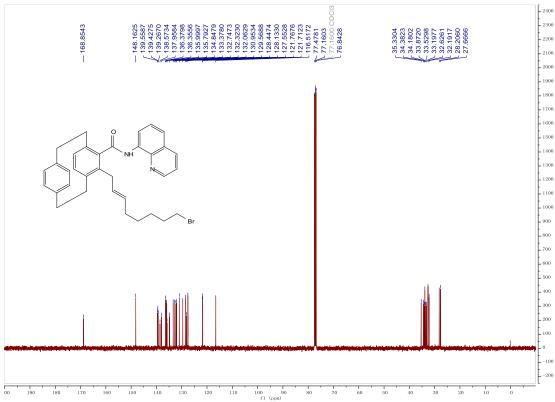


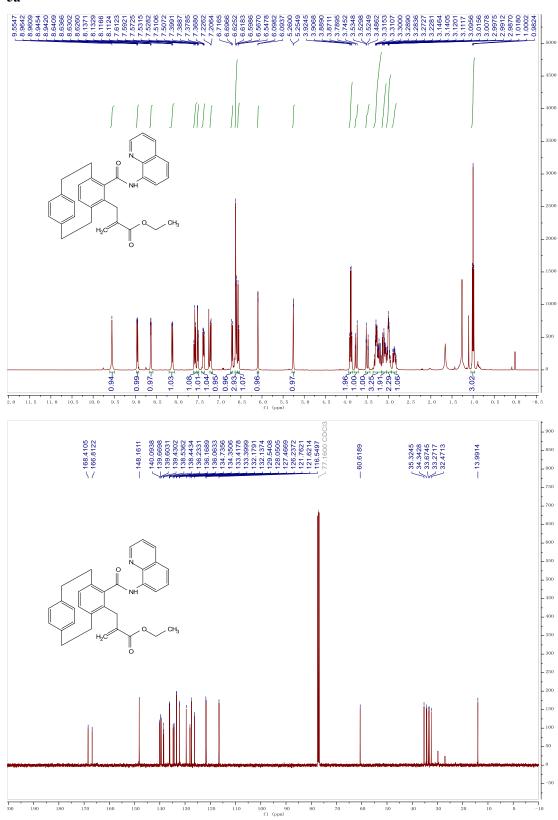


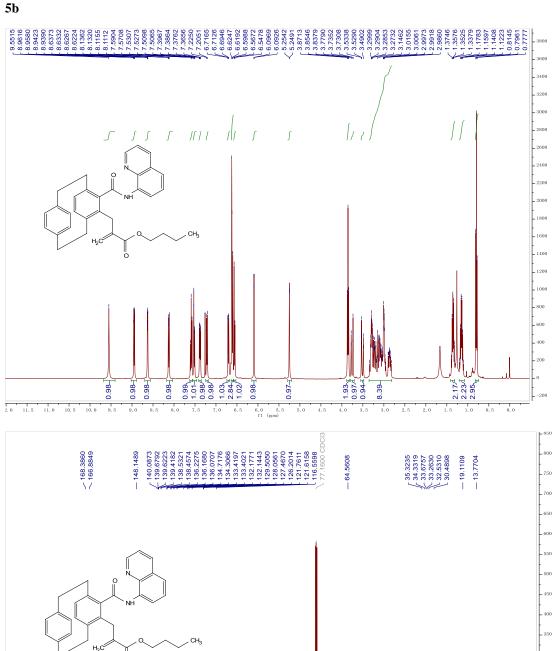


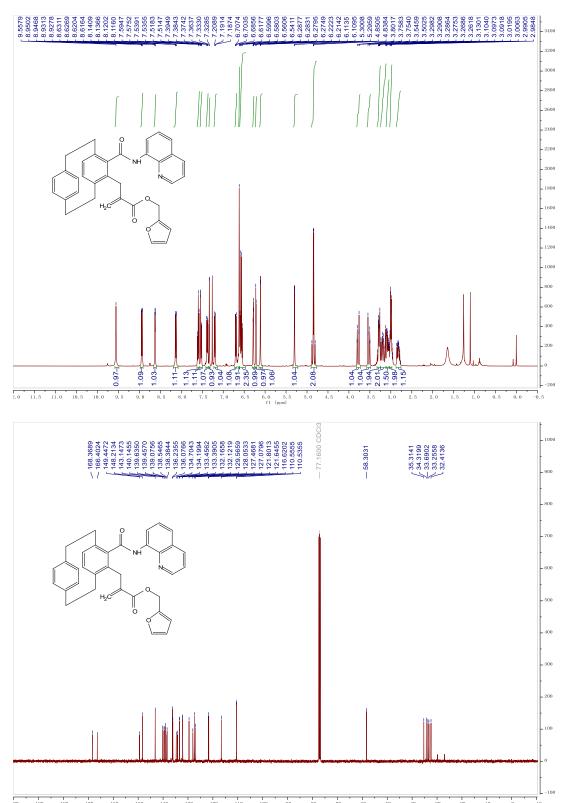


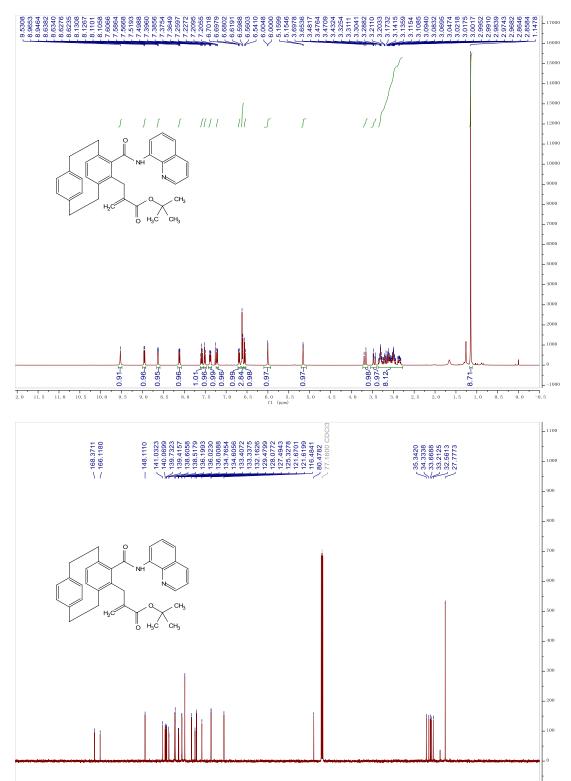


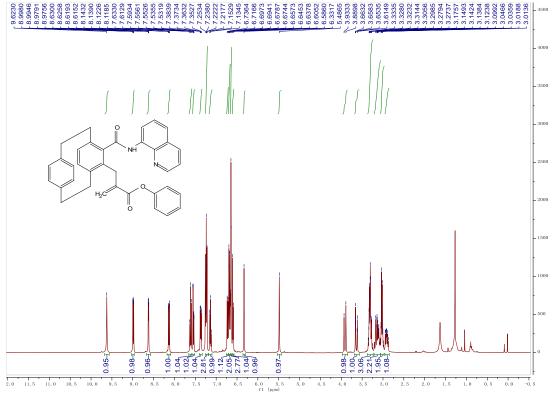


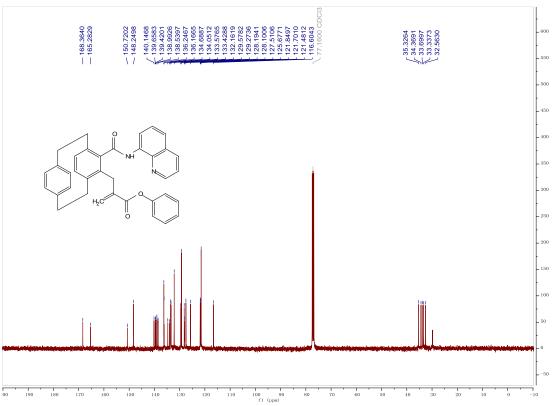


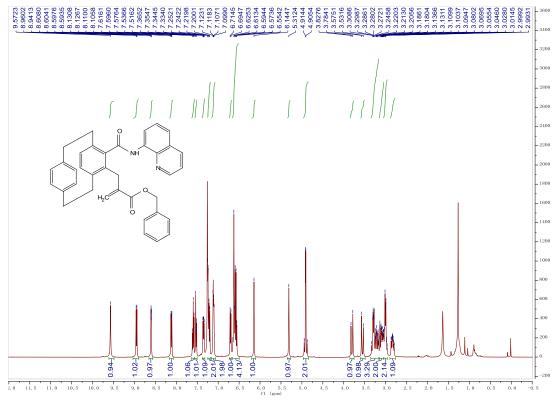


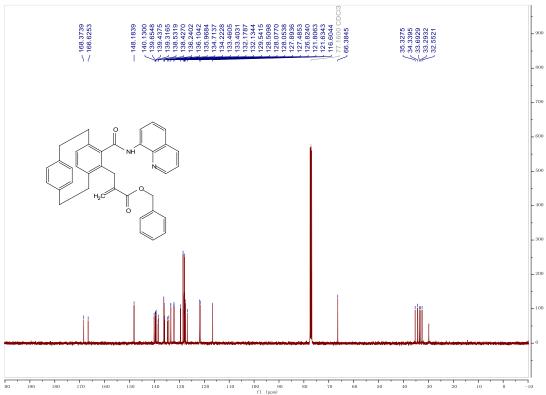


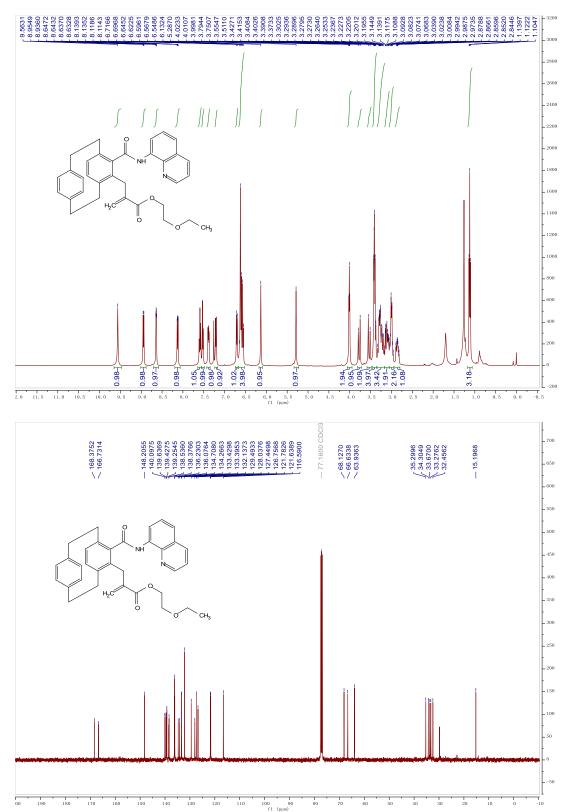

100 90 fl (ppm)

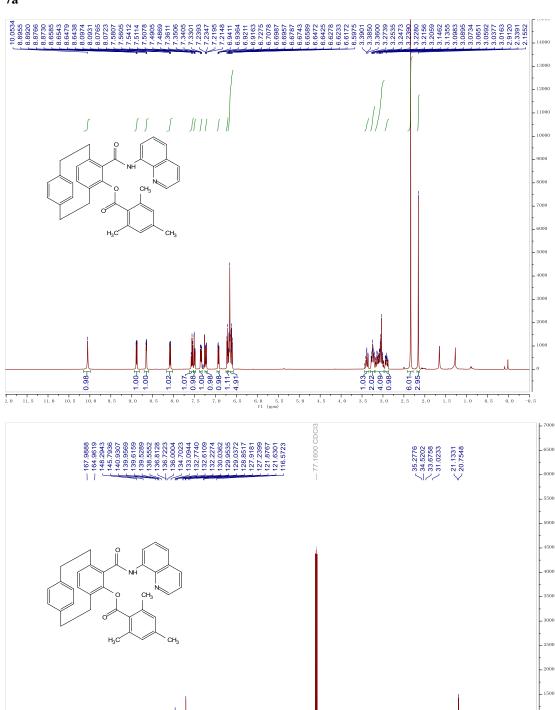


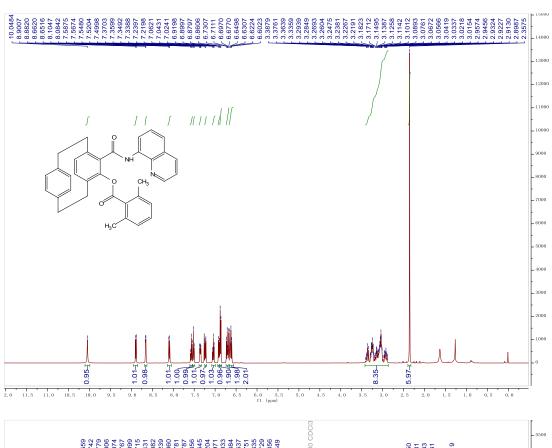


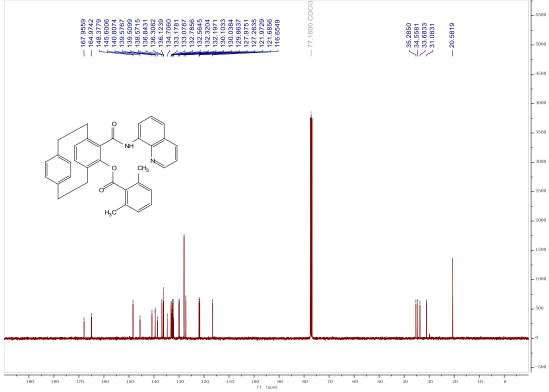


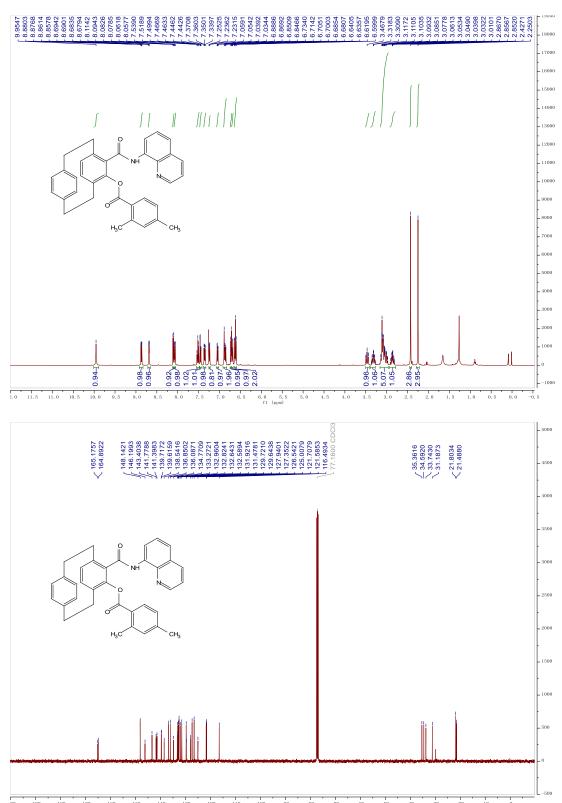


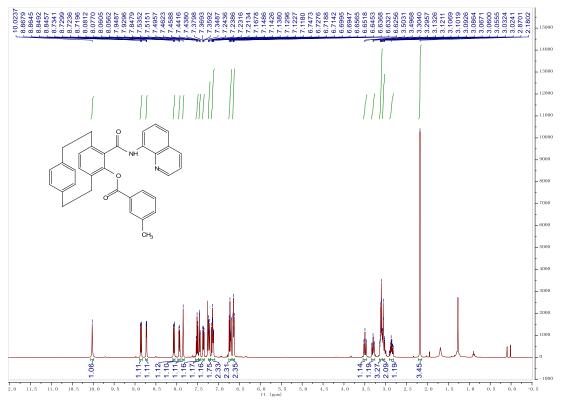


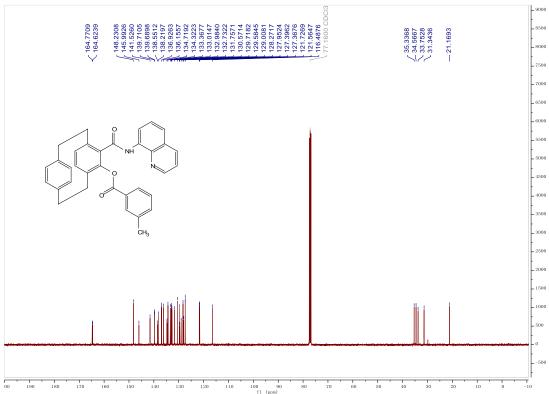


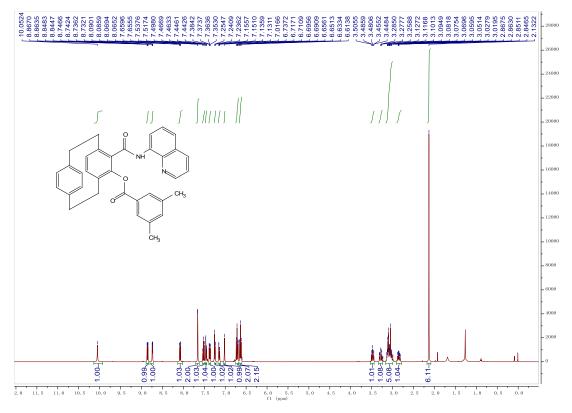


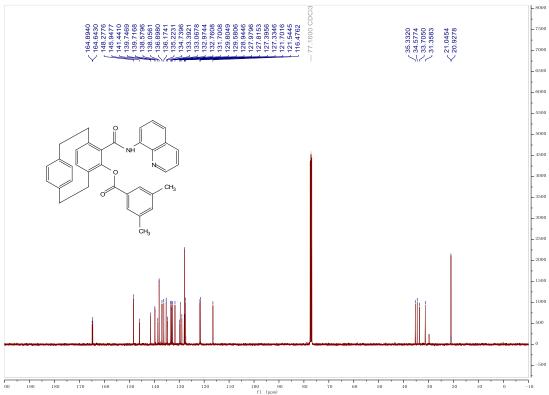


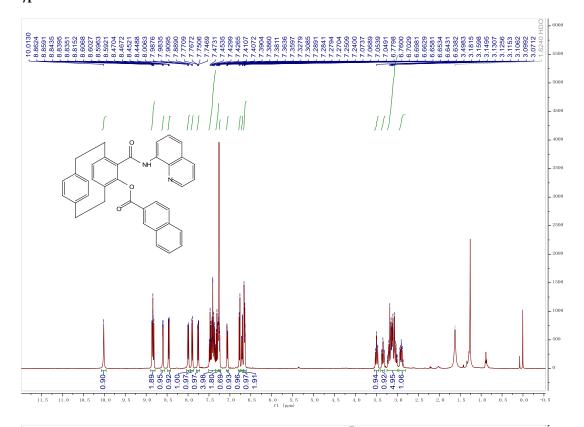


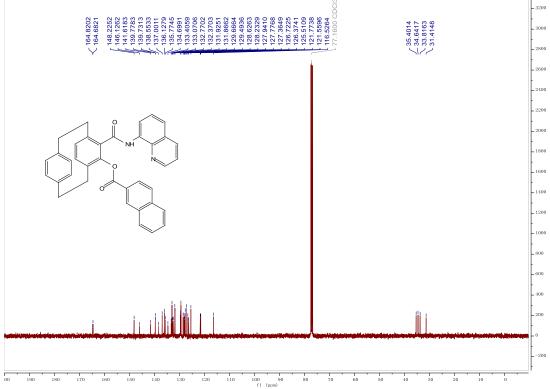

100 90 fl (ppm) 500

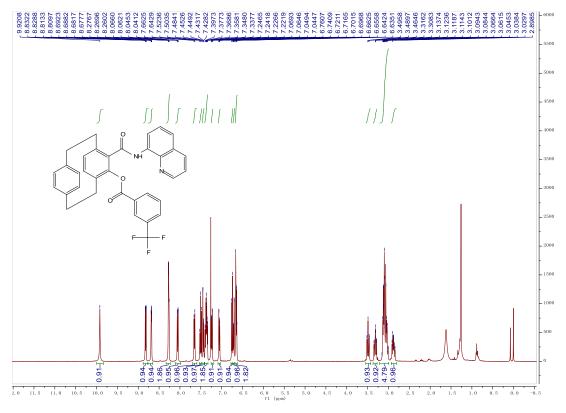


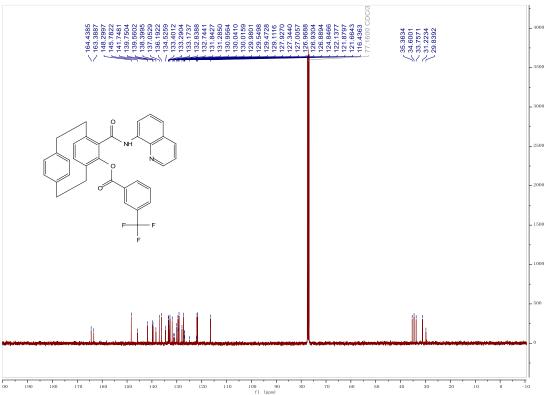


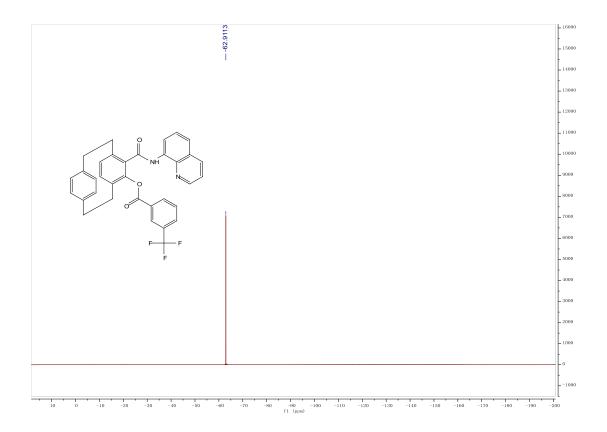


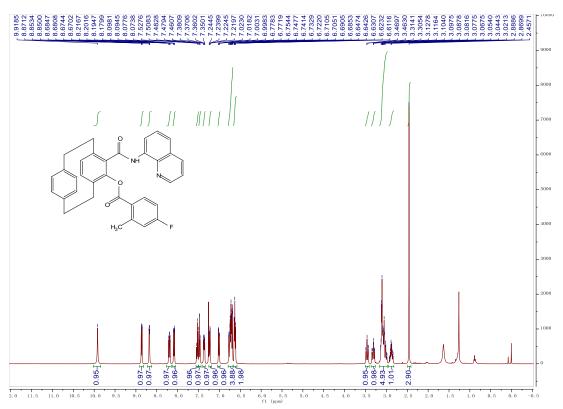


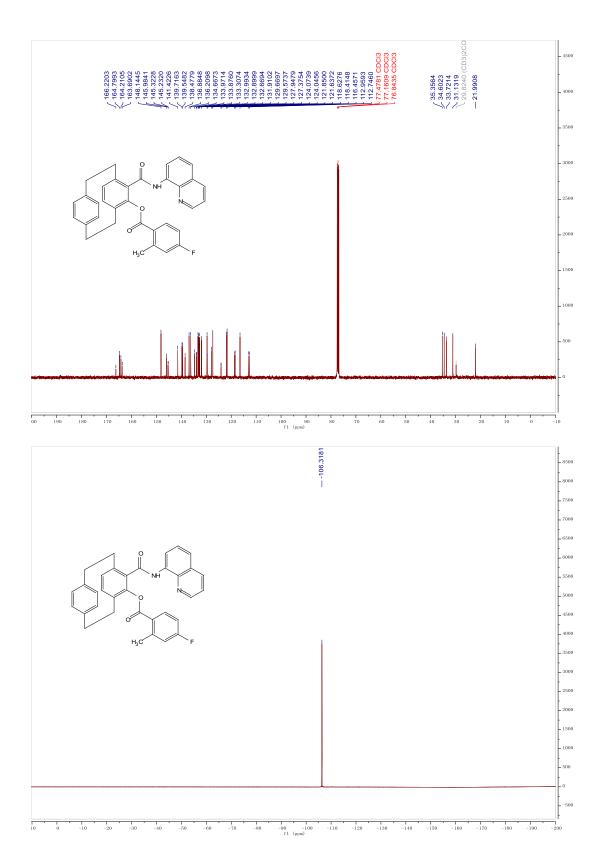


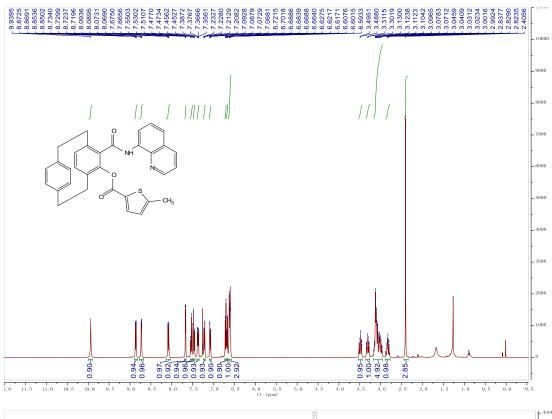


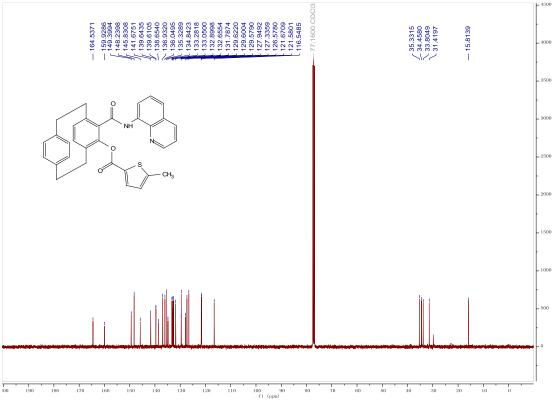


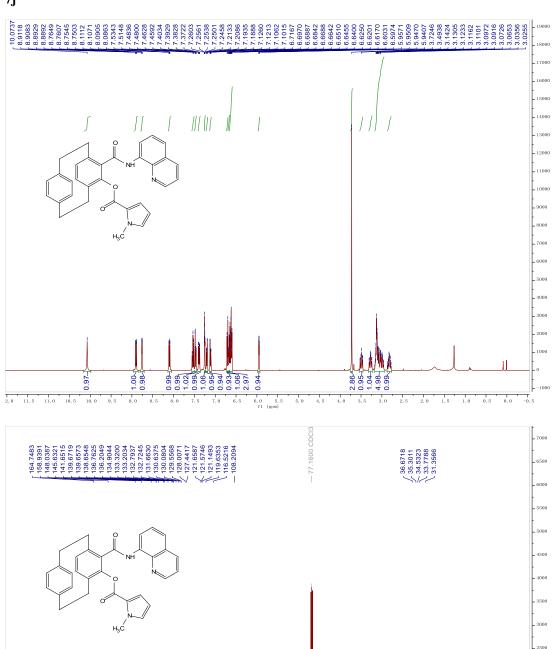











7h

